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Abstract

We consider contextual bandits with knapsacks, with an underlying structure
between rewards generated and cost vectors suffered. We do so motivated by
sales with commercial discounts. At each round, given the stochastic i.i.d. context
xt and the arm picked at (corresponding, e.g., to a discount level), a customer
conversion may be obtained, in which case a reward r(a,xt) is gained and vector
costs c(at,xt) are suffered (corresponding, e.g., to losses of earnings). Otherwise,
in the absence of a conversion, the reward and costs are null. The reward and
costs achieved are thus coupled through the binary variable measuring conversion
or the absence thereof. This underlying structure between rewards and costs is
different from the linear structures considered by Agrawal and Devanur [2016] (but
we show that the techniques introduced in the present article may also be applied
to the case of these linear structures). The adaptive policies exhibited solve at each
round a linear program based on upper-confidence estimates of the probabilities of
conversion given a and x. This kind of policy is most natural and achieves a regret
bound of the typical order (OPT/B)

√
T , where B is the total budget allowed, OPT

is the optimal expected reward achievable by a static policy, and T is the number
of rounds.

1 Introduction and Literature Review

We consider the framework of stochastic multi-armed bandits, which has been extensively studied
since the early works by Thompson [1933] and Robbins [1952]. Two recent (and complementary)
surveys summarizing the latest research in the field were written by Lattimore and Szepesvári [2020]
and Slivkins [2019]. On the one hand, we are particularly interested in the setting of contextual
stochastic multi-armed bandits, preferably with some structural assumptions on the dependency
between rewards and contexts: linear models (again, a rich literature, see, among many others,
Chu et al. [2011] and Abbasi-Yadkori et al. [2011], whose work marked a turning point), and, for
[0, 1]-valued rewards, logistic models (Filippi et al. [2010] and Faury et al. [2020]). On the other
hand, we are also particularly interested in stochastic multi-armed bandits with knapsacks, i.e., with
cumulative vector-cost constraints to be abided by on top of maximizing the accumulated rewards.
The setting was introduced by Badanidiyuru et al. [2013, 2018] and a comprehensive summary of the
results achieved since then may be found in Slivkins [2019, Chapter 10]. The intersection of these
two frameworks of interest is called contextual bandits with knapsacks [CBwK] and is the focus of
the present article.
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Literature review on CBwK. The first approach to CBwK, by Badanidiyuru et al. [2014]
and Agrawal et al. [2016], assumes a joint stochastic generation of triplets of contexts-rewards-
costs, with no specific underlying structure, and makes the problem tractable by using as a benchmark
a finite set of static policies. As noted by Agrawal and Devanur [2016], picking this finite set may
be uneasy, which is why they introduce instead a structural assumption of linear modeling: the
(unknown) expected rewards and cost vectors depend linearly on the contexts.

We consider a different modeling assumption, motivated by sales with commercial discounts (see
Appendix A): general (known) reward and cost functions are considered but they are coupled via a
0/1–valued factor, called a (customer) conversion, obtained as the realization of a Bernoulli variable
with parameter P (a,x) depending on the context x observed (customer’s characteristics) and the
action a taken (discount level offered). The probabilities P (a,x) are themselves modeled by a logistic
regression, whose parameters may be learned through an adaptation of the techniques by Filippi et al.
[2010] and Faury et al. [2020]. We do so in the first phase of the adaptive policy introduced in this
article. More details on the comparison of the new setting considered to known settings of CBwK
may be found in Section 2.2.

Primal-dual approach. The second phase of the adaptive policy exhibited uses the primal-dual
approach to a convex optimization problem—actually, a simple optimization problem given by a
linear program. This approach was already used in various ways for bandits with knapsacks, including
CBwK, to define policies based on the dual problem: this is explicit in the LagrangeBwK policy
of Immorlica et al. [2019] and is implicit in the reward-minus-weighted-cost approach of Agrawal
and Devanur [2016] and Agrawal et al. [2016], as we underline in the proof sketch of Section 4
as well as in the discussion of Section 6. However, we only use the primal-dual approach in the
analysis and state our adaptive policy directly in terms of the primal problem, where we substituted
upper-confidence estimates of the probabilities P (a,x). We therefore end up with a most natural
adaptive policy, which mimics the optimal static policy used as a benchmark. This direct primal
statement of the policy actually also works for the setting of linear CBwK studied by Agrawal and
Devanur [2016], as we show in Section 6. Policies based on such direct primal statements were
already considered for bandits with knapsacks (see Li et al. [2021] and references therein) but do not
seem easily extendable to CBwK.

Outline and main contributions. The first contribution of this article is a new structured setting of
CBwK, based on a coupling between general rewards and cost vectors through conversions modeled
based on a logistic regression; we present and discuss it in Section 2.1 (and explain its origins in
Appendix A of the supplementary material). The adaptive policy introduced is described in Section 3.
Its first phase consists of learning the parameter of logistic regression and is adapted from Faury et al.
[2020]. Its second phase—and this is the second contribution of this article—directly solves a primal
problem with optimistic conversion probabilities. The analysis, which we believe is concise, elegant,
and natural, is provided in Sections 4 (when the context distribution ν is known) and 5 (when ν is
unknown). As mentioned above, Section 6 draws the consequences of our second contribution for
linear CBwK.

Notation. Throughout the article, vectors are denoted with bold symbols. In particular, 0 and 1
denote the vectors with all components equal to 0 and 1, respectively. With no additional subscript,
∥v∥ denotes the Euclidean norm of a vector v, while a subscript given by a non-negative symmetric
matrix M refers to ∥v∥M =

√
vT Mv.

2 Learning Protocol and Motivation

We describe the learning protocol and objectives considered (Section 2.1) and explain why it is not
covered by earlier works (Section 2.2). We also detail (Appendix A in the supplementary material)
how this learning protocol was defined based on an industrial motivation in the banking sector: market
share expansion for loans by granting discounts, under commercial budget constraints.

2.1 Learning Protocol and Modeling Assumptions

We consider a finite action set A, including a special action anull called no-op, and a finite context
set X ⊆ Rn. (We discuss and mitigate finiteness of X in Section 2.2.) A scalar reward function
r : A×X → [0, 1] and a vector-valued cost function c : A×X → [0, 1]d evaluate the performance
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of actions given the contexts. There are several sources of costs to control: each corresponds to a
component of c. We assume that these function are known, and (with no loss of generality) that
their ranges are [0, 1] and [0, 1]d. The no-op action induces null reward and costs: r(anull,x) = 0 and
c(anull,x) = 0 for all x ∈ X .

Contexts—which correspond, for instance, to customers’ characteristics, see Appendix A—are drawn
sequentially according to some distribution ν, which may be known or unknown (we will deal with
both cases). At each round t ⩾ 1, upon observing the context xt ∈ X drawn, the learner picks an
action at ∈ A, which corresponds, for instance, to an offer made to the customer t. If the latter
accepts the offer, an event which we denote yt = 1, then the learner obtains a reward r(at,xt) and
suffers some costs c(at,xt). When the customer declines the offer, we set yt = 0, and null reward
and costs are obtained. Thus, in both cases, the reward and costs may be written as r(at,xt) yt and
c(at,xt) yt. We call yt the conversion and now explain how it is modeled.

Modeling conversions. We model each conversion yt as an independent Bernoulli random drawn,
with parameter P (at,xt) depending on the context xt and action at ̸= anull. We further assume that
these probabilities may be written as a logistic regression model, i.e., there exists a known transfer
function φ : A \ {anull} × X → Rm and some unknown parameter θ⋆ ∈ Rm such that

∀x ∈ X , ∀a ∈ A\{anull}, P (a,x) = η
(
φ(a,x)T θ⋆

)
, where η(x) = 1/(1+e−x) . (1)

We assume that φ is normalized in a way that its Euclidean norm satisfies ∥φ∥ ⩽ 1 and that a
bounded convex set Θ containing θ⋆ is known. Such a modeling is natural and opens the toolbox of
logistic bandits; see Faury et al. [2020] and references cited therein. We however note (and discuss
this fact in Appendix C) that the logistic regression model above is slightly different from the one
by Faury et al. [2020].

The concept of a conversion y for a round when the no-op action anull is played is void, and thus, we
leave the probabilities P (anull,x) undefined, though by an abuse of notation, these quantities might
appear but always multiplied by a 0, given, e.g., by indicator functions like 1{a ̸=anull}, null rewards
r(anull,x), or null costs c(anull,x).

Policies: static vs. adaptive. The learner is given a number of rounds T and a maximal budget B
(the same for all cost components, with no loss of generality: up to some normalization). A static
policy is a function π : X → P(A), where P(A) is the set of probability distributions over A. As is
traditional in the literature of CBwK (we recall below why this is the case), we take as benchmark the
static policy π⋆ with largest expected cumulative rewards under the condition that its cumulative costs
abide by the budget constraints in expectation. More formally, π⋆ achieves the maximum defining

OPT(ν, P,B) = max
π:X→P(A)

T EX∼ν

[∑
a∈A

r(a,X)P (a,X)πa(X)

]

under T EX∼ν

[∑
a∈A

c(a,X)P (a,X)πa(X)

]
⩽ B1 ,

(2)

where EX∼ν denotes an expectation solely over random contexts X following distribution ν, where
πa(X) denotes the probability mass put by π(X) on a ∈ A, and where ⩽ is understood component-
wise. Of course, the sums in the two expectations above are taken indifferently over A or A \ {anull}.

The learner uses an adaptive policy, i.e., a sequence of measurable functions pt : Ht−1 ×X → P(A)
indexed by t ⩾ 1, where H = X × A × {0, 1}. Indeed, the history available to the learner at the
beginning of the round t ⩾ 2 is summarized by ht−1 = (xs, as, ys)s⩽t−1, and we define h0 as the
empty vector. Such a policy draws the action at for round t ⩾ 1 independently at random according
to pt(ht−1,xt). We impose hard budget constraints on adaptive policies: they must satisfy∑

t⩽T

c(at,xt)yt ⩽ B1 a.s.

Such adaptive policies are called feasible in the literature. To abide by these hard constraints, we may
restrict our attention to adaptive policies that pick Dirac masses on anull whenever one component of
the cumulative costs is larger than B − 1. At the same time, an adaptive policy should maximize the
cumulative rewards obtained or, equivalently, minimize its regret:

RT = OPT(ν, P,B)−
∑
t⩽T

r(at,xt)yt .
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BOX A: CONTEXTUAL BANDITS WITH KNAPSACKS [CBWK] FOR A CONVERSION MODEL

Known parameters: finite action set A including a no-op action anull; finite context set
X ⊆ Rn; scalar reward function r : A × X → [0, 1]; vector-valued cost function c :
A×X → [0, 1]d; number T of rounds; total budget constraint B > 0.

Possibly unknown parameters: context distribution ν on X ; probability of conversion given
action and context P : A \ {anull} × X → [0, 1], modeled as P (a,x) = η

(
φ(a,x)T θ⋆

)
for

some known transfer function φ : A\{anull}×X → Rm, with ∥φ∥ ⩽ 1, and some unknown
parameter θ⋆ ∈ Rm, lying in a known bounded convex set Θ.

For rounds t = 1, 2, 3, . . . , T :
1. Context xt ∼ ν is drawn independently of the past;
2. Learner observes xt and picks an action at ∈ A;
3. Conversion yt ∈ {0, 1} is drawn according to Ber

(
P (at,xt)

)
;

4. Learner observes yt, gets reward r(at,xt) yt, and suffers costs c(at,xt) yt.

Goals: Maximize
∑
t⩽T

r(at,xt) yt while controlling
∑
t⩽T

c(at,xt) yt ⩽ B1

It may be proved (along the same lines as Agrawal and Devanur [2016, Appendix B] do for a different
model) that the optimal static policy π⋆ obtains, on average and in expectation, a cumulative reward
at least as good as the best feasible adaptive policy.

Summary. A summary of the learning protocol and of the goals is provided in Box A. We note here
that rewards gained and vector costs suffered at round t in the case yt = 1 of a conversion could be
stochastic with expectations r(at,xt) and c(at,xt): our analysis and the regret bounds would be
unchanged, as long as the expectation functions r and c are known.

2.2 Discussion and Comparison to Existing Learning Protocols

The setting described above may be reduced to the general setting of CBwK, as introduced by
Badanidiyuru et al. [2014] and Agrawal et al. [2016]. Indeed, introduce independent Bernoulli
variables yt,a with parameters P (a,xt), for all a ∈ A \ {anull}, and set yt,anull = 0. The vectors(
xt,

(
rt(a)

)
a∈A,

(
ct(a)

)
a∈A

)
, where rt(a) = r(a,xt) yt,a and ct(a) = c(a,xt) yt,a

are i.i.d., and upon picking action at ∈ A, the obtained and observed rewards and cost vectors equal
rt(at) and ct(at). When X is discrete, we may consider the set Π of base policies that map X to
{δa : a ∈ A}, the set of Dirac masses at some a ∈ A. The convex hull of Π is the set of all static
policies X → P(A), against which we would like our policy to compete; but the adaptive policies by
Badanidiyuru et al. [2014] and Agrawal et al. [2016] only compete with respect to the best single
element in Π, not the best convex combination of elements of Π.

The setting of linear CBwK (Agrawal and Devanur [2016]) provides a structural link between contexts
and expected rewards and cost vectors, but in a linear way that is incomparable to the setting of
CBwK for a conversion model introduced above. More details are given in Section 6. We also
mention that linear and logistic structural links between contexts (prices) and rewards or costs were
studied in a non-contextual setting (i.e., not in CBwK) by Miao et al. [2021]. Their strategy bears
some resemblance to the one by Agrawal and Devanur [2016], in particular, both consider an online
convex optimization strategy as a subroutine.

All mentioned references consider a no-op action anull. (It could be replaced by the existence of a
standard action ano-cost always achieving null costs and possibly some positive rewards.)

On the contrary, none of the mentioned references assumes that the context X set is finite. This is a
technical necessity for a part of the adaptive policy introduced; see the discussion of computational
complexity at the end of Section 3. But somehow, considering a finite set Π of policies, as in
Badanidiyuru et al. [2014] and Agrawal et al. [2016], is a counterpart to assuming finiteness of X .
Also, Appendix F actually mitigates this restriction that X is finite: learning the logistic parameter
θ⋆ may be achieved with continuous contexts (see Phase 1 in Section 3); only the subsequent
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optimization part (Phase 2 in Section 3) requires finiteness of X . We may thus well discretize only X
for this Phase 2, which is exactly what Appendix F performs. This mitigation comes with possible
theoretical guarantees as Sections 4 and 5 reveal that the errors εt(a,x) for learning θ⋆ and P ,
obtained as outcomes of the first step of the analyses, are carried over in the subsequent steps, where
the optimization part is evaluated.

3 Description of the Adaptive Policy Considered

At each stage t ⩾ 1, the policy first updates an estimator θ̂t−1 of θ⋆ based on the history ht−1

available so far, based on an adaptation of the Logistic-UCB1 algorithm by Faury et al. [2020], and
deduces estimators P̂t−1(a,x) and upper confidence bounds Ut−1(a,x) of the probabilities P (a,x).
The policy then solves the corresponding estimated version of the optimization problem (2). We now
describe the corresponding two steps. In the description below, quantities that depend on information
available at round t− 1 (respectively, t) are indexed by t− 1 (respectively, t).

Phase 0: In case the cost constraints are about to be violated. To make sure cost constraints are
never violated, whenever at least one of the components of the current cumulative costs is larger
than B − 1 and could possibly be larger than B at the end of round t, we play anull (and we actually
do so for the rest of the rounds). This corresponds to defining pt(ht−1,x) = δanull for all x ∈ X ,
where δanull denotes the Dirac mass on anull. Otherwise, we proceed as described below in Phase 1
and Phase 2.

Phase 1: Learning θ⋆ via an adapted Logistic-UCB1. This first phase depends on a regularization
parameter λ > 0 and on upper-confidence bonuses εt(a,x) > 0, both to be specified by the analysis.

At rounds t ⩾ 2, we first maximize a regularized log-likelihood of the history ht−1:

θ̃t−1 ∈ argmax
θ∈Rm

t−1∑
s=1

1{as ̸=anull}

(
ys ln η

(
φ(as,xs)

T θ
)
+(1−ys) ln

(
1−η

(
φ(as,xs)

T θ
)))

−λ

2
∥θ∥2 .

(3)
In the expression above, we read that we only gather information about θ⋆ at those rounds s when
as ̸= anull. When θ̃t−1 does not belong to Θ, an ad hoc projection step corrects for this, if needed:

θ̂t−1 ∈ argmin
θ∈Θ

wwwΨt−1(θ)−Ψt−1

(
θ̃t−1

)www
Wt−1(θ)−1

, (4)

where Ψt−1(θ) =

t−1∑
s=1

1{as ̸=anull} η
(
φ(as,xs)

T θ
)
φ(as,xs) + λθ

and Wt−1(θ) = λ Im +

t−1∑
s=1

1{as ̸=anull} η̇
(
φ(as,xs)

T θ
)
φ(as,xs)φ(as,xs)

T . (5)

We recall that the function η̇ denotes the derivative of η, i.e., η̇(x) = e−x/
(
1 + e−x

)2
. We have

η̇ = η(1− η).

By plug-in, we finally define estimators and upper-confidence bounds of the probabilities P (a,x) for
a ̸= anull and all x ∈ X :

P̂t−1(a,x) = η
(
φ(a,x)T θ̂t−1

)
and Ut−1(a,x) = min

{
P̂t−1(a,x) + εt−1(a,x), 1

}
.

For anull, no estimators or upper-confidence bounds need to be defined, as the quantities P (anull,x)
are actually undefined.

Phase 2: Sampling, via solving an optimization problem with expected constraints. This phase
relies on a conservative-budget parameter denoted by BT , which is only slightly smaller than B and
whose exact value is to be specified by the analysis.

We start with the case of a known context distribution ν. At round t = 1, we play an arbitrary action
in A \ {anull}. At rounds t ⩾ 2, if at least one component of the cumulative vector costs suffered so
far is larger than B − 1, we pick at = anull. Otherwise, we pick for pt(ht−1, · ) the solution of the
optimization problem OPT(ν, Ut−1, BT ) defined1 in (2), and draw at according to pt(ht−1,xt).

1In the definition (2) of OPT(ν, Ut−1, BT ), expectations are only over X ∼ ν and not over the random
variable Ut−1; more comments and explanations on this fact may be found in Appendix B.3.
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BOX B: LOGISTIC-UCB1 FOR DIRECT SOLUTIONS TO OPT PROBLEMS

Parameters: regularization parameter λ > 0; conservative-budget parameter BT ; upper-
confidence bonuses εs(a,x) > 0, for s ⩾ 1 and (a,x) ∈

(
A \ {anull}

)
×X .

Round t = 1: play an arbitrary action a1 ∈ A \ {anull}
At rounds t ⩾ 2:

Phase 0 If
∑

s⩽t−1

c(as,xs) ys ⩽ (B − 1)1 is violated, then pt(ht−1,x) = δanull for all x

Phase 1 Otherwise, compute a maximum-likelihood estimator θ̃t−1 of θ⋆ according to (3),
compute its projection θ̂t−1 onto Θ according to (4), and define, for a ̸= anull:

P̂t−1(a,x) = η
(
φ(a,x)T θ̂t−1

)
and Ut−1(a,x) = min

{
P̂t−1(a,x)+εt−1(a,x), 1

}
Phase 2 Compute the solution pt(ht−1, · ) of

OPT
(
ν̃, Ut−1, BT

)
= max

π:X→P(A)
T EX∼ν̃

[∑
a∈A

r(a,X)Ut−1(a,X)πa(X)

]

under T EX∼ν̃

[∑
a∈A

c(a,X)Ut−1(a,X)πa(X)

]
⩽ BT1 ,

where ν̃ denotes either ν (when it is known) or its empirical estimate ν̂t in (6)
Draw an arm at ∼ pt(ht−1,xt).

When the context distribution is unknown, we rather pick for pt(ht−1, · ) the solution of the opti-
mization problem OPT

(
ν̂t, Ut−1, BT

)
, where

ν̂t =
1

t

t∑
s=1

δxs
, (6)

with δx denoting the Dirac mass at x ∈ X . Since xt is revealed at the beginning of round t, before
we pick an action, we may indeed use ν̂t at round t.

Summary and discussion of the computational complexity. We summarize the considered adaptive
policy in Box B and now discuss its computational complexity.

As lnφ and ln(1− φ) are strictly concave and smooth, the maximum-likelihood step (3) of Phase 1
consists of maximizing a strictly concave and smooth function over Rm, which may be performed
efficiently. The projection step (4) of Phase 1 is however an issue, both with the version of Logistic-
UCB1 discussed here and with the earlier approach by Filippi et al. [2010, Section 3]. The latter and
Faury et al. [2020, Section 4.1] both underline that the projection step (4) is a complex optimization
problem that however does not often need to be solved in practice, as they usually observe θ̃t−1 ∈ Θ.
Our numerical experiments concur with this statement (but admittedly, they rely on choosing a rather
large value of Θ).

On the contrary, Phase 2 of the adaptive policy consists of solving a linear program with |X | × |A|
constraints, where where |X | and A denote the cardinality of X and A, respectively—see the detailed
rewriting (13) in the supplementary material. Therefore, the computational complexity of Phase 2 is
polynomial (of weak order) in |X | × |A|. To achieve this acceptable complexity we had however to
restrict our attention to finite sets of contexts X , which requires in practice segmenting countable or
continuous context sets into finitely many clusters, for instance. We do so in our experiments.

Simulation study. A simulation study on partially simulated but realistic data may be found in
Appendix F. The underlying dataset is the standard “default of credit card clients” dataset of UCI
[2016], initially provided by Yeh and Lien [2009]. (It may be used under a Creative Commons
Attribution 4.0 International [CC BY 4.0] license.)
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4 Analysis for a Known Context Distribution ν

Since Θ is bounded, the following quantity, standardly introduced in the context of logistic bandits
(see Faury et al. [2020] and references therein), is finite, though possibly large:

κ = sup

{
1

η̇
(
φ(a,x)T θ

) : x ∈ X , a ∈ A \ {anull}, θ ∈ Θ

}
< +∞ .

We denote by ∥Θ∥ = max
{
∥θ∥ : θ ∈ Θ

}
the maximal Euclidean norm of an element in Θ.

By construction, given that individual cost vectors lie in [0, 1]d and due to its “Phase 0”, the adaptive
policy considered always satisfies the budget constraints. The bound on rewards reads as follows.
Theorem 1. In the setting of Box A of Section 2.1, we consider the adaptive policy of Box B of
Section 3 assuming that the distribution of the contexts is known, i.e., with ν̃ = ν. We set a confidence
level 1− δ ∈ (0, 1) and use parameters λ = m ln(1 + T/m),

BT = B − 2−
√
2T ln(4d/δ) ,

and εt(a,x) stated in (9) of the supplementary material. Then, provided that T ⩾ 2m and B >

4 + 2
√
2T ln(4d/δ), we have, with probability at least 1− 2δ,

OPT(ν, P,B)−
∑
t⩽T

r(at,xt) yt ⩽

(
4 + 2

√
2T ln

4d

δ

)
OPT(ν, P,B)

B
+ ET +

√
2T ln

4

δ
+ 1 ,

where the closed-form expression of ET = O
(
m
√
T lnT

)
is in (35) of the supplementary material.

We will rather discuss the bound of the more general Theorem 2 (to be stated and proved in Section 5)
than the one of Theorem 1. We provide a proof sketch in Section 4.1 and discuss the main technical
novelty in Section 4.2.

4.1 Proof Sketch for Theorem 1

The detailed proof of Theorem 1 may be found in Appendix B. We provide here an overview thereof,
highlighting the four main ingredients. The third and fourth steps benefited from some inspiration
drawn from the proof techniques of Agrawal and Devanur [2016]. The first step is an adaptation of
Lemmas 1 and 2 by Faury et al. [2020].

First, the mentioned adaptation provides values of the parameters εt(a,x) such that, with probability
at least 1− δ,

∀t ⩾ 1, ∀a ∈ A \ {anull}, ∀x ∈ X ,
∣∣P̂t(a,x)− P (a,x)

∣∣ ⩽ εt(a,x) ,

hence Ut(a,x)− 2εt(a,x) ⩽ P (a,x) ⩽ Ut(a,x) ,

while
∑
t⩽T

εt−1(at,xt)1{at ̸=anull} is of order
√
T up to poly-logarithmic terms.

Second, the Phase 2 formulation of the strategy, in a primal form, is equivalently restated in a dual
form. For each round t ⩾ 2, strong duality holds and entails the existence of a vector βbudg,⋆

t ∈ Rd

such that pt(ht−1, · ) may be identified as the argmax over π : X → P(A) of

EX∼ν

[
T
∑
a∈A

(
r(a,X)−

(
βbudg,⋆
t

)T
c(a,X)

)
Ut−1(a,X)πa(X) +

∑
x∈X

∑
a∈A

βp-pos,⋆
x,a πa(x)

]
.

By exploiting the KKT conditions, we are able to get rid of the double sum above and finally get a
X–pointwise characterization of pt(ht−1, · ): for all x ∈ X ,

pt(ht−1,x) ∈ argmax
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) qa

= argmax
q∈P(A)

∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
+
Ut−1(a,x) qa .
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Non-negative parts ( · )+ may be introduced thanks to the existence of the no-op action anull. The
distributions pt(ht−1,x) may therefore be interpreted as maximizing some upper-confidence bound
on penalized gains (rewards minus some scalarized costs); the dual variables βbudg,⋆

t play a role similar
to the Z parameter of Agrawal and Devanur [2016, Section 3.3] in terms of weighing gains versus
costs. In passing, we also prove

OPT(ν, Ut−1, BT ) ⩾ BT (β
budg,⋆
t )T 1

based on the KKT conditions. The latter inequality is comparable in spirit to the bound of Agrawal
and Devanur [2016, Corollary 3], relating Z to OPT(ν, P,B)/B.

Third, for t ⩾ 2, whenever the policy pt(ht−1, · ) is obtained by solving the optimization problem
OPT(ν, Ut−1, BT ) of Phase 2 and by independence of xt and ht−1, we have

OPT(ν, Ut−1, BT )

T
= EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X) pt,a(ht−1,X)

]
= E

[
r(at,xt)Ut−1(at,xt)

∣∣ht−1

]
.

Therefore, repeated applications of the Hoeffding-Azuma inequality and the inequalities of the first
step entail that, up to quantities of the order of

√
T ,

T∑
t=2

OPT(ν, Ut−1, BT )

T
≈

T∑
t=2

r(at,xt)Ut−1(at,xt)

≲
T∑

t=2

εt−1(at,xt)1{at ̸=anull} +

T∑
t=2

r(at,xt)P (at,xt) ≲
T∑

t=2

r(at,xt) yt .

We thus only need to control OPT(ν, P,B)−
T∑

t=2

OPT(ν, Ut−1, BT )

T
, which may be assumed ⩾ 0.

The value BT = B − 2−
√
2T ln(4d/δ) and similar Hoeffding-Azuma-based arguments show that

with high probability, the budget limit B − 1 is indeed never reached and that we always compute
pt(ht−1, · ) in the way indicated by Phase 2.

Fourth, we collect all bounds together. We start with
T∑

t=2

BT

T
(βbudg,⋆

t )T 1 ⩽
T∑

t=2

OPT(ν, Ut−1, BT )

T
⩽ OPT(ν, P,B) .

We the exploit the dual characterization of pt(ht−1, · ) and the control P ⩽ Ut−1 to get that with
high probability, for all x ∈ X ,∑

a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
Ut−1(a,x) pt,a(ht−1,x)

⩾
∑
a∈A

(
r(a,x)−

(
βbudg,⋆
t

)T
c(a,x)

)
P (a,x)π⋆

a(x) .

After integration over X ∼ ν and substituting of the definitions of π⋆ and pt,a(ht−1, · ), as well as
the equality stemming from the KKT conditions, we have

=OPT(ν,Ut−1,BT )/T︷ ︸︸ ︷
EX∼ν

[∑
a∈A

r(a,X)Ut−1(a,X)pt,a(ht−1,X)

]

− EX∼ν

[∑
a∈A

(
βbudg,⋆
t

)T
c(a,X)Ut−1(a,X)pt,a(ht−1,X)

]
︸ ︷︷ ︸

(BT /T )(β
budg,⋆
t )T 1

⩾ EX∼ν

[∑
a∈A

r(a,X)P (a,X)π⋆
a(X)

]
︸ ︷︷ ︸

=OPT(ν,P,B)/T

−(βbudg,⋆
t

)T EX∼ν

[∑
a∈A

c(a,X)P (a,X)π⋆
a(X)

]
︸ ︷︷ ︸

⩽(B/T )1

.
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Rearranging and summing over 2 ⩽ t ⩽ T , we obtain
T∑

t=2

OPT(ν, P,B)− OPT(ν, Ut−1, BT )

T
⩽

T∑
t=2

B −BT

T
(βbudg,⋆

t )T 1 ⩽

(
B

BT
− 1

)
OPT(ν, P,B) ,

where we substituted the first inequality stated in this fourth step. This concludes the proof.

4.2 Discussion on the Main Technical Novelties

As should be clear from the comments at the beginning of Section 4.1, the technical novelties lies in
the second step of the proof of Theorem 1. On the one hand, we are able to directly analyze a strategy
stated in a primal form, which is a more natural formulation. On the other hand, doing so, we are also
able to avoid the issues that come with dual formulations, relying, e.g., on some critical parameter
Z, as in Agrawal and Devanur [2016, Theorem 3], to trade off rewards and costs. This parameter Z
should be of order OPT/B and has to be learned, e.g., through

√
T initial exploration rounds. (More

details are to be found in Section E.3.) In our analysis, this parameter Z is superseded by dual optimal
variables βbudg,⋆

t ⩾ 0, that are only used in the analysis and not to state the policy, unlike in Agrawal
and Devanur [2016]. Put differently, the clever use in this context of KKT conditions is the main
technical novelty. On a side note, we are also able to take care in an explicit and detailed fashion of
the no-op action anull, whose specific treatment is often unaddressed in the literature.

5 Analysis for an Unknown Context Distribution ν

When the context distribution ν is unknown, we simply estimate it through its empirical fre-
quencies (6). The regret bound is almost unchanged: an additional mild factor of, e.g.,
2|X |

√
2T ln(2T |X |/δ) appears in the

√
T term multiplying OPT(ν, P,B)/B. This term comes

from some uniform deviation argument stated in (7) and 8.
Theorem 2. In the setting of Box A of Section 2.1, we consider the adaptive policy of Box B of
Section 3 with ν̃ = ν̂t at rounds t ⩾ 2. We set a confidence level 1− δ ∈ (0, 1) and use parameters
λ = m ln(1 + T/m), a working budget of

B − bT , where bT = 2 +
√
2T ln(4d/δ) + |X |

√
2T ln

(
2T |X |/δ

)
,

and εt(a,x) stated in (9) of the supplementary material. Then, provided that T ⩾ 2m and B > 2bT ,
we have, with probability at least 1− 3δ,

OPT(ν, P,B)−
∑
t⩽T

r(at,xt) yt ⩽ 2bT

(
1 +

OPT(ν, P,B)

B

)
+ ET ,

where the expression of ET = O
(
m
√
T lnT

)
may be found in (35) of the supplementary material.

The order of magnitude of the regret bound is
(
m + |X |OPT(ν, P,B)/B

)√
T lnT , which is remi-

niscent of all known regret upper bounds for CBwK (e.g., the ones by Badanidiyuru et al. [2014]
and Agrawal et al. [2016], for general CBwK, and Agrawal and Devanur [2016] for linear CBwK,
see Section 6). The factor |X | may be improved, see below, but this is a detail. A discussion on
exhibiting corresponding lower bounds is to be found at the end of Section 6.

A detailed proof of Theorem 2 is provided in Appendix D of the supplementary material. It follows
closely the proof of Theorem 1, with modifications mostly consisting of relating quantities of the
form
EX∼ν̂t

[
f(X)

]
vs. EX∼ν

[
f(X)

]
, where, e.g., f(X) =

∑
a∈A

r(a,X)Ut−1(a,X)pt,a(ht−1,X) .

To do so, we use that for all functions f : X → [0, 1],

∀ t ⩽ T,
∣∣∣EX∼ν̂t

[
f(X)

]
− EX∼ν

[
f(X)

]∣∣∣ ⩽ ∑
x∈X

∣∣ν̂t(x)− ν(x)
∣∣ def
=
wwν̂t − ν

ww
1
, (7)

where
wwν̂t − ν

ww
1

is the total variation distance between ν̂t and ν. In Appendix D, we upper bound
the latter, for the sake of simplicity, in a crude way by applying T |X | times the Hoeffding-Azuma
inequality (once for each 1 ⩽ t ⩽ T and x ∈ X ) and obtain that with probability at least 1− δ,

∀ t ⩽ T,
wwν̂t − ν

ww
1
⩽ |X |

√
1

2t
ln

2T |X |
δ

. (8)
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The |X |
√
2T ln(2T |X |/δ) term in the regret bound of Theorem 2 appears as the sum over t ⩽ T

of the deviation bounds (8). The bounds (8) may actually be improved into bounds of the order of√
|X |/t, via some Cauchy-Schwarz bound and a deviation argument in Banach spaces by Pinelis

[1994], or by more direct techniques described by Devroye [1983, Lemma 3] and Berend and
Kontorovich [2012]. In any case, the regret bound of Theorem 2 automatically benefits from such
improvements, by replacing the 2|X |

√
2T ln(2T |X |/δ) term in the bound therein by the (sum over

t ⩽ T of the) better uniform deviation bounds.

6 Extension to Linear Contextual Bandits with Knapsacks

This section is a brief summary of Appendix E. We explain therein how the adaptive policy of Box B
may be adapted to the setting of linear CBwK, introduced by Agrawal and Devanur [2016], where
the bounded rewards rt and vector costs ct are independently generated at each round according to
bounded distributions with respective expectations r(at,xt) and c(at,xt), depending linearly on (a
transfer function φ of) the contexts: for all a ̸= anull and x ∈ X , for all components i of c,

r(a,x) = φ(a,x)T µ⋆ and ci(a,x) = φ(a,x)T θ⋆,i .

We consider the same benchmark OPT(ν, r, c, B) as Agrawal and Devanur [2016] and are able to
exhibit a similar

(
OPT(ν, r, c, B)/B

)
m
√
T lnT regret bound, with however a slight relaxation on

the order of magnitude required for B. We do so with a strategy that we deem more direct and natural,
inspired from the one of Box B, where in Phase 1 a LinUCB-type (Abbasi-Yadkori et al. [2011])
estimation of the parameters is performed, and where in Phase 2, a direct solution to an OPT problem
with estimated parameters is performed. The parameters are upper-confidence functions Ut−1 on r
and lower-confidence vector functions Lt−1 on c.

The main advantage of our approach in the case of linear contextual bandits is exactly as described in
Section 4.2: avoiding the critical parameter Z of Agrawal and Devanur [2016, Theorem 3], which is
used to trade off rewards and costs. The main limitation of our approach is the assumption of a finite
context set X , which is required to make the Phase-2 linear program tractable.

7 Future Work

We conclude this article with a list of issues to be further investigated.

First, as discussed in Section 2.2, the restrictions of finiteness should be alleviated: finiteness of the
context set in the setting of this article, or finiteness of the set of benchmark policies in other settings
(see Badanidiyuru et al., 2014 and Agrawal et al., 2016).

Second, we only dealt with ⩽ budget constraints (and do does the literature so far). Direct approaches
to constraints of the form ⩾ remain to be further investigated.

A third series of questions to be clarifies concerns regret lower bounds, and more generally, the
tightness of the results—in particular, the required conditions on budget sizes. Earlier references
for contextual bandits with knapsacks did also not provide lower bounds statements that were
simultaneously optimal (i.e., matching the obtained upper bounds) and general (i.e., valid for all
problems with a given number of rounds T , a given budget B, and a given value OPT for the optimal
expected reward achievable by a static policy). Badanidiyuru et al. [2014, comments after Theorem 1]
merely indicates that the obtained regret upper bound is optimal in some regimes, e.g., when the
budget B grows linearly with the number of rounds T . Agrawal and Devanur [2016, comments after
Theorem 1] only compares the obtained regret upper bound to the case of no budget constraints. In
particular, as far as the orders of magnitude in T are concerned, it is unclear whether the (OPT/B)

√
T

rates achieved (up to poly-logarithmic factors) in the present article and in the two mentioned
references are optimal. These rates do not match the optimal rates in the case of no contexts, which
were stated and proved by Badanidiyuru et al. [2013].
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