
INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Jaejun Lee 1 Chanyoung Chung 1 Joyce Jiyoung Whang 1

Abstract

Inductive knowledge graph completion has been
considered as the task of predicting missing
triplets between new entities that are not observed
during training. While most inductive knowledge
graph completion methods assume that all entities
can be new, they do not allow new relations to ap-
pear at inference time. This restriction prohibits
the existing methods from appropriately handling
real-world knowledge graphs where new entities
accompany new relations. In this paper, we pro-
pose an INductive knowledge GRAph eMbedding
method, INGRAM, that can generate embeddings
of new relations as well as new entities at in-
ference time. Given a knowledge graph, we de-
fine a relation graph as a weighted graph consist-
ing of relations and the affinity weights between
them. Based on the relation graph and the original
knowledge graph, INGRAM learns how to aggre-
gate neighboring embeddings to generate relation
and entity embeddings using an attention mech-
anism. Experimental results show that INGRAM
outperforms 14 different state-of-the-art methods
on varied inductive learning scenarios.

1. Introduction
Knowledge graphs represent known facts as a set of triplets,
each of which is composed of a head entity, a relation, and
a tail entity (Ji et al., 2022). Among various approaches to
predicting missing triplets in knowledge graphs, embedding-
based methods are known to be effective, where entities
and relations are converted into low-dimensional embed-
ding vectors (Nathani et al., 2019). Classical knowledge
graph embedding models (Liu et al., 2017; Sun et al., 2019)
assume a transductive learning. That is, it is assumed that all
entities and relations are observed during training. Transduc-
tive knowledge graph embedding methods predict a missing

1School of Computing, KAIST, Daejeon, South Korea. Corre-
spondence to: Joyce Jiyoung Whang <jjwhang@kaist.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Occidental
College California

HeadquarterIn

Barack
Obama

Graduated

USA
Nationality

Contains

Training Graph

Lewis
Carroll

University
of Oxford

Graduated

Nationality

Oxford

Contains

Contains

England

Roman
Polanski

Paris

BornIn

Victor
HugoDiedIn

France
Nationality

Nationality

Central
Time Zone

Austin Bruce
Sterling

Texas

LivedIn

TimeZone

TimeZone

BornIn

Triplet with Known Relation Triplet with New Relation Predicted Triplet

(a) Transductive Inference
for relations

(c) Inductive Inference
for relations

(b) Semi-Inductive Inference
for relations

Figure 1: For relations, (a) is a transductive inference, (b) is
a semi-inductive inference, and (c) is an inductive inference.

triplet by identifying a plausible combination of the ob-
served entities and relations (Wang et al., 2017).

In recent years, inductive knowledge graph completion has
been studied to predict missing triplets between new en-
tities that are not observed at training time (Teru et al.,
2020). If an entity or a relation is observed during training,
we call them known and new otherwise; they are some-
times referred to as seen and unseen (Xu et al., 2022).
To handle new entities, some methods focus on learning
entity-independent relational patterns by logical rule min-
ing (Sadeghian et al., 2019), while others exploit Graph
Neural Networks (GNNs) (Yan et al., 2022). However, most
existing methods assume that only entities can be new, and
all relations should be observed during training. Thus, they
perform inductive inference for entities but transductive
inference for relations as shown in Figure 1(a).

In this paper, we consider more realistic inductive learn-
ing scenarios: (i) the relations at inference time consist of
a mixture of known and new relations (semi-inductive in-
ference for relations), or (ii) the relations are all new due
to an entirely new set of entities (inductive inference for
relations). Figure 1(b) and Figure 1(c) show these scenar-
ios. We propose INGRAM, an INductive knowledge GRAph
eMbedding method that can generate embedding vectors for
new relations and entities only appearing at inference time.
Figure 2 shows an overview of INGRAM when all relations
and entities are new. A key idea is to define a relation graph

1

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Training Graph

r1

r1

r2

r4

r2
r2

r4

r1
r5

r3

r4

r3

r1

r2r5

r4 r3

Relation Graph

of Training Graph

r4 r3

Relation-level

Aggregation

r5

r1

r2

Entity-level

Aggregation Loss Optimization

Inference Graph

Relation Graph

of Inference Graph

Relation-level

Aggregation

Entity-level

Aggregation Link Prediction

r6

r7

r8r7

r8

r9 r6

r6

r6

r7

r7

r7
r6 r7

r9 r8

r7

r9

r6

r8

r6

r7

r8r7

r8

r9 r6

r6

r6

r7

r7

r7

r9

r7 r8

tailhead

relation

score

Learned weights

Figure 2: Overview of INGRAM. Given a knowledge graph, a relation graph is created to define the neighboring relations of
each relation. Based on the relation graph and the original knowledge graph, relation and entity embedding vectors are
computed by aggregating their neighbors’ embeddings. During training, INGRAM learns how to aggregate the neighbors’
embeddings by maximizing the scores of training triplets. At inference time, INGRAM creates embeddings of new relations
and entities by aggregating their neighbors’ embeddings in the way it learned during training.

where a node corresponds to a relation, and an edge weight
indicates the affinity between relations. Once the relation
graph is defined, we can designate neighboring relations
for each relation. Given the relation graph and the original
knowledge graph, the relation and entity embedding vectors
are computed by attention-based aggregations of their neigh-
bors’ embeddings. The aggregation process is optimized
to maximize the plausibility scores of triplets in a training
knowledge graph. What INGRAM learns during training
is how to aggregate neighboring embeddings to generate
the relation and entity embeddings. At inference time, IN-
GRAM generates embeddings of new relations and entities
by aggregating neighbors’ embeddings based on the new
relation graph computed from a given inference knowledge
graph and the attention weights learned during training.

To the best of our knowledge, INGRAM is the first method
that introduces the relation-level aggregation that allows
the model to be generalizable to new relations. Due to
the fully inductive capability of INGRAM, we can generate
embeddings by training INGRAM on a tractable, partially
observed set and simply applying it to an entirely new set
without retraining. Different from some inductive methods
that rely on large language models (Zha et al., 2022), IN-
GRAM makes inferences solely based on the structure of
a given knowledge graph. Experimental results show that
INGRAM significantly outperforms 14 different knowledge
graph completion methods in inductive link prediction on
12 datasets with varied ratios of new relations and entities.
The performance gap between INGRAM and the best base-
line method is substantial, especially when the ratio of new
relations is high, which is a more challenging scenario.1

1https://github.com/bdi-lab/InGram

2. Related Work
Rule Mining and Subgraph Reasoning. For induc-
tive knowledge graph completion, (Yang et al., 2017)
and (Sadeghian et al., 2019) have proposed learning first-
order logical rules, while (Wang et al., 2021), (Zhu et al.,
2021) and (Zhang & Yao, 2022) have considered relational
context or paths. GraIL (Teru et al., 2020) has proposed
a subgraph-based reasoning framework that extracts sub-
graphs and scores them using a GNN. Some follow-up
works of GraIL include (Mai et al., 2021), (Xu et al., 2022),
and (Lin et al., 2022). (Yan et al., 2022) has focused on
cycle-based rule learning while (Liu et al., 2021) has pro-
posed GNN-based encoding capturing logical rules. Differ-
ent from our method, all these methods assume only entities
can be new, and relations should be known in advance. (Jin
et al., 2022) has recently proposed GraphANGEL handling
new relations, but it assumes all entities are known.

Differences between RMPI and INGRAM. RMPI (Geng
et al., 2023) has concurrently studied the problem of han-
dling new relations, although how RMPI and INGRAM solve
the problem is quite different. While RMPI extracts a local
subgraph for every candidate entity to score the correspond-
ing triplet, INGRAM directly utilizes the whole structure of
a given knowledge graph. Also, RMPI uses an unweighted
relation view per every individual triplet, whereas INGRAM
defines one global relation graph where weights are impor-
tant. Due to these fundamental differences, INGRAM is
much more scalable and effective than RMPI. For exam-
ple, INGRAM took 15 minutes and RMPI took 52 hours
to process NL-100 dataset while INGRAM achieves much
better link prediction performance than RMPI. Details will

2

https://github.com/bdi-lab/InGram

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Star
Wars

California

San
Francisco

USA

ActorMark
Hamill

Director

Clint
Eastwood

Directed
Profession
ActedIn
LivedIn
BornIn
Nationality

Brad
Pitt

Tom
Hanks

Saving
Private
Ryan

Steven
Spielberg

Catch Me
If You Can

(a) Knowledge Graph

Directed
Profession

ActedIn

BornIn

LivedIn

Nationality

0.33

0.11

0.11

0.11

0.36
0.81

0.22

0.50

(b) Relation Graph

Profession

1. ActedIn
2. Directed
3. BornIn

0.33
0.22
0.11

Directed

1. ActedIn
2. Profession

0.50
0.22

ActedIn

1. Directed
2. Profession
3. BornIn

0.50
0.33
0.11

BornIn

1. LivedIn
2. Nationality
3. Profession
3. ActedIn

0.81
0.36
0.11
0.11

LivedIn

1. BornIn
2. Nationality

0.81
0.11

Nationality

1. BornIn
2. LivedIn

0.36
0.11

(c) Affinity scores of the relations

Figure 3: Given a knowledge graph, we define a relation graph as a weighted graph where each node indicates a relation,
and each edge weight indicates the affinity between two relations. Self-loops in the relation graph are omitted for brevity.

be discussed in Section 6. Furthermore, RMPI is designed
only for knowledge graph completion and does not com-
pute embedding vectors, while INGRAM returns a set of
embedding vectors for entities and relations that can be also
utilized in many other downstream tasks.

Reasoning on Evolving Graphs. Some methods have
focused on modeling emerging entities (Hamaguchi et al.,
2017; Wang et al., 2022). For example, (Wang et al., 2019)
has considered rule and network-based attention weights,
and (Dai et al., 2021) has extended RotatE (Sun et al., 2019).
All these methods assume that a triplet should be composed
of one known entity and one new entity. (Cui et al., 2022) has
proposed a GCN-based (Kipf & Welling, 2017) method to
more flexibly handle emerging entities. Compared to these
methods, we tackle a more challenging problem where all
entities are new instead of only some portions being new.

Textual Descriptions and Language Models. (Daza
et al., 2021), (Ali et al., 2021) and (Gesese et al., 2022) have
used pre-trained vectors by BERT (Devlin et al., 2019) using
textual descriptions. Some methods have utilized language
models to handle new entities (Markowitz et al., 2022).
For example, (Zha et al., 2022) has leveraged a pre-trained
language model and fine-tuned it. All these methods employ
a rich language model or require text descriptions that might
not always be available. On the other hand, INGRAM only
utilizes the structure of a given knowledge graph.

3. Problem Definition and Setting
In inductive knowledge graph embedding, we are given two
graphs: a training graph G̃tr and an inference graph G̃inf.
A training graph is defined by G̃tr = (Vtr,Rtr, Etr) where
Vtr is a set of entities, Rtr is a set of relations, and Etr is a
set of triplets in G̃tr. We divide Etr into two disjoint sets
such as Etr := Ftr ∪ Ttr where Ftr is a set of known facts
and Ttr is a set of triplets a model is optimized to predict.
An inference graph is defined by G̃inf = (Vinf,Rinf, Einf)

where Vinf is a set of entities, Rinf is a set of relations,
and Einf is a set of triplets in G̃inf. We partition Einf into
three pairwise disjoint sets, such that Einf := Finf ∪ Tval ∪
Ttest with a ratio of 3:1:1. Finf is a set of observed facts
where it contains all entities and relations included in G̃inf,
Tval is a set of triplets for validation, and Ttest is a set of
test triplets. The fact sets Ftr and Finf are also defined
in (Zhang & Yao, 2022; Ali et al., 2021). Note that Vtr ∩
Vinf = ∅ by following a conventional inductive learning
setting (Teru et al., 2020). Most existing methods assume
Rinf ⊆ Rtr due to the constraint that relations cannot be
new at inference time (Zhang & Yao, 2022). On the other
hand, in our problem setting, Rinf is not necessarily a subset
of Rtr since new relations are allowed to appear.

At training time, we use Gtr := (Vtr,Rtr,Ftr) and a model
is trained to predict Ttr. When tuning the hyperparameters
of a model, we use Ginf := (Vinf,Rinf,Finf) to compute the
embeddings; we check the model’s performance on Tval.
At inference time, we evaluate the model’s performance
using Ttest. The way we use Finf, Tval and Ttest is identical
to (Ali et al., 2021; Galkin et al., 2022). For brevity, we do
not explicitly mention Gtr or Ginf in the following sections;
those should be distinguished in context.

4. Defining Relation Graphs
Let us represent a knowledge graph as G = (V,R,F)
where V is a set of entities, R is a set of relations, and
F is a set of triplets, i.e., F = {(vi, rk, vj)|vi ∈ V, rk ∈
R, vj ∈ V}. For every (vi, rk, vj) ∈ F , we add a reverse
relation r−1

k to R and add a reverse triplet (vj , r−1
k , vi) to

F (Schlichtkrull et al., 2018). Assume that |V| = n and
|R| = m.

Given a knowledge graph, we define a relation graph as a
weighted graph where each node corresponds to a relation,
and each edge weight indicates the affinity between two rela-
tions. Figure 3 shows an example where we omit the reverse
relations and self-loops in the relation graph for simplicity.

3

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Briefly speaking, we measure the affinity between two rela-
tions by considering how many entities are shared between
them and how frequently they share the same entity.

To represent which relations are associated with which enti-
ties, we create two matrices Eh ∈ Rn×m and Et ∈ Rn×m

where the subscripts h and t indicate head and tail, re-
spectively. Let Eh[i, j] denote the i-th row and the j-th
column element of Eh, where Eh[i, j] is the frequency
of vi appearing as a head entity of relation rj . Similarly,
Et[i, j] is the frequency of vi appearing as a tail entity of
relation rj . While some entities are frequently involved
in relations, some entities are rarely involved in relations.
To take this into account, we define the degree of an en-
tity to be the sum of its frequencies. Formally, we de-
fine Ah := Eh

TDh
−2Eh where Dh ∈ Rn×n is the de-

gree diagonal matrix of entities for head, i.e., Dh[i, i] :=∑
j Eh[i, j]. Similarly, we define At := Et

TDt
−2Et

where Dt ∈ Rn×n is the degree diagonal matrix of entities
for tail. The degree normalization terms allow the sum of
the affinity weights introduced by each entity in Ah and At

to be normalized to one.

Finally, we define the adjacency matrix of the relation graph
to be A := Ah + At where A ∈ Rm×m and each el-
ement aij ∈ A indicates the affinity between the rela-
tions ri and rj . In Figure 3, we see that the relation graph
identifies semantically close relations even though we use
only the structure of a knowledge graph. However, there is
a chance that we miss some semantically similar relation
pairs in the relation graph if they do not share an entity in
the knowledge graph. Note that the goal of the relation
graph is not to identify the perfect set of similar relations
but to define a relation’s reasonable neighborhood whose
representation vectors can be used to create the embedding
of the target relation, which will be discussed in Section 5.1.

5. INGRAM: Inductive Knowledge Graph
Embedding Model

We present INGRAM that consists of relation-level aggre-
gation, entity-level aggregation, and modeling of relation-
entity interactions.

5.1. Updating Relation Representation Vectors via
Relation-Graph-Based Aggregation

Suppose we have an initial feature vector for a relation
ri, denoted by xi ∈ Rd (i = 1, · · ·,m), where d is the
dimension of a relation vector. We initialize xi using Glorot
initialization (Glorot & Bengio, 2010). Let z(l)i ∈ Rd′

denote a hidden representation of ri where d′ is the hidden
dimension, the superscript (l) indicates the l-th layer with
l = 0, · · ·, L− 1, and L is the number of layers for relations.
We compute z

(0)
i = Hxi where H ∈ Rd′×d is a trainable

matrix that projects the initial feature vector to a hidden
representation vector. All vectors are assumed to be column
vectors unless specified.

Since we define the relation graph A in Section 4, we can
designate the neighboring relations of each relation using
A. We update each relation’s representation by aggregating
its own and neighbors’ representation vectors. Specifically,
we define the forward propagation as follows:

z
(l+1)
i = σ

 ∑
rj∈Ni

α
(l)
ij W

(l)z
(l)
j

 (1)

where σ(·) is an element-wise activation function such as
LeakyReLU (Maas et al., 2013), z(l)j is a relation represen-
tation vector of rj , W (l) ∈ Rd′×d′

is a weight matrix, Ni

is the set of neighbors of ri on the relation graph A, and the
attention value α

(l)
ij is defined by2

α
(l)
ij =

exp
(
y(l)σ

(
P (l)[z

(l)
i ∥z

(l)
j]

)
+ c

(l)

s(i,j)

)
∑

rj′∈Ni
exp

(
y(l)σ

(
P (l)[z

(l)
i ∥z

(l)

j′]
)
+ c

(l)

s(i,j′)

) (2)

where ∥ denotes concatenating vectors vertically, P (l) ∈
Rd′×2d′

is a weight matrix, and y(l) ∈ R1×d′
is a row

weight vector. We apply y(l) after σ(·) to resolve the
static attention issue of (Veličković et al., 2018) by fol-
lowing (Brody et al., 2022). In our implementation, we use
the residual connection (He et al., 2016) and the multi-head
attention mechanism with K heads (Vaswani et al., 2017).
In (2), c(l)s(i,j) is a learnable parameter indexed by s(i, j)
which is defined by

s(i, j) =

⌈
rank(aij)×B

nnz(A)

⌉
(3)

where aij indicates the value corresponding to the i-th row
and the j-th column in A, rank(aij) is the ranking of aij
when the non-zero elements in A are sorted in descending
order, nnz(A) is the number of non-zero elements in A, and
B is a hyperparameter indicating the number of bins. We
divide the relation pairs into B different bins according to
their affinity scores, i.e., the aij values. Each relation pair
has an index value of 1 ≤ s(i, j) ≤ B and we have the
learnable parameters c(l)1 , · · · , c(l)B .

In (1) and (2), we update the relation representation vec-
tors by using the attention mechanism, where we consider
the relative importance of each neighboring relation and
the affinity between the relations. While the former term
is computed based on the local structure of the target rela-
tion, the latter term, c(l)s(i,j), reflects a global level of affinity

2Note thatNi includes ri itself because A contains self-loops.

4

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

because we divide the affinity scores into B different lev-
els globally. When representing a relation’s representation
vector, it would be beneficial to take the vectors of similar
relations to the target relation. Thus, c(l)s(i,j) is expected to
have a high value for a small s(i, j) because the relation
pairs belonging to a small s(i, j) indicate those having high
affinity values. We empirically observed that c(l)s(i,j) values
are learned as expected (details in Section 6.5). The way
we incorporate the affinity into the attention mechanism is
inspired by Graphormer (Ying et al., 2021) even though it is
not designed for inductive knowledge graph embedding.

By updating z
(l)
i for l = 0, · · ·, L − 1 using (1), we have

the final-level relation representation vectors z(L)
i for i =

1, · · ·,m which are utilized to update entity representation
vectors.

5.2. Entity Representation by Entity-level Aggregation

Suppose we have an initial feature vector for an entity vi, de-
noted by x̂i ∈ Rd̂ (i = 1, · · ·, n), where d̂ is the dimension
of an entity vector. We initialize x̂i using Glorot initial-
ization. Let h(l)

i ∈ Rd̂′
denote a hidden representation of

vi where d̂′ is the hidden dimension, the superscript (l) in-
dicates the l-th layer with l = 0, · · ·, L̂ − 1, and L̂ is the
number of layers for entities. We compute h

(0)
i = Ĥx̂i

where Ĥ ∈ Rd̂′×d̂ is trainable.

We update a representation vector of vi by aggregating the
representation vectors of its neighbors, its own vector, and
the representation vectors of the relations adjacent to vi.
When we refer to the relation representation vectors here,
we always use the final-level relation representation vectors
z
(L)
k for k = 1, · · ·,m acquired in Section 5.1.

We define the neighbors of vi ∈ V to be N̂i =
{vj |(vj , rk, vi) ∈ F , vj ∈ V, rk ∈ R}. To compute the
attention weight for the self-loop of vi, we consider the
mean vector of the representation vectors of the relations
adjacent to vi:

z̄
(L)
i =

∑
vj∈N̂i

∑
rk∈Rji

z
(L)
k∑

vj∈N̂i
|Rji|

where Rji denotes the set of relations from vj to vi. We
update an entity representation vector of vi by

h
(l+1)
i =

σ

β
(l)
ii Ŵ

(l)
[h

(l)
i ∥z̄(L)

i] +
∑

vj∈N̂i

∑
rk∈Rji

β
(l)
ijkŴ

(l)
[h

(l)
j ∥z(L)

k]

 (4)

where Ŵ
(l)

∈ Rd̂′×(d̂′+d′) is a weight matrix, and β
(l)
ii and

β
(l)
ijk are the attention coefficients which are defined by

β
(l)
ii =

exp
(
ŷ(l)σ

(
P̂

(l)
b

(l)
ii

))
exp

(
ŷ(l)σ

(
P̂

(l)
b

(l)
ii

))
+

∑
v
j′∈N̂i

∑
r
k′∈R

j′i

exp
(
ŷ(l)σ

(
P̂

(l)
b

(l)

ij′k′

)) ,

β
(l)
ijk =

exp
(
ŷ(l)σ

(
P̂

(l)
b

(l)
ijk

))
exp

(
ŷ(l)σ

(
P̂

(l)
b

(l)
ii

))
+

∑
v
j′∈N̂i

∑
r
k′∈R

j′i

exp
(
ŷ(l)σ

(
P̂

(l)
b

(l)

ij′k′

))

where b
(l)
ii = [h

(l)
i ∥h(l)

i ∥z̄(L)
i], b(l)

ijk = [h
(l)
i ∥h(l)

j ∥z(L)
k],

P̂
(l)

∈ Rd̂′×(2d̂′+d′) is a linear transformation matrix, and
ŷ(l) ∈ R1×d̂′

is a row weight vector. We also implement the
residual connection and the multi-heads with K̂ heads. Our
formulation in (4) seamlessly extends GATv2 (Brody et al.,
2022) by incorporating the relation representation vectors
in every aggregation step. Specifically, when we regard all
relation vectors as constant, (4) is equivalent to GATv2. By
updating h

(l)
i for l = 0, · · ·, L̂ − 1 using (4), we have the

final-level entity representation vectors h(L̂)
i (i = 1, · · ·, n)

which are utilized to model relation-entity interactions.

5.3. Modeling Relation-Entity Interactions

Given the representation vectors provided in Section 5.1 and
Section 5.2, we compute the final embedding vectors: zk :=

Mz
(L)
k (k = 1, · · ·,m) for relations and hi := M̂h

(L̂)
i (i =

1, · · ·, n) for entities, where M ∈ Rd×d′
and M̂ ∈ Rd̂×d̂′

are trainable projection matrices.

A knowledge graph embedding scoring function, denoted
by f(vi, rk, vj), returns a scalar value representing the plau-
sibility of a given triplet (vi, rk, vj) (Schlichtkrull et al.,
2018). To model the interactions between relation and en-
tity embeddings, we use a variant of DistMult (Yang et al.,
2015). We define our scoring function by

f(vi, rk, vj) := hT
i diag(W zk)hj (5)

where W ∈ Rd̂×d is a weight matrix that converts the
dimension of zk from d to d̂ and diag(W zk) is the di-
agonal matrix whose diagonal is defined by W zk. Let
(vi, rk, vj) ∈ Ttr be a positive triplet in a training set Ttr
described in Section 3. We create negative triplets by cor-
rupting a head or a tail entity of a positive triplet. Let
(v̊i, rk, v̊j) ∈ T̊tr denote the negative triplets. The margin-
based ranking loss is defined by

∑
(vi,rk,vj)∈Ttr

∑
(v̊i,rk,v̊j)∈T̊tr

max(0, γ−f(vi, rk, vj)+f(v̊i, rk, v̊j))

where γ is a margin separating the positive and negative
triplets. The model parameters are learned by optimizing

5

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

the above loss using stochastic gradient descent with a mini-
batch based on the Adam optimizer.

5.4. Training Regime

Given G̃tr = (Vtr,Rtr, Etr), we divide Etr into Ftr and Ttr
with a ratio of 3:1. For every epoch, we randomly re-split
Ftr and Ttr with the minimal constraint that Ftr includes the
minimum spanning tree of G̃tr and Ftr covers all relations
in Rtr so that all entity and relation embedding vectors are
appropriately learned. At the beginning of each epoch, we
initialize all feature vectors using Glorot initialization.

This dynamic split and re-initialization strategy allows IN-
GRAM to robustly learn the model parameters, which makes
the model more easily generalizable to an inference graph.
In Section 6.4, we empirically observe the importance of
dynamic split by the ablation study of INGRAM. Since we
randomly re-initialize all feature vectors per epoch during
training, INGRAM learns how to compute embedding vec-
tors using random feature vectors, and this is beneficial for
computing embeddings with random features at inference
time. This observation is consistent with recent studies
in (Abboud et al., 2021; Sato et al., 2021) showing that the
expressive power of GNNs can be enhanced with random-
ized initial node features. However, (Abboud et al., 2021;
Sato et al., 2021) have analyzed GNNs for standard graphs
but not for knowledge graphs. We will further investigate
the effects of the combination of dynamic split and random
re-initialization strategy from a theoretical point of view.

5.5. Embedding of New Relations and Entities

Given Ginf = (Vinf,Rinf,Finf), we create the relation graph
discussed in Section 4 and compute the relation and entity
embedding vectors using the learned model parameters of
INGRAM. Algorithm 1 shows the overall procedure. Based
on the generated embedding vectors of entities and relations
on Ginf, we can predict missing triplets. For example, to
solve (vi, rk, ?), we plug each entity vj ∈ Vinf into the given
triplet and compute the score using (5) where W is already
trained during training. The missing entity is predicted to
be the one with the highest score.

6. Experimental Results
We compare the performance of INGRAM with other induc-
tive knowledge graph completion methods.

6.1. Datasets and Baseline Methods

Since existing datasets do not contain new relations at
G̃inf, we create 12 datasets using three benchmarks, NELL-
995 (Xiong et al., 2017),Wikidata68K (Gesese et al., 2022),
and FB15K237 (Toutanova & Chen, 2015). Let us call these

Algorithm 1 Embeddings via INGRAM at Inference Time

Input: Ginf = (Vinf,Rinf,Finf), the trained model parameters: H ,

W (l), P (l), y(l), c(l)1 , · · ·, c(l)B for l = 0, · · ·, L− 1, Ĥ , Ŵ
(l̂)

,

P̂
(l̂)

, ŷ(l̂), l̂ = 0, · · ·, L̂− 1, M , M̂
Output: zi for all ri ∈ Rinf and hj for all vj ∈ Vinf

1: Create the relation graph A as discussed in Section 4.
2: Initialize xi for all ri ∈ Rinf and x̂j for all vj ∈ Vinf using

Glorot initialization.
3: Set z(0)i ←Hxi and h

(0)
j ← Ĥx̂j .

4: for l = 0, · · ·, L− 1 do
5: for ri ∈ Rinf do
6: Compute z

(l+1)
i according to (1) using W (l), P (l), y(l),

and c
(l)
1 , · · ·, c(l)B .

7: end for
8: end for
9: for l = 0, · · ·, L̂− 1 do

10: for vj ∈ Vinf do
11: Compute h(l+1)

j according to (4) using Ŵ
(l)

, P̂
(l)

, ŷ(l),

and z
(L)
i for ri ∈ Rinf.

12: end for
13: end for
14: zi ←Mz

(L)
i for ri ∈ Rinf and hj ← M̂h

(L̂)
j for vj ∈ Vinf.

benchmarks NL, WK, and FB, respectively. For each bench-
mark, we create four datasets by varying the percentage
of triplets with new relations: 100%, 75%, 50% and 25%.
For example, in NL-75, approximately 75% of triplets have
new relations, and 25% of triplets have known relations, i.e.,
semi-inductive inference for relations. On the other hand, in
NL-100, all triplets have new relations, i.e., inductive infer-
ence for relations. In all 12 datasets, all entities in G̃inf are
new entities, as also assumed in (Teru et al., 2020). Details
about these datasets are described in Appendix A.

We compare the performance of INGRAM with 14 different
methods: GraIL (Teru et al., 2020), CoMPILE (Mai et al.,
2021), SNRI (Xu et al., 2022), INDIGO (Liu et al., 2021),
RMPI (Geng et al., 2023), CompGCN (Vashishth et al.,
2020), NodePiece (Galkin et al., 2022), NeuralLP (Yang
et al., 2017), DRUM (Sadeghian et al., 2019), BLP (Daza
et al., 2021), QBLP (Ali et al., 2021), NBFNet (Zhu
et al., 2021), RED-GNN (Zhang & Yao, 2022), and
RAILD (Gesese et al., 2022).

Since the original implementations of GraIL, CoMPILE,
SNRI, INDIGO, and RMPI were based on subgraph sam-
pling, we extended them to consider all entities in Vinf to
evaluate the performance more accurately. Due to the scal-
ability issues of GraIL, CoMPILE, SNRI, INDIGO, and
RMPI, they only run on NL datasets. BLP, QBLP and
RAILD require BERT-based pre-trained vectors which are
produced based on the names and textual descriptions of en-
tities or relations. We provide BLP, QBLP and RAILD with
the pre-trained vectors using available information. Since

6

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Table 1: Inductive link prediction performance on 12 different datasets, where all entities are new, whereas the last digits of
each dataset (100, 75, 50, and 25) indicate the ratio of new relations. The best results are boldfaced and the second-best
results are underlined. Our model, INGRAM, significantly outperforms the baseline methods in most cases.

NL-100 NL-75 NL-50 NL-25
MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1

GraIL 928.4 0.135 0.173 0.114 526.0 0.096 0.205 0.036 837.6 0.162 0.288 0.104 692.9 0.216 0.366 0.160
CoMPILE 743.1 0.123 0.209 0.071 519.6 0.178 0.361 0.093 466.6 0.194 0.330 0.125 438.9 0.189 0.324 0.115

SNRI 809.8 0.042 0.064 0.029 418.7 0.088 0.177 0.040 584.6 0.130 0.187 0.095 417.7 0.190 0.270 0.140
INDIGO 621.1 0.160 0.247 0.109 587.4 0.121 0.156 0.098 864.9 0.167 0.217 0.134 812.4 0.166 0.206 0.134

RMPI 143.9 0.220 0.376 0.136 244.5 0.138 0.275 0.061 479.1 0.185 0.307 0.109 385.7 0.213 0.329 0.130
CompGCN 877.9 0.008 0.014 0.001 750.5 0.014 0.025 0.003 1183.6 0.003 0.005 0.000 1052.5 0.006 0.010 0.000
NodePiece 755.1 0.012 0.018 0.004 565.8 0.042 0.081 0.020 832.2 0.037 0.079 0.013 620.9 0.098 0.166 0.057
NeuralLP 530.3 0.084 0.181 0.035 447.3 0.117 0.273 0.048 802.4 0.101 0.190 0.064 631.8 0.148 0.271 0.101
DRUM 532.6 0.076 0.138 0.044 445.4 0.152 0.313 0.072 803.8 0.107 0.193 0.070 637.1 0.161 0.264 0.119

BLP 564.8 0.019 0.037 0.006 242.5 0.051 0.120 0.012 426.5 0.041 0.093 0.011 332.9 0.049 0.095 0.024
QBLP 754.6 0.004 0.003 0.000 258.8 0.040 0.095 0.007 383.6 0.048 0.097 0.020 287.2 0.073 0.151 0.027

NBFNet 208.2 0.096 0.199 0.032 256.2 0.137 0.255 0.077 332.0 0.225 0.346 0.161 421.8 0.283 0.417 0.224
RED-GNN 201.7 0.212 0.385 0.114 470.1 0.203 0.353 0.129 622.5 0.179 0.280 0.115 403.0 0.214 0.266 0.166

RAILD 598.1 0.018 0.037 0.005 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
INGRAM 92.6 0.309 0.506 0.212 59.1 0.261 0.464 0.167 105.1 0.281 0.453 0.193 90.1 0.334 0.501 0.241

WK-100 WK-75 WK-50 WK-25
MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1

CompGCN 5861.5 0.003 0.009 0.000 1265.1 0.015 0.028 0.003 3297.4 0.003 0.002 0.001 1591.7 0.009 0.020 0.000
NodePiece 5334.1 0.007 0.018 0.002 800.3 0.021 0.052 0.003 3256.4 0.008 0.013 0.002 814.5 0.053 0.122 0.019
NeuralLP 5665.5 0.009 0.016 0.005 1191.5 0.020 0.054 0.004 4160.8 0.025 0.054 0.007 1384.1 0.068 0.104 0.046
DRUM 5668.0 0.010 0.019 0.004 1192.1 0.020 0.043 0.007 4163.0 0.017 0.046 0.002 1383.2 0.064 0.116 0.035

BLP 3888.1 0.012 0.025 0.003 523.9 0.043 0.089 0.016 1625.7 0.041 0.092 0.013 175.4 0.125 0.283 0.055
QBLP 2863.1 0.012 0.025 0.003 555.0 0.044 0.091 0.016 1371.4 0.035 0.080 0.011 342.0 0.116 0.294 0.042

NBFNet 4030.3 0.014 0.026 0.005 548.1 0.072 0.172 0.028 2874.0 0.062 0.105 0.036 790.5 0.154 0.301 0.092
RED-GNN 5382.4 0.096 0.136 0.070 906.2 0.172 0.290 0.110 3198.3 0.058 0.093 0.033 769.2 0.170 0.263 0.111

RAILD 2005.6 0.026 0.052 0.010 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
INGRAM 1515.7 0.107 0.169 0.072 315.5 0.247 0.362 0.179 1374.1 0.068 0.135 0.034 263.8 0.186 0.309 0.124

FB-100 FB-75 FB-50 FB-25
MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1 MR MRR Hit@10 Hit@1

CompGCN 1201.2 0.015 0.025 0.008 1211.6 0.013 0.026 0.000 2193.1 0.004 0.006 0.002 1957.4 0.003 0.004 0.000
NodePiece 1131.3 0.006 0.009 0.001 1162.7 0.016 0.029 0.007 1314.3 0.021 0.048 0.006 916.3 0.044 0.114 0.011
NeuralLP 988.2 0.026 0.057 0.007 855.0 0.056 0.099 0.030 1501.9 0.088 0.184 0.043 997.8 0.164 0.309 0.098
DRUM 984.0 0.034 0.077 0.011 853.8 0.065 0.121 0.034 1490.2 0.101 0.191 0.061 992.5 0.175 0.320 0.109

BLP 913.1 0.017 0.035 0.004 705.1 0.047 0.085 0.024 588.5 0.078 0.156 0.037 384.5 0.107 0.212 0.053
QBLP 842.8 0.013 0.026 0.003 798.3 0.041 0.084 0.017 564.9 0.071 0.147 0.030 352.6 0.104 0.226 0.043

NBFNet 451.5 0.072 0.154 0.026 550.8 0.089 0.166 0.048 758.5 0.130 0.259 0.071 571.4 0.224 0.410 0.137
RED-GNN 375.6 0.121 0.263 0.053 890.0 0.107 0.201 0.057 1169.3 0.129 0.251 0.072 1234.1 0.145 0.284 0.077

RAILD 686.0 0.031 0.048 0.016 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
INGRAM 171.5 0.223 0.371 0.146 217.4 0.189 0.325 0.119 580.2 0.117 0.218 0.067 330.3 0.133 0.271 0.067

RAILD is not implemented for the case where both known
and new relations are present at inference time, we could
not report the results of RAILD for the 75%, 50% and 25%
settings. We provide the same training graph for all meth-
ods. Given Etr, how to use Etr depends on each method.
For example, GraIL uses the entire Etr for training without
any split. In INGRAM, we use the dynamic split scheme as
described in Section 5.4. For a fair comparison, we feed
Finf, Tval and Ttest to all baselines exactly in the same way
INGRAM uses. More details about how we run the baseline
methods are described in Appendix B.

We set d = 32 and d̂ = 32 for INGRAM and all the baseline
methods. Note that we initialize the initial features of rela-
tions and entities (xi in Section 5.1 and x̂i in Section 5.2)
using Glorot initialization in INGRAM. Details about how
we tune the hyperparameters of INGRAM are described in
Appendix C.

6.2. Inductive Link Prediction

We measure the inductive link prediction performance of
the methods using standard metrics (Wang et al., 2017):
MR (↓), MRR (↑), Hit@10 (↑), and Hit@1 (↑). Table 1
shows the results on 12 different datasets, where all enti-
ties are new, and each dataset has a different ratio of new
relations. Among the 12 datasets, NL-100, WK-100, and
FB-100 have entirely new relations (i.e., inductive infer-
ence for relations), whereas the other 9 datasets contain a
mixture of new and known relations (i.e., semi-inductive in-
ference for relations). In Table 1, we first note that INGRAM
significantly outperforms all the baseline methods in NL-
100, WK-100, and FB-100, which are the most challenging
datasets since relations and entities are all new. In these
datasets, the performance gap between INGRAM and the
best baseline method is considerable in terms of all metrics.
This shows that INGRAM is the most effective method for
inductive inference for relations.

7

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Table 2: Inductive link prediction performance of known
relations and new relations on NL-50.

Known Relations New Relations
MR MRR Hit@10 MR MRR Hit@10

GraIL 711.8 0.264 0.389 936.0 0.082 0.209
CoMPILE 418.0 0.250 0.383 504.6 0.150 0.288

SNRI 515.8 0.206 0.240 638.4 0.071 0.146
INDIGO 943.6 0.185 0.264 803.4 0.152 0.180

RMPI 492.8 0.192 0.312 468.4 0.180 0.304
CompGCN 1195.6 0.004 0.005 1174.2 0.003 0.004
NodePiece 575.6 0.067 0.151 1033.5 0.016 0.039
NeuralLP 784.5 0.147 0.204 816.3 0.065 0.180
DRUM 787.8 0.146 0.196 816.4 0.076 0.191

BLP 357.1 0.056 0.131 480.8 0.030 0.062
QBLP 271.2 0.073 0.142 471.4 0.029 0.061

NBFNet 317.4 0.231 0.353 350.7 0.217 0.338
RED-GNN 565.3 0.210 0.300 667.2 0.154 0.265
INGRAM 100.7 0.330 0.481 108.5 0.244 0.430

Let us now consider the semi-inductive inference settings. In
all NL and WK datasets as well as FB-75 datasets, INGRAM
significantly outperforms the baseline methods. We also
note that the performance gap between INGRAM and the
baseline methods becomes more prominent when the ratio
of new relations increases.

While INGRAM shows clearly better performance than the
baseline methods on 10 out of 12 datasets, some baseline
methods such as NBFNet and RED-GNN show better per-
formance than INGRAM on FB-25 and FB-50. Indeed, we
notice that there exist simple rules between known rela-
tions in these datasets, and thus, even a simple rule-based
prediction works well on these datasets. This partly ex-
plains the performance of NeuralLP, DRUM, RED-GNN,
and NBFNet, which are designed to capture rules or patterns
between known relations and directly apply them at infer-
ence time. Different from these methods, INGRAM does
not memorize particular patterns between known relations;
instead, INGRAM focuses more on generalizability which is
more beneficial for generating embeddings of new relations.

In Table 2, we analyze the model performances on triplets
with known relations and new relations on NL-50. All meth-
ods perform better on known relations than new relations.
Also, for the baseline methods, the performance gaps be-
tween known and new relations are substantial. We see that
the performance of INGRAM is much better than the best
baseline methods in all metrics for both known and new
relations.

6.3. Inductive Link Prediction with Known Relations

Even though INGRAM is designed to consider the case
where new relations appear at inference time, we also con-
duct experiments on the conventional inductive link predic-
tion scenario where all relations are known and all entities
are new (Teru et al., 2020). We create a dataset NL-0 that
satisfies this constraint, where |Vtr| = 1, 814, |Rtr| = 134,

Table 3: Inductive link prediction on NL-0 and NELL-995-
v1, where all relations are known and all entities are new.

MR MRR Hit@10 Hit@1

NL-0

GraIL 508.2 0.192 0.332 0.114
CoMPILE 561.4 0.229 0.381 0.147

SNRI 561.3 0.117 0.176 0.081
INDIGO 705.6 0.201 0.263 0.166

RMPI 396.1 0.225 0.339 0.158
CompGCN 954.3 0.005 0.009 0.001
NodePiece 345.2 0.094 0.210 0.037
NeuralLP 566.3 0.175 0.326 0.102
DRUM 565.9 0.200 0.343 0.130

BLP 467.2 0.044 0.100 0.011
QBLP 346.2 0.060 0.144 0.013

NBFNet 160.2 0.263 0.430 0.177
RED-GNN 330.9 0.222 0.368 0.147

RAILD 468.4 0.050 0.109 0.014
INGRAM 152.4 0.269 0.431 0.189

NELL-995-v1

GraIL 18.7 0.499 0.595 0.405
CoMPILE 20.1 0.474 0.575 0.390

SNRI 21.2 0.419 0.520 0.330
INDIGO 20.4 0.521 0.595 0.495

RMPI 50.3 0.484 0.545 0.425
CompGCN 11.8 0.282 0.750 0.005
NodePiece 9.8 0.677 0.885 0.550
NeuralLP 33.0 0.547 0.785 0.400
DRUM 33.4 0.536 0.760 0.400

BLP 42.0 0.169 0.470 0.055
QBLP 18.8 0.326 0.545 0.230

NBFNet 7.1 0.613 0.875 0.500
RED-GNN 15.0 0.544 0.705 0.470

RAILD 113.6 0.052 0.205 0.000
INGRAM 6.0 0.739 0.895 0.660

|Etr| = 7, 796 and |Vinf| = 2, 026, |Rinf| = 112, |Einf| =
3, 813. We call this dataset NL-0 since it includes 0% new
relations.

Also, we take an existing benchmark dataset, NELL-995-v1,
from (Teru et al., 2020). We note that different papers did
experiments under different settings, even though they used
the same benchmark dataset. We conduct our experiments
in a setting consistent with our other experiments. For
the results on NELL-995-v1, our reproduced results can
differ from those reported in the previous literature for the
following reasons: (i) we use the validation set inside the
“ind-test” set provided in NELL-995-v1, (ii) when measuring
the link prediction performance, we use the test set of “ind-
test”, (iii) for a fair comparison, we set the embedding
dimension to 32 for all methods, and (iv) when conducting
link prediction, we set the candidate set to be the entire
entity set of the inference graph.

Table 3 shows the inductive link prediction results on NL-
0 and NELL-995-v1, where all entities are new and all
relations are known. We see that INGRAM outperforms
all baselines in all metrics. Even though INGRAM does
not learn relation-specific patterns as other baselines do,
INGRAM shows reasonable performance on transductive
inference for relations while having extra generalization
capability to semi-inductive and inductive inferences for
relations.

8

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

1 2 3 4 5 6 7 8 9 10
s(i, j)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

cs(i, j)

NL Datasets
NL-50
NL-75
NL-100

(a) Results on NL Datasets

1 2 3 4 5 6 7 8 9 10
s(i, j)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

cs(i, j)

WK Datasets
WK-50
WK-75
WK-100

(b) Results on WK Datasets

1 2 3 4 5 6 7 8 9 10
s(i, j)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

cs(i, j)

FB Datasets
FB-50
FB-75
FB-100

(c) Results on FB Datasets

Figure 4: Visualization of the cs(i,j) values learned by INGRAM with B = 10. The cs(i,j) value is expected to be large for a
small s(i, j), and small for a large s(i, j). See Section 5.1 for more details.

Table 4: Ablation Studies of INGRAM.

NL-100 WK-100 FB-100
MRR Hit@10 MRR Hit@10 MRR Hit@10

w/ mean aggregator 0.259 0.421 0.047 0.106 0.110 0.184
w/ sum aggregator 0.049 0.082 0.000 0.000 0.001 0.000
w/ self-loop vector 0.133 0.292 0.007 0.015 0.014 0.027
w/o dynamic split 0.234 0.418 0.036 0.100 0.134 0.271

w/o relation update 0.235 0.415 0.057 0.138 0.183 0.310
w/o binning 0.209 0.443 0.070 0.138 0.142 0.292

INGRAM 0.309 0.506 0.107 0.169 0.223 0.371

6.4. Ablation Studies of INGRAM

We conduct ablation studies for INGRAM to validate the
importance of each module of INGRAM. Specifically, we
compare the performance of INGRAM under the following
settings: (i) we replace the attention-based aggregation in
(1) and (4) with the mean aggregator or (ii) the sum aggre-
gator; (iii) when we update an entity representation in (4),
we replace z̄

(L)
i with a separate learnable self-loop vector

as in (Vashishth et al., 2020); (iv) we do not dynamically
re-split Ftr and Ttr as described in Section 5.4, i.e., we fix
the split during training; (v) we do not update a relation
representation vector; (vi) we set B = 1 in (3), i.e., we do
not utilize the affinity weights in updating relation represen-
tations. The results of these settings are shown in Table 4 in
order. Removing each module leads to a noticeable degra-
dation in the performance of INGRAM. While some are
more critical and others are less, INGRAM achieves the best
performance when all modules come together.

6.5. Qualitative Analysis of INGRAM

In Section 5.1, when updating the relation vectors using (2),
we introduce the learnable parameters cs(i,j) for computing
the attention coefficient between ri and rj . By definition
of s(i, j) in (3), the value of s(i, j) is small if ri and rj are
similar. Since we expect that two similar relations have a
high attention value, we expect that cs(i,j) is large for a small
s(i, j), and cs(i,j) is small for a large s(i, j). Figure 4 shows

the learned cs(i,j) values according to s(i, j). Even though
some exceptions exist, overall, the plots are going down
from left to right; the cs(i,j) values are learned as expected.
Indeed, when we tune the number of bins B ∈ {1, 5, 10},
INGRAM achieves the best performance when B = 10,
showing the advantage of differentiating bins.

7. Conclusion and Future Work
We consider challenging and realistic inductive learning sce-
narios where new entities accompany new relations. Our
method, INGRAM, can generate embeddings of new rela-
tions and entities only appearing at inference time. INGRAM
conducts inferences based only on the structure of a given
knowledge graph without any extra information about the
entities and relations or the aid of rich language models.

While existing methods are biased toward learning the pat-
terns of known relations, INGRAM focuses more on the
generalization capability useful for modeling new relations.
We will investigate the ways in which INGRAM can in-
corporate known-relation-specific patterns into inferences
when known relations are dominant. We also plan to do
the theoretical analysis of INGRAM as done in (Xu et al.,
2019), (Barcelo et al., 2022) and (Hamilton et al., 2017),
as well as consider some extensions to hyper-relational
facts (Chung et al., 2023) and bi-level or hierarchical struc-
tures (Chung & Whang, 2023; Kwak et al., 2022). Finally,
we will look into how we can make the predictions of
INGRAM robust and reliable to possibly noisy informa-
tion (Hong et al., 2023) in a given knowledge graph.

Acknowledgements
This research was supported by an NRF grant funded by
MSIT 2022R1A2C4001594 (Extendable Graph Representa-
tion Learning) and an IITP grant funded by MSIT 2022-0-
00369 (Development of AI Technology to support Expert
Decision-making that can Explain the Reasons/Grounds for
Judgment Results based on Expert Knowledge).

9

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

References
Abboud, R., Ceylan, İ. İ., Grohe, M., and Lukasiewicz,

T. The surprising power of graph neural networks with
random node initialization. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence,
pp. 2112–2118, 2021.

Ali, M., Berrendorf, M., Galkin, M., Thost, V., Ma, T.,
Tresp, V., and Lehmann, J. Improving inductive link
prediction using hyper-relational facts. In Proceedings
of the 20th International Semantic Web Conference, pp.
74–92, 2021.

Barcelo, P., Galkin, M., Morris, C., and Orth, M. R. Weis-
feiler and Leman go relational. In Proceedings of the 1st
Learning on Graphs Conference, 2022.

Brody, S., Alon, U., and Yahav, E. How attentive are graph
attention networks? In Proceedings of the 10th Interna-
tional Conference on Learning Representations, 2022.

Chen, J., He, H., Wu, F., and Wang, J. Topology-aware cor-
relations between relations for inductive link prediction in
knowledge graphs. In Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence, pp. 6271–6278, 2021.

Chung, C. and Whang, J. J. Learning representations of
bi-level knowledge graphs for reasoning beyond link pre-
diction. arXiv preprint arXiv:2302.02601, 2023. doi:
10.48550/arXiv.2302.02601.

Chung, C., Lee, J., and Whang, J. J. Representation learning
on hyper-relational and numeric knowledge graphs with
transformers. arXiv preprint arXiv:2305.18256, 2023.
doi: 10.48550/arXiv.2305.18256.

Cui, Y., Wang, Y., Sun, Z., Liu, W., Jiang, Y., Han, K., and
Hu, W. Inductive knowledge graph reasoning for multi-
batch emerging entities. In Proceedings of the 31st ACM
International Conference on Information and Knowledge
Management, pp. 335–344, 2022.

Dai, D., Zheng, H., Luo, F., Yang, P., Liu, T., Sui, Z., and
Chang, B. Inductively representing out-of-knowledge-
graph entities by optimal estimation under translational
assumptions. In Proceedings of the 6th Workshop on
Representation Learning for NLP, pp. 83–89, 2021.

Daza, D., Cochez, M., and Groth, P. Inductive entity repre-
sentations from text via link prediction. In Proceedings
of the Web Conference 2021, pp. 798–808, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pp. 4171–4186, 2019.

Galkin, M., Denis, E., Wu, J., and Hamilton, W. L. Node-
Piece: Compositional and parameter-efficient representa-
tions of large knowledge graphs. In Proceedings of the
10th International Conference on Learning Representa-
tions, 2022.

Geng, Y., Chen, J., Pan, J. Z., Chen, M., Jiang, S., Zhang,
W., and Chen, H. Relational message passing for fully
inductive knowledge graph completion. In Proceedings
of the 39th IEEE International Conference on Data Engi-
neering, 2023.

Gesese, G. A., Sack, H., and Alam, M. RAILD: Towards
leveraging relation features for inductive link prediction
in knowledge graphs. In Proceedings of the 11th Interna-
tional Joint Conference on Knowledge Graphs, 2022.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Proceed-
ings of the 13th International Conference on Artificial
Intelligence and Statistics, pp. 249–256, 2010.

Hamaguchi, T., Oiwa, H., Shimbo, M., and Matsumoto,
Y. Knowledge transfer for out-of-knowledge-base enti-
ties: A graph neural network approach. In Proceedings
of the 26th International Joint Conference on Artificial
Intelligence, pp. 1802–1808, 2017.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings
of the 31st Conference on Neural Information Processing
System, pp. 1025–1035, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–
778, 2016.

Hong, G., Kim, J., Kang, J., Myaeng, S.-H., and Whang,
J. J. Discern and answer: Mitigating the impact of mis-
information in retrieval-augmented models with discrim-
inators. arXiv preprint arXiv:2305.01579, 2023. doi:
10.48550/arXiv.2305.01579.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S. A
survey on knowledge graphs: Representation, acquisition,
and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33(2):494–514, 2022.

Jin, J., Wang, Y., Du, K., Zhang, W., Zhang, Z., Wipf, D.,
Yu, Y., and Gan, Q. Inductive relation prediction using
analogy subgraph embeddings. In Proceedings of the 10th
International Conference on Learning Representations,
2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In Proceedings of
the 5th International Conference on Learning Represen-
tations, 2017.

10

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Kwak, J. H., Lee, J., Whang, J. J., and Jo, S. Semantic
grasping via a knowledge graph of robotic manipulation:
A graph representation learning approach. IEEE Robotics
and Automation Letters, 7(4):9397–9404, 2022.

Lin, Q., Liu, J., Xu, F., Pan, Y., Zhu, Y., Zhang, L., and Zhao,
T. Incorporating context graph with logical reasoning
for inductive relation prediction. In Proceedings of the
45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 893–903,
2022.

Liu, H., Wu, Y., and Yang, Y. Analogical inference for
multi-relational embeddings. In Proceedings of the 37th
International Conference on Machine Learning, pp. 2168–
2178, 2017.

Liu, S., Grau, B., Horrocks, I., and Kostylev, E. INDIGO:
GNN-based inductive knowledge graph completion using
pair-wise encoding. In Proceedings of the 35th Con-
ference on Neural Information Processing Systems, pp.
2034–2045, 2021.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier
nonlinearities improve neural network acoustic models.
In ICML 2013 Workshop on Deep Learning for Audio,
Speech and Language Processing, 2013.

Mai, S., Zheng, S., Yang, Y., and Hu, H. Communicative
message passing for inductive relation reasoning. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence, pp. 4294–4302, 2021.

Markowitz, E., Balasubramanian, K., Mirtaheri, M., An-
navaram, M., Galstyan, A., and Steeg, G. V. StATIK:
Structure and text for inductive knowledge graph comple-
tion. In Findings of the Association for Computational
Linguistics: NAACL 2022, pp. 604–615, 2022.

Nathani, D., Chauhan, J., Sharma, C., and Kaul, M. Learn-
ing attention-based embeddings for relation prediction in
knowledge graphs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pp. 4710–4723, 2019.

Sadeghian, A., Armandpour, M., patrick Ding, and Wang,
D. Z. DRUM: End-to-end differentiable rule mining on
knowledge graphs. In Proceedings of the 33rd Conference
on Neural Information Processing Systems, pp. 15347–
15357, 2019.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In Proceedings of the
2021 SIAM International Conference on Data Mining, pp.
333–341, 2021.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In Proceedings of the 15th
International Semantic Web Conference, pp. 593–607,
2018.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. RotatE: Knowl-
edge graph embedding by relational rotation in complex
space. In Proceedings of the 7th International Conference
on Learning Representations, 2019.

Teru, K., Denis, E., and Hamilton, W. Inductive relation
prediction by subgraph reasoning. In Proceedings of the
37th International Conference on Machine Learning, pp.
9448–9457, 2020.

Toutanova, K. and Chen, D. Observed versus latent features
for knowledge base and text inference. In Proceedings
of the 3rd Workshop on Continuous Vector Space Models
and their Compositionality, pp. 57–66, 2015.

Vashishth, S., Sanyal, S., Nitin, V., and Talukdar, P.
Composition-based multi-relational graph convolutional
networks. In Proceedings of the 8th International Con-
ference on Learning Representations, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Łukasz Kaiser, and Polosukhin, I.
Attention is all you need. In Proceedings of the 31st
Conference on Neural Information Processing Systems,
pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In Pro-
ceedings of the 6th International Conference on Learning
Representations, 2018.

Wang, C., Zhou, X., Pan, S., Dong, L., Song, Z., and Sha, Y.
Exploring relational semantics for inductive knowledge
graph completion. In Proceedings of the 36th AAAI Con-
ference on Artificial Intelligence, pp. 4184–4192, 2022.

Wang, H., Ren, H., and Leskovec, J. Relational message
passing for knowledge graph completion. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1697–1707, 2021.

Wang, P., Han, J., Li, C., and Pan, R. Logic attention based
neighborhood aggregation for inductive knowledge graph
embedding. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence, pp. 7152–7159, 2019.

Wang, Q., Mao, Z., Wang, B., and Guo, L. Knowledge graph
embedding: A survey of approaches and applications.
IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, 2017.

11

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Xiong, W., Hoang, T., and Wang, W. Y. DeepPath: A rein-
forcement learning method for knowledge graph reason-
ing. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 564–573,
2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In Proceedings of the 7th
International Conference on Learning Representations,
2019.

Xu, X., Zhang, P., He, Y., Chao, C., and Yan, C. Subgraph
neighboring relations infomax for inductive link predic-
tion on knowledge graphs. In Proceedings of the 31st
International Joint Conference on Artificial Intelligence,
pp. 2341–2347, 2022.

Yan, Z., Ma, T., Gao, L., Tang, Z., and Chen, C. Cycle
representation learning for inductive relation prediction.
In Proceedings of the 39th International Conference on
Machine Learning, pp. 24895–24910, 2022.

Yang, B., tau Yih, W., He, X., Gao, J., and Deng, L. Embed-
ding entities and relations for learning and inference in
knowledge bases. In Proceedings of the 3rd International
Conference on Learning Representations, 2015.

Yang, F., Yang, Z., and Cohen, W. W. Differentiable learn-
ing of logical rules for knowledge base reasoning. In
Proceedings of the 31st Conference on Neural Informa-
tion Processing Systems, pp. 2319–2328, 2017.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? In Proceedings of the 35th
Conference on Neural Information Processing Systems,
pp. 28877–28888, 2021.

Zha, H., Chen, Z., and Yan, X. Inductive relation prediction
by BERT. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence, pp. 5923–5931, 2022.

Zhang, Y. and Yao, Q. Knowledge graph reasoning with
relational digraph. In Proceedings of the ACM Web Con-
ference 2022, pp. 912–924, 2022.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
Bellman-Ford networks: A general graph neural network
framework for link prediction. In Proceedings of the 35th
Conference on Neural Information Processing System, pp.
29476–29490, 2021.

12

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

A. Generating Datasets for Inductive Knowledge Graph Completion

Algorithm 2 Generating Datasets for Inductive Knowledge Graph Completion

Input: G̃ = (V,R, E), ntr, ninf, prel, ptri

Output: G̃tr = (Vtr,Rtr, Etr) and G̃inf = (Vinf,Rinf, Einf)

1: G̃← Giant connected component of G̃.
2: Randomly splitR intoRtr andRinf such that |Rtr| : |Rinf| = (1− prel) : prel.
3: Uniformly sample ntr entities from V and form Vtr by taking the sampled entities and their two-hop neighbors. We select at most 50

neighbors per entity for each hop to prevent exponential growth.
4: Etr := {(vi, r, vj)|vi ∈ Vtr, vj ∈ Vtr, r ∈ Rtr, (vi, r, vj) ∈ E}.
5: Etr ← Triplets in the giant connected component of Etr.
6: Vtr ← Entities involved in Etr.
7: Rtr ← Relations involved in Etr.
8: Let G̃′ be the subgraph of G̃ where the entities in Vtr are removed.
9: In G̃′, uniformly sample ninf entities and form Vinf by taking the sampled entities and their two-hop neighbors. We select at most 50

neighbors per entity for each hop to prevent exponential growth.
10: Einf := X ∪ Y such that |X | : |Y| = (1 − ptri) : ptri where X := {(vi, r, vj)|vi ∈ Vinf, vj ∈ Vinf, r ∈ Rtr, (vi, r, vj) ∈ E} and
Y := {(vi, r, vj)|vi ∈ Vinf, vj ∈ Vinf, r ∈ Rinf, (vi, r, vj) ∈ E}.

11: Einf ← Triplets in the giant connected component of Einf.
12: Vinf ← Entities involved in Einf.
13: Rinf ← Relations involved in Einf.

Algorithm 2 shows how we generate the datasets used in Section 6. Also, Table 5 and Table 6 show the statistic of the
datasets and the hyperparameters used to create the datasets, respectively.

As described in Section 3, Etr is divided into Ftr and Ttr. How to split and use Etr is a model-dependent design choice. On
the other hand, Einf is divided into three pairwise disjoint sets, Finf, Tval, and Ttest with a ratio of 3:1:1. For a fair comparison,
these three sets are fixed, and the same sets are provided to each model.

In Section 4, we mentioned that we add reverse relations and triplets. While this addition is essential for GNN-based
methods (Vashishth et al., 2020; Zhang & Yao, 2022), we should add the reverse relations and triplets after we split Finf,
Tval, and Ttest to prevent data leakage problems. Similarly, we add the reverse relations and triplets after we split Ftr and Ttr.

B. Details about the Baseline Methods
All experiments were conducted with GeForce RTX 2080 Ti, GeForce RTX 3090 or RTX A6000, depending on the
implementations of each method. We modified all the baseline models except RAILD and RMPI so that the models accept
new relations since they do not consider new relations at inference time. We used the original implementations provided by
the authors of the models with minimal modification (if needed) and used the default setting except for the things described
below.

Since the original implementations of NeuralLP and DRUM include entities in Vtr as candidates for a prediction task at
inference time, we excluded them from the candidates for a fair comparison. On the other hand, the implementations of BLP
and RAILD restrict the candidates to be the entities involved in Ttest; so we modified this module to consider all entities in
Vinf to be candidates.

BLP and QBLP require pre-trained vectors for entities and RAILD requires pre-trained vectors for both entities and relations,
where the pre-trained vectors are produced by feeding text descriptions or names into BERT (Devlin et al., 2019). Among our
datasets, NL does not have text descriptions, FB has text descriptions only for entities, and WK has text descriptions for both
entities and relations. We provided the pre-trained vectors with BLP, QBLP and RAILD using the available information.

We tuned BLP with learning rate ∈ {0.00001, 0.00002, 0.00005} and L2 regularization coefficient ∈ {0, 0.001, 0.01}.
QBLP was tuned with learning rate ∈ {0.0001, 0.0005}, the number of transformer layers ∈ {2, 3, 4} and the number of
GCN layers ∈ {2, 3}. For GraIL, CoMPILE and SNRI, we set the early stop patience to be 10 validation trials and the
number of total epochs to be 10. Following the original setting of RMPI, we used the Schema Enhanced RMPI for NL-25,
NL-50, NL-75, and NL-100, and used the Randomly Initialized RMPI for NL-0 and NELL-995-v1. We tuned RED-GNN
with weight decay ∈ {0.00001, 0.01}, dropout rate ∈ {0, 0.3} and the number of layers ∈ {3, 4}. We set the early stop
patience to be 10 epochs.

13

INGRAM: Inductive Knowledge Graph Embedding via Relation Graphs

Since the implementation of RAILD does not contain the codes for obtaining node2vec representations of relations, we used
the official C++ implementation of node2vec3 to calculate the representations of relations.

The original implementation of CompGCN can only be applied to the transductive setting for both entities and relations. We
modified CompGCN so that the model also uses randomly initialized embeddings for new entities appearing at inference
time. CompGCN is tuned with the number of GCN layers ∈ {1, 2, 3}, learning rate ∈ {0.0001, 0.001} and the number of
bases ∈ {−1, 20, 40}, where -1 denotes the case where each relation has its own embedding. We tuned NodePiece with the
size of relational context ∈ {4, 12} and the margin ∈ {15, 20, 25}.

Missing Baselines. We could not include PathCon (Wang et al., 2021) and TACT (Chen et al., 2021) in our experiments
since their original source codes were written only for relation prediction but not for link prediction. ConGLR (Lin et al.,
2022) and CBGNN (Yan et al., 2022) sample 50 negative candidates for each query, following the experimental setting
of GraIL. Unlike GraIL, CoMPILE and SNRI, the original implementations of ConGLR and CBGNN do not provide the
code for expanding the candidate set to Vinf, so we could not include them as baseline methods. Since the entity sets of
training and inference graphs are disjoint in our setting, we could not include baselines assuming new entities should be
attached to known entities, such as MEAN (Hamaguchi et al., 2017) and LAN (Wang et al., 2019). We could not include
GraphANGEL (Jin et al., 2022) in our experiments because the results in (Jin et al., 2022) are not reproducible.

C. Hyperparameters of INGRAM

For INGRAM, we performed validation every 200 epochs for a total of 10,000 epochs. We tuned INGRAM with 10
negative samples, d′ ∈ {32, 64, 128, 256}, d̂′ ∈ {128, 256}, L ∈ {1, 2, 3}, L̂ ∈ {2, 3, 4}, K ∈ {8, 16}, K̂ ∈ {8, 16},
γ ∈ {1.0, 1.5, 2.0, 2.5}, B ∈ {1, 5, 10} and the learning rate ∈ {0.0005, 0.001}. We observed that the best performance of
INGRAM is achieved when B = 10, showing the effectiveness of our binning strategy used in (3) described in Section 5.1.

Table 5: Datasets for Inductive Knowledge Graph Completion.

NL-100 NL-75 NL-50 NL-25
|V| |R| |E| |V| |R| |E| |V| |R| |E| |V| |R| |E|

G̃tr 1,258 55 7,832 2,607 96 11,058 4,396 106 17,578 4,396 106 17,578
G̃inf 1,709 53 3,964 1,578 116 3,031 2,335 119 4,294 2,146 120 3,717

WK-100 WK-75 WK-50 WK-25
|V| |R| |E| |V| |R| |E| |V| |R| |E| |V| |R| |E|

G̃tr 9,784 67 49,875 6,853 52 28,741 12,022 72 82,481 12,659 47 41,873
G̃inf 12,136 37 22,479 2,722 65 5,717 9,328 93 16,121 3,228 74 5,652

FB-100 FB-75 FB-50 FB-25
|V| |R| |E| |V| |R| |E| |V| |R| |E| |V| |R| |E|

G̃tr 4,659 134 62,809 4,659 134 62,809 5,190 153 85,375 5,190 163 91,571
G̃inf 2,624 77 11,645 2,792 186 15,528 4,445 205 19,394 4,097 216 28,579

Table 6: Hyperparameters Used to Create the Datasets.

NL-100 NL-75 NL-50 NL-25 NL-0 WK-100 WK-75 WK-50 WK-25 FB-100 FB-75 FB-50 FB-25

ntr 15 60 50 50 20 20 20 30 30 10 10 10 10
ninf 80 50 80 80 80 250 15 80 50 20 20 50 50
prel 0.40 0.40 0.40 0.40 0.00 0.30 0.40 0.30 0.50 0.40 0.40 0.30 0.25
ptri 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

3https://github.com/snap-stanford/snap/tree/master/examples/node2vec

14

https://github.com/snap-stanford/snap/tree/master/examples/node2vec

