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ABSTRACT

Second-order methods for convex optimization outperform first-order methods
in terms of theoretical iteration convergence, achieving rates up to O(k~5) for
highly-smooth functions. However, their practical performance and applications
are limited due to their multi-level structure and implementation complexity. In
this paper, we present new results on high-order optimization methods, supported
by their practical performance. First, we show that the basic high-order methods,
such as the Cubic Regularized Newton Method, exhibit global superlinear conver-
gence for u-strongly star-convex functions, a class that includes p-strongly convex
functions and some non-convex functions. Theoretical convergence results are
both inspired and supported by the practical performance of these methods. Sec-
ondly, we propose a practical version of the Nesterov Accelerated Tensor method,
called NATA. It significantly outperforms the classical variant and other high-order
acceleration techniques in practice. The convergence of NATA is also supported
by theoretical results. Finally, we introduce an open-source computational library
for high-order methods, called OPTAMI. This library includes various methods,
acceleration techniques, and subproblem solvers, all implemented as PyTorch op-
timizers, thereby facilitating the practical application of high-order methods to a
wide range of optimization problems. We hope this library will simplify research
and practical comparison of methods beyond first-order.

I INTRODUCTION
In this paper, we consider the following unconstrained optimization problem:
i 1
min f(z), (D
where E is a d-dimensional real value space and f(z) is a highly-smooth function
Definition 1.1 Function f has L,, - Lipschitz-continuous p-th derivative, if
I1D?f(@) = DPf(Y)llop < Lypllz =yl Va,y €E, @

where DP f(x) is a p-th order derivative, and || - ||op is an operator norm.

In the paper, we primarily focus on three main cases: p = {1;2; 3}. We assume that the function f is
convex, although for some results, we relax this assumption to star-convexity. By * we denote the
minimum of f.

Second-order methods are widely used in optimization, finding applications in diverse fields such as
machine learning, statistics, control, and economics (Polyak, |1987; Boyd and Vandenberghel 2004
Nocedal and Wright, [1999; Nesterov, 2018). Historically, much of the research on second-order
methods has focused on their local quadratic convergence. A well-known method achieving this
rapid local rate is the classical Newton method (Newton| |1687; Raphson, |1697} [Kantorovichl [1948b).
However, it can diverge if the starting point is far from the solution (Nesterov, |1983, Example
1.2.3). To address this divergence issue, the Damped Newton method introduces a step-size (damping
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coefficient) to ensure global convergence. However, the best-known global rate for the Damped
Newton method is O(7'~'/3) (Berahas et al., [2022), which is slower than the gradient method’s
convergence O(T~1). The Cubic Regularized Newton (CRN) method, introduced by Nesterov and
Polyak| (2006), was the first second-order method with a proper global convergence rate O(T~ %),
outperforming the gradient method. Additionally, for strongly convex functions, it retains a quadratic
local convergence rate, similar to the Newton method (Doikov and Nesterov,|2022). The introduction
of CRN represented a significant milestone in the advancement of second-order optimization methods.

Hessian approximations. In large-scale optimization problems, computing the (inverse) Hessian or
solving a linear system can be computationally expensive. Thus, it is natural to consider inexact or
stochastic algorithms to reduce these overheads. In convex optimization, several studies have explored
globally convergent second-order methods with inexact Hessians (Ghadimi et al.,|2017), higher-order
methods with inexact and stochastic derivatives (Agafonov et al., [2024ajb), and adaptive stochastic
methods (Antonakopoulos et al., 2022). Recently, Quasi-Newton (QN) Hessian approximations have
been integrated into global second-order methods, resulting in algorithms that outperform first-order
methods — even when relying solely on first-order information (Kamzolov et al., [2023b}, Jiang
et al.} 2023} |Scieur, |2023; Jiang et al.| [2024)). Furthermore, numerous second-order approximation
techniques have been developed for training neural networks, often surpassing state-of-the-art first-
order methods. Notable examples include Shampoo (Gupta et al.,2018), SOAP (Vyas et al.| 2025),
and SOPHIA (Liu et al., [2024), which showcase the effectiveness of second-order approaches in
practical applications and benchmarks[] (Dahl et al., 2023). Such potential motivates us to study
second-order methods.

Accelerations. The Cubic Regularized Newton is the basic method in the line-up of second-order
methods. There are two main directions for its improvement: accelerated second-order methods,
including Nesterov-type acceleration (Nesterov, [2008;2021b), near-optimal acceleration Monteiro
and Svaiter] (2013)); |(Gasnikov et al.|(2019b), and optimal acceleration Kovalev and Gasnikov|(2022);
Carmon et al.| (2022)); and third-order methods with superfast subsolver, which allows making a
third-order step without computation of third-order derivative (Nesterov, |202 1 bicia; Kamzolov, |2020).

1.1 OPTAMI: PRACTICAL PERFORMANCE OF HIGH-ORDER METHODS

The theoretical results mentioned above highlight the sig- Nesterov 3-rd order Lower-bound Function, s =0.001
nificant potential of second-order methods in optimization. ;
However, their practical adoption remains limited due
to the computational cost of calculating second deriva-
tives, the variety of acceleration techniques, and the use
of different Hessian approximation methods to reduce it-
eration costs. To address these challenges, we introduce
OPTAM]EI, a unified library implemented in PyTorch for
second-order and higher-order optimization methods. ~ *~
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One particular goal of this library is a direct comparison Tterations, t
of a wide variety of acceleration techniques, which in-
clude Nesterov acceleration (Nesterovl, 2021b) with a rate
O(T—®+1)); Near-Optimal Monteiro-Svaiter Accelera-
tion (Monteiro and Svaiter, 2013 [Bubeck et al., 2019;
Gasnikov et al., |2019b; [Kamzolov, [2020) with a rate
O(T~P+1/2); Near-Optimal Proximal-Point Acceler-
ation (Nesterov, [2021a) with the rate O(T‘<3p+1)/ 2); Optimal Acceleration (Kovalev and Gasnikov,
2022} [Carmon et al., 2022) with a rate O(T~(3»*1)/2) and more |Nesterov| (2023). Despite the
theoretical advancements in these methods, the literature lacks a comprehensive practical comparison,
especially for higher-order methods with p = 3.

In the process of developing the library, we encountered several open challenges.

Figure 1: Third-order Nesterov’s lower-
bound function. Cubic Newton and Ba-
sic Tensor method converge superlin-
early. In contrast, GD demonstrates lin-
ear rate.

Methods exceed linear convergence in practice. We observed in experiments that second-order
and third-order methods often achieve superlinear convergence rates for u-strongly convex
functions (Figure [T). From a theoretical standpoint, this is surprising. The lower bound is
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LoD 2/7 M3 /J«S . . .
Q (T) + log log (fga) fore < cipy = ar as established by |Arjevani et al.[ (2019),

. . . 3
where r is the radius of quadratic convergence {x eE: f(z)— f* <cor= CQ%} and ¢y, ¢ are
2

universal constants. The power 2/7 corresponds to the optimal accelerated method. However, this
lower bound applies only when € < ¢;7, which corresponds to small values of ¢. In the case when
€ > c1r, meaning the desired accuracy exceeds the radius of the quadratic convergence region, it
may be possible to achieve faster global rates of Cubic Regularized Newton method than linear

convergence a9a, Logistic Regression
. Yoo e Cubic Newton, L, =0.1
Practical performance of accelerated methods. We also B Nesterov Accelerated Cubic, L, =0.1

————— Basic Tensor Method,L3=0.1
Nesterov Accelerated Tensor, L3 =0.1

100

observed that the Nesterov Accelerated Tensor Method
(Nesterov}, [2021b) performs worse or on par with its non-
accelerated counterpart in practice. This contrasts with
first-order methods, where acceleration is typically ben-
eficial. These practical limitations lead to the method
being underutilized (Scieur, 2023 |Carmon et al., 2022}
Antonakopoulos et al., 2022).
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Figure 2: Comparison of Basic Methods
vs Nesterov Accelerated Methods

In our work, alongside introducing the OPTAMI library,
we aim to address these open challenges from both theo-
retical and practical perspectives.

Contributions. We summarize our key contributions as follows:

1. Global Superlinear Convergence of Second and High-order methods. Our main contri-
bution is providing theoretical guarantees for global superlinear convergence of the Cubic
Regularized Newton Method and the Basic Tensor Methods for p-strongly star-convex
functions. These theoretical results are validated by practical performance. These results are
a significant improvement over the current state-of-the-art in second-order methods.

2. Nesterov Accelerated Tensor Method with A;-Adaptation (NATA). We propose a new
practical variant of the Nesterov Accelerated Tensor Method, called NATA. This method
addresses the practical limitations of the classical version of acceleration for high-order
methods. We demonstrate the superior performance of NATA compared to both the classical
Nesterov Accelerated Tensor Method and Basic Tensor Method for p = 2 and p = 3. We
also prove a convergence theorem for NATA that matches the classical convergence rates.

3. Comparative Analysis of High-Order Acceleration Methods. We provide a practical
comparison of state-of-the-art (SOTA) acceleration techniques for high-order methods, with
a focus on the cases p = 2 and p = 3. Our experiments show that the proposed NATA
method consistently outperforms all SOTA acceleration techniques, including both optimal
and near-optimal methods.

4. Open-Source Computational Library for Optimization Methods (OPTAMI). We
introduce OPTAMI, an open-source library for high-order optimization methods. It facilitates
both practical research and applications in this field. Its modular architecture supports
various combinations of acceleration techniques with basic methods and their subsolvers.
All methods are implemented as PyTorch optimizers. This allows for seamless application
of high-order methods to a wide range of optimization problems, including neural networks.

2 METHODS AND NOTATION

Notation. In the paper, we consider a d-dimensional real value space E. E* is a dual space,
composed of all linear functionals on E. For a functional g € E*, we denote by (g, x) its value
at x € E. For p > 1, we define D? f(z)[hq,...,h,] as a directional p-th order derivative of f
along h; € E, ¢ = 1,...,p. If all h; = h we simplify D? f(z)[ha,...,hp] as DP f(z)[h]?. So,
for example, D' f(z)[h] = (V f(z), h) and D?f(z)[h]? = (V2f(x)h, h). Note, that V f(z) € E*,
V2f(x)h € E*. Now, we introduce different norms for spaces E and E*. For a self-adjoint
positive-definite operator B : E — E*, we can endow these spaces with conjugate Euclidian norms:

_ 1/2 *
|z = (Bx,a)?, z€B, |gl.={(g,B '), geE"

So, for an identity matrix B = I, we get the classical 2-norm ||z||2 = ||z||1 = («, x>1/2. We denote
e € R? as a vector of all ones and 0 € R? as a vector of all zeroes.



We introduce two types of distance measures between the starting point and the solution: for non-
accelerated methods, we consider the diameter of the level set L = {z € E: f(z) < f(xo)}

D = —*|;
max [l —a”|; G)

and for accelerated methods, we use the Euclidean distance given by
R =z —x"]. 4)

2.1 METHODS IN OPTAMI LIBRARY

In this subsection, we present a detailed overview of the core methods implemented in the OPTAMI
library. Second-order methods have a more complicated structure. The library’s design is structured
into three hierarchical levels: basic methods, subsolvers, and accelerations. This modular architecture
ensures flexibility, extensibility, and adaptability to a variety of optimization tasks. It allows users
to combine multiple basic methods with various accelerations and subsolvers without the need to
implement entire methods from scratch. We leave technical details of the subsolvers to Appendix [C|

BAsic METHODS. The Basic methods are the foundational building blocks of the library. These
monotone, non-accelerated methods form the backbone for constructing more sophisticated acceler-
ated algorithms. Below, we outline the primary basic methods available in the library.
Newton method. The classical (Damped) Newton method is defined as follows:
-1

T =2 — v V()] V() ©)
where v, € R} is a step-size or damping coefficient. The Newton step originates from the second-
order Taylor expansion ®o(x, 2¢):

Tirl = argrﬁin {ég(x,wt) = fay) +(Vf(xe),x —xy) + <V2f(xt)(x — @), T — xt>} . (6)
The solution of this problem corresponds to (3)) with v, = 1. The Newton method lacks global
convergence, while the Damped Newton method exhibits a slow global convergence rate of O(7~1/3).
This is because the approximation ®(z, x4) is not guaranteed to be an upper bound for f, meaning
it is possible that f(z) > ®o(x, x¢).

Cubic Regularized Newton method. To address this issue, the Cubic Regularized Newton (CRN)
method was proposed

Tyy1 = argming e {QM2 (x,2¢) = Doz, 24) + %Hx — xt||3} ) @)
For the function f(x) with Lo-Lipschitz Hessian, the model Qy;, (y, 2;) is an upper bound of the
function f(z) for My > Lo; hence Qay, (z, x¢) > f(x). This method is the first second-order method

with a global convergence rate of O (M2 D’ ) , which is faster than the Gradient Method (GM).

T2
Basic Tensor method. High-order Taylor approximation of a function f can be written as follows:
k
O, p(y) = f(z) + 20 wD" f(@) [y —a]", w,y€E, ®)

where, for p = 1, we simplify notation to ®,.(y). From (2), we can get the next upper-bound of the
function f(z) (Nesterov, 2018;2021b)

LP
F@) — o)) < it lly — 2P, ©)
which leads us to the high-order model
M,
Qona, (4) = P p(y) + iy lly — 2P+ (10)
Now, we can formulate the Basic Tensor method
Ty = argming g {Q%Mp (y)} , (11)

where M,, > pL,. For p =1and M; > Ly, it is the gradient descent step z,41 = z; — ﬁth(xt)

with the convergence rate O MlTRQ for convex functions. For p = 2 and My > Lo, itis a CRN

Method from . For p = 3 and M3 > 3L3, it is a Basic Third-order Method (Nesterov, 2021b):
w1 = @+argmin { f(z0) + V(@) 2] + $92 (@) [0 + 2D% Flan) [0 + 320011} (12)

hek A
with the convergence rate O (%) The step (I2) can be performed with almost the same

computational complexity (up to a logarithmic factor) by using the Bregman Distance Gradient
Method as a subsolver (Nesterov, 2021bfic). The details are written in the Appendix [C.1]

ACCELERATIONS. Compared to first-order methods, second-order and higher-order methods achieve
three types of acceleration rates: Nestrov-type acceleration with the rate O (T_(p“)), nearly-

optimal acceleration O (7~ (3»*1)/2) "and optimal one O (T~(P*1/2), where O(-) means up to a
logarithmic factor. OPTAMI library includes four key variants of acceleration techniques:

4



¢ Nesterov Accelerated Tensor Method (Algorithm with a rate O(T_(p+1)) (Nesterov, [2021b);

* Near-Optimal Tensor Acceleration (Algorithm with a rate O (T~ (3P+1)/2) (Bubeck et al.,[2019;
Gasnikov et al.,[2019b; [Kamzolov, [2020);

* Near-Optimal Proximal-Point Acceleration Method with Segment Search (Algorithm[6)) with the
rate O(T~(37t1)/2) (Nesterov, 2021a);

+ Optimal Acceleration (Algorithm with a rate O(T'~(3P*+1)/2) (Kovalev and Gasnikov, [2022).

These methods are presented in detail in Section [3.1|for Nesterov acceleration, and in Appendix
for the remaining algorithms.

3 IMPROVING PRACTICAL PERFORMANCE OF ACCELERATED METHODS

While accelerated second-order and higher-order methods provide provable theoretical advancements
over their non-accelerated counterparts, a detailed comparison of their practical performance seems
to be underexplored in the literature. Notably, techniques like Nesterov acceleration, which are highly
effective for first-order methods, can slow down second-order and higher-order methods, particularly
in the initial stages (Scieur, 2023} |(Carmon et al.| 2022} |Antonakopoulos et al.} 2022)). To illustrate
this, we present a practical example using the logistic regression problem (Figure [2). The accelerated
versions appear slower, which contradicts the theoretical expectations.

In this section, we first introduce a novel algorithm, NATA, that enhances the practical performance
of the Nesterov Accelerated Tensor Method while maintaining the same theoretical guarantees. We
then provide a comprehensive computational comparison of five different acceleration techniques for
second-order and higher-order optimization.

3.1 NESTEROV ACCELERATED TENSOR METHOD WITH A;-ADAPTATION (NATA)

Algorithm 1 Nesterov Accelerated Tensor Method

1: Input: zyp = vy is starting point, constant M, 1o(z) = z — x0||PTL, total number of
iterations 7', and sequence A;.

2: fort > 0do

1
ol

app1 = Appr — Ay

_ + at41
Yt = Appa Ty + Appa

3
4
5: Tty = argminye]E {thMp (y)}

6 Yy1(2) = Ue(2) + av[f (@e41) + (VI (2141), 2 — e41)]
7

8:

9:

(%7

Vg1 = argming g Yy (2
end for

return Ty

In this subsection, we investigate the causes of the under-
performance of Nesterov Accelerated Tensor method and
propose a solution. We begin by revisiting Algorithm [T}
with further details provided in Appendix [D.I] According
to the theoretical convergence result f(x;) — f(z*) <

% from (Nesterovl 2021c, Theorem 2.3), the

sequence A; is directly connected with the method’s per-
formance - the larger the Ay, the faster the convergence.

Therefore, our goal is to maximize A;. Theoretically, A,
should be defined as A; = Z—’;tp“, where vy = o for ;

a9a, Logistic Regression, L, =L3=0.1

-~ Cubic Newton

Nesterov Accelerated Cubic
—— Cubic NATA with adaptive v
—— Cubic NATA with tuned v = 10.
--- Basic Tensor Method
Nesterov Accelerated Tensor
—— Tensor NATA with adaptive v
—— Tensor NATA with tuned v=0.5

fixe) = fix*)

100 150 200 250
Hessian computations

Ms = Ly and v3 = ﬁ for M3 = 6L3. However, the Figure 3: Basic and Nesterov Acceler-
values of v, appear to be quite small, which limits the ated Methods vs new NATA Methods.
speed of convergence. Can these values be increased? The

answer is yes. We propose the Nesterov Accelerated Tensor Method with A;-Adaptation, which

selects these parameters more aggressively, leading to faster convergence.

Theorem 3.1 For convex function f with L,-Lipschitz-continuous p-th derivative, to find xr such
that f(x7) — f(z*) < ¢, it suffices to perform no more than T > 1 iterations of the Nesterov
Accelerated Tensor Method with A,-Adaptation (NATA) with M, > pL,, (Algorithm E]), where

_1
T=0 ((Ml;”) 71 1 logy (;ﬁ?ﬁ)) . (13)



Algorithm 2 Nesterov Accelerated Tensor Method with A;-Adaptation (NATA)

1: Input: zy = vy is starting point, 1o(z) = plﬁﬂz — xo|[PT!, constant M, total number of

iterations T, A, = 0, v™ = Vp, VM > v, is a maximal value of v, # > 1 is a scaling

parameter for v, and vy < ™ is a starting value of v.

2: fort > 0do

3 vt=0l0

4 repeat

5: vt = max {%, pmin

6 ELt+1 = ﬁ;((t—i—l)ijl —thrl) and At+1 :/it—FCNLt_;'_l

A At

T

8: Tt+1 = argmin, cp {Qyt,Mp (y)}

o: Pri1(2) = Ui (2) + e [f (@r1) + (VI (@141), 2 = 2o41)]
10: Vg1 = argm1n26E~¢t+1(z)

1 until ¢y (ve1) < Apr f(@e41)
12: vt = min {p0, yMax}

13: end for

14: return x4

The proof is presented in the Appendix The established convergence rate of NATA matches
the original method, with an additional factor of log, (l;,:]—l:) accounting for the adaptation of v;.
Next, we demonstrate the practical improvements of NATA compared to the classical methods. As
shown in Figure[3] one can see that the Cubic and Tensor variants of NATA significantly outperform
the classical Basic and Nesterov Accelerated Methods. We also included versions of Cubic and
Tensor NATA with fixed ! = 10 and v* = 0.5, respectively, where v is an additional tunable
hyperparameter. This more aggressive variant of NATA can exhibit even faster practical performance,
though it may diverge if ©/ is not chosen carefully.

3.2 COMPUTATIONAL COMPARISION OF ACCELERATION METHODS
We now present a practical comparison of various acceleration techniques for tensor methods in

convex optimization, including Nesterov acceleration, near-optimal and optimal accelerations, as well
as the newly proposed algorithm, NATA. Specifically, our experiments focus on logistic regression,

defined as: L —n bi (as.2) B )
J— —0;(0;,T
fla) = 3320 log (14 e %t@®)) + &3, (14)
where a; € R? are data features and b; € {—=1;1} are data labels for i = 1,...,n. We evaluate
performance on the a9a dataset in Figure E]with regularizer 4 = 0 and ¢ = 10~* in Figure
a9a, Logistic Regression, u=0.0, L, =0.1 a9a, Logistic Regression, u=0.0, L3=0.1
10! -+ Cubic Newton 10 -+ Tensor Method
Nesterov Accelerated Cubic Nesterov Accelerated Tensor
—.— Cubic NATA with adaptive vt 10° —-— Tensor NATA with adaptive v
—— Cubic NATA with tuned vt =10.0 —— Tensor NATA with tuned v=0.5
107 Near-Optimal Cubic . Near-Optimal Tensor
Cubic Prox. Point Segment Search o Tensor Prox. Point Segment Search
% —— Optimal Cubic = —— Optimal Tensor
x X102
= =
| 107 1
:‘3 :‘E 1074 TSN e T
= =
''''''' 1074
107
107
10 10°¢
0 50 100 150 200 250 300 0 50 100 150 200 250
Hessian computations Hessian computations

Figure 4: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
a9a dataset from the starting point ¢y = 3e, where e is a vector of all ones.

Let us now discuss the performance of the methods. The new NATA acceleration outperforms all
other methods. We attribute this to NATA’s strategy of maximizing a; and A;, which enables even

faster convergence in the later stages. The second-best performer is the Near-Optimal Acceleration
method. Although it struggles initially due to a large number of line-search iterations per step, it



gradually requires fewer line-search iterations — less than two per step on average — as parameters
from previous line-search steps become well-suited for the current iteration. With fewer line-search
iterations, the method accelerates and outpaces the remaining competitors. A promising direction for
improving this method would be to refine the line-search process through an advanced line-search
strategy. Next, the Nesterov Accelerated method starts off slower than the basic method without
acceleration. Eventually, the method accelerates and overtakes the basic version but only for the
Cubic version, as v3 is too small for tensor methods. Near-Optimal Proximal-Point Acceleration
Method with Segment Search performs very similarly to Basic Methods with only improvement in
strongly convex case. It has much fewer iterations, but it does a safe segment search with an average
of 3 Basic steps per search. Lastly, the Optimal Acceleration method performs the worst in practice.
We believe the main issue lies in the internal parameters, which need tuning and adaptation, as we
used the theoretical parameters in our implementation. This leads to many inner iterations without
significant global progress. Improving these parameters presents an open question for future research.
More details can be found in the Appendix

In Figure 5] both basic optimization methods and certain accelerated variants appear to exhibit global
superlinear convergence, accelerating with each iteration even when far from the solution. This
observation naturally raises an important question: Can we theoretically prove that second-order
methods achieve global superlinear convergence? We address this question in the following section.

a9a, Logistic Regression, u=0.0001, L, =0.1 a9a, Logistic Regression, u=0.0001, L3=0.1

-+ Tensor Method
Nesterov Accelerated Tensor
—:— Tensor NATA with adaptive v
—— Tensor NATA with tuned v=1.
Near-Optimal Tensor
Tensor Prox. Point Segment Search
... —— Optimal Tensor

-+ Cubic Newton
Accelerated Cubic Newton
—:— Cubic NATA with adaptive v
—— Cubic NATA with tuned v=28.0
Near-Optimal Cubic 107!
Cubic Prox. Point Segment Search
—— Optimal Cubic

—

flxe) — f(x*)
fixe) = f(x*)

100 150 200 250 300 0 50 100 150 200 250 300
Hessian computations Hessian computations

Figure 5: Comparison of different cubic and tensor acceleration methods on regularized Logistic
Regression for a9a dataset and = 10~ from the starting point 2o = 3e.

4 GLOBAL SUPERLINEAR CONVERGENCE OF HIGH-ORDER METHODS FOR
STRONGLY STAR-CONVEX FUNCTIONS

In this section, we establish the global superlinear convergence of high-order methods for strongly
star-convex functions. We begin by defining global superlinear convergence.

Definition 4.1 A method is said to exhibit a global superlinear convergence rate with respect to the
functional gap if there exists a sequence (; for allt € {0, ..., T} such that

Hoed=lo < ¢, 1>G> G Ye{0,..., T}, and G —0 for t = +oo.  (15)
The éssence of this definition lies in the fact that the scahng ‘ aga, Logistic Regression, s = 0.0001
coefficient (; decreases with each iteration. If (; remains
constant, the method achieves linear convergence. Con-
versely, if (; increases over time (i.e., ¢; < (¢+1), thecon-
vergence becomes sublinear. Additionally, we introduce %
the values o, = 1 — % < 1, which typically rep- £
resent the per-iteration convergence rate from f(z;41) —
fr< (1 =) (f(ze) — f*). The larger oy means faster | =7 Coustiewen 02022
convergence. As for constant & < «y, the method takes a —— Basic Tensor Method, L,=025 |
total number of 7' = O (a’l log (M)) iterations T Therations t v

Figure 6: Cubic Newton and Basic Ten-

to reach e-solution, where f(xr11) — f* < e. For exam-
ple, gradient descent exhibits global linear convergence for
strongly convex functions with (; =1 —a =1 —

sor method have areas of superlinear
convergence. In contrast, GD demon-
L1 +u*  strates linear rate.

Now, to get some intuition on the performance of the methods, we begin with two simple and
classical examples: the ly-regularized logistic regression problem and the [5-regularized Nesterov’s



lower-bound function. The l»-regularized third order Nesterov’s lower-bound function from Nesterov
(2021b)) has the next form

fl@) = 35 @i — ziga)* — 2+ &|2]l3. (16)

Figures [T} [6] illustrate that both the Cubic Newton method and Basic Tensor method have areas
of superlinear convergence where the graphics are going down faster with each iteration (concave
downward). In contrast, gradient descent demonstrates linear convergence. To verify the behavior of

these methods, we plot the values oy = 1 — faer)—f7 <1

fze)—f~
a9a, Logistic Regression, u=0.0001 Nesterov 3-rd order Lower-bound Function, 4= 0.001
-~ Gradient Descent, L, =0.25 P ——- Gradient Descent, L; = 10.0
= 1’ -=-= Cubic Newton, L, =0.25 S Cubic Newton, L, =10.0
= | Basic Tensor Method, L3 =0.25 = —— Basic Tensor Method, L3 =10.0
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Figure 7: Comparison of the basic methods by the relative value 1 — %

In Figure (/] we observe that at the beginning, all methods slow down for both cases. This phase
corresponds to the region where the function’s decrease guarantee for (star-)convex functions out-
performs the function’s decrease guarantee for strongly (star-)convex functions. For example, in the
case of gradient descent, this occurs when the guarantee f(z/41) < f(z:) — i |V f(zeg1)]? is
better than f(xy11) — f* < (1 - le) (f(xz¢) — f*). Despite this region, gradient descent still
has global linear convergence for strongly (star-)convex function. As iterations proceed, gradient
descent stabilizes around a; = 10~3, which corresponds to the theoretical convergence rate «. The
Cubic Newton method and the Basic Tensor method, however, start to accelerate and switch to a
superlinear convergence rate. This practical performance gives the intuition for the global superlinear

convergence of high-order methods.
Now, we present the theoretical results demonstrating that basic high-order methods indeed have a
global superlinear convergence for p-strongly star-convex functions.

Definition 4.2 Let x* be a minimizer of the function f. For ¢ > 2 and ;14 > 0, the function f is
pq-uniformly star-convex of degree q with respect to x* if for all x € R and Vo € [0,1]
* * a(l—a)p *
flax+ (1= a)a") < af (@) + (1 - a)f(2") = S0 o — 2|1, (7
If ¢ = 2 then the function f is y-strongly star-convex with respect to x*. If |14 = 0 then the function
f is star-convex with respect to x*. From this definition, we can additionally get the next useful
inequality sometimes called q-order growth condition

Flle — a7 < f(z) = fa"). (18)
We start with a simplified version of the theorem which includes the linear convergence and then we

present the full version.

Theorem 4.3 For -strongly star-convex function f with Lo-Lipschitz-continuous Hessian (2)),
Cubic Regularized Newton Method from (1) with My > Lo converges with the rate

@) = 7 < (U —a) (f (@) = ), (19)
for all oy € [0;af], where af = 7_1+W and Ky = —(M2+L23)}L‘Itiz*“- (20)

This range includes the classical linear rate

Fw) = @) < (L= a' ) (fwo) = f@*) for o' =min{}:\/smrttp b @D
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Proof. We start the proof by using an upper-bound (@)

(9] o .
f($t+1) < ‘I’zt,2($t+1) + %Hle - $t||3 < zflelﬁg’l’ {¢It,2(y) + %”y - xt||3}

(I Myt L 3 y=witay(z” —zy) « 3 Mot « 3
< min {f() + 22y —wlP} S (- )+ o) + o MR o — |
@ * ar(l—a)p *1|2 3 My+Lo * 13
= (1 - o) f(@) + auf (") — 205008 g — g2 4 o3 Matha g, — o2,
From the second inequality, we get that the method is monotone and f(x:11) < f(x¢). Now, by
subbing f(z*) from both sides, we get

Fl@en) = f@*) < U—ap) (fze) = f(2") = Sl —2"|* (1 - an)p — af 22 |y — 2™))
By choosing o such that

af%”xt — || + pay — p <0, (22)
we get (T9). By solving the quadratic inequality (22), we get that the method (7) converges with the
rate (T9) for all (20). Next, we present Lemma[4.4] with the useful properties of a; from (20). The
more general Lemma [B:2] with the detailed proof is in Appendix B}
Lemma 4.4 For z > 0, the function

of(z) = 71+27 \/Zl+42 (23)
is bounded by the following lower and upper bounds
min{l,%} >a*(2)>min{%;2\1ﬁ}, (24)
and it is monotonically decreasing
Vz,y>0: z<y = a*(z)>a*(y). (25)

The convergence rate is well-defined as 0 < af < 1 from (24). As ||z; — 2*|| < D from (3) and
alow < o* by (24), we get the linear convergence rate (21)). O

Now, we move to the second theorem and prove the global superlinear convergence. The main idea
of the proof is to observe that ||z; — =*|| in (20) decreases for p-strongly star-convex functions. This
property allows us to show that r; is decreasing, and hence «; is increasing from (23)), leading to
superlinear convergence.

Theorem 4.5 For u-strongly star-convex function f with Lo-Lipschitz-continuous Hessian (2)),
Cubic Regularized Newton Method from (1) with My > Lo converges globally superlinearly as
defined in (T3) with ¢, = 1 — 3!
fle) = < (1=ai") (fze) = 7)), (26)
where
e TR for st = QIEEEVE () glowyi/2 (f(xg) — f(27)? . @7)

o = mel 3u3/2

The aggregated convergence rate for T' > 1 equals to
far) = (') < (Fwo) = F@ )Tz (1= o). (28)

Proof. From p-strongly star-convexity (I7), we can upper-bound ||z, — z*|| in (20) by
1/2 @)
<

1/2

oo —2* < (2 (F@) = £@) S (2((0 =0 (f (o) - fla)))

So, we got that ||z; —z*|| is linearly decreasing to zero. From that, we get a new superlinear of! < o
from 7). As x;! is getting smaller within each iteration ;' > 5%, we get that (k') < ok, ;)
from @) Finally, for (; = 1 — a(nfl), we get (¢ > (¢41 in @ This finishes the proof of global
superlinear convergence. The aggregated convergence rate is equal to (28). (]

Similar results hold for Basic Tensor methods from @) in general for p > 2. Next, we present the
theorem for global superlinear convergence of Basic Tensor methods.



Theorem 4.6 For jig-uniformly star-convex Sunction f of degree ¢ > 2 with L, - Lipschitz-
continuous p-th derivative (p > q > 2) @), Basic Tensor Method from (1)) with M,, > pL,, converges

converges globally superlinearly as defined in (I3) with (., =1 — affp

flaep) = fF < (U =ail) (fz) = 1), (29)
sl

ip IS such that

where o

1/p
sy _ D low __ _ .+ 1.1 (p+ D)
hﬂifp (a;,) =0, where hy(a)=a’k+a—1, o)¥=min {2, 3 (—q(Mp+Lp)Dp_q+1

s M,+L,)qat1)/a w s 1
and k', = S (1= aly™) 7 (f(x0) — f(2™)'7.
(30)
The aggregated convergence rate for T' > 1 equals to

flar) = f@*) < (o) = F NIy (1 — afl,). 31

To sum up, we present a unified table for p-strongly (star-)convex functions.

Method Per-Iteration Rate o Glob. Superlinear
Gradient Descent (Nesterov/2004) ]{—Ll X
Cubic Newton Method (Nesterov, 2008) ( LZ D) X
- Basic Tensor Method ( e ) ety X o
_ (Doikov and Nesterov{[2022) ~ ALpbr=t ) S
. 3/4 1/2 _t/4 —1/4
Cubic Newton Method (NEW) # (1 — (ﬁ) A, / v
ey a2 7 o
Basic Tensor Method (NEW) %/,2: (1 - (#) ) A 1/2p 4

Table 1: Comparison of per-iteration convergence for different basic methods, where Ag = f(z¢) —
f(a*). To enhance clarity and simplicity, we removed universal constants and simplified and
(30) for the case where r; > 1.

We established the global superlinear convergence of Cubic Regularized Newton Method for p-
strongly star-convex functions, as well as Basic Tensor Method for f1,-uniformly star-convex functions.
Comprehensive details and proofs are provided in Appendix B}

5 CONCLUSION

Limitations. This paper primarily focuses on high-order methods which come with certain limitations.
First of all, they have computational and memory limitations in high-dimensional spaces, due to
the need for Hessian calculations. There are, however, approaches to overcome this, such as using
first-order subsolvers or inexact Hessian approximations like Quasi-Newton approximations (BFGS,
L-SR1). In this paper, we focus on the exact Hessian to analyze methods’ peak performance.

Another limitation arises from the specific function classes and the theoretical results considered.
Nonetheless, many of the proposed methods can be practically applied to a broader set of problems.
For instance, the CRN performs competitively from general non-convex to strongly convex functions.

Conclusion and Future work. In the paper, we introduced OPTAMI, an open-source library designed
to make high-order optimization methods more accessible and easier to experiment with. We plan to
expand this library to cover a wider range of settings and optimization methods in the future.

In the first part of the paper, we proposed NATA, a practical acceleration technique. NATA employs a
more aggressive schedule adaptation for A;, enabling faster convergence. Our experimental results
show that NATA significantly outperforms both basic and accelerated methods, including near-optimal
and optimal methods. This opens up another interesting question: Could other high-order methods be
optimized by addressing practical issues that arise due to overly conservative theoretical guarantees?
Finally, we demonstrated that the basic high-order methods exhibit global superlinear convergence for
u-strongly star-convex functions. This result is significant because it shows that high-order methods
accelerate with each iteration, in stark contrast to first-order methods, which typically have a steady
linear convergence rate. This raises intriguing questions: Can global superlinear convergence be
established for accelerated high-order methods as well? What is the best possible global per-iteration
decrease that we can theoretically guarantee?
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A RELATED WORKS

The origins of Newton method trace back to the foundational works on root-finding algorithms
Newton| (1687)), |[Raphson| (1697)), Simpson| (1740), and |Bennett (1916). The next breakthrough in
applying Newton method to optimization and proving its local quadratic convergence rates was done
by [Kantorovich|(1948bgaj; |1949;|[1951bza; 19565 1957). Over the following decades, Newton’s method
have been studied in depth, modified and improved in works of Moré| (1977)) |Griewank| (1981);
Nesterov and Polyak! (2006). Today, Newton’s method is widely used in industrial and scientific
computing. For a more detailed history of Newton method, see Boris T. Polyak’s paper (Polyakl
2007).

Recently, second-order methods have taken a new direction in development with the introduction
of globally convergent methods achieving convergence rates of O(7~2) (Nesterov and Polyak,
2006) and O(T) (Nesterov, 2008) convergence rate, surpassing the performance of first-order meth-
ods (Nesterov, 2018). These advancements were later extended to higher-order (tensor) methods
by Baes| (2009). However, the tensor subproblem in these methods is nonconvex, leading to im-
plementation challenges. This issue was addressed by the introduction of the (Accelerated) Tensor
Method in Nesterov| (2021b)), which resolved the nonconvexity by increasing the scaling coefficient
of the regularization term, making the subproblem convex. The basic p-th order Tensor Method
achieves a rate of O (T?) , while the accelerated version improves this to O (7'~ (**1)). Earlier
work by Monteiro and Svaiter (2013) demonstrated that even faster convergence for second-order
methods is possible with the Accelerated Proximal Extragradient method (A-HPE), achieving a rate
of O (T~7/2). Lower bounds for second-order and higher-order methods of Q (7~(***1)/2) were
established in (Arjevani et al., [2019; [Nesterov, 2021b)), demonstrating that the A-HPE method is
nearly optimal for second-order convex optimization. Subsequently, three independent research
groups (Gasnikov et al., 2019a; Bubeck et al.l 2019; Jiang et al., 2019) extended the A-HPE frame-
work to develop tensor methods with a convergence rate of 0, (T_(3p+1)/ 2), achieving near-optimal

complexity for these higher-order methods. Truly optimal methods with a rate of O (T’(SPH)/ 2)
were later proposed in (Kovalev and Gasnikov}, 2022} (Carmon et al.,[2022). Moreover, when assuming
higher levels of smoothness, second-order methods (Nesterov, [2021cza; Kamzolov, |2020; [Doikov
et al.| 2024) have been shown to exceed the established lower complexity bounds for problems with
Lipschitz-continuous Hessians. For an in-depth exploration of higher-order methods, see the review
in (Kamzolov et al., [2023a).

Since second-order and higher-order methods generally incur greater computational costs due to the
need for calculating higher-order derivatives, it is natural to consider inexact or stochastic algorithms
to reduce these overheads. In convex optimization, several studies have explored globally convergent
second-order methods with inexact Hessians (Ghadimi et al.| 2017), higher-order methods with
inexact and stochastic derivatives (Agafonov et al. [2024a; Kamzolov et al.| [2020), and adaptive
stochastic methods (Antonakopoulos et al., [2022). In (Agafonov et al., |2024b), a lower bound of

Q (% + 7+ ﬁ) was established for stochastic globally convergent second-order methods,

where o1 and o5 represent the variances of the stochastic gradients and Hessians, respectively. Addi-
tionally, the Accelerated Stochastic Cubic Newton method was introduced, achieving a convergence

rate of O (% + % + %) , which, to the best of our knowledge, represents the state-of-the-art result.

Inexact second-order derivatives also studied for min-max problems and variational inequalities |[Lin
et al.| (2022);|Agafonov et al.|(2024c). Inexact second-order methods enable the use of Quasi-Newton
Hessian approximations, which are well-regarded for their strong practical performance. Although
classical Quasi-Newton (QN) methods are known for local superlinear convergence but lack global
convergence, their integration with cubic regularization has led to globally convergent methods that
also feature relatively inexpensive subproblem solutions (Kamzolov et al.,[2023bj Scieur, [2023]; Jiang
et al.l |2023). Second-order methods with inexact or stochastic derivatives also hold promise for
distributed optimization Shamir et al.|(2014)); Reddi et al.|(2016)); /Zhang and Lin|(2015)); Daneshmand
et al.| (2021); /Agafonov et al.[(2021); Dvurechensky et al.|(2022)); |/Agafonov et al.|(2022), offering an
effective way to manage the computational demands typically encountered in distributed settings.
One actively developing direction relies on the constructions of Cubic Newton with explicit step in
order to reduce the complexity of solving methods’ subproblems |Polyak| (2009} [2017)); Mishchenko
(2023); IDoikov and Nesterov| (2023)); |Doikov et al.| (2024)); Hanzely et al.| (2022).
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B GLOBAL SUPERLINEAR CONVERGENCE

In this section, we show the theoretical global superlinear convergence of high-order methods (p > 2)
for p-strongly star-convex functions.

Theorem B.1 For ji,-uniformly star-convex (I7) function f of degree q > 2 with L,, - Lipschitz-
continuous p-th derivative (p > q > 2) @), Basic Tensor Method from (T1) with M, > (p — 1)L,

converges with the rate
J(@ep1) = 7 < (U —aup) (f(2) — f7), (32)
for all af;’p > oy,p > 0 such that

a(Mp+Ly)|lwe—a™ [P+
(P41 ’

33)

h

wep(Qtp) <0 and hy, (af ,) =0, where h,(a) = aPk+a—1 and k), =

This range includes the classical linear rate
* ow * ow . M 1/p
Jlae) = F@*) < (1= ale®) (f(0) = f(a)) for ol = min {;; L (=) }
(34)

Proof. We start the proof from an upper-bound (@)

L . M,
F(re1) D @uy o) + pllze — ol S min {@a,0) + iyl - 2l )

y=z¢+agp (" —x4)

. M,+L * Mp+Ly | %
@ ;Tel]}g}z {f(y) + (;:1)11) ly — xthH} < J(A = app)ry + o pa™) + 0‘?.;1 (;_:rl)!p [l — ||+

at,p(l — at,p):u H p+1 Mp+L, ||x* _ l‘th+1.

x—x'||? + at, p+D)!

D (1 ) i) + ol @) -

From the third inequality, we get that the method is monotone and f(x:4+1) < f(x¢). Next, we
subtract f(z*) from the both sides and get

o) =) < (1=aup) (Flae) = fl@) =222 far—a* 7 (1 = a)n — of, Lol o, — a*|7177))

If we choose oy such that

M. L, _
of At o) |13y — ¥ |Pm0 iy, — < 0,

or equivalent version

p q(Mp+Ly) *||p—gq+1
o (pH D) i |z — 2™ + oy —1<0,

we get (32). To understand the solutions of such inequality, we present Lemma [B.2] with the useful
properties. From this Lemma, the convergence rate is well-defined as 0 < a7 , < 1 from (3B6). As

[z; — 2*|| < D from @) and ol < af , by (36), we get the linear convergence rate (34). O

Lemma B.2 For z > 0, the solution o™ (z) of

hy(a*(z)) =0, where hyla) =aPz+a—1, (35)
has the next constant lower and upper-bound
min{l,ﬁ}>a*(2)>min{%;2zﬁ}. (36)

This bounds show that, for z > 1, the solution o*(z) is similar to 2~ 1/p up to a constant factor as
27 UP > a*(z) > 0.527 1/,

For z < 1, we get the next improved upper and lower-bound

1- 2 >a"(z) 212, (37)

which means that for z — +0 we have a*(z) — 1.

The solution o*(z) is monotonically decreasing
Vz,y>0: z<y = a*(z)>a*(y). (38)
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Proof. We start the proof from the upper-bound inequality. Note, the function h,(a) = aPz + a — 1
is monotonically increasing for o > 0, as h.(a) = pa?~lz+1 > 0. As hz(OP = —1 and
h.(1) = z > 0, we get that the solution is unique and a*(z) € [0; 1]. Next, for & = we have

1 1 1 _ 1
hz(zl/p> - ;Z—i_ 21/p 1= 21/p >0,

which means that min {1, 21%} > «a*(z) and we proved the upper-bound.

Zl/p7

Next, we move to the lower-bound inequality. For p >2,z>land o = we have

2z l/p >
helgm) =wzitom —l=mtam - 1S5 +3-1<0,
where the first inequality is coming from z > 1. The second part of lower-bound holds for 0 < z < 1
because
h.(3)=2%2+3-1<4—1<0.
We proved (33). Now, to understand the behavior of a*(z) for 0 < z < 1, we improve the upper and
lower-bound for 0 < z < 1. For 0 < z < 1and o = 1 — 2, we get the improved lower-bound

hy(l—2)=(1-2Pz4+1-2—-1=1—-2P2z2—2=(1-2)?-1)z<0.

Forp>2,0<z<landa=1-— p—j_l, we get the improved upper-bound
P
s (1_p+1> - (1_p+1) pl-pa—-1= (1_p+1) T
P _ (=t
> ((1-5k) — o) 2= (P ) = >0 &

where to use the last inequity or p > 2 we need to use some additional analysis. We introduce an
additional function and its derivatives

s(z) = zlog(z) — (x — 1) log(x + 1),
s(z) = 1+x + log (1 — H—z) ,

s()" = sagey
It is clear that s(z)” < 0 for > 1. It means that s(z)’ is monotonically decreasing. s(1)’ =
1 —log(2) > 0 and the limit lim,_, ;o s(z)’" = 0, hence s(x)’ > 0 and s(z) is a monotonically
increasing function. s(1) = 0, hence s(z) > 0 for z > 1 and finally 2 > (z + 1)*~! forz > 1,
which proves (39) and finishes the proof of the improved upper-bound (37).

Finally, we show that the solution «*(z) is monotonically decreasing with z. Let 0 < z < y and
a*(z) and o*(y) are such that h,(a*(2)) = 0 and hy(a*(y)) = 0, then

a*(2)Py+a*(z) -1 @ o (2)Py+1—-—a*(2)Pz—1=a"(2)’(y—2) >0,
which proves that a*(z) > a*(y) and hence the solution a*(z) is monotonically decreasing. O

Now, we proceed to the second theorem to establish the global superlinear convergence of high-order
methods. The key idea behind the proof is to observe that |z; —2*| in (33) decreases for ji,-uniformly
star-convex functions. This allows us to notice the fact that x;, is also decreasing, hence o
increases according to (38), ultimately leading to superlinear convergence.

Theorem B.3 (Copy of Theorem For jig-uniformly star-convex (I7) function f of degree ¢ > 2
with Ly, - Lipschitz-continuous p-th derivative (p > q > 2) @), Basic Tensor Method from (1)) with

M, > (p — 1)L,, converges converges globally superlinearly as defined in (13) with (;, = 1 — affp

flae) = 5 < (L —aily) (f@) = ), (40)
sl

i p is such that

where «

1/p
hn;l (ozflp) =0, where hy(a)=c’rk+a—1, afu"w = min {é, % (M%) }

s M,+L, (g+1)/q own t N
and k3l = YRSl (1= o) (f (o) — f(27))V1.
41
The aggregated convergence rate for T' > 1 equals to
flar) = f(2) < (f(wo) = f@ ) Ti=y (1 — agh). (42)
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Proof. From p-uniform star-convexity (I7), we can upper-bound ||z; — 2*|| in (33) by

loe = 2%l < (2 (/@) - f(x*)))l/q 2 (£ (@ =a")(f(x0) = £(=))))

So, we got that ||z; — z*|| is linearly decreasing to zero. From that, we get a new superlinear
ol < af, from @I). As k§' is getting smaller within each iteration «§', > xfl, . we get that
a(k;l,) < a(ksh ) from (38). Finally, for ¢, = 1 — a(k{!), we get G p > Ci41,p in (@0). This

finishes the proof of global superlinear convergence. The aggregated convergence rate equals to (@2).
O

1/q

C SUBSOLVERS

C.1 SUBSOLVER FOR BASIC TENSOR METHOD

In this section, we introduce the subsolver, called Bregman Distance Gradient Method (BDGM), for
the Basic Tensor Method of order p = 3 (I2):

Tpr1 = a:t—&—argg]lEin {f(xt) + Vf(z)[h] + %sz(xt) [h]2 + éD3f(g;t) [h]3 + %th} . (43)

The first effective subsolver was introduced by Nesterov in (Nesterovl, [2021bl Section 5) and later
improved in (Nesterov, 2021c). Next, we describe the BDGM subsolver by following the (Nesterov,
2021c).

Relatively inexact p-th order solution. First, we introduce the relatively inexact p-th order solution

of (TI)
v, (@) = {y € B [[VQun, @)l <AV (44)
where y € [0, 1) is an accuracy parameter. Then from (Nesterov, 2021cl Theorem 2.1), for v and M,

such that v + % < % any pointy € 174,, (x) satisfies
p

p+1

1
f@) = f(y) = ey, IVFW)Il«" , where ¢y, = {(LIP_J:IEZ} "

Note, that for the exact solution, we get the same improvement guarantee with v = 0. For p = 3 and
([@3)), we choose v = 1/6 and M3 = 6L3, then Ny, (x) = NL1§6($) and the method

Ti41 € NL3 (xt)

converge with the same rate up to a constant as an exact version (Nesterov, |[2021c, Theorem 2.2).
Note, M3 > 3Ls is also required for the convexity of the subproblem (43)). In our implementation,
all third-order basic steps are solved with this relative inexactness and M3 = 6L3. This approach
creates practical and parameter-free stopping criteria for the subproblem solvers.

Relative smoothness and relative strong convexity. Now, we move on to the concept of relative
smoothness and relative strong convexity proposed in (Lu et al., 2018)). Similarly to classical
smoothness and strong convexity, we say that function ¢(h) is relatively L,-smooth and relatively 1,
strongly convex with respect to scaling function p(h) if

1pV2p(h) = V2p(h) = L,V?p(h).

In classical regime, p(h) = 1||h||? and V2p(h) is an identity matrix. For the scaling function p(h),

we introduce its Bregman distance

Bo(hyy) = py) — p(h) = (Vp(h),y — h).
Now the gradient method with respect to this Bregman distance is called Bregman Distance Gradient
Method (BDGM) and has the next form

hit1 = argn%in {UVo(he),y — hi) +2L,8,(he,y)} -
ye

The convergence rate of such method is O (IL—” log (M) )

Lp
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Bregman Distance Gradient Method (BDGM) for (@3). Let’s apply this approach to the solution
of subproblem @3) with M3 = 6Ls. In (Nesterovl 2021c, Section 4), it was shown that the

subproblem function ¢(h) = V f(z¢) [h] + 3V f(z4) [h)” + D3 f(xy) h)° + Ls||h)|* is relatively
smooth and relatively strongly convex with respect to

p(h) = 392 () 1) + L |||

with constants L, = 1 + % and p, = 1 — % It means that the method has an incredibly fast

convergence rate O (\‘/gi log (‘b(ho)j’(h*) ) ) The details and more formal convergence results
are presented in (Nesterov, 2021c).

Now, we present the explicit formulation of the BDGM for (@3)). First, we have the general form
hey1 = al“gngéin {(Vo(hi),y — hi) + 2Ly B, (hi, y) } - (45)
ye

Let us calculate V¢(hy,) first. It equals to
V(i) = V(@) + V2 f @)y + 3D f (x0) [ha]® + LIl * .

In (Nesterov, 2021c), the universal approximation for D3 f () [hk}z is presented by using the finite
differences approach. However, in practice, we recommend using autogradient computation of
D3 f(x4) [hk]2 if it is possible. The computation by autogradient is much more precise while having
the same computational complexity. The computation complexity of D3 f(z;) [h]? by autogradient
is similar to calculating three gradients as D3 f (2) [h]” = V. (V2f(z)[h]2) = V(V {V f(z)[h]} [1]).
Also, autogradient computations are commonly used in modern frameworks such as PyTorch, Jax,

and others. So, essentially we still have access to third-order information but with the complexity of
a gradient computation.

Now, let us calculate explicit 5, (hx,y)
Bp(hi,y) = p(y) — p(h) — (Vp(h),y — h)
= 1V f (o) W) + 22yl — 3V2F (2e) [h]® — L2 [|hl|*
— (Vf () [he] + Ll hiel|* ey y — hac) -

Note, that the constant terms are useless for finding the argminimum in @I), hence we can remove
them. We also can divide all parts of @3] by 2L, = 2 + /2 for simplicity and unite the linear parts
together

gk = 2+1\/§V¢(hk) — V2 f(w1) [he] — Ls||hx]|* h
= 2572 (Vf(ae) + V2 (@)hi + §D*F(o) []® + Lollhal2hi ) = V2£ (o) (ha] = Lo 2B

= 252 (V1) + §D° (o) (] ) =42 (V2 o) o] + Lol el )

So, we finally get the next explicit BDGM step

hi4+1 = argmin {<gk,y> + 3V f () [y + %||y||4} . (46)
yEE

This step doesn’t require the computation of a full third-order derivative and is similar to the Cubic
Regularized Newton step. Hence, we count it as a second-order method. So, the total complexity of

N 4 ~
Basic Tensor Method for convex functions is O (L%[; ) steps of (@6), where O(+) means number of

iterations up to a logarithmic factor.

Inner subsolver for (@6). The last part is to solve (@6). We solve it similarly to the Cubic
Regularized Step by ray-search with eigenvalue decomposition (EVD). First, we apply eigenvalue
decomposition to V2 f(z;)

V2f(xy) =USU T, (47)
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where S € R?*9 is a diagonal matrix with eigenvalues and U € R?*< is an orthoganal matrix
such that UU T = I. Then, we denote v = U "y and § = U g;,. Now we can formulate a dual
one-dimensional problem.

min {(gx, y) + 3 (V2 @)y, w) + 5 lyl*)

= min {(U7 g, UTy) + § (USUT.y) + 50Ty}
= min {(5,0) + } (S0, ) + G lo]')

. - 1 V2L 2 1.2
= iy {(6,0) + § (Su0) + B o~ 47}

= max min {(g,@ + % (Sv,v) + 7V22L3||UH27' _ %7’2}

7>0 veEER
:max{—1<(5+7\/2L3)1§ §>—17'2} (48)
7>0 2 ’ 2 ’

where 7 = @ [|v]|? for the third equality and v = — (S + 71/2L3) - g in the last equality. By
solving with one-dimensional ray-search, we find optimal 7* then we can calculate v and y,
which we found the solution for subproblem (@6)). In our code, we use eigenvalue decomposition for
efficiency of the ray-search, but it is also possible to just inverse the regularized matrix multiple times
in or apply some efficient first-order method for quadratic problems such as conjugate gradient.

To finalize, in this section we presented the subsolver which allows us to efficiently implement
the Basic Tensor Method for p = 3 with the complexity same up to a logarithmic factor as Cubic
Regularized Newton Method.

D METHODS

D.1 NESTEROV ACCELERATED TENSOR METHODS

In this section, we present Nesterov Acceleration for tensor methods proposed in (Nesterov, |2021bjc)).
First, let us introduce the main parts of the method. The key part of such acceleration is the estimated
sequences technique. It is based on linear approximations of function f(z) in a sequence of points
x¢, which allows to construct the estimating function 1), (z) for a scaling sequence a; € R.:

Gri1(2) = Pe(2) + ar (f(2) +(Vf(2),2 —2)), where to(2) = gz — @olP*. (49)
Additionally, we introduce the sequence

At+1 = At + a. (50)

Now, we are ready to present the accelerated method.

Algorithm 3 Nesterov Accelerated Tensor Method

1: Input: x is starting point; constant L,, total number of iterations 7', and sequence A;, where
Ag=0.
2: Set objective function
_ 1 +1
Yo(2) = 57 llz — @ol/”

fort > 0 do

Choose y; = —A’?il Ty 4 G

Aipa
Compute 2441 € N, (y¢)
Compute a1 = At+1 — At
Update ¥;11(7) = ¥1(2) + ar1[f(Te41) +(VF(@t41), 2 — Te11)]-
Compute v441 = argmin, g Y41(2

end for

return T

Ut

SYRIUN bW
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For the convergence results, the sequence A; should be defined in the following way

_ Ypptl — _ 2p-1 (p=1)!
A = L—’;t” , where v, = (p+1§(2p+1) IR (51)
Then, a;41 = Z—” ((t +1)pHl — tp“). With such parameters, we can present the convergence

theorem from (Nesterov}, 2021¢c, Theorem 2.3)

Theorem D.1 Let sequence {xt}tzo be generated by method|3| Then, for any T > 1, we have
p+1
fler) = f@) <O (435 ).

D.2 NESTEROV ACCELERATED TENSOR METHOD WITH A;-ADAPTATION (NATA)

In this subsection, we present the proof of Theorem 3.1]

Algorithm 4 Nesterov Accelerated Tensor Method with A;-Adaptation (NATA)

1: Input: xg = vy is starting point, constant M, total number of iterations T, flo =0, pmin — Vp,
v > v, is a maximal value of v, & > 1 is a scaling parameter for v, and vy = ™0 is a
starting value of v.

2: Set objective function

_ 1 +1
Wo(z) = 5111z — zol|?

3: fort > 0do

4:  repeat

5: vt = max {%t, Vmin}

6: dt+1 = %;((t + 1)p+1 — tp+1) and At+1 = At + C~Lt+1

7: Yt = 1‘{:‘:-1 Tt —+ %t:_ll (%7

8: Tigq :NLP(yt) R

9: Pr11(2) = ¥e(2) + Qg [f (o) + (VI (@41), 2 = 2141)]
10: Vip1 = argmlnzeE}le z

1 until Py (vepr) > Aggr f(2041)
12: vl = min {z/tﬂz, I/max}

13: end for

14: return x4

Theorem D.2 (Copy of Theorem For convex function f with Ly-Lipschitz-continuous p-th
derivative, to find xr such that f(xr) — f(z*) < ¢, it suffices to perform no more than T > 1
iterations of the Nesterov Accelerated Tensor Method with A-Adaptation (NATA) with M,, > pL,,
(Algorithm[2), where

1
T=0 ((LPR“) pFL logy (;)) ) (52)

Proof.

Let us present the convergence analysis of Algorithm [2] The proof is based on the proof from
(Nesterovl, [2021c)).

First of all, by convexity and definition of 4 (), it is easy to show that
de(a*) < Auf (%) + piglla™ — a0 (53)

Now, let us assume that the condition on Line 10 is satisfied for every step. Then, we get

Aif(2e) < Pulvg) < hya®) < Apf(a*) + rilllx* — zo|P*, 54)
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where in the second inequality we use the definition of v;. Next, by simple calculations, we get the
convergence result

Flar) — flar) < laimzll (55)

(p+1)A;

From that inequality, one can see that the larger A, means the faster convergence. That is the reason,
we want to have a more aggressive a; and start the search of v from the maximal value. Now, we
need to show that the condition in Line 10 is always can be satisfied.

Let us prove it by induction of the following relation:
OF = (o) 2 Auf (), t20. (56)

For ¢t = 0, we have ¢)§ = 0 and Ay = 0. Hence, (56) is valid.

Assume it is valid for some ¢ > 0. Then,

Vi1 = Ve(vi1) + @er (f(@e1) +(VF(@41)s Vi1 — Tig1))
> 0; + oz 1o = velPT G (f(@ern) +(VF(@e41), Va1 — T041)) 4

where the last inequality is coming from uniform convexity of || - |[P*1. Now, we can use the structure
of the method in previous inequality and get

* & ~
Ui — Gy Ve = vlPT S Acf(20) 4 G (f(2e1) + (VF(@041), 061 — 2e41))
> Api1 f(@e41) + (VI (@eg1), g1 (Vs — Ter) + Ar(e — 2e41))
= At+1f(517t+1) + (Vf(zr41), Grr1(vepr — o) + At+1(yt — Tt41))s

where, for the second inequality, we use convexity and, for the last equality, we use the definition of
v from Line 6 of the Algorithm 2]

Further, we use inequality ﬁﬂ"“ — BT > —ﬁoﬁl/l’,@’(lﬂrl)m7 7> 0, forall z € E and we
have

p—1

- . ptl
Gz v = P+ s (VE (@), v — o) 2 =5852 7 (@ [V (@e)[l) »
(57
Next, for x4y € J\/Lp (yk ), from (Nesterov, 2021c, Theorem 2.1), we get

+1

prl
(Vf(@e41), 90 — 2e11) = 6l V() 7
here ¢ — | 521 21" for relative h order soluti
where ¢p = | yH Ty T, or relative 1nexact p-th order solution.
Putting all these inequalities together, we obtain

p—1 pt+l ptl

Vien = Apri f(@en) = 5552 7 @ [V @een)lle) P+ Aeracp|VF (@) |17
_ LH ~ Lfl L‘H
= A f(@egr) IV (@)l P (At+1cp - 5527 a4 ) :

Finally, by the choice of v* in Algorithm V' > vy and Gy > agqr, where agp = 2 ((E+
- P

1)P+1 —¢PF1) is the theoretical value of a; 1. Hence, A; 1 > Ayyq, where Ay yq = Z—’;(t +1)PHL s

the theoretical value of A;1. So, in the final inequality, we prove that there exists vt = vy, such that

p—1 Pp*1

Ay > Apyicy 2 27 af,

_p_
p+1
where the last inequality holds from (Nesterov, |2021c), Equation 25). Thus, we have proved the
induction step.
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%) + T additional steps, where v =

Vi

maxeo,r] V' < V™ and "™ = mingepo,r) ' > v™" = 1. The T term in the sum is coming
from Line 11 in Algorithm[2] If we want to make the Algorithm less aggressive, we can remove this
Line then »¢ will only decrease.

The search of v takes maximal total of log, (

L _
The total number of iterations hence is equal to 7' = O ((LP]:) Pl + log, (”t)> , which

min
Vi

finishes the proof. ]

D.3 NEAR-OPTIMAL TENSOR METHODS AND HYPERFAST SECOND-ORDER METHOD

Near-optimal Tensor methods. |[Monteiro and Svaiter| (2013) demonstrated that the global conver-
gence rate of second-order methods can be further improved from O (5’1/ 3) to O (5*2/ "log (1/ 5))
. This improvement was achieved through the development of the Accelerated Hybrid Proximal
Extragradient (A-HPE) framework, which, when combined with a trust-region Newton-type method,
resulted in the Accelerated Newton Proximal Extragradient (A-NPE) method that achieves the im-
proved rate. A lower bound of O (5*2/ 7) was established by |Arjevani et al.|(2019), rendering that
the A-NPE method is nearly optimal.

Near-optimal tensor methods |Gasnikov et al.|(2019a)); Bubeck et al.| (2019); Jiang et al.| (2019), with
a convergence rate of O (% P+ ]og (1/¢)), are based on the A-HPE framework. Similar to
A-HPE, these tensor methods require an additional binary search procedure at each iteration. The
cost of these procedures introduces an extra O(log(1/¢)) factor in the overall convergence rate.

Algorithm 5 Inexact p-th order Near-optimal Accelerated Tensor Method (Kamzolov, 2020, Algo-
rithm 1)

1: Input: xg = vy is starting point, constants M, v € [0, 1), total number of iterations 7', Ag = 0.

2: Set Ag = 0,29 = vg
3: for t > 0do
4:  Compute a pair A;y; > 0 and 2,41 € R™ such that
1 M, - — P!
= < A P lze41 — yell < p (58)
2 (p—1)! p+1
where
Ti41 € N’Y,Mp (y¢) (59
and
At+1+ 4/ )\t2+1 + AN 1A A a
ag11 = 5 s A1 = Ay 4 a4 ,and yy = T;Izt At:rll Vg
(60)

5: Update Vt41 = U — at+1Vf(a:t+1)
6: end for
7: return yx

One version of the near-optimal tensor methods is presented in Algorithm[5] This version was initially
proposed by [Bubeck et al.| (2019) and later improved by [Kamzolov| (2020), who introduced the
handling of inexact solution to subproblem (59). Note that line (4) of Algorithm [5|requires finding
the pair (2441, A¢+1), which cannot be done explicitly. Specifically, A;11 depends on x;, via ,
which in turn depends on y; through (59). Furthermore, y; depends on a;41, which itself depends on
At+1 as per (60). This recursive dependence implies that \;; 1 relies on itself, making it impossible
to solve in closed form.
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To find the pair (z;41, A¢t41), a binary search procedure is employed. Below, we provide the approach
used by Bubeck et al.| (2019). Let us denote § = Aﬁ € [0, 1]. Thus, both y; and x;,1 depend on 6,

1

i (0) =y B 0z, + (1= v, 2041(0) = 201 @ Ny, (a(0)).

2
Since A\jy1 = Zill , we have that \;11 = (1_99)2 Ay. Thus, in terms of 6, (38) can be rewritten as
1 P (1= 0)2 AM, - [|l241(0) — we(0)[P
- <((0) < — h 0) = . 1
2_4()_ o Where ¢(0) 9 (p—1) (61)

Note that ¢(0) — 400 and ¢(1) = 0. Hence, one can use binary search to find € such that (6I)
holds true. The complexity of this procedure is O (log(1/¢)), and a theoretical analysis of binary
search procedure can be found in Bubeck et al.|(2019). Below we present the total complexity of
Algorithm [5]

Theorem D.3 ((Kamzolov, 2020, Theorem 1)) For convex function f with Ly,-Lipschitz-continuous
p-th derivative, to find xr such that f(xr) — f* < ¢, it suffices to perform no more than T > 1
iterations ofAlgorithmwith H, = L, where & and v satisfy 1 > 27y + m, and

- p+1
roo (B,

3

Hyperfast Second-order method. Interestingly, the lower bound for second-order convex op-
timization, O (6*2/ 7), can be surpassed under higher smoothness assumptions on the objective.
Nesterov| (2021c)) showed that, under the assumption of an Ls-Lipschitz third derivative, Algorithm
can be implemented using only a second-order oracle, with the third-order derivative approximated
via finite gradient differences. This results in a second-order method with O (e’l/ 4) calls to the
second-order oracle. The same idea can be applied to Algorithm [T} improving the convergence rate
of the second-order method to O (6’1/ %) [Kamzolov| (2020).

Theorem D.4 ((Kamzolov, 2020, Theorem 2)) For a convex function f with an Ls-Lipschitz-
continuous third derivative, to find x such that f(xr) — f* < €, it suffices to perform no more than
Ny > 1 gradient calculations and No > 1 Hessian calculations in Algorithm@with BGDM as the
subsolver for the subproblem (59), H, = 3L, /2, v = 1/6, and

] N
N1:O<<L3R> 10g<G+H)>7
€ €
4N 5
N2:O<<L3R> )7
€

where G and H are the uniform upper bounds for the norms of the gradients and Hessians computed
at the points generated by the main algorithm.

D.4 PROXIMAL POINT METHOD WITH SEGMENT SEARCH

Another approach for constructing near-optimal tensor methods involves high-order proximal-point
type methods [Nesterov| (2023}, |2021al), which are based on the p-th-order proximal-point operator:

prox,, 1 (y) = avgmin { fy,11(2) 1= £ (@) + e =y 62)

Nesterov| (2023)) demonstrated that using a single step of a p-th-order tensor method to solve (62)
results in a convergence rate of O(e’l/ P), and moreover, this approach can be accelerated to achieve

a rate of O(e_l/ (p“)). Another significant contribution of |[Nesterov| (2023)) is the introduction of a
proximal-point operator with segment search:

Sprox,, g(y,u) = argmin {f(x) + rﬂ”x —y— Tqu'H} . (63)
z€E, 7€[0,1]
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Assuming that (63) can be solved exactly, Nesterov| (2023) showed that convergence rate of
O(e=2/(3%1)) can be achieved via different acceleration scheme.

A more practical algorithm was introduced in |[Nesterov| (2021a)). Following Nesterov|(2023), the
authors assumed that the problem (62)) can be solved under the following approximate condition:

Ay n(W) ={z €E: [V fypu (@) <BIVI(@)]},

where v € [0, 1) is a tolerance parameter. Furthermore, a specific approach for approximating the
solution to subproblem (63) was proposed. The resulting method, called the Inexact p-th-order
Proximal Point Method with Segment Search, is presented in Algorithm[6] Lines of Algorithm|6]
detail the steps for the approximate solution of (63).

Algorithm 6 Inexact p-th-order Proximal Point Method with Segment Search (Nesterov} 2021a),
Method (3.6))

1: Input: o = vy is starting point, constants H > 0, v € [0, 1), total number of iterations 7,
A() = 0

2: fort > 0do

3: Set Uy = ’Uf Tt.

4 Compute 29 € A} 1 (x:).

5. if(Vf(2?),us) > 0, then

6

7

8

Define ¢ (2) = f(a7) +(Vf(2), 2 —2f), xe11 = 27, g0 = |V f(2)]].
else
Compute z; € A ;(vy).

R

if (Vf(x}),u:) <0, then
10: lDeﬁne $i(2) = faf) +(Vf(2}), 2 = @t), w1 = i, g0 = [V (@)
11: else
12: Find values 0 < 7} < 72 < 1 with points w} € A (e + T}uy) and
w} € A (e + 7 2u,) satisfying
R Ve
Bl<0<BE, and oy —)8 < 5[5 ] e
2
where 8} = (Vf(w}), ), B2 = (Vf(w}),w), ap = ﬁ € [0,1], and
_p_
N oy 5o [ P
g = |||V f(w)ll+" + (1 — )|V f(wi)]«
Set
$u(2) = a (f(wg) + <Vf(w3)7z—wtl>) + (1= ay) (f(w)) + (VI (i), 2 —wi)),
Tyl = atwt +(1- at)wQ
13: end if
14:  endif
15:  Compute a;y; > 0 from equation G 1 [ ]Up 7
. t+1 q Aitaiia 2L H

16: Set At+1 =A; + a¢+1 and update ’ll}tJr]_(Z) = ’(/Jt( ) + at+1¢t( )
17:  Setwyy; = argminpsiq(2)
z€E

18: end for
19: return xr

Theorem D.5 ((Nesterov, [2021a, Theorem 2)) For smooth convex function f to find x such that
flar) — f* < ¢ it suffices to perform no more than T > 1 iterations ofAlgorithm@ where

2
HRr+1 } 3p+1

r-o||
€
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Line |12| requires additional bisection search with complexity of O (H DE p“) (Nesterovl, |2021al

Theorem 4). This results in the following upper bound for the number of evaluations of w € AZ’ (@)

2
during the execution of AlgorithmHO ([HD;H} T jog AP > .

g

Under the additional assumption of an L,-Lipschitz continuous p-th derivative of f, the inclusion
w € Ag () can be achieved by performing one inexact tensor step with specific choice of

parameters 3 and M,: w € /\/ﬁ M, (z) (Nesterov, 2023} Section 3) (Nesterovl [2021a, Section 5.1).
This makes Algorithm [6] a near-optimal tensor method, comparable to [Gasnikov et al.| (2019b);
Bubeck et al.| (2019); Jiang et al.[(2019). However, it differs in nature: while the latter methods are
based on A-NPE-type approaches, Algorithm 6]follows an interior-point-type framework.

For the case when p = 3, the tensor step can be efficiently performed using BDGM in O (log 1/¢)
iterations. As demonstrated in Nesterov| (2021c); [Kamzolov| (2020), a second-order implementation
of a third-order tensor method can be achieved by approximating the third-order derivative using
finite gradient differences. However, in practice, this approximation may suffer from numerical
instability. For Algorithm [6|another approach is available: the interior-point subproblem (62)) can be
solved using a second-order method Nesterov|(2021a)), which provides a more reliable alternative to
finite gradient differences. Under the assumption of an L3-Lipschitz continuous third derivative of f,
Algorithm@ achieves convergence O (¢71/%).

D.5 OPTIMAL TENSOR METHOD

An Optimal Tensor Method was recently proposed by |[Kovalev and Gasnikov] (2022); |(Carmon
et al.| (2022), improving upon the convergence of near-optimal tensor methods |Gasnikov et al.
(2019a)); [Bubeck et al.| (2019); Jiang et al. (2019). The convergence rate was enhanced from
O (e=#/BrtD]og (1/¢)) to O (=#/3PF1), matching the lower bound © (=% P*+1) |Arjevani
et al.| (2019). Similar to near-optimal methods, the Optimal Tensor Method is based on the A-HPE
framework proposed by Monteiro and Svaiter| (2013)).

Before describing the Optimal Tensor Method, we introduce some necessary notations. Let ®7 denote
the p-th order Taylor approximation of the function g:

9(x,y) = g(y) + Y H D g()lz —y)*. (64)
k=1

Additionally, note that ®f (x, y) = ®,(z, y) as defined in (8). We also define the function gx(z,y) =
f@) + zxlle = yl*.

The main distinction from near-optimal methods lies in the procedure used to find the pair
(441, Aey1). Instead of first computing x;1 and then using a binary search to determine A1,
as done in previous approaches, [Kovalev and Gasnikov|(2022) first select the parameter A; 1 and then
compute x;41. This procedure, known as the Tensor Extragradient Method, is shown in lines 6} [T0]
of Algorithm[7] This method converges in a constant number of iterations, leading to the optimal
convergence rate of O (£~ GP+1) for Algorithm

Theorem D.6 ((Kovalev and Gasnikov, 2022, Theorem 5)) Let M, = L, and 0 = 1/2. Let

L= <(3p+ 1)?C,(M,,0)RP— (1+0>p;1>1,

2r\/p 1—0

PMP(1+ o0t
where Cp(M,y,0) = PP )

p!(pMp - Lp)p/Q(pMp + Lp)p/2_1 .

Then, for convex function f with Ly-Lipschitz-continuous p-th derivative, to find T such that
flaxr) — f* < ¢ it suffices to perform no more than T > 1 iterations 0fAlgorithm[7] where

—2
T =5D, - (L,R"*"[e) T +7,
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Algorithm 7 Optimal Tensor Method (Kovalev and Gasnikov, 2022, Algorithm 4)

1: Input: xo = vy is starting point, constants M, o € (0, 1), total number of iterations T', Ay = 0,
sequence a; = vt3P~1)/2 for some v > 0.

2: fort > 0 do
2

. _ O

3 A ;At + a1, Ap1 = Arrs
a
4 Yt = Af+1 + Attt—ll
S5 =y, k=0
6:  repeat
. “Yt) M,
7: ok = argmin {@ff‘( "y uf) + (§+f)! ly — nypH}
yeE
Mollah —yrp—1\ 1

8: yi€+1 yf - (%) Vg)\¢+1 (i’f, yt)
9: k=k+1

10: until [Vgy,,, (2f,y)] < oA laf —
11: Ti41 — 1'571

12: Update Ut4+1 = Ut — Q41 Vf(l't+1)

13: end for

14: return zp

with Dy, is defined as follows:

PR E G R Vi R VAR
’ 2042y /ppl(p? — 1) '

E EXPERIMENTAL DETAILS

Setup. All methods and experiments were performed using Python 3.11, PyTorch 2.2.2, on a 13-
inch MacBook Pro 2019 with 1,4 GHz Quad-Core Intel Core i5 and 8GB memory. All computations
are done in torch.double. All methods are implemented as PyTorch 2 optimizers.

Logistic Regression. The logistic regression problem can be formulated as

flz) =137 log (1+ e bilaa)) 4 &z|3, (65)

where a; € R are data features and b; € {—1;1} are data labels fori = 1,...,n.

We present results on the a9a dataset (d = 123,n = 32561) and w8a (d = 300, n = 49749) from
LibSVM by |Chang and Lin|(2011). We choose the starting point zo = 3e, where e is a vector of
all ones. This choice of z( allows us to show the convergence of the methods from a far point. For
Figures E], I and. we choose the regularizer 1 = 10~ to get strongly-convex function f. For
Figures 24| and [8] we choose the regularizer ;1 = 0 to get a convex function f. For the better
condmomng, we normalize data features ||a;|| = 1. For the normalized case, we choose theoretical
Ly = 0.1. We set Ly = Lo = 0.1 to demonstrate the convergence rates for the same constants L.
Note, that actual L3 is smaller than 0.1.
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w8a, Logistic Regression w8a, Logistic Regression
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Figure 8: Comparison of different cubic and tensor acceleration methods on Logistic Regression for
w8a dataset from the starting point zy = 3e, where e is a vector of all ones.

Third-order Nesterov’s lower-bound function. The /5-regularized third order Nesterov’s lower-
bound function from |[Nesterov|(2021b) has the next form
d—1
fl@) = 122000 (@ — i) — 2+ 5|23, (66)
For Figuresand wesetd =20, u = 1073, we’ve tuned Ly = Ly = 10..
Poisson regression. Poisson regression is a type of generalized linear model used for analyzing
count data and contingency tables. It assumes that the response variable b; follows a Poisson

distribution, and the logarithm of its expected value can be expressed as a linear combination of
unknown parameters. The Poisson regression function has the next form

fla) =30 el — b {a;, @) (67)
where a; € R? are data features and b; € {0,1,...,k,...} are countable targets.

We present results for synthetic data: d = 21, n = 6000. We set Ly = Ly = Ly = 1 and zg = e is
all ones.

Poisson Regression Poisson Regression, p=3
~== Cubic Newton, L, =1.0
100 —— Gradient Descent, L; = 1.0 100
----- Accelerated Cubic Newton, L, =1.0
—— Cubic NATA, L; =1.0, v =0.4
107! —— Optimal Cubic, L, =1.0 107!
1072 1072
x x
= =
| 1073 | 1073
1074 1074
10-5 104 =7 Tensf)r Method, L3 =1.0
—— Gradient Descent, Ly = 1.0 L
s s ] Accelerated Tensor Method, L3 = 1.0 ‘\
10 107" 4 — Tensor NATA, L3=1.0, v;=1.0 \
—— Optimal Tensor, L3 =1.0 ‘\
1077 10-7 v \
0 20 40 60 80 100 0.0 25 5.0 7.5 10.0 12,5 15.0 17.5 20.0

Iterations, t Iterations, t

Figure 9: Comparison of different cubic and tensor accelerated methods on Poisson Regression.

The Cubic Regularized Newton (CRN) method and NATA with a tuned parameter v demonstrate the
best performance in Figure 0] (Left). Notably, CRN exhibits rapid superlinear convergence, likely
due to the strong convexity properties of the loss function. Interestingly, NATA with the tuned v
manages to match CRN’s convergence rate. While Optimal Acceleration is slower than both CRN
and NATA, it also achieves global superlinear convergence. In Figure 9] (Right) for p = 3, the Tensor
Nata method is the fastest, followed by the Basic Tensor Method, with the Optimal Tensor method
ranking third. All three methods exhibit global superlinear convergence. The classical Nesterov
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Tensor Acceleration method is the slowest, likely due to its small default v. Notably, the tensor-based
methods outperform their cubic counterparts.

Poisson regression

100 4

H
<

1= (fixes 1) = AX*D/(F(xe) = fx*))

—-.= Gradient Descent, L, =1.0
—~~~ Cubic Newton, L, =1.0
—— Cubic NATA, L, =1.0, v,=0.4
—— Optimal Cubic, L, =1.0

0 2 4 6 8 10 12 14
Iterations, t

Figure 10: Comparison of the methods by the relative value 1 — %

The global superlinear performance of these accelerated second-order methods in Figure [T0raises the
hope of establishing theoretical results on global superlinear convergence for accelerated second-order
methods.
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