
HARDMath2: A Benchmark for Applied Mathematics
Built by Students as Part of a Graduate Class

James V. Roggeveen∗, Erik Y. Wang∗,
David Ettel, Will Flintoft, Peter Donets, Lucy S. Nathwani, Nickholas Gutierrez,

Anton Marius Graf, Siddharth Dandavate, Arjun Nageswaran, Raglan Ward,
Ava Williamson, Anne Mykland, Kacper K. Migacz, Yijun Wang, Egemen Bostan,

Duy Thuc Nguyen, Zhe He, Marc L. Descoteaux, Felix Yeung, Shida Liu,
Jorge García Ponce, Luke Zhu, Yuyang Chen, Ekaterina S. Ivshina, Miguel Fernandez,

Minjae Kim, Kennan Gumbs, Matthew Scott Tan, Russell Yang, Mai Hoang,
David Brown, Isabella A. Silveira, Lavon Sykes, Ahmed Roman, William Fredenberg,

Yiming Chen, Lucas Martin, Yixing Tang, Kelly Werker Smith, Hongyu Liao,
Logan G. Wilson, Alexander Dazhen Cai, Andrea Elizabeth Biju, Michael P. Brenner

School of Engineering and Applied Sciences, Harvard University

Abstract

Large language models (LLMs) have shown remarkable progress in mathematical
problem-solving, but evaluation has largely focused on problems that have exact
analytical solutions or involve formal proofs, often overlooking approximation-
based problems ubiquitous in applied science and engineering. To fill this gap, we
build on prior work and present HARDMath2, a dataset of 211 original problems
covering the core topics in an introductory graduate applied math class, including
boundary-layer analysis, WKB methods, asymptotic solutions of nonlinear partial
differential equations, and the asymptotics of oscillatory integrals. This dataset
was designed and verified by the students and instructors of a core graduate applied
mathematics course at Harvard. We built the dataset through a novel collabora-
tive environment that challenges students to write and refine difficult problems
consistent with the class syllabus, peer-validate solutions, test different models,
and automatically check LLM-generated solutions against their own answers and
numerical ground truths. Evaluation results show that leading frontier models
still struggle with many of the problems in the dataset, highlighting a gap in the
mathematical reasoning skills of current LLMs. Importantly, students identified
strategies to create increasingly difficult problems by interacting with the models
and exploiting common failure modes. This back-and-forth with the models not
only resulted in a richer and more challenging benchmark but also led to qualita-
tive improvements in the students’ understanding of the course material, which is
increasingly important as we enter an age where state-of-the-art language models
can solve many challenging problems across a wide domain of fields.

1 Introduction

Recent advances in large language models (LLMs) have significantly expanded the frontier of
automated mathematical reasoning. While early benchmarks largely focused on elementary arithmetic
and symbolic algebra, newer datasets have begun to cover much more challenging material, ranging
from Olympiad-style competition problems to graduate-level exams in theoretical mathematics.
Indeed, recent benchmarks like Glazer et al. [2024] and Phan et al. [2025] include extremely
challenging problems created by research mathematicians and resist saturation even by today’s most

∗Equal contribution. Dataset available here. Parsing and evaluation code available here.

https://huggingface.co/datasets/JVRoggeveen/HARDMath2
https://github.com/JamesRoggeveen/hardmath2_evaluation

capable LLMs. However, a critical component of advanced mathematics crucial to applied science
and engineering is severely underrepresented. In many real-world contexts, equations that model
physical systems, such as nonlinear partial differential equations (PDEs), oscillatory integrals, or
multi-scale boundary-layer problems, do not admit exact solutions. Instead, analytical insights can be
obtained from a sophisticated toolbox of asymptotic methods, perturbation expansions, and matched
approximations. The ability to recognize and leverage these techniques is essential not only for
human researchers but increasingly for AI systems intended to assist in scientific discovery. Existing
benchmarks fail to capture this domain of reasoning in both scope and difficulty.

HARDMath2 was created to help address this gap, consisting of 211 problems covering core topics
from an introductory graduate course in applied mathematics. They consist of a mixture of original
problems written by students enrolled in the course and questions adapted from standard textbooks
[Bender and Orszag, 2013]. For the novel problems, students were asked to introduce complexities
that would require careful reasoning and additional steps to solve. Each problem was solved by a
student and peer-reviewed by other students to ensure the correctness of the solution, which served
as the ground-truth against which the LLM-generated solutions were compared. Students revised
their problems after seeing how the models responded, introducing additional facets that made the
problem more difficult.

This collaborative approach led to a benchmark that is both diverse in content and challenging in
form. It includes problems involving perturbation theory, nonlinear ordinary and partial differential
equations (ODEs and PDEs), and challenging integrals. However, perhaps the most novel aspect
of the dataset is how it was constructed. By interacting with LLMs during the problem-writing and
problem-solving process, students simultaneously deepened their understanding of the material and
were consequently able to write (and solve) problems that were more mathematically involved than the
standard textbook problems posed on homework assignments. The interactive process was facilitated
using a novel collaboration and evaluation environment in which students were able to contribute
problems and improve on each other’s work while being quickly graded based on evaluations from
different LLMs. This dual perspective treated LLMs both as tools and as test subjects, pushing the
students not only to understand the subtleties of solutions but also to craft and learn how to solve ever
harder problems. Our results show that even the most advanced models continue to struggle on many
of our problems, as well as highlighting the educational value of building an LLM benchmark as part
of a graduate class.

2 Related work

Evaluations of mathematical reasoning have rapidly evolved alongside the models’ capabilities. Early
benchmarks played a crucial role in demonstrating the potential of LLMs in quantitative domains.
Prominent examples include MATH [Hendrycks et al., 2021], comprising challenging high school
competition-style problems, and GSM8K [Cobbe et al., 2021], which focused on multi-step arithmetic
reasoning at the grade school level. However, many of these benchmarks are now saturated, giving
rise to a new generation of benchmarks explicitly designed to test the limits of advanced mathematical
reasoning. In many cases, these datasets have been curated by expert mathematicians and target
difficulty levels comparable to graduate studies or mathematical research.

A notable example is Glazer et al. [2024], which was developed through a collaboration involving over
60 mathematicians. The dataset contains original and unpublished problems spanning a wide range
of modern pure mathematics, including number theory, algebraic geometry, category theory, and real
analysis, and are touted to require hours or even days of effort from human experts. Another important
effort is Humanity’s Last Exam (HLE) [Phan et al., 2025], which aims to be a broad-coverage dataset
at the frontiers of human knowledge. Unlike Glazer et al. [2024], HLE was entirely crowdsourced
from experts online, and consists of over 2,500 problems from a wide range of domains, with
mathematics constituting just one topic. Other benchmarks have also targeted graduate-level material
by sourcing problems directly from textbooks or qualifying examinations, such as GHOSTS [Frieder
et al., 2024] (covering functional analysis, topology, and probability), ARB [Sawada et al., 2023]
(consolidated from university mathematics qualifying exam problems), and s1-prob [Muennighoff
et al., 2025] (from the probability section of Stanford’s PhD qualifying exam in statistics). While
they contain challenging problems, these datasets are often limited in size and scalability, and tend to
focus on abstract or formal mathematics.

2

Table 1: Comparison of HARDMath2 with selected advanced mathematical benchmarks. HARD-
Math2 distinctively targets graduate-level applied mathematics requiring approximations and features
a student-driven, LLM-interactive problem creation process. Our evaluation method is also unique
in that the final formula in the model’s output is automatically compared against the ground-truth
solution.
Dataset Math Focus Problem Sourcing Evaluation Method Size

FrontierMath Formal (Exact Solutions) Expert Creation Integer solution comparison Hundreds
GHOSTS Formal (Proof-Based) Manual Extraction Manual human grading 190
ARB Formal (Proof-Based) Manual Extraction LLM-as-a-Judge 34
HLE Broad Coverage (Exact Solutions) Crowd-Sourced Multiple-choice comparison 1k
MathArena Olympiad (Exact Solutions) Expert Creation Automated formula parsing 96

HARDMath2 Applied (Exact Solutions) Student-Generated Automated formula parsing 211+

2.1 The need for applied mathematics

There is still a significant gap in coverage of advanced applied mathematics, where approximation
methods allow insights to be gained from mathematical problems that might otherwise be intractable.
Previous applied mathematics benchmarks, such as Fan et al. [2025], were limited by lack of diversity
in problem types, phrasing templatization, and nonobjective method of evaluation. HARDMath2
addresses these limitations by introducing original problems that have unique forms using a student-
driven method for data generation and an objective evaluation method. Finally, while some recent
benchmarks [Feng et al., 2025, Chung et al., 2025] target graduate-level physics problems, models
will still struggle with such tasks if they cannot apply the prerequisite mathematical techniques
covered in HARDMath2. Moreover, if a model can solve advanced problems in physics but fails on
the underlying math, it indicates that it is using faulty reasoning.

2.2 Innovations in benchmark creation and pedagogical value

Benchmarks are typically constructed using top-down, expert-driven design, as seen in FrontierMath
and HLE [Glazer et al., 2024, Hendrycks and Wang, 2024], or via extraction from static sources like
textbooks or exams [Frieder et al., 2024, Sawada et al., 2023, Petrov et al., 2025]. In contrast, our
approach challenges students to design problems as they go through an applied mathematics course,
focusing on problems tied to their current studies. We make use of an interactive environment to
give students real-time feedback on the difficulty of their problems, which in turn allows them to
iteratively increase the difficulty of their examples. Our methodology pushes students to interact with
harder problems than typical for this course while fostering a course environment where an LLM
becomes a tool for enriching education.

Finally, our evaluation framework allows objective assessment of the model’s solution. Many
mathematical benchmarks rely on LLM-based grading to evaluate the solution of a model. While
this can capture the model’s full solution—including its reasoning process—it introduces noise into
the evaluation process, since the "grade" provided by an LLM depends highly upon the model and
the prompt being used. Consequently, the LLM-as-a-judge approach to evaluation lacks reliability
and objectivity. Other benchmarks use human experts to manually grade solutions according to a
rubric. The drawback of this approach is the time required to assess the accuracy of a model and
its labor-intensive nature. Our evaluations are conducted using an automatic parser that extract the
final symbolic results of the model and ground-truth solutions, and compare them at a given point
in the domain to determine whether they are numerically-close. While other benchmarks such as
MathArena [Petrov et al., 2025] have also implemented automatic parsing of LaTeX solutions, we
believe that our parser is so far the most sophisticated applied to mathematical benchmark grading.

3 Dataset and pedagogical framework for problem curation

A distinctive aspect of this dataset is that it was created via the assignments of a university course.
Students were tasked with designing at least one original problem each week that could not be solved
correctly by Google’s Gemini 2.0 Flash model, with an emphasis on creating problems in line with
current topics being covered in the course. Students also had to provide a solution for their problems,
which were required to be parsable by our custom evaluation framework and accompanied by a Colab

3

notebook containing numerical verification of their approximate solution. Embedding the creation
of the dataset into the core of the course turned homework assignments into a pedagogically rich
and collaborative experience. LLMs became a tool to increase student engagement with challenging
material, rather than a shortcut for bypassing it. The course culminated with an oral final exam for
each student, where they were asked about a problem that they personally submitted to the benchmark.
This ensured that the students understood the solutions to the problems they submitted, which were
on average far more difficult than traditional homework problems for this course.

3.1 Problem submission and verification pipeline

Figure 1 shows the pipeline for dataset creation. First, students write and solve new problems as part
of their assigned coursework, and add their problems to a Google Sheet editable by all students in the
course. To help facilitate this, the teaching staff gave standardized problem statements (discussed
in Appendix A.2.2) that students could use to build their own questions. The students were then
encouraged to edit these prompts as necessary to generate challenging questions.

Student submissions were required to be parsable and gradable by our evaluation framework, which is
discussed in detail in Section 3.1.1. This also meant that students had to carefully design the problem
statement (which was given as the prompt to the LLM) to ensure that their problem clearly indicated
a unique solution. One example of early trouble students had to rectify was that simply asking
for an expansion without specifying the order leads to ambiguity in what an LLM might produce
as a solution. Importantly, given that the student’s solutions are the ground-truth for comparison
against the LLM-generated solutions, they first went through collaborative verification. Students were
required to submit with their problem a Google Colab notebook numerically verifying the accuracy
of their approximate analytical solution. In addition to problem creation, students also had to verify
each other’s problems as part of their course assignment, using both the Colab notebook and whatever
additional resources they wanted to use. These peer-reviewers were asked to correct any mistakes that
were found either in the solutions or in the prompts to ensure the overall correctness of the dataset.

Figure 2 shows an example of the Google Sheet used for adding problems—which includes the
original problem-designer, the verifier, the problem, solution, as well as checks on parsability and
results from LLM evaluations—and an example of a validation plot generated by a student’s Colab
notebook. The final version of the problem and solution had to conform to a LaTeX format compatible
with symbolic parsing, detailed in Appendix A.2. However, students could request functionality be
added to the parser when needed to increase the difficulty of a particular problem (one example was a
student who requested support for incomplete Beta functions).

In addition to our already-available dataset and evaluation code, we plan to publicly release the code
to integrate LLM evaluation into Google Sheets, since we believe that this capability will be useful in
the creation of future benchmarks.

3.1.1 Infrastructure for automating parsing and evaluation

We implemented a custom evaluator in Python that was hosted on an external server and interfaced
with a custom Google Sheets plugin. This setup allowed students to write their problems, solutions,
and any additional information (such as lists of the expected variables in the solution) directly in a
spreadsheet. Students could then feed their problem directly from the spreadsheet to the evaluation
server with the push of a button (Figure 2c). The parsing code first cleaned the raw LaTeX output
by removing unnecessary formatting information before applying a series of regular expression
replacement rules to transform LaTeX into a form that SymPy’s parse_expr function could interpret
[Meurer et al., 2017]. Some example transformations handled by our parser included rewriting expres-
sions such as \sinˆ2 to sin(x)ˆ2 and converting integrals like \int_1ˆ2 eˆ{-\frac{3}{x}}
dx into Integral(e**(-3/x), (x, 1, 2)). We also included support for special functions that
were commonly used in our dataset, such as the Gamma function and incomplete Beta functions.

The parsing code deployed on the Google sheet was the same code used in the evaluation across all of
the models. This made evaluation a scalable, automated process but one which was not perfect. We
did not want to penalize a model’s performance based on the parsability of the answer, which may not
be reflective of the model’s mathematical capabilities. We therefore excluded from the performance
metrics any response from a model that was not parsed. Thus, the metrics are based only on problems
the model provided a valid, gradable solution, ensuring that our results are indicative of mathematical

4

Figure 1: Flowchart of the problem-generation and validation process. Problem creation and valida-
tion happen on a collaborative Google Sheet, which includes custom functionality to send problems
to a server for LLM querying and evaluation.

reasoning and not ancillary grading-related issues. In practice, this resulted in a very small number of
skipped questions for each model.

To compare two SymPy expressions, we numerically evaluated the expression by assigning a random
value between one and two to every variable or parameter in the solution. This numerical verification
step was necessary because the problems in our dataset may be solved using methods that produce
the same formulae but could not be simply compared using SymPy’s built-in equality checking. We
required that all variables used in the solution be explicitly defined in the prompt and given to the
evaluation code as a separate list, which forced problem-setters to write clear and unambiguous
problems.

Coupling the parsing and evaluating code to a Google Sheet allowed students to quickly receive
feedback from the LLMs on their problems, letting them know if their problem was too easy or
too ambiguous when the LLM’s solution could not be correctly parsed. This collaborative format
also enabled easy peer-verification and let us track how the difficulty of the benchmark evolved in
real-time. The semi-automated solution verification and the standardization of prompt formats are
discussed more thoroughly in Appendix A.2. The same parsing and evaluation code enabled on our
Google Sheet was used to do the final evaluation of the models, as we made only a small subset of
LLMs available to the students on the Google sheet. We found that both the problem authors and
validators used the Google Sheet’s access to the querying and evaluation framework to iteratively
increase the difficulty of the problems and to provide a source of sanity-checking by comparing the
LLMs reasoning to the student’s solution.

3.2 Problem types

The problems in HARDMath2 cover many techniques from the applied mathematician’s toolkit, such
as the method of dominant balances, optimal truncation, boundary layer analysis, and asymptotic
expansions. It goes significantly beyond Fan et al. [2025], which focused on more elementary topics.
A major distinction between HARDMath2 and other mathematical benchmarks is the combination
of computational or numerical software, analytical techniques, and “subjective" choices on the part
of the problem-solver. For instance, to solve these problems, one must consider different regimes of
solution space, the appropriate number of terms to include in approximate expressions, and which
approximation method to use. These decisions are be made on a case-by-case basis but involve
rigorous mathematical justification, and may be difficult tasks for existing LLMs.

The dataset includes six distinct problem types that leverage these techniques: nonlinear PDEs,
nonlinear ODEs, integrals, WKB approximations, boundary layers, and asymptotic series, with
a distribution shown in Fig. 3a. As an example, boundary layer theory [Schlichting and Kestin,
1961] is an important applied mathematical tool that rectified apparent contradictions in the theory
of aerodynamics. In the 1950s, the theory was further developed [Van Dyke, 1994, Lagerstrom,
2013] leading to both a widely-used toolkit for analyzing physical boundary value problems and a
suite of canonically difficult problems that have challenged students for 75 years. A design choice
of HARDMath2 was to focus on problem types that can be made ‘harder’ to solve (such as by
introducing complicated forcing terms, as described in Section 4), rather than simpler problem types

5

Figure 2: Problems are collected from students in a Google Sheet, which contains fields for all
relevant aspects of the problem and solution, including the prompt passed to the LLM, the regime
of interest, and additional parameters. Each student submitted a Colab notebook with their problem
demonstrating a numerical comparison of their analytic solution to a full numerical solution, which
could then be checked by student verifiers for accuracy. Then, students could instantly run an LLM
on their problem (with standardized formatting and solution parsing automatically applied).

(a) Distribution of problem types in HARDMath2.

Problem type Canonical form Main tool

Boundary layer ϵy′′ − xy′ + x3y = 0,
y(0) = A, y(1) = B

Matched
asymptotics

Traveling-wave PDE ∂tu = D∂xxu+R(u) Wave ansatz:
u = f(x− vt)

WKB approximation ϵ2y′′ +Q(x)y = 0 WKB expansion:
y ∼ eS/ϵ

(b) Canonical equation forms and their primary solu-
tion techniques.

Figure 3: Problem type distribution and associated canonical solution forms in HARDMath2.

that have limited complexity. Brief descriptions of the three largest problem classes are described
below; the remaining problem types are discussed in detail in Appendix A.1.

3.2.1 Boundary layer problems

Boundary-layer problems arise in singularly perturbed differential equations where a small parameter
ϵ multiplies the highest derivative. As ϵ → 0, solutions typically develop small regions with large
gradients to satisfy the boundary conditions. An example of such a problem is given in Figure 3b.
In the limit of small ϵ, the leading-order solution is determined by neglecting ϵy′′, yielding yout but
this solution fails to satisfy both boundary conditions. Therefore, one constructs inner solutions by
rescaling the independent variable near the boundaries to resolve the sharp gradients. The inner and
outer solutions are then matched to form a uniformly valid solution.

6

3.2.2 Nonlinear PDEs

Several problems in the benchmark involve nonlinear PDEs, which feature terms where the solution
or its derivatives appear nonlinearly; such problems in our benchmark can generally be written as

ut + f(u, ux, uxx, . . .) = 0,

where f is a nonlinear function of the solution u and its spatial derivatives. These equations can exhibit
a range of behaviors depending on which terms in the PDE dominate. Diffusion-dominated solutions
spread out over time, advection-dominated equations like Burgers’ equation generate shocks and
discontinuities, dispersion-dominated systems like the Korteweg-de Vries equation produce solitons
and wave trains, and solutions to Laplace’s equation yield steady-state patterns or singularities. A
given nonlinear PDE may exhibit different behaviors in different regions, depending on which terms
dominate. Table 3b shows an example nonlinear PDE for which a traveling-wave ansatz simplifies
the equation to an ODE.

3.2.3 Wentzel–Kramers–Brillouin (WKB) approximations

We include linear ODEs that are solved with the WKB approximation. The WKB method approxi-
mates solutions to linear differential equations with a small parameter ϵ in the highest derivative term
and is particularly effective in regimes where the solution varies rapidly. The solution is assumed to
take the form

y(x) ∼ exp

(
1

ϵ
S(x)

)
,

where S(x) is expanded as an asymptotic series in ϵ. Substituting into the differential equation
and matching powers of ϵ yields a sequence of equations: the leading-order term S0(x) satisfies a
Hamilton–Jacobi-type equation, while higher-order terms correct the amplitude. The general solution
is typically a linear combination of such exponential modes, matched to boundary conditions.

4 Insights from students

To create as challenging of a benchmark as possible, we asked students to design problems that
frontier LLMs fail to solve. Using our interactive environment to test candidate problems and
solutions, students identified consistent model weaknesses and created new problems that exploited
these gaps. Three strategies used by students are as follows.

4.1 Structural obfuscation of canonical equations

A common problem-solving technique used by both humans and LLMs involves matching equations
to canonical forms. Consider the well-known Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP)
equation:

∂u

∂t
= D

∂2u

∂x2
+ r u (1− u). (1)

By introducing an advection term and setting parameters, we can modify the PDE to

∂u

∂t
− 10√

30

∂u

∂x
=

2

5

∂2u

∂x2
+ 2u(1− u), (2)

which is mathematically equivalent to the first form under a Galilean transformation. However, LLMs
often fail to recognize the equivalence, as shown below.

Error in Gemini 2.5 Pro Analysis

After transforming the PDE into the traveling wave ODE, the LLM states: "We eliminate the
first derivative by choosing specific wave speed and therefore simplify the analysis, we set
the coefficient of f ′ in equation (2) to zero. This eliminates the advection-like term in the
ODE and reduces it to a conservative second-order form: c+ 10√

30
= 0 ⇒ c = − 10√

30
."

Note: This arbitrary choice of c is incorrect. For the specific ansatz f(ξ) =
(
1 + eaξ

)−2
that

the LLM subsequently (and correctly) proposed for the profile shape, the wave speed c and

7

the parameter a are co-determined by the PDE’s coefficients. This led to an incorrect reduced
form and final solution.

4.2 Introducing vanishing terms

Differential equations can also be made more LLM-resistant simply by including complex nonlinear
terms that evaluate to zero at the specific solution to the problem. For example, the function
u(x, t) = 1 + tanh(ex−2t) satisfies the following PDE, which has a nonlinear term crafted to vanish
at the solution:

∂xxu = ∂xu+
(∂tu)

2(1− u)

2(2u− u2)
+

((∂xxu− ∂xu)(2u− u2)− ∂xu ∂tu(u− 1))

((∂ttu)2 + u2)︸ ︷︷ ︸
additional term

.

Importantly, the PDE without the extra term at the end also has u(x, t) as a solution and can often be
solved by LLMs, but when confronted with the additional term, they incorrectly guess new functional
forms that break their solution.

4.3 Initial condition failures

Even when LLMs identify correct general solutions, they often fail to apply initial conditions, which
turn a general solution into a specific, physically meaningful one. For example, consider determining
the leading-order behavior as x → 0+ of the third-order ODE:

x4 d
3y

dx3
= y (3)

with initial conditions y(1) = 1, y′(1) = 0, y′′(1) = 0. A WKB expansion reveals exponential and
oscillatory solutions. While models like Gemini 2.0 Flash Thinking and Gemini 2.5 Pro correctly
identify this structure, they do not apply the initial conditions to combine the solutions. Even when
prompted to do so, they return arbitrary values or keep the symbolic constants. The final answer from
Gemini 2.5 Pro after being prompted to solve this equation is shown below:

Gemini 2.5 Pro Output for Equation 3

The leading order behavior of y(x) as x → 0+ is given by y(x) ∼
Ax4/3 exp(3

2x1/3) cos(
3
√
3

2x1/3 − ϕ) where A is a positive constant, and ϕ is a phase con-
stant. Since the constants A and ϕ are fixed by the boundary conditions and are non-zero,
this gives the leading behavior.

Final Answer: The final answer is y(x) ∼ Ax4/3e3/(2x
1/3) cos

(
3
√
3

2x1/3
− ϕ

)
for some

constants A > 0 and ϕ.

Note: The LLM makes some attempt to narrow down what the constants are, but it does not
solve for them completely. It mentions that the initial conditions fix the constants, but it does
not list the equations it would use to solve for these constants, nor does it solve them.

5 Evaluation

To rigorously assess the abilities of current state-of-the-art language models, we conduct evaluations
on a broad set of models. This includes closed-source models like OpenAI’s GPT and o-series;
Google’s Gemini-series; and Anthropic’s Sonnet 3.7, as well as open-source models such as Meta
Llama 4 and DeepSeek V3. Closed-source models are accessed using their official APIs, while
open-source models are tested via Together AI’s API.

The results of our evaluation are presented in Tables 2 and 3. While we provide full results with
our numerical parser, we also implemented an LLM-as-a-judge with partial credit scoring to better

8

Model Overall Asymptotic Series Boundary Layers Integrals Nonlinear ODE Nonlinear PDE Other WKB
Claude 3.7 Sonnet 11.8 33.3 4.2 61.5 28.6 1.7 16.7 24.0
DeepSeek V3 18.9 0.0 22.5 46.2 42.9 6.7 0.0 18.2
Llama 4 Maverick 16.7 0.0 18.3 76.9 28.6 3.3 16.7 11.5
GPT-4.1 7.4 0.0 1.4 38.5 16.7 5.1 0.0 14.3
GPT-4o 4.2 0.0 0.0 23.1 28.6 2.3 0.0 6.2
o1 45.1 0.0 47.3 71.4 50.0 31.5 50.0 55.6
o3 52.5 50.0 64.8 76.9 40.0 35.7 16.7 53.8
o3-mini 46.0 0.0 44.6 78.6 40.0 37.8 60.0 50.0
o4-mini 46.1 25.0 53.6 76.9 60.0 23.1 50.0 50.0
Gemini 2.0 Flash 8.5 0.0 1.3 33.3 33.3 9.3 0.0 13.6
Gemini 2.5 Flash Thinking 60.1 20.0 77.8 71.4 40.0 45.0 16.7 61.5
Gemini 2.5 Pro Preview 57.7 25.0 72.6 78.6 14.3 44.3 20.0 60.0

Table 2: Pass@1 Rates by Model and Question Type

Model Boundary Layers Nonlinear PDE WKB
DeepSeek V3 57.6 55.3 55.3
o4-mini 70.2 60.9 64.7
Gemini 2.5 Pro 80.5 72.3 68.7

Table 3: LLM-as-a-judge results for boundary layer, nonlinear PDE, and WKB problems.

understand the model’s reasoning trajectories and include a subset of these results. Students in
the course, in addition to developing the benchmark problems, were asked to solve several of the
problems as part of their final oral exam. We have used the detailed rubrics against which these
students were scored to provide partial-credit scoring results using an LLM-judge—these rubrics are
provided in A.3.

We observe significant disparities across models and problem classes. Among the closed-source
models, the Gemini 2.5 family—2.5 Flash Thinking and 2.5 Pro—exhibit the highest accuracies,
achieving 60.1% and 57.7% respectively. These results show a marked improvement over prior
Gemini models, which only attained 8.5%. This suggests that the “thinking process" built in to the
newer Gemini models offer significantly improved mathematical reasoning capabilities. Similar
improvements can be seen in OpenAI’s o-series, which also demonstrate consistently strong perfor-
mance. Notably, o3 achieves the highest overall score (52.5%), followed closely by o4-mini (46.1%)
and o3-mini (46.0%). In contrast, GPT-4.1 and GPT-4o show substantially worse performance. Even
though GPT-4.1 was released relatively recently, its poorer performance may be attributed to its lack
of a reasoning mode.

Within the dataset, integrals appear to be the most tractable problem type, with models like Llama 4
Maverick, o1, o3, o3-mini, and Gemini 2.5 Pro Preview all scoring above 70%. This suggests that
problems that must conform to a relatively rigid structure may be more easily solved by state-of-the-
art models. Nonlinear PDEs, by contrast, are considerably more challenging; only the top-performing
models exceed 35% in this category, with o3-mini and Gemini 2.5 variants reaching 37.8% and
44.3–45.0%, respectively. This provides further evidence that problem types which can be more
substantially customized—especially via the techniques discussed in Section 4—pose a greater
challenge to models.

As stated above, we excluded from the performance metrics any solutions which did not produce
parsable solutions, though such occurrences were rare. Every problem in the benchmark had at least
one model produce a valid, gradable solution. The exception was DeepSeek R1, which did not follow
the instructions to place its solutions in a \boxed{} environment, leading to its exclusion. We found
that other low-scoring models (e.g., Claude 3.7 Sonnet) frequently omitted important details from the
solution. These examples include using ellipses (...) or unspecific variables to substitute important
mathematical details in its reasoning process, and then never substituting the variables or terms back
into their final expression.

Other challenges with non-adherence to standards related to some model’s tendency to over-format
responses. For example, OpenAI’s GPT-4o model focused on manipulating display spacing, such as
using “{-}” to slightly adjust spacing around operators. These display-only additions needed to be
deleted on a case-by-case basis. Further, some models injected unusual Unicode symbols into their
responses which needed to be replaced with plain text for parsing. Finally, in a few cases (especially
with respect to boundary layer problems) models would return solutions that were not purely analytic
expressions but contained nested integrals. While our parser could handle these integrals, sometimes

9

(a) Overall performance of models across all
problem types in HARDMath2.

(b) Breakdown of model performance across problem types.

Figure 4: Model performance on HARDMath2. While (a) shows overall success rates by model, (b)
shows significant differences in performance across problem types.

the integrals in the models’ responses would not converge numerically and so were skipped after
timing out. For more discussion on parsability and instruction-following challenges, see Appendix
A.5.

Overall, the results in Figure 4a show that the benchmark remains difficult for even the most capable
LLMs currently available. While top-performing models like Gemini 2.5 Pro and o3 demonstrate
competence in some categories, no model approaches mastery across all problem types. In categories
such as boundary layer theory, nonlinear PDEs, and WKB approximation, the majority of models
fail to achieve even moderate accuracy. The consistently low scores outside integrals and basic
ODEs highlight persistent gaps in multi-step mathematical reasoning and problem-solving techniques
that are fundamental to advanced applied mathematics. These results therefore suggest that while
recent advancements in LLMs have advanced the frontier in terms of their mathematical abilities, the
specialized mathematical knowledge required by this benchmark still remains largely out of reach.

6 Conclusion

We introduce HARDMath2, a benchmark that is inspired by previous work [Fan et al., 2025] but con-
tains a variety of harder problem types from a graduate applied mathematics course. The benchmark
is unique in both scope and design, comprising 211 original problems across several categories: non-
linear PDEs, integrals, WKB approximations, boundary layer problems, and asymptotic expansions.
It expands the current landscape of mathematical benchmarks by introducing more challenging and
underrepresented applied mathematics problems involving techniques crucial to real-world scientific
and engineering applications. Notably, it also features a novel approach to problem curation that
leverages modern LLMs to enhance student learning. We hope that the methodology described for
building a benchmark through university courses can be applied to create challenging benchmarks in
other quantitative domains in the future. In particular, it is a way for students to challenge themselves
beyond the level of a typical homework problem while also generating high-quality problems with
limited instructor intervention.

Going forward, we plan to broaden the range of problem types in the benchmark, focusing on the
problem types that can be made more difficult. Examples of such problems include asking for
more terms in an asymptotic expansion or solving other types of PDEs, like Green’s functions.
Students similarly found that LLMs themselves could be used to arbitrarily make problems more
difficult via prompting, although this would also require more time and effort from the students due
to the generation-verification gap [Song et al., 2025]. Finally, our hybrid student and LLM-driven
framework for designing original problems that are more challenging than those found in textbooks
or assigned on homework assignments can be applied to any quantitative class involving advanced
mathematical reasoning, such as courses in physics, statistics, and engineering.

References
Carl M Bender and Steven A Orszag. Advanced mathematical methods for scientists and engineers I:

Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.

Daniel JH Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, Moritz Münchmeyer, Maja Rudolph, Frederic
Sala, and Sai Chaitanya Tadepalli. Theoretical physics benchmark (tpbench)–a dataset and study

10

of ai reasoning capabilities in theoretical physics. arXiv preprint arXiv:2502.15815, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021. URL https://arxiv.org/pdf/2110.14168v1.

Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu,
Nianli Peng, Corey Wang, and Michael Brenner. HARDMath: A benchmark dataset for challenging
problems in applied mathematics. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=nDTvP6tBMd.

Kaiyue Feng, Yilun Zhao, Yixin Liu, Tianyu Yang, Chen Zhao, John Sous, and Arman Cohan.
PHYSICS: Benchmarking foundation models for phd-qualifying exam physics problem solving.
In Workshop on Reasoning and Planning for Large Language Models, 2025. URL https:
//openreview.net/forum?id=ssCw35Jl44.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in Neural
Information Processing Systems, 36, 2024.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiermath: A
benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint arXiv:2411.04872,
2024.

Dan Hendrycks and Alexandr Wang. Submit your toughest questions for humanity’s last exam, 2024.
URL https://www.safe.ai/blog/humanitys-last-exam. Accessed: 2024-10-01.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In 35th
Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and
Benchmarks. NeurIPS, 2021.

Paco Axel Lagerstrom. Matched asymptotic expansions: ideas and techniques, volume 76. Springer
Science & Business Media, 2013.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian Minchev, Mislav
Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff? evaluating llms on 2025 usa
math olympiad. arXiv preprint arXiv:2503.21934, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
Kranias, John J Nay, Kshitij Gupta, and Aran Komatsuzaki. Arb: Advanced reasoning benchmark
for large language models. arXiv preprint arXiv:2307.13692, 2023.

Hermann Schlichting and Joseph Kestin. Boundary layer theory, volume 121. Springer, 1961.

Yuda Song, Hanlin Zhang, Udaya Ghai, Carson Eisenach, Sham M Kakade, and Dean Foster. Mind
the gap: Examining the self-improvement capabilities of large language models. In The Thirteenth
International Conference on Learning Representations, 2025.

Milton Van Dyke. Nineteenth-century roots of the boundary-layer idea. Siam Review, 36(3):415–424,
1994.

11

https://arxiv.org/pdf/2110.14168v1
https://openreview.net/forum?id=nDTvP6tBMd
https://openreview.net/forum?id=ssCw35Jl44
https://openreview.net/forum?id=ssCw35Jl44
https://www.safe.ai/blog/humanitys-last-exam
https://arxiv.org/abs/2501.19393

A Appendix

A.1 Detailed descriptions of problem types

A.1.1 Boundary layer problems

Many problems in HARDMath2 are ODEs with boundary layers, where different solutions dominate
near a boundary than in the rest of the region (see Section 3.2.1). We provide an example below.

Sample Boundary Layer Problem and Full Solution

Problem: Consider the differential equation:

ϵy′′ − xy + x3y = 0

Find a uniformly valid approximation to the solution with boundary conditions y(0) = A
and y(1) = B in the limit ϵ ≪ 1.

Solution:
Step 1: Find the outer solution Use dominant balance since ϵ is small:

−xy′out + x3yout = 0

If x ̸= 0, this simplifies to y′out = x2yout.This is a separable first-order differential equation:

dyout
yout

= x2dx

Integrating both sides:

ln |yout| =
x3

3
+ C0

yout(x) = Cex
3/3

where C is an arbitrary constant.
Step 2: Analyze boundary conditions and potential boundary layers.
The outer solution must satisfy one of the boundary conditions. Check y(0) = A. yout(0) =
Ce0 = C. So, C = A.Thus, the outer solution satisfying y(0) = A is:

yout(x) = Aex
3/3

Check the behavior of this outer solution at x = 0 with respect to the original equation.

y′out(x) = Ax2ex
3/3

y′′out(x) = A(2xex
3/3 + x2 · x2ex

3/3) = A(2x+ x4)ex
3/3

Substituting these into the full differential equation at x = 0:

ϵy′′out(0)− 0 · y′out(0) + 03 · yout(0) = ϵ · 0− 0 + 0 = 0

The outer solution yout(x) = Aex
3/3 satisfies the boundary condition at x = 0 and is

consistent with the full differential equation at x = 0. This suggests there is no boundary
layer at x = 0.
Consider the boundary condition at x = 1, y(1) = B. The outer solution gives yout(1) =
Ae1/3. If B ̸= Ae1/3 (which is generally the case), the outer solution alone cannot satisfy
the boundary condition at x = 1. This indicates a boundary layer near x = 1.
Step 3: Analyze the boundary layer at x = 1.
Let the inner variable be X = 1−x

ϵα for some α > 0. So x = 1− ϵαX . Thus, the derivatives
become:

y′ = − 1

ϵα
dy

dX

y′′ =
1

ϵ2α
d2y

dX2

12

Substituting these into the differential equation:

ϵ1−2α d2y

dX2
+ ϵ−α(1− ϵαX)

dy

dX
+ (1− 3ϵαX +O(ϵ2α))y = 0

We need to balance the highest derivative term with another dominant term in the boundary
layer. The term ϵ−α dy

dX is likely to be dominant. So, 1− 2α = −α =⇒ α = 1

The stretched variable is X = 1−x
ϵ . The equation in terms of X for the inner solution

yin,1(X) becomes (substituting α = 1):

d2yin,1
dX2

+ (1− ϵX)
dyin,1
dX

+ ϵ(1− ϵX)3yin,1 = 0

To leading order in ϵ, as ϵ → 0:

d2yin,1
dX2

+
dyin,1
dX

= 0

The general solution is yin,1(X) = K1e
−X +K2

Step 4: Apply boundary condition and matching for the inner solution at x = 1.
The boundary condition at x = 1 is y(1) = B. In terms of X , x = 1 corresponds to X = 0.
So:

yin,1(0) = B =⇒ K1e
0 +K2 = B =⇒ K1 +K2 = B

Matching condition: The limit of the inner solution as X → ∞ must match the limit of the
outer solution as x → 1−.

lim
X→∞

yin,1(X) = lim
X→∞

(K1e
−X +K2) = K2

lim
x→1−

yout(x) = lim
x→1−

Aex
3/3 = Ae1/3

K2 = Ae1/3

Substituting K2 back into K1 +K2 = B:

K1 +Ae1/3 = B =⇒ K1 = B −Ae1/3

Thus, the inner solution for the boundary layer at x = 1 is:

yin,1

(
1− x

ϵ

)
= (B −Ae1/3)e−(1−x)/ϵ +Ae1/3

Step 5: Construct the uniformly valid approximation. A common method for constructing a
uniformly valid approximation is yunif (x) = yout(x) + yin(x)− common part. So we have:

yunif (x) = Aex
3/3 + (B −Ae1/3)e−(1−x)/ϵ

Step 6: Verify boundary conditions for the uniform approximation.
At x = 0:

yunif (0) = Ae0 + (B −Ae1/3)e−1/ϵ = A+ (B −Ae1/3)e−1/ϵ

Since ϵ ≪ 1, e−1/ϵ is exponentially small. So yunif (0) ≈ A.
At x = 1:

yunif (1) = Ae1/3 + (B −Ae1/3)e0 = Ae1/3 +B −Ae1/3 = B

The boundary conditions are satisfied to leading order. The final solution is:

y(x) ≈ Aex
3/3 + (B −Ae1/3)e−(1−x)/ϵ

13

A.1.2 Nonlinear PDE problems

We solve many types of nonlinear PDEs in the benchmark (Section 3.2.2). Here, we provide a
solution to a PDE dominated by dispersion with a traveling wave solution.

Sample Nonlinear PDE Problem and Full Solution

Problem: Consider the Korteweg-de Vries (KdV) equation:

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0.

Find a soliton solution in the limit t ⇒ ∞.

Solution: We seek a traveling wave solution of the form u(x, t) = f(ξ), where ξ = x− ct
and c is the constant wave speed. The domain is approximated as x ∈ (−∞,∞) for a
localized soliton solution. Substituting the traveling wave ansatz into the KdV equation
yields:

−cf ′(ξ) + 6f(ξ)f ′(ξ) + f ′′′(ξ) = 0

Integrating once with respect to ξ:

f ′′ + 3f2 − cf +A = 0

For a localized solution, we require f, f ′, f ′′ → 0 as |ξ| → ∞. This boundary condition
implies the integration constant A = 0.

f ′′ + 3f2 − cf = 0

Multiplying by f ′ to facilitate integration (energy method):

f ′f ′′ + 3f2f ′ − cff ′ = 0

This can be written as the derivative of a conserved quantity:

d

dξ

(
1

2
(f ′)2 + f3 − c

2
f2

)
= 0

Integrating again with respect to ξ:

1

2
(f ′)2 + f3 − c

2
f2 +B = 0

Applying the boundary conditions f, f ′ → 0 as |ξ| → ∞ requires the second integration
constant B = 0.

1

2
(f ′)2 =

c

2
f2 − f3

Rearranging gives:
(f ′)2 = cf2 − 2f3 = f2(c− 2f)

Assuming f > 0 within the soliton and taking the square root (f ′ = df
dξ):

df

dξ
= ±f

√
c− 2f

Separating variables:
df

f
√
c− 2f

= ±dξ

Integrating both sides: ∫
df

f
√
c− 2f

= ±
∫

dξ = ±(ξ − ξ0)

where ξ0 is an integration constant representing the initial position.

14

To evaluate the integral on the left, we use the substitution f = c
2 sech2(θ).

df = −c sech2(θ) tanh(θ) dθ

The term under the square root becomes:√
c− 2f =

√
c− c sech2(θ) =

√
c(1− sech2(θ)) =

√
c tanh2(θ) =

√
c| tanh(θ)|

Choose the branch where tanh(θ) > 0:∫
−c sech2(θ) tanh(θ) dθ(
c
2 sech2(θ)

)
(
√
c tanh(θ))

=

∫
−2√
c
dθ = − 2√

c
θ

Equating this to the right side:

− 2√
c
θ = ±(ξ − ξ0)

θ = ∓
√
c

2
(ξ − ξ0)

Substituting back into f = c
2 sech2(θ):

f(ξ) =
c

2
sech2

(
∓
√
c

2
(ξ − ξ0)

)
Finally, substituting ξ = x− ct, and set c = 4 x0 = 0:

u(x, t) = 2sech2(x− 4t)

A.1.3 WKB approximation problems

We include many ODEs that can be modeled using the WKB approximation; see Section 3.2.3 for an
explanation of the technique. We provide a simple example problem below.

Sample WKB Problem and Full Solution with Initial Conditions

Problem: Consider the differential equation:

y′′(x) =
x

ϵ2
y(x),

for small positive ϵ in the limit ϵ ≪ 1, subject to the initial conditions at x = 1:

y(1) = e2/(3ϵ), y′(1) =
1

ϵ
e2/(3ϵ).

Solution: This equation fits the general WKB form:

y′′ = R(x)y with R(x) =
x

ϵ2
.

We assume a solution of the form:

y(x) ∼ exp

(
1

δ

∞∑
n=0

δnSn(x)

)
.

To leading order, we approximate this by truncating after the first two terms:

y(x) ∼ exp

(
1

δ
(S0(x) + δS1(x))

)
.

We now differentiate using the product rule:

y′ =

(
1

δ
S′(x)

)
exp

(
1

δ
S(x)

)
, y′′ =

[(
1

δ
S′(x)

)2

+

(
1

δ
S′′(x)

)]
exp

(
1

δ
S(x)

)
.

15

Substitute into the original differential equation:(
1

δ
S′(x)

)2

+

(
1

δ
S′′(x)

)
=

x

ϵ2
.

Expanding and collecting powers of δ gives:

δ−2S′2
0 + 2δ−1S′

0S
′
1 + δ−1S′′

0 + · · · = x

ϵ2
.

The leading-order balance suggests that S′2
0 ∼ x, and we expect S′

0 to be large while S′′
0

remains small. Thus, to leading order, we take:

δ−2S′2
0 =

xδ2

ϵ2
.

To match both sides, we must take δ = ϵ, the small parameter. Substituting back in:

S′
0(x)

2 = x ⇒ S0(x) = ±
∫ x

0

√
t dt = ±2

3
x3/2.

Now solve for the first-order correction S1(x). From the remaining terms:

2S′
0S

′
1 + S′′

0 = 0.

Using S′
0 =

√
x and S′′

0 = 1
2
√
x

, we get:

2
√
xS′

1 +
1

2
√
x
= 0 ⇒ S′

1(x) = − 1

4x
, S1(x) = −1

4
lnx.

Combining these, we find the two independent asymptotic solutions:

y1(x) ∼ x−1/4 exp

(
2x3/2

3ϵ

)
, y2(x) ∼ x−1/4 exp

(
−2x3/2

3ϵ

)
These represent the two dominant behaviors of the solution in the limit ϵ → 0. The exponential
terms capture rapid growth or decay, while the x−1/4 prefactor corrects the amplitude to
leading order. The general solution is a linear combination of these modes that satisfies the
boundary conditions.
The general solution is y(x) ≈ c1y1(x) + c2y2(x). We apply the initial conditions at x = 1.
Using the WKB solutions at x = 1:
y1(1) = 1−1/4 exp

(
2(1)3/2

3ϵ

)
= e2/(3ϵ), and y2(1) = 1−1/4 exp

(
− 2(1)3/2

3ϵ

)
= e−2/(3ϵ)

Using the leading-order WKB derivative approximation y′(x) ≈ S′
0(x)
ϵ y(x) =

√
x
ϵ y(x):

y′1(1) ≈
√
1

ϵ
y1(1) =

1

ϵ
e2/(3ϵ)

y′2(1) ≈ −
√
1

ϵ
y2(1) = −1

ϵ
e−2/(3ϵ)

Applying the initial conditions y(1) = e2/(3ϵ) and y′(1) = 1
ϵ e

2/(3ϵ):

y(1) = c1y1(1) + c2y2(1)

e2/(3ϵ) = c1e
2/(3ϵ) + c2e

−2/(3ϵ)

Divide the first equation by e2/(3ϵ):

1 = c1 + c2e
−4/(3ϵ)

Applying the second initial condition:

y′(1) = c1y
′
1(1) + c2y

′
2(1)

1

ϵ
e2/(3ϵ) ≈ c1

(
1

ϵ
e2/(3ϵ)

)
+ c2

(
−1

ϵ
e−2/(3ϵ)

)

16

Divide the second equation by 1
ϵ e

2/(3ϵ):

1 ≈ c1 − c2e
−4/(3ϵ)

For small ϵ, e−4/(3ϵ) is extremely small. To leading order in ϵ: 1 = c1 + c2 ·
(very small number) =⇒ c1 ≈ 1 1 = c1 − c2 · (very small number) =⇒ c1 ≈ 1 Substi-
tuting c1 ≈ 1 into the first equation gives 1 = 1 + c2e

−4/(3ϵ), which implies c2e−4/(3ϵ) = 0.
Since e−4/(3ϵ) ̸= 0, we must have c2 = 0.
Thus, these specific initial conditions select c1 ≈ 1 and c2 = 0. The resulting solution is
approximately y(x) ∼ y1(x).
The specific solution satisfying these initial conditions is therefore the positive exponential
branch:

y(x) ∼ x−1/4 exp

(
2x3/2

3ϵ

)

A.1.4 Asymptotic series problems

We described three types of problems in Section 3 that were the hardest for LLMs to solve. In addition
to these three problem types, we included other kinds of problems that LLMs found challenging.

First, we included integrals I(x) which can be approximated by an asymptotic series in the limit
x → x0, for some fixed x0 ∈ R ∪ {±∞}. We find a series

∑∞
n=0 an(x− x0)

n such that

I(x)−
N∑

n=0

an(x− x0)
n << (x− x0)

N

in the limit x → x0, for N fixed, though we do not require the difference to converge as N → ∞.
These asymptotic formulas often represent expansions around essential singularities. For example,
consider the integral

I(x) =

∫ ∞

0

1

1 + x2t
e−tdt

in the limit x → 0. Using integration by parts to expand the integral we find that
∫∞
0

1
1+x2te

−tdt ≈∑∞
n=0(−1)nn!x2n, where we can check that the right-hand side is an asymptotic series.

See an example of this technique below.

Sample Asymptotic Series Problem and Full Solution

Problem: Write the first two terms of the asymptotic series expansion of

I(x) =

∫ x

1

ln(xt2) cos(t3)dt

in the limit x → ∞.

Solution: We will develop an asymptotic series using integration by parts. Define

u =
ln(xt2)

3t2
and v = sin(t3) .

Then

du =
−2(ln(xt2)− 1)

3t3
and dv = 3t2 cos(t3) .

The formula ∫
udv = uv −

∫
vdu .

gives us

I(x) =

[
ln(xt2) sin(t3)

3t2

]x
1

+

∫ x

1

2(ln(xt2)− 1) sin(t3)

3t3
dt .

17

We can apply integration by parts again to the remainder with

u =
2(ln(xt2)− 1)

9t5
and v = − cos(t3)

and their derivatives

du =
−2(5 ln(xt2)− 7)

9t6
and dv = 3t2 sin(t3) .

Then we obtain

I(x) =

[
ln(xt2) sin(t3)

3t2
− 2(ln(xt2)− 1) cos(t3)

9t5

]x
1

−
∫ x

1

2(5 ln(xt2)− 7) cos(t3)

9t6
dt .

Therefore, the first two terms of the asymptotic series expansion are

ln(x3) sin(x3)

3x2
− ln(x) sin(1)

3
− 2(ln(x3)− 1) cos(x3)

9x5
+

2(ln(x)− 1) cos(1)

9
.

A.1.5 Integral problems

In addition to asymptotic series problems, we include a broader class of one-dimensional parametric
integrals of the form I(λ) =

∫ b

a
ϕ(λ;x)dt, where the integrand ϕ(λ;x) may involve elementary

functions, special functions, parameter-dependent exponents, singularities, polynomial or rational
prefactors, or oscillations. These integrals are parameterized by a variable λ that controls the
problem’s asymptotic behavior.

We are particularly interested in Laplace-type integrals with the form

I(λ) =

∫ b

a

f(x)e−λg(x)dx

We wish to construct analytical estimates ϕn(λ) of I(λ) such that for each n, ϕn(λ) behaves similar
to I(λ) as λ → ∞ for each n, and then find the optimal N with estimate ϕN .

We first provide an example of an integral that can be solved using an ordinary taylor approximation.

Sample Integral Problem and Full Solution

Problem:
Find the leading behavior up to O(x6) as x → 0+ of

I(x) =

∫ 1

x

cos(xt)dt.

(Problem taken from Bender and Orszag [2013].)

Solution:
In finding the leading behavior of an integral
I(x) =

∫ b

a
f(t, x)dt as x → x0

If f(t, x) ∼ f0(t), x → x0 uniformly in the interval a ≤ t ≤ b, then
I(x) =

∫ b

a
f(t, x)dt ∼

∫ b

a
f0(t)dt as x → x0

The function cos(xt) can be approximated for small x with a Taylor series expansion

cos(xt) = 1− (xt)2

2!
+

(xt)4

4!
− (xt)6

6!
. . .

This series converges uniformly for 0 ≤ x ≤ t ≤ 1, so we can integrate the terms in the
Taylor series expansion in order to determine the leading behavior of this integral.

18

∫ 1

x

cos(xt)dt ∼
∫ 1

x

(1− (xt)2

2!
+

(xt)4

4!
− (xt)6

6!
...)

= (1− x)− 1

2
x2

(
1

3
− x3

3

)
+

1

24
x4

(
1

5
− x5

5

)
− 1

720
x6

(
1

7
− x7

7

)
...

The leading order behavior as x → 0+ for the integral is given by

I(x) = (1− x)− 1

2
x2

(
1

3
− x3

3

)
+

1

24
x4

(
1

5
− x5

5

)
− 1

720
x6

(
1

7
− x7

7

)
The solution up to order 6

I(x) = 1− x− x2

6
+

x4

120
+

x5

6
− x6

5040

We now provide an example applying Laplace’s method to solve an integral.

Sample Integral Ratio Problem and Asymptotic Solution

Problem:
Estimate the leading-order behavior as x → ∞ of the ratio∣∣∣∣∣

∫∞
0

tx−1

t+x e
−t1/4 dt∫∞

0
tx−1e−t1/4 dt

∣∣∣∣∣
Solution:
To understand the behavior of the integrals, plot the function tx−1e−t1/4 for large x; it
becomes sharply peaked around a point t∗. This localization allows us to approximate the
slowly varying factor 1

t+x ≈ 1
t∗+x , and pull it out of the numerator integral:∣∣∣∣∣

∫∞
0

tx−1

t+x e
−t1/4 dt∫∞

0
tx−1e−t1/4 dt

∣∣∣∣∣ ≈
∣∣∣∣∣ 1

t∗ + x
·
∫∞
0

tx−1e−t1/4 dt∫∞
0

tx−1e−t1/4 dt

∣∣∣∣∣ =
∣∣∣∣ 1

t∗ + x

∣∣∣∣
To locate the peak, define:

ϕ(t) = ln(tx−1)− t1/4 = (x− 1) ln t− t1/4

and solve ϕ′(t∗) = 0 for the maximum:

ϕ′(t) =
x− 1

t
− 1

4
t−3/4 ⇒ x− 1

t∗
=

1

4
(t∗)−3/4

Multiplying both sides by t∗:

x− 1 =
1

4
(t∗)1/4 ⇒ t∗ = (4(x− 1))

4 ≈ (4x)4

Thus: ∣∣∣∣ 1

t∗ + x

∣∣∣∣ ≈ 1

(4x)4
=

1

256x4

Final Answer: ∣∣∣∣∣
∫∞
0

tx−1

t+x e
−t1/4 dt∫∞

0
tx−1e−t1/4 dt

∣∣∣∣∣ ∼ 1

256x4
as x → ∞

19

A.2 Evaluation setup

A.2.1 Preparation of problem and solution

Each problem in the dataset went through a thorough verification procedure. For each problem
generated by one student, another student was instructed to work through the same problem and
ensure their answer matched the original solution. Figure 5 provides a visual comparison of the
numerical and approximate solutions for the boundary value problem in Appendix A.1.2. This allows
for semi-automated human verification that analytical solutions correspond well with numerical
ground-truths, a method used to verify the problems in the dataset. Finally, students made sure that
all of the problem statements and solutions followed consistent formatting guidelines that could be
easily parsed and compared to the model responses.

Figure 5: Visual comparison of numerical and approximate analytical solutions to a sample boundary
value problem for solution verification.

A.2.2 Prompts for response generation

To ensure that model responses to the questions weren’t driven by particular question wordings, we
aimed to standardize prompts as much as possible based on the question type. Note that for the
nonlinear PDE questions, there was some variance in the question types and so a representative task
instruction (for when a problem asked for a self-similarity solution) is included below. If the nonlinear
PDE questions additionally involved initial or boundary conditions, those were incorporated into the
problem statement.

The prompts were combined with the following prompt suffix: Place your final answer in a \boxed{}
LaTeX environment. If you have multiple answers, separate them with a “;". Use the notation from
the problem and do not define any new variables.

A.2.3 Numerical evaluation

Part of the importance of having a standardized prompt and response format was to ensure consistency
in numerical evaluation of the solutions provided by students and the various models. Provided
\boxed{} LaTeX solutions were parsed into symbolic representations in a method discussed in A.4.
These symbolic representations were then evaluated at a particular value for all of the input variables
into the problem. For example, if a problem had its solution in terms of the variable x, the solution
was evaluated at a particular value for x. The model solutions were then graded whether at that value
they numerically matched the verified student solutions.

A.3 Rubrics for LLM-as-a-judge evaluation

While numerical or symbolic evaluations are now the gold standard in mathematical benchmarks,
they do not capture the problem-solving process of models. Oftentimes, a model can get close to the
ground-truth solution but is slightly off—it can be useful for the pass rates to reflect this information,

20

Table 4: Prompts by Question Type
Question Type Inputs Task instruction
WKB Approximation Problem, Initial Con-

ditions
Find the leading order WKB approxi-
mation for the specific differential equa-
tion {Problem} with initial conditions
at {Initial Conditions} where ϵ is a
small positive parameter (0 < ϵ ≪ 1). Use
only the variables and constants given in the
problem; do not define additional constants.
Place your final solution in a \boxed{} La-
TeX environment.

Integral Problem, Limit Consider the following integral:
{Problem} In the limit {Limit}, find
approximate behavior of the integral up
to leading non-zero order in ϵ. Provide
your answer in a {\boxed{}} LaTeX
environment.

Nonlinear ODE Problem, Limit Find the leading order behavior of
{Problem} in the limit {Limit}. Please
place your final solution in a {\boxed{}}
LaTeX environment.

Boundary Layer Problem, Boundary
Conditions

Find a uniformly valid approximation to the
solution of {Problem} with boundary con-
ditions {Boundary Conditions} in the
limit ϵ ≪ 1. Use only the variables and con-
stants given in the problem; do not define
additional constants. Place your final solu-
tion in a \boxed{} LaTeX environment.

Nonlinear PDE Problem, Limit Find a self similarity solution for the
non-linear partial differential equation
{Problem} in the limit {Limit}. Please
place your final solution in a \boxed{} La-
TeX Environment.

Asymptotic Series Problem, Limit Find the first two terms in the asymptotic
series of {Problem} in the limit {Limit}.
Provide your answer in a \boxed{} LaTeX
environment.

especially in a pedagogical setting. Below, we present the rubrics used to produce LLM-as-a-judge
accuracy results for WKB problems, boundary layer problems, and nonlinear PDEs.

Grading rubric for boundary layer problems (5 points)

1. Recognition of Boundary Layer Structure
- 1 point: Explicitly states that boundary layer analysis is needed due to a small parameter
multiplying the highest derivative or a rapid solution change near a boundary, and names the
parameter.
- 0 points: Does not state that boundary layer analysis is required, does not identify a small
parameter, or gives an otherwise incorrect reason.

2. Identification of Boundary Layer Location
- 1 point: Explicitly identifies the correct boundary (e.g., x = 0 or x = 1) where the boundary
layer occurs, and justifies this location.

21

- 0 points: Does not identify a boundary layer location, selects the wrong location, or does not
justify the choice.

3. Scaling and Inner Variable (1 point)
- 1 point: Writes down the correct inner variable (e.g., ξ = x/ϵ), substitutes it into the
equation, and obtains the correctly rescaled inner equation.
- 0 points: Student does not define the correct inner variable, does not substitute correctly, or
otherwise does not derive the correct inner equation.

4. Outer and Inner Solutions (1 point)
- 1 point: Writes the correct general outer solution (with small parameter set to zero) and the
correct general inner solution (to the rescaled equation), including arbitrary constants.
- 0 points: Omits the general form of either solution, does not include arbitrary constants, or
writes an otherwise incorrect solution.

5. Matching and Composite Solution (1 point)
- 1 point: Matches inner and outer solutions in the overlap region, determines all constants, and
writes the correct uniformly valid composite solution (e.g., ycomp(x) = youter(x)+ yinner(x)−
yoverlap(x)).
- 0 points: Does not expand and match solutions, does not determine constants, or otherwise
does not write the correct composite solution.

Note: you should only award a 5/5 if the model’s final solution EXACTLY matches the
ground-truth solution.

Grading rubric for WKB problems (5 points)

1. Recognition of WKB applicability
- 1 point: Clearly recognizes that the equation is suitable for WKB (i.e., contains a small
parameter multiplying the highest derivative or rapidly varying solution), and explains why
WKB is appropriate (e.g., discusses scales, nature of coefficients, physical context).
- 0 points: Fails to recognize the need for WKB, uses an inappropriate method, or provides
weak justification for why WKB is needed.

2. Correct Statement of the WKB ansatz
- 1 point: States the correct WKB ansatz (e.g., y(x) ∼ exp

[
1
ϵS(x)

]
or similar), and includes

all relevant assumptions (e.g., expansion of S(x), small parameter ϵ).
- 0 points: Ansatz is missing or incorrect.

3. Substitution and Derivation of the WKB Equation
- 1 point: Correctly substitutes the ansatz into the original equation, carefully computes all
derivatives, and systematically derives the WKB equation with all steps shown.
- 0 points: No meaningful substitution or substitution/derivation is incorrect.

4. Dominant Balance and Leading Order Equation
- 1 point: Correctly identifies the dominant balance in the WKB equation (e.g., recognizes
that the (S′)2 term dominates for small ϵ), writes the leading-order equation, and justifies
neglecting smaller terms.
- 0 points: Fails to identify dominant balance or applies an otherwise incorrect dominant
balance.

5. Solution for Leading Order and Interpretation
- 1 points: Correctly solves the leading order equation for S(x), writes the leading order
solution for y(x), and interprets/expresses the result in the correct form, including proper
handling of constants or boundary conditions if needed.
- 0 points: Solution is missing, misinterpreted, or otherwise incorrect.

22

Note: you should only award a 5/5 if the model’s final solution EXACTLY matches the
ground-truth solution.

Grading rubric for nonlinear PDE problems (5 points)

1. Recognition of the Role of Nonlinearity
- 1 point: Explicitly recognizes that the equation is nonlinear and states why the nonlinear
term is essential for the solution or asymptotic behavior.
- 0 points: Does not recognize nonlinearity, does not discuss the nonlinear term, or gives an
otherwise incorrect justification.

2. Ansatz or Similarity Variable
- 1 point: States the correct ansatz, similarity variable, or reduction (e.g., traveling wave
substitution u(x, t) = f(x − ct), similarity variable for blow-up, or other appropriate
reduction for the nonlinear PDE).
- 0 points: Does not write a correct ansatz, similarity variable, or reduction, or otherwise
makes an incorrect substitution.

3. Substitution and Reduction to ODE
- 1 point: Correctly substitutes the ansatz or similarity variable into the original PDE and
reduces it to the appropriate ODE, including all necessary algebraic steps.
- 0 points: Does not substitute correctly, does not reduce to the correct ODE, or otherwise
makes an error in the reduction.

4. Solution of the Reduced ODE
- 1 point: Correctly solves the reduced ODE, including all arbitrary constants or relevant
parameters, and writes the general or particular solution as required.
- 0 points: Solution is missing, incorrect, omits constants/parameters, or otherwise does not
solve the reduced ODE correctly.

5. Interpretation and Asymptotic/Physical Behavior
- 1 point: Correctly interprets the solution in terms of the original variables (e.g., describes
soliton or blow-up, gives the asymptotic or qualitative behavior), and addresses any conditions
or parameter regimes relevant to the original nonlinear PDE.
- 0 points: Fails to interpret, gives an incorrect physical/asymptotic description, or otherwise
does not address the original nonlinear PDE’s physical meaning.

Note: you should only award a 5/5 if the model’s final solution EXACTLY matches the
ground-truth solution.

A.4 Automated parsing and model evaluation

To compare LLM-generated solutions against ground-truth solutions written by students, our parser
converts LaTeX expressions into symbolic representations that can be programmatically evaluated
for numerical closeness.

The parser architecture is designed to handle complexities and variations in mathematical notation.
Initially, the system extracts solutions from LaTeX \boxed{} environments using regular expression
pattern matching. It also is able to process multiple solutions using the semicolon as a delimiter.
This extraction ensures that only the final answers are evaluated, filtering out intermediate text.
After the extraction, the system converts LaTeX notation into SymPy expressions through a series
of transformation rules, such as replacing Unicode characters with LaTeX code and removing
unnecessary formatting. The parser then processes specialized symbols like integrals, beta functions,
and expressions with superscripts and subscripts to translate them into a standardized format.

All models are prompted to provide their final answer in a LaTeX \boxed{} environment. Then,
a custom-built parser uses Python’s RegEx library to search for the final solution at the end of the
model’s output. The parser then converts the extracted LaTeX expression into a SymPy expression.

23

In our types of applied math problems, it is possible for different functional forms to simultane-
ously be valid approximations; therefore, we check correctness by evaluating the model’s SymPy
expression and the ground-truth solution produced by students—which is also converted into a
SymPy expression—at the same point in the domain and determining whether the values are within
a closeness threshold. This approach to evaluation ensures that the model’s solution is considered
correct only if it precisely matches the ground-truth solution. We ensure that there is no ambiguity in
the prompts to the model by specifying any variables or free parameters—therefore, all problems can
be answered as a function only of their independent variables.

A.5 Additional analysis of model failure modes

Given that our evaluation framework strictly required solutions in a \boxed{} environment, we
noticed that some models failed to follow these instructions. In particular, DeepSeek-R1 never placed
its final solution in a LaTeX box. Our first instinct was that the model was exceeding its max tokens,
which is set by default to 32,768 tokens. However, we found that the model was rarely reaching
the limit and simply failed to converge to a final answer written in proper mathematical formatting.
The model also often replaced mathematical expressions with LaTeX ellipses (specifically, . . .),
presumably for convenience, but never plugged the true mathematical symbols or expressions back in
to its final result. Therefore, we did not include the model in our evaluation results.

Other models also exhibited difficulty following the instructions in our prompts. In particular, despite
its high performance on our benchmark, Gemini 2.5 Pro frequently ignored formatting guidelines,
using different LaTeX formats to flag its final solution. This is one potential explanation for why
Gemini 2.5 Flash Thinking showed higher overall accuracy than Gemini 2.5 Pro, despite the latter
supposedly being Google’s most performant model.

24

	Introduction
	Related work
	The need for applied mathematics
	Innovations in benchmark creation and pedagogical value

	Dataset and pedagogical framework for problem curation
	Problem submission and verification pipeline
	Infrastructure for automating parsing and evaluation

	Problem types
	Boundary layer problems
	Nonlinear PDEs
	Wentzel–Kramers–Brillouin (WKB) approximations

	Insights from students
	Structural obfuscation of canonical equations
	Introducing vanishing terms
	Initial condition failures

	Evaluation
	Conclusion
	Appendix
	Detailed descriptions of problem types
	Boundary layer problems
	Nonlinear PDE problems
	WKB approximation problems
	Asymptotic series problems
	Integral problems

	Evaluation setup
	Preparation of problem and solution
	Prompts for response generation
	Numerical evaluation

	Rubrics for LLM-as-a-judge evaluation
	Automated parsing and model evaluation
	Additional analysis of model failure modes

