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ABSTRACT

Despite being theoretically well-grounded, enforcing strict equivariance in deep
learning models has shown to be harmful in some cases. The problem is that most
available data does not follow mathematically precise rules, is noisy, and is not
strictly group-structured. While soft equivariance approaches attempt to address
these issues, they often struggle to maintain group structure and lack strong the-
oretical guarantees, potentially compromising the benefits of equivariance. Here
we introduce the concept of quasi equivariances, where group structure is main-
tained but the associated parameters become distributions, and implement it in
the proposed PowerNet architecture. Similar to CNNs, PowerNet is constructed
by interlacing truncated matrix power series with non-linearities. We show how
the base matrix used to define the power series can instill quasi-equivariance in a
natural way. Finally, we provide results for augmented MNIST classification and
transformation magnitude regression in addition to classification of CIFAR-10.

1 INTRODUCTION

Although group equivariant convolutional networks (Cohen & Welling, 2016) can be limitlessly
expressive (Yarotsky, 2018), enforcing strict equivariance in neural networks has shown to be more
limiting than beneficial (Liu et al., 2018; Wang et al., 2022). Real-world data and tasks rarely
exhibit group-structured properties. Due to the closure property, group actions form inherently strict
algebraic structures and most datasets encountered in practice are not naturally distributed according
to known groups.

An exception can be made for tasks that are inherently mathematical or group structured, such as
molecules (Gilmer et al., 2017), PDE data (Brandstetter et al., 2023), dynamical systems (Yang et al.,
2024), or neural networks themselves (Navon et al., 2023; Kofinas et al., 2024). A typical approach
is to assume an underlying group structure and parameterize a distribution of the magnitudes of the
transformation on the orbits of the associated one-parameter group (Falorsi et al., 2019; Dehmamy
et al., 2021; van der Ouderaa & van der Wilk, 2022; Gabel et al., 2023). Mathematical results in
group theory are usually only known for compact or linear groups, the contrary of the latter taking us
beyond traditional (linear) representation theory, usually used in geometric deep learning. A natural
extension of this observation is that groups are idealized abstractions of transformations, which data
is then assumed to conform to, but often does not.

In this paper, we propose to revisit the recently proposed soft equivariance concept from a weight
sharing perspective. The connection between weight sharing and equivariance has been known
since the introduction of CNNs (LeCun, 1989; Ravanbakhsh et al., 2017; Maron et al., 2019). Soft
equivariance approaches aim to relax strict symmetry constraints, allowing models to handle real-
world data that often doesn’t perfectly adhere to mathematical symmetries. However, these methods
often struggle to maintain the underlying group structure and lack strong theoretical guarantees,
potentially compromising the benefits of equivariance while introducing additional computational
complexity. The motivation for studying a relaxed version of group equivariance, which we will
refer to as quasi-equivariance, is threefold. In mathematical settings, symmetry transformations
of a given task can often be described precisely by groups, whether as continuous (e.g., rotations)
or discrete group actions. However, real-world data is noisy, imprecise, and seldom exhibits such
exact group symmetries. Quasi-equivariance allows models to capture underlying patterns without
committing to strict group-theoretic assumptions. Second, like soft equivariance, quasi-equivariance
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enables models to remain sensitive to probabilistic magnitudes of transformations, making the net-
work more adaptive to varying magnitudes of transformation in data. In real-world settings, where
robustness w.r.t. small deformations is often a sought-after property, this property can lead to vast
improvement in out-of-distribution performance. Third, learnable inductive biases or structural pri-
ors: By exploring equivariance through the lens of weight sharing, the model can learn inductive
biases more naturally.

To illustrate our approach, we draw an analogy between Convolutional Neural Networks (CNNs)
and Graph Neural Networks (GNNs). Both models employ weight-sharing principles derived from
symmetry assumptions, i.e., shift and permutation matrices respectively. With PowerNet, we pro-
pose a generalization for any base matrix, which enables more flexible structure learning. This
generalization does not inherently recover a basic multi-layer perceptron (MLP), however. To eval-
uate the effectiveness of our model, we report augmented MNIST classification and regression on
the magnitude of the parameters. Additionally, we ran our model on CIFAR-10 for classification.

This approach has promising implications for future research, particularly when combined with con-
tinual learning. A neural network equipped with learnable equivariances could dynamically update
its connectivity scheme as it processes new data, allowing it to adaptively learn new inductive biases
over time. Such a system could evolve its internal structure in response to experience, potentially
abstracting over consecutive inductive biases, whether in series (this work) or in parallel. The latter
of which we leave as a possibility for future work.

Contributions With this investigation of the PowerNet architecture, we introduce a number of
contributions to the field of geometric deep learning:

• A novel way of interpreting equivariant neural networks by relaxing the strict constraint
group actions place on the traditional group equivariant architectures considered in the
field,

• a connection between Laurent polynomials, weight sharing, and equivariant neural net-
works that could help with structural bias learning,

• the PowerNet architecture and library, which is fast, parameter efficient, open source, and
easy to use.

Limitations Besides the considerable low parameter count PowerNet is able to perform tasks such
as augemented MNIST classification and CIFAR with, it does not currently beat state-of-the-art on
the latter.

Reproducibility We provide all scripts and settings used for the experiments contained in this
paper. The PowerNet library will be made open-source in order to allow for further experimentation
and incorporation of the methods presented here.

2 BACKGROUND AND RELATED WORK

This work is connected to various subareas in geometric deep learning. Therefore, in this section,
we will sketch the context of this paper, how it relates to previous results, and how it differs.

2.1 GROUPS, GRAPHS, AND SELF-ATTENTION

The operation of sharing weights in deep neural networks has been an intense area of study (Ravan-
bakhsh et al., 2017; Maron et al., 2019). It ranges from exploiting the symmetries of the weights in
neural networks in order to improve training Neural Fields (Navon et al., 2023; Kofinas et al., 2024)
to performing lifting operations in group convolutions that make the kernel mimic the group trans-
formation of interest such that the model becomes equivariant (Cohen & Welling, 2016; Kondor &
Trivedi, 2018; Bekkers et al., 2018; Weiler & Cesa, 2019). The connection between CNNs, group
convolutions, and GNNs has been discussed in great detail (Bronstein et al., 2021). In a closely
related work, matrix functions have been proposed for applications to graph-structured data (Batatia
et al., 2024).

The success of transformer-based models has attracted interest from the geometric deep learning
field. Group equivariant attention has been shown to be possible when applied to the positional en-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

codings (Romero & Cordonnier, 2021) and the relationship to wavelets in time-series for translation
and scale equivariance is also noteworthy (Romero et al., 2024).

2.2 INDUCTIVE BIAS LEARNING

In the context of inductive bias learning, the irrelevancies of a given task, usually formalized math-
ematically as symmetry groups Knigge et al. (2022), can be exploited by geometric methods that
either lead to weight-sharing schemes within the neural network Zhou et al. (2020); Finzi et al.
(2021); van der Ouderaa et al. (2023) or overcompensate with additional computational operations
for when the input undergoes the expected transformation Kondor & Trivedi (2018); Bekkers et al.
(2018); Romero & Lohit (2022).

3 THE PowerNet ARCHITECTURE

We take inspiration from CNNs, in which convolutions can be rewritten as matrix multiplications
of a circulant matrix with the flattened, i.e., vectorized, image. First, we define the PowerLayer
and PowerBlock. Mathematically, we are interested in Laurent polynomials over the reals, a slight
variation on the usual group-based exposition given in most works (Maron et al., 2019; Bronstein
et al., 2021). The variable is a matrix that we will refer to as the base matrix.

3.1 LAURENT POLYNOMIALS AND LAURENT CONVOLUTION

Definition A Laurent polynomial P ∈ Π(z, z−1) is a polynomial of positive and negative integer
powers of a variable z over a field F. Formally,

P =
∑
i∈Z

θiz
i,

for a finite number of non-zero θi ∈ F.

Consider parametrizing the weight matrix of a neural network as a Laurent polynomial of a square
base matrix M ∈ Rd×d over R in order to generalize the concept of a convolutional layer. Note, in
this case, P = P ∈ Π

(
M ,M−1

)
⊂ Rd×d. In other words, we are interested in weight matrices

that can be written as a truncated power series of a matrix. We will refer to the linear mapping Px
as a Laurent convolution.

Hence, we define a single PowerLayer as fθ(x|M) = σ(Px+b), with feature vector and bias term
x, b ∈ Rd. The non-linear activation function is denoted by σ and the resulting feature vector is of
the same size as the input to the layer, namely fθ(x|M) = y ∈ Rd. This parametrization of the
weight matrix as a Laurent convolution allows for a natural definition of kernel size, dilation, and
convolutions. In particular, if we let the powers range from −K to K, the number of parameters is
2K + 1 ∼ O(K) where K ∈ N0 = {1, 2, 3, ...}. This gives PowerLayers a low parameter count,
relative to most architectures.

Dilation of the kernel can easily be controlled: By analogy with CNNs, we simply multiply the
powers in the Laurent series by D ∈ N0. Locality is easily relaxed by choosing a different base
matrix. Note that the layer still performs an affine transformation of the feature vector x.

3.2 GENERAL FORMULATION

For input channel ci, the feature map x(ci) ∈ Rd is acted upon by a generalized PowerLayer as
follows:

f
(co)
θ (x|AB...Z) = σ

 ∑
i,j,...,q∈K

θ
(co,ci)
ij...q AiBj ...Zq

x(ci) + b

 , A,B...Z ∈ Rd×d, b ∈ Rd.

This defines the output feature map y(co) ∈ Rd for output channel co. The set of powers to select
from is indicated by K, θ(co,ci)ij...q are the updatable parameters of the PowerLayer, and σ is the non-
linear activation function. If we wish, can fix the base matrices using Lie theory as follows: Let
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the base matrix be the result of a matrix exponential such that A = eG =
∑

1
n!G

n, where G is
the generator of a Lie group transformation. When the action of the base matrices on the flattened
image we recover equivariant layers. We can show that the weight matrix reflects the group action
of a multi-parameter Lie group, i.e. AiBj ...Zq = eiG1ejG2 ...eqGk , where the integers form the
magnitudes of the transformation. According to Lie theory (Fulton & Harris, 1991), this product of
exponentials is able to cover the component connected to the identity.

3.3 LIE THEORY AND THE SHANNON-WHITAKKER INTERPOLATION

Clearly, we would like PowerNet to have the ability to encapsulate the usual group equivariance
pervasive in the geometric deep learning literature. Even though the group assumption has been re-
laxed, here we show how PowerNet is still able to model group equivariance by choosing appropriate
base matrices. The relevant kernels are the ones that mimic the group actions under consideration,
this can be done by choosing a base matrix that permutes the pixels of the flattened image accord-
ingly. Note that in most cases this will involve some aliasing effect. Since we are only interested
in quasi-equivariance, aliasing effects should not worry us here. The key assumption is that depth,
multiple kernels, pooling operations, and residual connections present in most deep learning models
are sufficient to solve the task.

Using Lie theory, we can describe the problem as follows. The transformation of interest is defined
by an element of a Lie algebra, and as long we can perform the exponential map, the result should
be the group action we are interested in and a candidate for the base matrix of the PowerLayer. The
elements of the Lie algebra can be obtained by first defining the derivative operator, a matrix that
when exponetiated yields the shift matrix. One such approach involves using the Shannon-Whitakker
(SW) interpolation to calculate the derivative operator, as was done in previous works attempting
to parameterize Lie group in the context of machine learning (Rao & Ruderman, 1998; Dehmamy
et al., 2021; Gabel et al., 2023).

To apply the operators to a grid, one must write the partial derivatives as matrices. Using the SW
interpolation automatically assumes the function to be interpolated is periodic, although other inter-
polation schemes could have been chosen. We note that this scheme introduces some aliasing for
transformations of low-resolution images, and forms one of the notable limitations of the current
model. One could investigate other choices, such as bicubic interpolation, although deriving the
differential operator for this scheme requires some additional analysis and is left for future work.
Nevertheless, we pick this interpolation scheme for its ability to perform the transformations of in-
terest using matrix-vector multiplication. Let I be some real-valued signal. For a discrete set of
n points on the real line and I(i + n) = I(i) for all samples i from 1 to n, the SW interpolation
reconstructs the signal for all r ∈ R as

I(r) =

n−1∑
i=0

I(i)Q(r − i),

Q(r) =
1

n

1 + 2

n/2−1∑
p=1

cos

(
2πpr

n

) .

(1)

To obtain numerical expressions (matrices) for ∂x, Q can be differentiated with respect to its input.
This then describes continuous changes in the one dimensional spatial coordinate at all n points,
i.e., [DR]ab = ∂aQ(a − b). The above can be extended to two dimensions by performing the
Kronecker product of the result obtained for one dimension with the identity matrix, Dx = DR ⊗ I
and Dy = I⊗DR, mirroring the flattening operation applied to the input images. The parametrized
generator for the 2D affine case, for example, looks like:

Gα =

6∑
i=1

αiDi, (2)

where the Di ∈ Rn2×n2

are the matrices that represent the operators ∂x, x∂x, y∂x, ∂y, x∂y, and y∂y ,
respectively. This can easily be extended to arbitrarily dimensional data by adding more factors to
the above matrices, as was done above for the quadratic basis. One can see that performing this
operation in pixel space scales poorly with signal length (or image width) n.
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Figure 1: Examples of weight matrices with rotation (left) and scaling (right) quasi-equivariance for
9-by-9 flattened image inputs. The kernel values were sampled at random.

Figure 2: Applying the Laurent convolution on a sample MNIST digit for various rotation angles
and scaling factors.

3.4 ONE-PARAMETER GROUPS

In the simplest version of a PowerNet layer, only one base matrix is chosen. This leads to the
following formulation of a single PowerLayer:

fθ(x|A) = σ

[(∑
i∈K

θiA
i

)
x+ b

]
, A ∈ Rd×d, b ∈ Rd.

In this form, the model is almost identical to a group convolution (Cohen & Welling, 2016). The key
difference is the emphasis on the truncated power series and the flexibility it provides in allowing
for virtually any base matrix. Crucially, there is no further restriction on the layer, and it can be
generalized to handle multiple channels in the usual way. Dilation can be introduced as follows:∑

i∈K θiA
iD. (We refer the reader to Figure 1 and Figure 2 for some examples of how the weight

matrix and Laurent convolution looks like for rotation and scaling.)
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3.5 SPECIAL CASE: THE CNN

In the formalism introduced above, CNNs can be naturally described as Laurent convolutions using
the shift matrices. For traditional, 2D convolutional layers, two such shift matrices need to be
combined in order to define a (2Kx + 1)-by-(2Ky + 1) sized kernel.

fθ(x|SxSy) = σ

 ∑
i,j∈K

θijS
i
xS

j
y

x+ b

 , Sx,Sy ∈ Rd×d, b ∈ Rd.

Adding rotation, one recovers a quasi-rototranslational neural network (Lafarge et al., 2021).

4 RESULTS

We show the results for applying PowerNet with various base matrices compared to the type of
transformation that was used to obtain the augmented dataset.

4.1 EXPERIMENTAL SET-UP

With this work, we provide code for the PowerNet mini-library. This library allows a user to
design custom quasi-equivariant deep neural networks for their own projects. The PowerNet archi-
tecture is characterized by the PowerLayer() class, which is defined by its base matrices.
Similar to CNNs, the user should provide kernel sizes (powers) in addition to the conventional
c in and c out values, which correspond to the number of input and output channels of the Pow-
erLayer, respectively. To make the construction of deep architectures easier, the PowerBlock()
class provides options for the strength of residual connections (rho), multiple layers per block
(num layers), choice of non-linearities (non linearity), batch or layer normalization, etc.
(We refer the reader to Figure 3 for an example pipeline.)

Figure 3: Example of a typical PowerBlock() pipeline used for the experiments in this work.

4.2 AUGMENTED MNIST REGRESSION AND CIFAR-10 CLASSIFICATION

In all experiments, BatchNorm (Ioffe & Szegedy, 2015), residual connections and
LeakyReLU(0.2) was used since it mainly sped up training.

The experimental setup was as follows: 4 blocks, 2 layers per block, 32 channels, kernel size of 5,
stride 1, with residual connection, batch size of 1024, average pooling, Adam optimizer (Kingma
& Ba, 2015), learning rate 0.01, and weight decay 0.0001. The base matrices were chosen from
rotation, scaling, and shift (in the “up” direction) and trained on rotated MNIST. The task was to
predict the transformation magnitude, in this case, the rotation angle. The test performance (MSE)
on the augmented rotation angle in radians was 1.485 (shift), 1.456 (scale), 0.949 (rotation) radians.
The disparate result clearly shows the improvement when the correct inductive bias is used. This
model only has 28k parameters.

For augmented 2xMNIST classification, namely a double sized image with the digit rotated (full
range), scaled (between 0.8 and 1.2), and translated (max. 10 pixels) the setup was: 4 base matrices,
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one for each transformation mentioned in the previous paragraph (shift up and shift right being two
separate base matrices), 5 blocks, 2 layers per block, [2, 4, 8, 16] channels, kernel size of 5, stride
1, max pooling, batch size of 64, Adam optimizer, learning rate 0.001, and weight decay 0.0001
the performance reached 84% (identical performance to a CNN baseline with the same channel and
max pooling structure). This model has 62k parameters.

Taking a larger model with 4 base matrices, 5 blocks, 1 layer per block, 32 channels, kernel size of
5, stride 1, max pooling, batch size of 64, Adam optimizer, learning rate 0.0001, and weight decay
0.0001 the performance reached 75% for CIFAR-10 classification.

5 CONCLUSION

In this work, we introduced PowerNet, a neural network architecture that takes inspiration from
CNNs and GNNs by parameterizing the weight matrix by a truncated matrix power series. Mathe-
matically, we draw connections to Laurent polynomials and the duality between equivariant models
and weight sharing. We show equal performance to baselines on an augmented MNIST dataset, and
decent performance on CIFAR-10 classification. This shows our implementation is a rewiring of the
usual convolutional networks, with the added benefit of allowing for flexible filter choices. We look
forward to seeing how the community uses the PowerNetmini-library to incorporate different base
matrices for their use-cases.

REFERENCES
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