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ABSTRACT

Convolutional Neural Networks (CNNs) embody priors about the visual world:
locality, stationary statistics, translation invariance, and compositionality. Sim-
ilarly, CNNs implement the retinotopy of visual cortex—nearby pixels are pro-
cessed by nearby neurons. A common cortical computation not usually included
in CNNs is divisive normalization. It has been shown that divisive normalization
of Gabor filters results in more statistically independent responses (Simoncelli
& Heeger, 1998). In this paper, we model divisive normalization as a simple
computationally-efficient layer that can be inserted at any stage within deep arti-
ficial neural networks. Divisive normalization acts on neuronal sub-populations,
whose parameters are initialized from a multivariate Gaussian distribution. This
leads to the emergence of learned competition between both orientation-preferring
and color-opponent cell types. Divisive normalization improves categorization
performance, as well as robustness to perturbed images. Interestingly, in smaller
networks, divisive normalization as a non-linear operation eliminates the need for
a non-linear activation function like ReLU to drive performance.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have had much success as categorization models of
real world visual stimuli, in particular on the ImageNet dataset (Deng et al., 2009; Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015; He et al., 2016). Moreover, they have
been shown to be good at predicting neural responses to images in non-human and human ventral vi-
sual cortex (Yamins et al., 2014; Nayebi et al., 2018; Kubilius et al., 2019; Schrimpf et al., 2020). The
superiority of CNNs over fully-connected networks can be attributed to their biologically-inspired
properties of shared filter weights, translation invariance, and larger receptive fields with depth.
These built-in priors reflect properties of the visual world: locality, stationary statistics, and the
invariance of object identity with respect to translation.

Today, almost every CNN architecture makes use of some form of rectification, often ReLU, fol-
lowing its introduction by Glorot et al. (2011). While ReLU is not as biologically plausible as
saturating nonlinearities, empirically, it works better in deep networks. ReLU models, however, do
not account for one important nonlinearity—the common cortical computation of cross-feature inhi-
bition (Simoncelli & Heeger, 1998). Carandini and Heeger (Carandini & Heeger, 2012) suggest that
divisive normalization (DN) is a good model of this neural computation, and show that it can explain
nonlinear properties of neurons in the primary visual cortex. Their model computes a ratio between
the activity of an individual neuron and the summed activity of a local neighborhood of neurons. The
activity of an individual neuron is produced after its summed input is halfwave-rectified and squared
(Heeger, 1992; Wainwright et al., 2002). The reasons for performing DN include, but are not limited
to, removing statistical dependence between pairs of filter responses obtained by projecting natural
images onto linear basis functions at nearby spatial positions, orientations, and scales (Wainwright
et al., 2002), light adaptation in the retina and contrast normalization (Boynton & Whitten, 1970),
attention in the primary visual cortex (Reynolds & Heeger, 2009), and surround suppression through
lateral excitation and inhibition (Cavanaugh et al., 2002; Carandini & Heeger, 2012).

As described above, divisive normalization in the VVC is often implemented in the form of local
competition between sub-populations of neurons. This competition has been extensively observed
between Gabor-like orientation selective cell types (Beck et al., 2011; Bonds, 1989; Busse et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2009; Carandini et al., 1997; DeAngelis et al., 1992; Morrone et al., 1982). Recently, Cirincione
et al. (2022) and Miller et al. (2022) implement divisive normalization in CNNs to demonstrate
robustness to image corruptions and activation sparsity. However, they limit their analyses to either
a single architecture, to competition only across V1 neurons, or to the introduction of an expensive
divisive normalization computation.

In this paper, we propose a simple divisive normalization formulation inspired by Carandini &
Heeger (2012) and a parameter initialization scheme based on the circular multivariate Gaussian dis-
tribution to drive local competition (section 3). This formulation of divisive normalization requires
less computation than Miller et al. (2022), while still making the model robust to image corruptions
to a large extent (sections 4.2 and 4.4). For shallower networks, we find that the use of divisive nor-
malization as a squaring operator to turn the responses of neurons positive (making both excitatory
and inhibitory signals excitatory) seems to be sufficient, as well as better, in terms of performance
gains over using a half-wave rectifier before (section 4.1). We use various model architectures to
robustly conclude the effectiveness of our divisive normalization formulation. And finally, we not
only observe learned competition across Gabor-like orientation selective filters (as most works have
previously shown), but also have this competition emerge between different color-opponency cell
types (section 4.3).

2 RELATED WORK

There are three different normalization techniques worth thinking about that enforce some form of
“competition” among neurons in some local neighborhood. The first is Local Response Normaliza-
tion (Krizhevsky et al., 2012) that was proposed by the authors of AlexNet. This formulation uses a
linear numerator and norms the responses of neurons by neighbors in some neighborhood over the
channel space. Miller et al. (2022) then come up with a new formulation that is similar to LRN, but
instead with a squared numerator and exponentially decaying weights attributed to neighbors away
from the center in a neighborhood. They claim that their formulation is better than LRN in perfor-
mance. Both of these normalization schemes use overlapping neighborhoods. Group normalization
(Wu & He, 2018) is similar to our formulation of divisive normalization in the sense that it breaks
down channels into mutually-exclusive (non-overlapping) neighborhoods, but then the computation
is simply z-scoring the activations, rather than putting them in competition. Our approach differs
from group normalization in the sense that it enforces local competition among neurons, as opposed
to standardizing their responses.

There have been many prior works that have incorporated divisive normalization in deep networks:
Jarrett et al. (2009) show that using non-linearities that include rectification and local contrast nor-
malization is the single most important ingredient for good accuracy on object recognition bench-
marks, but they only consider two layers. Ren et al. (2016) modified batch normalization and layer
normalization by adding the additive constant in the denominator of the calculation like divisive
normalization and explore how their version, which is also a canonical normalization, improves the
performance of recurrent and convolutional neural networks for image classification. The numerator
of their normalization formula is still first order, so it cannot remove the second order dependency
as our formulation of divisive normalization can, whose numerator is squared (see equation 2). Pan
et al. (2023) observes that CNN neurons are most suppressed when the surround matches the center
and less suppressed when the surround differs from the center. Burg et al. (2021) shows that a single
layer model with divisive normalization can predict the V1 response to natural signals well. This
additionally also supports our claim that our model with CH divnorm is more biologically plau-
sible. Coen-Cagli et al. (2012) provides an account of orientation-based contextual modulation in
early vision by introducing a model of natural images that includes grouping and segmentation of
spatially neighboring features, which is different from our channel-wise normalization solution. Cir-
incione et al. (2022) add divisive normalization to the front-end of VOneNet (Dapello et al., 2020) to
show robustness to image corruptions; however, VOneNet uses a fixed-weight Gabor filter-bank as
opposed to learning V1 feature representations. Veerabadran et al. (2022) introduced DivNormEI,
which performs divisive normalization within the spatial neighborhood of each channel and applies
lateral inhibition and excitation by weighted sum across channels, demonstrating improved perfor-
mance in large-scale object recognition tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Schematic. A) A convolution module comprising of batch normalization, divisive normalization,
ReLU, and a convolution operation. B) Comparing divisive normalization modules between Miller et al. (2022)
and ours (CH)

We separate ourselves from these previous works by training an end-to-end image-computable
model (i.e., one that can accept any image as input) with divisive normalization modules inserted
within intermediate stages of the network. As opposed to Cirincione et al. (2022), we enforce
learned local competition between neuronal sub-populations. We keep our formulation of divisive
normalization as a simple computation, as emphasized by Carandini & Heeger (2012), in contrast
to a relatively complex one from Miller et al. (2022). And we show the emergence of learned com-
petition between color-opponency cell types, in addition to Gabor-like orientation selective cells, in
the model’s V1.

3 METHODOLOGY

3.1 MILLER ET AL. DIVISIVE NORMALIZATION FORMULATION

Miller et al. (2022)’s version of divisive normalization uses an exponentially weighted sum of the
unnormalized activations of nearby channels at the same spatial position in a specific layer of a
neural network:

Rc(x) =
yli(x)

2(
k
(
1 + α

λ

∑4λ
j=−4λ y

l
i+j(x)

2e−|j|/λ
))β

(1)

where β, α, k, and λ are all learnable parameters, independently for each layer. The normalization
window slides through all neurons in a given layer, implying that each neuron will not have a sin-
gle group of neurons it competes with every time but several groups of neurons. This essentially
convolutional formulation is the main reason why our implementation over discrete neighborhoods
is more efficient. All trainable parameters (λ,k, α, β) used in this formulation are shared among
all channels and spatial positions within each layer. Appropriate padding is added to the output
of the convolutional layer before divisively norming them, ensuring that neurons at the edges are
adequately addressed.

3.2 OUR FORMULATION OF DIVISIVE NORMALIZATION

We use a form of normalization similar to Carandini & Heeger (2012)’s version for V1 contrast
normalization, with n = 2. More specifically, let, after a certain convolutional layer l of the model
with C channels, yl(x) ∈ RC×H×W represent the activity of all C neurons, with H and W denoting
the spatial dimensions of the activation map, and x the input. We first break down the C channels
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(neurons) into P non-overlapping neighborhoods, each of size C/P . Subscription to a neighborhood
(neighborhood) defines which neurons compete with each other. Then, for each neighborhood p ∈
[P ], and for each neuron i in p,

Ri = γp ·
yli(x)

2

σ2
p +

∑
j y

l
j(x)

2
(2)

Here, γp is a multiplicative coefficient for neighborhood p in layer l, and σp is additive constant
for neighborhood p. These are both learnable parameters. yli(x) is the activity of each neuron
at ith channel after ReLU, and j ranges over the neurons in the pth neighborhood. We assign
independent learnable neighborhood-specific parameters λp and σ2

p to each neighborhood in every
layer. Independent multiplicative and additive constants are used to adjust for the possible qualitative
differences between neighborhoods from the initialization process.

Henceforth, we abbreviate our formulation as CH divisive normalization.

3.3 ASYMPTOTIC COMPUTATIONAL COMPLEXITY

For Miller et al. (2022)’s formulation of divisive normalization, a sliding window technique is used
(i.e., neighborhoods are overlapping). Each neighborhood has a size of 8λ, where λ is learned
during training. This means that, in the worst case, λ = N/8, with N being the number of neurons
in that layer. There are (N − 8λ + 1) total neighborhoods. If, for every neighborhood, divisive
normalization needs to take into account all 8λ neurons in that neighborhood, then the total number
of computations becomes (N − 8λ+ 1) · 8λ = O(N2) in the worst case (i.e., λ = N/8).

On the other hand, our formulation of divisive normalization subscribes neurons to non-overlapping
neighborhoods, which means that every neuron is visited only once, making the total number of
computations O(N).

3.4 MULTIVARIATE GAUSSIAN WEIGHT INITIALIZATION

While all of our models implement Kaiming initialization for model parameters (He et al., 2015)
as the one resulting in highest categorization performance, we also implement a parameter initial-
ization scheme to explore how local competition gets enforced among neuronal sub-populations.
Local competition is usually seen between groups of neurons that perform similar computation;
for example, between cell types preferring slightly varying orientations. Thus, in CH divnorm, to
encourage similarity between neurons within a neighborhood while allowing for differences be-
tween neurons across separate neighborhoods, we implement a multivariate Gaussian parameter
initialization. We first randomly sample a mean vector µp from the Kaiming distribution for each
neighborhood. We then initialize filter weights within a neighborhood by sampling from a circular
multivariate Gaussian distribution, with µp serving as the mean vector and the standard deviation
set to gp× the standard deviation of the Kaiming distribution, where gp is a hyperparameter. This
initialization promotes greater similarity within each neighborhood while ensuring more diversity
between neighborhoods, encouraging neurons in the same neighborhood to learn similar yet com-
petitive features.

3.5 NEUROANATOMICAL CONSIDERATIONS

Divisive Normalization with other forms of normalization. We evaluate how divisive normaliza-
tion works with and without other forms of normalization like batch normalization. We observe that
our formulation of Divisive Normalization in tandem with batch normalization results in a slightly
higher performance than not using batch normalization, but this does not limit the practicability
of our proposed method. Batch normalization helps improve performance because it (a) reduces
internal covariate shifts, and (b) leads to a quicker convergence of the model (Ioffe, 2015). Divi-
sive normalization is not like other types of normalization used in deep learning research - it does
not perform standardization (zero mean, unit standard deviation) of model activations; instead, it
enforces local competition for contrast gain control and sharpening of neuronal responses. Biolog-
ically, it might not be incorrect to think that several different normalization processes (regulated by
biochemical pathways, somatic, dendritic, or synaptic computation, or modulated by astrocytes etc.)
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Table 1: Performance of a two-layer CNN on CIFAR-10 and AlexNet on CIFAR-100. Results are shown
as the mean and standard deviation over 10 runs of random model initialization seeds. Best result is in bold;
second-to-best, underlined.

Index Activation/Normalization Top-1 accuracy

Two-layered CNN evaluated on CIFAR-10
1 ReLU + BatchNorm 69.50± 0.23
2 ReLU + CH DivNorm + BatchNorm 70.53± 0.00
3 ReLU + CH DivNorm 63.34± 0.19
4 CH DivNorm + BatchNorm 73.07± 0.01

AlexNet evaluated on CIFAR-100
5 ReLU + BatchNorm 57.9± 0.28
6 ReLU + Miller et al. DivNorm + BatchNorm 58.6± 0.16
7 ReLU + CH DivNorm + BatchNorm 60.6± 0.30
8 ReLU + CH DivNorm 51.6± 0.24
9 CH DivNorm + BatchNorm 62.7± 0.34

occur over neuronal activities. For example, while divisive normalization is a canonical neural com-
putation that leads to local enforcement of competition among similar functional neurons (Carandini
& Heeger, 2012), homeostatic mechanisms can prevent neural activity from being driven towards
runaway activity or quiescence; one such homeostatic mechanism is the adjustment of synaptic ex-
citability so that firing rates remain relatively constant (Turrigiano & Nelson, 2004). Moreover, it
is not the case that using two different normalization techniques leads to a significant increase in
computational expense.

Placement of divisive normalization layers in the network. Divisive Normalization is not only
known to explain responses in the primary visual cortex (V1), but also seen to operate in a variety
of other regions of the visual system: light adaptation in the retina, contrast normalization in the
retina and lateral geniculate nucleus (LGN), and visual processing in higher visual cortical areas
beyond V1 (Carandini & Heeger, 2012). This prompts us to use the divisive normalization module
throughout the network.

4 EXPERIMENTAL RESULTS

4.1 SHALLOW NETWORKS WITH DIVISIVE NORMALIZATION DO NOT REQUIRE HALF-WAVE
RECTIFICATION

Divisive normalization performs a non-linear computation over the raw activity of neurons based
on the activity of nearby neurons in their neighborhood. We thus test the ability of divisive nor-
malization to serve as an effective module that performs the roles of both an activation function
and activity modulation in neural networks. To this end, we first compose a neural network with
two convolutional layers. We embed four different combinations of activations functions within this
network based on the use of half-wave rectification (such as ReLU), divisive normalization, and
batch normalization. We also evaluate the same combinations of activation functions in AlexNet.
We summarize our results in Table 1.

The best categorization performance on both the CIFAR-10 and CIFAR-100 datasets (Krizhevsky &
Hinton, 2009)—that consists of tiny real world visual stimuli for 10- and 100-way categorization—
is achieved by the model that only performs divisive and batch normalization. Interestingly, half-
wave rectification as an activation function does not seem to be required prior to the computation
of divisive normalization. Half-wave rectification only lets excitatory neuronal responses to pass
through. On the other hand, divisive normalization squares the raw neuronal activity, and thus
lets both excitatory and inhibitory signals pass through in the absence of being preceded by half-
wave rectification. This version of divisive normalization relies purely on signal strength (i.e., the
magnitude of the responses), and introduces local competition between neuronal sub-populations
to reduce signal redundancy. As opposed to half-wave rectification that removes inhibitory signals,
divisive normalization learns to remove those signals (whether excitatory or inhibitory) that lead to
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Table 2: Performance of AlexNet on ImageNet. We use model variations to evaluate categorization perfor-
mance, runtime, GPU memory, and the number of extra parameters due to divisive normalization for a specific
layer over a baseline model required during training. All models use batch normalization after every convolu-
tional layer. Results are shown as the mean and standard deviation over 5 runs of random model initialization
seeds. Best results are shown in bold; second-to-best, underlined. Here, P represents the number of neighbor-
hoods in a given layer of the model. Top-1 accuracy for Miller et al. (2022) is taken from their paper.

Model Variant Top-1 Mean Runtime GPU Memory # Extra
Accuracy (sec/epoch) (G) Parameters

Baseline 58.5± .10 970 1.4 0
Miller et al. (2022) DivNorm + ReLU 61.3± .00 2800 2.9 4
CH DivNorm + ReLU (Shared CH para.) 61.2± .10 1210 1.9 2
CH DivNorm + ReLU 61.3± .12 1280 1.9 2× P
CH DivNorm 62.3± .08 1250 1.9 2× P

Table 3: Accuracy and Runtime of VGG-16 on ImageNet. Results are shown as the mean and standard
deviation over 5 runs of random model initialization seeds.

Model Variant Top-1 Accuracy Top-5 Accuracy Runtime (sec/epoch)

Baseline 70.8± .09 90.0± .18 5150
CH DivNorm + ReLU 72.7± .08 90.6± .12 7486
CH DivNorm − − −
Miller et al. (2022) DivNorm − − −

feature redundancy. This is particularly helpful where each neuron must encode the most relevant
features to discriminate between categories.

Since the output from the divisive normalization computation is all positive neuronal responses,
adding batch normalization helps stabilize learning and ensure better gradient flow by standardizing
responses to have zero mean and unit standard deviation. This leads to improved categorization
performance, both in the absence and presence of ReLU.

4.2 DIVISIVE NORMALIZATION IMPROVES CATEGORIZATION PERFORMANCE

We demonstrated in the previous section that divisive normalization leads to improved categoriza-
tion performance for two different deep neural networks, on two separate datasets. Next, we more
rigorously quantify the improvement by evaluating on the ImageNet dataset (Deng et al., 2009).

Overall, categorization performance improves for all model variants that use divisive normalization
(see Tables 2, 3). For AlexNet, Miller et al. (2022) use four parameters (λ, α, β, and κ) for divisive
normalization that are learned for every layer of the network. Due to the way that they implement
this computation, they incur a significantly large runtime that is approximately three times that of the
base model. There is also an approximately twice GPU memory requirement over the base model.
These overheads come with an improved performance on categorization. For our formulation of di-
visive normalization, we experiment with the number of divisive normalization parameters per layer
of the network. Any parameter choice results in an improved performance over the base model. If
we fix λ and σ to the same value for all neighborhoods within a layer, we observe slightly, but not
significantly, drop in performance compared to Miller et al. (2022). Learning these two parameters
for each neighborhood in a layer improves categorization performance, while incurring a modest in-
crease in the runtime and GPU memory. Learning separate parameters for each neighborhood helps
the divisive normalization computation to capture heterogeneous neural dynamics across neuronal
sub-populations.

To assure the generalization of our formulation of divisive normalization to deeper models—an im-
portant criterion that Miller et al. (2022) do not explore—we applied it to the VGG-16 (Simonyan &
Zisserman, 2015) model class. Unfortunately, we do not have results for when we implement VGG-
16 with Miller et al. (2022)’s formulation of divisive normalization with or without ReLU because
it turns out to be very computationally expensive and does not converge successfully. As shown in
Table 3, the use of divisive normalization outperforms the baseline on ImageNet. However, given
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Figure 2: Learned filters for different models. First convolution layer filters for (a) baseline AlexNet, (b)
AlexNet with divisive normalization (neighborhood size = 8), and (c) AlexNet with DN (neighborhood size
= 32). There is one neighborhood per red box for (b) and (c). We find local competition emerges between
Gabor-like orientation selective filters as well as color-opponent cell types in (b) and (c)

that this model is deeper than previously explored model classes like AlexNet, using only divisive
normalization without being preceded by half-wave rectification led to the training not converging.
Hence, it appears that what limits the application of divisive normalization as comprising an acti-
vation function is dependent on the depth of the model, although a more thorough exploration of
hyperparameters is necessary to verify this speculation.

4.3 DIVISIVE NORMALIZATION ENFORCES LOCAL COMPETITION BETWEEN GABOR AND
COLOR-OPPONENT CELLS, AND SHARPENS RESPONSES

Figure 2 shows features learned by the neurons in first convolutional layer of AlexNet with and
without divisive normalization. AlexNet, as the authors of the paper already demonstrate, learns
orientation-selective and color-opponent simple cells in its first convolutional layer (Krizhevsky
et al., 2012). There is, however, no neuroanatomical structure that is tied to the functional roles
that these cell types play in visual processing (figure 2a). Gabor-like orientation-selective cells are
thought to compete with each other for enhanced edge perception and contrast normalization, while
color-opponent cells are thought to compete with each other for refining color perception. When
we introduce divisive normalization to form neighborhoods of neuronal sub-populations over which
local competition is enforced, the model learns to make this competition between similar cell types,
an emergent property that is apparent in Figure 2b, but is most obvious in (Figure 2c). Again this
behavior emerges from the model; while previous models have shown Gabor filter-like competition,
we believe this is the first evidence of color opponency emerging from divisive normalization.

Figure 3: Activation Maps for the first convolutional layer of AlexNet. We create activation maps for
different visual stimuli for AlexNet with and without divisive normalization. In (b), we also visualize the
difference in activation maps between the models. The color map for this difference is re-scaled to make
differences more visible. Brighter pixels represent strong activation. Responses on these visual stimuli are
representative of those on other stimuli from the dataset.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Percentage drop in performance of AlexNet on perturbed images compared to clean accuracy
(on unperturbed images). Longer bars mean that the model is less robust to this particular noise. The purple
and gray lines show the average percentage drop over the five noise levels. To the right of the lines, we show the
results of significance testing for each noise level individually (averaged over four runs). We apply a t-test to
the percent reduction in performance

(
clean accuracy−noise accuracy

clean accuracy

)
averaged over the four runs for models trained

with and without divisive normalization. Asterisks refer to significant differences within each noise level using
a t-test. Hence, for example, * * NS NS NS means that for noise levels 1 and 2, we find p < 0.05, and for noise
levels 3, 4, and 5, there is no significant difference.

Furthermore, we identify the role of divisive normalization in sharpening of neuronal responses
through activation maps for different visual stimuli (figure 3). Looking at the activation maps,
it appears that divisive normalization leads to sharpened edge detection (as indicated by a more
prominent and intense color on the activation map) than the base model. Both the base model and
an unoptimized model show some activity in the background of the object (as indicated by relatively
brighter colors than for divisive normalization). To make such differences more prominent, we ad-
ditionally visualize the difference in activation maps between the models trained with and without
divisive normalization. Stronger visible responses in the difference map are attributable to the sharp-
ening effect that divisive normalization demonstrates. Darker patches here, on the other hand, signal
suppressed activity from having reduced redundancy between responses—this redundancy might
either stem from noise or unwanted variability that needs to be removed for more robust feature
learning.

4.4 DIVISIVE NORMALIZATION IMPROVES ROBUSTNESS TO LOCALIZED IMAGE
CORRUPTIONS

Finally, we use the ImageNet-C benchmark dataset (Hendrycks & Dietterich, 2019) to test the ro-
bustness of using our formulation of divisive normalization on corrupted (i.e., perturbed) images.
This dataset introduces algorithmically-generated parametric distortions to images from the Ima-
geNet test set to evaluate model robustness. We visualize performance on this dataset in Figure 4.
Across a variety of different perturbations and noise levels, divisive normalization helps in statis-
tically significant reduction in performance drop from the clean accuracy on unperturbed images
compared to the base model. However, for some perturbation classes like defocus and zoom blur-
ring, divisive normalization does not significantly help under high noise levels. Overall, divisive
normalization seems to help significantly when facing color or pixel-wise variations in images (such
as brightness, saturation, and gaussian noise) but not for spatially-induced distortions (such as blur-
ring and pixel compression). This makes sense, since divisive normalization primarily focuses on
normalizing neuronal responses within local receptive fields, why may not adequately address spa-
tially global distortions.

5 DISCUSSION

In this work, we presented a lightweight, memory and runtime efficient implementation of divi-
sive normalization that is inspired by Carandini & Heeger (2012). We analyzed its role in learning
unsupervised local competition between neuronal sub-populations—orientation-selective and color-
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opponent cell types. Divisive normalization leads to improved performance on categorization, and
makes the model more robust to localized parametric distortions. Finally, we show that divisive nor-
malization can be used as a module that acts as both an activation function and modulates responses,
not requiring the use of a half-wave rectifier in shallower networks.

We acknowledge certain limitations in the work that we present. First, we limit our analyses to
AlexNet, VGG-16, and a two-layer CNN. While these are more anatomically consistent than very
deep networks like ResNet-50, since there are somewhere on the order of 15-20 visual areas in hu-
mans (Van Essen, 2003), it will still be interesting to understand how very deep networks perform
with divisive normalization. In this work, we were constrained by computational power from per-
forming this more demanding experiment. Another avenue for improvement is quantifying learned
filter similarity for models trained with divisive normalization. Although we visually examined the
grouping patterns of different cell types (orientation-selective and color-opponent) in the first con-
volutional layer of AlexNet (in section 4.3), we lacked a robust metric to quantify this similarity.
Thirdly, using Brain-Score (Schrimpf et al., 2018; 2020) as a set of metrics to analyze the capabili-
ties of different layers of a model trained with divisive normalization to predict real neuron responses
in the biological ventral visual cortex’s V1, V2, V4, and the inferior temporal cortex (IT) would be
a strong test of such a canonical neural computation.

Finally, there are some shortcomings in the way we implement divisive normalization. Miller et al.
(2022) define overlapping neighborhoods for neurons to be divisively normed over (with exponen-
tially decaying weights away from the center), while we define neighborhoods to be non-overlapping
(neurons only affect other neurons performing similar computation and in their neighborhood). Both
of these formulations are of value in their own right (similar to requiring both functional segregation
and coherent perception). We could create a more biologically plausible formulation of divisive
normalization that would incorporate the contribution of recurrent amplification from higher visual
areas, i.e., amplifying weak inputs more than strong inputs (Heeger & Zemlianova, 2020). Ad-
ditionally, it would be interesting to understand what effects divisive normalization has in vision
transformers (Vaswani, 2017), which have become state-of-the-art for image categorization tasks.
More specifically, divisive normalization can be used to explain how responses in the visual cortex
are modulated by attention, wherein attention multiplicatively enhances the stimulus drive before
normalization (Carandini & Heeger, 2012). Performing divisive normalization over the attention
weights of the transformer encoding layers might reveal new insights and serve as a good direction
for future work.
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A CODE AVAILABILITY

We make the code available at this anonymous repository: https://github.com/
anonymoustech1234/Divisive_Normalization.

B TRAINING DETAILS

All experiments are run on a single GPU with 24 GB of GPU memory, 8 CPUs (8 number of
workers), and 14 GB of computer memory (RAM) on an internal cluster.

Two-Layered Model on CIFAR-10. For the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset, we
implemented a two layer model with the first layer as torch.nn.Conv2d(in channels=3,
out channels=32, kernerl size=3, stride=1, padding=1) and the second layer
as torch.nn.Conv2d(in channels=32, out channels=64, kernel size=3,
stride=1, padding=1). The model is trained using stochastic gradient descent, with the
learning rate initialized to 0.01, imposing a weight decay of 0.0001 and a momentum of 0.9.

AlexNet on CIFAR-100. Since stimulus size for CIFAR-100 is relatively small, we change the first
two convolutional layers of AlexNet to have a kernel size of 3. The model is trained for 90 epochs
with stochastic gradient descent and a batch size of 256. The learning rate is initialized to 0.1, and
decays by a factor of 0.1 every 30 epochs. We impose a weight decay of 0.0001 and a momentum
of 0.9. We initialize divisive normalization parameters λ to 10 and σ to 0.1.

AlexNet on ImageNet. This model is trained with stochastic gradient descent using a momentum
of 0.9, a weight decay of 0.0001, a batch size of 128, and a plateau learning rate scheduler with
factor of 0.1 and patience of 5. The learning rate was initialized to 0.01. We again initialize divisive
normalization parameters λ to 10 and σ to 0.1.

VGG-16 on ImageNet. The model is trained with stochastic gradient descent using a momentum
of 0.9, a weight decay of 0.0005, a batch size of 64, and a step learning rate scheduler with a factor
of 0.1 and step size of 15. The learning rate is initalized to 0.01.

For all experiments discussed, the neighborhood size for divisive normalization for the first convo-
lutional layer is fixed at 8 filters per neighborhood.
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C FORMING NEIGHBORHOODS WITHIN EACH LAYER

For enforcing local competition between neuron sub-populations, to then to perform divisive nor-
malization on them, such sub-populations (or neighborhoods) must first be created. We do so as
follows:

We use p as a hyperparameter that trades off the size and the number of neighborhoods in each layer
of the network. Let a denote the neighborhood size, b the number of neighborhoods, and c the total
number of neurons (i.e., the output channels) in a specific layer. We use the expressions:

a = 2int(p log2(c)) (3)
b = floor(c/a) (4)

In short, p ∈ [0, 1]. The larger p is, the larger the neighborhood size, and consequently fewer
number of neighborhoods in a model layer. Table 4 computes these statistics for each layer of
AlexNet when p = 0.5, the value used for all our experiments. Our analyses show that there is no
significant difference in performance when changing p between 0.3 to 0.7. Performance, however,
drops significantly when p approaches either 0 or 1.

Table 4: Neighborhood size and number of neighborhoods in AlexNet when p = 0.5.

Layer Total Filters Neighborhood Size Number of Neighborhoods

First Layer 64 8 8
Second Layer 192 8 24
Third Layer 384 16 24
Fourth Layer 256 16 16
Fifth Layer 256 16 16

D MULTIVARIATE GAUSSIAN WEIGHT INITIALIZATION

In Section 3.4, we proposed using Multivariate Gaussian initialization to encourage similarity and
competition within neighborhoods.

Fig 5 visualizes filters initialized with Kaiming initialization compared to Multivariate Gaussian ini-
tialization. In the right image (Multivariate Gaussian initialization), filters within each neighborhood
are much more similar to each other than across neighborhoods. Each red box marks a neighbor-
hood. For comparison in this section, we used the same initializations for both the baseline AlexNet
and AlexNet with CH DivNorm.

Fig 6 shows the filters after training for AlexNet with CH DivNorm. Each row represents a neigh-
borhood in which neurons are divisively normalized together, thus competing with each other. Each
red box marks a neighborhood with filters that are similar but differ in the orientation or color they
capture. Filters trained with Multivariate Gaussian initialization genuinely contain more such neigh-
borhoods.

Fig 7 shows the filters after training for baseline AlexNet. Without divisive normalization, no clear
grouping is observed among the filters. The Gabor-like filters learned vary in frequency and scale
and do not form a complete set. There is no noticeable difference in the patterns learned with
Kaiming or Multivariate Gaussian initialization
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Figure 5: Comparison of Filters Initialized with Kaiming Initialization (left) vs. Multivariate Gaussian Initial-
ization (right), using Means and Standard Deviations Sampled from Kaiming Initialization

Figure 6: Comparison of Filters in AlexNet with CH DivNorm After Training: Kaiming Initialization (left) vs.
Multivariate Gaussian Initialization (right)

Figure 7: Comparison of Filters in AlexNet Baseline (No DivNorm) After Training: Kaiming Initialization
(left) vs. Multivariate Gaussian Initialization (right)
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E ACCURACY ON CORRUPTED IMAGES

In section 4.4, we show the average performance drop of AlexNet with and without divisive nor-
malization compared to the clean accuracy. In figure 8, we provide the raw accuracies for each
perturbation class and noise level.

Figure 8: Top-1 performance of AlexNet on different perturbation classes and noise levels.
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