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ABSTRACT

We develop a theory of transfer learning in infinitely wide neural networks under
gradient flow that quantifies when pretraining on a source task improves gener-
alization on a target task. We analyze both (i) fine-tuning, when the downstream
predictor is trained on top of source-induced features and (ii) a jointly rich setting,
where both pretraining and downstream tasks can operate in a feature learning
regime, but the downstream model is initialized with the features obtained after
pre-training. In this setup, the summary statistics of randomly initialized networks
after a rich pre-training are adaptive kernels which depend on both source data and
labels. For (i), we analyze the performance of a readout for different pretraining
data regimes. For (ii), the summary statistics after learning the target task are still
adaptive kernels with features from both source and target tasks. We test our the-
ory on linear and polynomial regression tasks as well as real datasets. Our theory
allows interpretable conclusions on performance, which depend on the amount of
data on both tasks, the alignment between tasks, and the feature learning strength.

1 INTRODUCTION

Modern deep-learning models achieve remarkable accuracy by scaling parameters, computation, and
data (Hestness et al., 2017} [Kaplan et al.| [2020; [Hoffmann et al.| |2022). Yet collecting such large
volumes of data is prohibitively expensive or outright impossible in many settings. Transfer learning
offers a principled escape from this data bottleneck: by repurposing representations learned on data-
rich source tasks, it reduces sample complexity while improving generalization (Tan et al., |2018;
Brown et al., 2020; |Li et al., [2020; [Isik et al., [2025). Therefore, understanding which properties of
the pretraining and downstream data distributions enable effective transfer is critical for modern deep
learning. Despite its empirical success, transfer learning still lacks a principled theory that predicts
when it will succeed. In this paper, we present a novel theory of transfer learning in multi-layer
neural networks that elucidate the rich phenomenology of transfer learning.

Mathematically analyzing transfer learning is challenging, in part because representation learning
in generic neural networks remains poorly understood. To overcome this difficulty, we focus on
transfer after representation learning in infinite-width neural networks in the ;/P/mean-field pa-
rameterization (Song et al., 2018a; |Chizat & Bach, 2018}; Yang & Hu, [2021}; [ Bordelon & Pehlevan)
2023)). In this parameterization, feature learning is preserved even as the width of the network goes
to infinity. We focus on supervised learning for both source and target tasks and derive results for
the network performance after each phase of transfer learning. In particular, we analyze (1) linear
toy models of fine-tuning with adaptive kernels after feature learning on source task and (2) non-
linear models of transfer learning when both source and target tasks can operate in a feature learning
regime. Our theory enables accurate predictions of the resulting network models for wide but finite
neural networks.

Concretely, the contributions of this work are the following:

* We develop theory of transfer learning for randomly initialized infinite width MLPs. This
theory, in its most general form, allows for arbitrary laziness on task-1 (pre) or task-2 (post)
training. In general (for models with more than one hidden layer), this theory is quite com-
plex and involves non-markovian history dependence during both phases of optimization.
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» To gain more analytical tractability we specialize our theory to two layer neural networks
and investigate transfer learning in this setting. We analyze both fine tuning, where training
on the second task is lazy, and rich learning where training on the second task can cause
large changes in the hidden features. In the regime of finetuning, we can utilize results for
the final feature kernels to characterize the predictors on the second task.

e We develop linear toy models of finetuning where we can explicitly compute typical test
losses on the second task when sampling random pre and post training sets. These linear toy
models reveal many aspects of the phase diagram of (un)successful transfer learning. If the
pretraining (source) task is data rich, fine-tuning strictly improves over a two-layer linear
model trained from random initialization. With limited data during pretraining, noise due to
finite sample-size effects can cause negative transfer. For very rich pre-training, fine-tuning
is sample efficient if and only if the target has significant projection on the pre-training
source feature.

* We extend this investigation beyond linear tasks to polynomial source/target tasks and on
real computer vision datasets. Consistently with our theoretical predictions, when the pre-
training task is data-rich, fine-tuning on the second task after rich pretraining improves
performance and sample-efficiency. With limited source data, rich pretraining can induce
representation overfitting by causing negative transfer. In this setting, rich learning on the
second task is often favorable.

1.1 RELATED WORKS

Theory of Transfer Learning in Linear Models. Several works have studied how properties of
a representation support generalization from few examples on a downstream task (Bordelon et al.,
20205 [Canatar et al., 2021a; [Sorscher et al.| [2022; [Dhifallah & Lu, 2021} |Gerace et al., [2022). A
general result is that the geometry of the neural representation (kernel-task alignment) controls the
ability to learn a new supervised task from limited data (Canatar et al.|[2021b). However, these the-
ories at infinite width would predict a fixed representation at initialization, not allowing for features
to adapt during learning, for either the source or the downstream tasks.

Training Dynamics in Wide Networks. Recent years have seen significant research on the learn-
ing dynamics of wide, randomly initialized neural networks. In standard / neural tangent parame-
terization, wide neural networks are described by kernel methods (Jacot et al., [2020; |Arora et al.}
2019; [Lee et al., |2020). In this same parameterization, corrections to this limit at large but finite
width reveal weak (perturbative) feature learning corrections to this limit, linearizing the dynamics
of hidden representations around their static infinite width value (Roberts et al.| 2022; Zavatone-
Veth et al., |2021). Alternatively, other works have explored parameterizations that allow infinite
width networks to learn features, known as mean-field or uP scaling, resulting in fundamentally
nonlinear predictor dynamics. These works developed tools to study the representation learning dy-
namics during gradient descent training in infinite width neural networks, which require adoption
of the mean-field/uP scaling of network width (Song et al., 2018b; |(Chizat & Bach| 2018} |[Yang &
Hu, 2021; [Bordelon & Pehlevan, [2023; [Bordelon et al., [2024c; [Bordelon & Pehlevan, [2022)). In this
infinite limit, the dynamics for kernels cannot be linearized around the lazy learning solution.

Learning in Wide Bayesian Networks. In contrast to gradient descent training, some works have
pursued theory of networks sampled from a Bayesian posterior (Welling & Teh, [2011). In the in-
finite width N — oo limit with NTK parameterization and dataset size P held constant, networks
converge to neural network Gaussian process (NNGP) models, which lacks representation learning
(Lee et al.,[2018). Beyond this kernel limit, extensions of deep Bayesian MLPs in NTK parameter-
ization under the proportional limit P, N — oo with P/N = « reveal scale-renormalized kernels
after training (Li & Sompolinsky, 2021} [Pacelli et al.,|2023; Baglioni et al., |2024), with extensions
to convolutional architectures (Aiudi et al., 2023; Bassetti et al., |2024). Large-deviation analyses
in NTK parameterization further show kernel adaptation in finite-width/proportional limits (Fischer
et al., 2024} Rubin et al.| 2024b; [Seroussi et al., 2023} |Andreis et al.,2025)). An alternative strategy is
to adopt a mean-field/uP-like parameterization where even the N — oo limit at fixed P give rise to
significant changes in the kernels and predictor statistics compared to NNGP regression (Aitchison,
2020; [Lauditi et al.,|2025). Proportional limits in deep Bayesian networks have also been analyzed
under the mean field scaling (Rubin et al., [2024a; van Meegen & Sompolinsky), [2024)).
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Transfer Learning in Wide Networks. Bayesian networks have been studied in a general multi-
task framework in NTK parameterization in both lazy and proportional (P/N = «) limits (Ingrosso
et al.,|2025; Shan et al., [2025). The works (Ingrosso et al., [2025; [Shan et al.| 2025) first introduced
a Bayesian transfer-learning framework in which the target model is regularized to remain in the
vicinity of the pre-trained source weights (which are treated as fixed realizations of the source pos-
terior). In (Tahir et al., [2024) the authors analyze deep linear models of fine-tuning on synthetic
data, in the special case when the source task has infinite data and the kernel is low rank, by show-
ing that positive transfer learning depends on feature similarity between source and target tasks. A
recent work analyzes fine-tuning for two-layer mean-field models under KL-regularized empirical
risk minimization (Aminian et al.| 2024)). Here, we develop a theory for fine-tuning using adaptive
kernels from source task, and in a finite-data regime where sample fluctuations can hurt generaliza-
tion. Plus, we extend the theory for non-linear networks and in the jointly rich setting where feature
learning can also happen on target task.

Continual Learning Dynamics. Gradient descent training under continual learning in large-width
networks under mean-field scaling has been studied in |Graldi et al.| (2024). This analysis revealed
that richer training dynamics could lead to more catastrophic forgetting in a sequential multi-task
learning, where the task distribution shifts over training time. Average accuracy across tasks was
often maximized at an intermediate feature learning strength. However, these results have not yet
been studied within a theoretical framework.

2 MODEL AND TRANSFER LEARNING DEFINITIONS

Before specializing to specific transfer learning settings (such as fine tuning or linear networks), we
first provide a general framework where we subsumes all of our analysis. Our width N and depth L
MLP architecture has the form
1 . I ’ 1 1
z) = —w” - p(h*(x)), K = —W'(h'(z)), h' = —=W'z 1
flx) = Gw” - ¢(h™(x)) Wi ¢(h*()) 75 (D

where 2 € RP is an input to the model and the variables h’ € R” represent the hidden preactivation
features in the forward pass. During pretraining, the model parameters {W*} are optimized with

(S)GD on the source or task-1 dataset 7; = {(a:f}), y,(}))}fjl:l where the loss function on the Py
training points in 77 takes the form

L7:(0) =Eqpyer £ (v f(z,0),y), 2)

where £ is the per-data-point loss function (e.g. MSE or cross-entropy). The parameter ~y; represents
the richness/nonlinearity of optimization for task-1 pretraining with y; — 0 corresponding to lazy /
kernel learning (Chizat et al.,|2020; Geiger et al., 2020; [Bordelon & Pehlevan, [2022)). This generates
a final set of parameters 6,. Using the final parameters from pretraining €, as a starting point for
transfer, we then run (S)GD on a second task 73 = { (:B/(LZ), y,(f))}fil on a loss function using a
second richness parameter 7.

L7;(0) = Eayer; L5 f(,0),y) 3)

We are ultimately interested in the solutions (and generalization performance) of the model that was
post-trained on task-2. We will refer to the case where lazy learning on task-2 is performed v — 0
as fine-tuning [ﬂ

This general setting can be extended for Bayesian networks (see Appendix [D)), by considering the
source task weights as quenched disordered variables for the target task 7. Here, an elastic weight
coupling controls the reuse of features during transfer learning.

2.1 UTILIZING INFINITE WIDTH FEATURE LEARNING LIMITS

To make analytical progress on this problem, we focus our attention on infinite width neural networks
N — oo trained with gradient flow. Because the networks are in the meanfield/uP parameterization,
this infinite limit preserves feature learning for v > 0|Bordelon & Pehlevan| (2022). If the weights

!"Technically, to control initialization variance, we take N — oo first before taking 2 — 0.
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are initialized i.i.d. with unit variance, and the model is trained with SGD with learning rate 7; =
noIN~? fori € {1,2}, then the final predictor f(z) after post-training on task-2 can be expressed in
terms of a collection of kernels that include

o' (z, 2/ 1) = %cb(hf(w,t)) - p(h' (', t')) 4)

where t, ¢’ are distinct time values for training across both gradient flow time in task-1 and task-
2 (Yang & Hul 2022} Bordelon & Pehlevan, 2022} |Lauditi et al., 2025} |Graldi et al., [2024). In the
infinite width N — oo limit, these functions become deterministic in their evolution and the neurons
become statistically independent over the random initialization of weights. While this (in principle)
provides a closed set of equations for the evolution of the network predictions f (), the resulting
dynamics are quite complex (see Appendix [A). To gain more insight into the mechanisms of transfer
learning we will next specialize to simpler settings.

2.2 TwO STAGE GRADIENT FLOW DYNAMICS FOR TWO LAYER NETWORKS

First, we will examine the training dynamics for two layer networks where the dynamics in feature
space are Markovian.

Result 1 (In data-poor downstream regimes, feature learning on target task helps) Consider a
two-layer (L = 1) MLP trained with gradient flow on Ty for times t € (0,t;) with v1 and then
subsequently trained on task T for times t € (t1,t2) with richness parameter ~ys. The infinite width
N — oo dynamics of the second model under gradient flow and with weight decay converges after
a training time t > t; to a predictor f(x,t) on a test point

filz, t) =1 {z(t)(h(z, 1)) (5)

where the average (-) represents an average over the measure of hidden neuron activations. The
. . 1 0 . 1 . .
preactivations h,,(t) = W (t)x,, and the readout variables z(t) = w' (t) evolve as single-site

stochastic processes (neuron - decoupled)

Wz, 1) = x(@) +m / s 3 A(3)9u(5) K, ) + 0 / ds 3 A (5)9u(5) Kol )

0 neTy veTs
zt)=v+m ds Ay (s)+72 | ds Ay (s))
/0 u%’:fl /tl Hg;—z
9u(t) = PRy (1))=(1): (6)

and the average (-) is over both ) ~ N'(0,1) and x(x) ~ GP(0, K,) where K, (z,x') = Lz -/,
while A, (t) = —0y,l(fyu,yu) represents error signals for the training points in Ty and Ty. The
predictor on the second task can be computed as fo(x,t) = 75 " (z(t)p(h(x,1))) for any t > t1.

This result indicates that there is a history dependence of the dynamics on the downstream task
T2 that is inherited from the dynamics of pretraining on task 77, consistent with prior works on
mean field continual/transfer learning (Graldi et al., [2024; |Aminian et al., 2024)). In this two layer
setting, this dependence only enters through the random variables {h(¢1), z(¢1) } which set the initial
condition for the downstream task 75 due to the above Markov structure. This property does not hold
in deeper models (see Appendix [A)). We provide simulations of transfer learning using the above
stochastic processes in Figures revealing that (y1, y2) can both impact the impact of pretraining
on transfer learning. One finding that we consistently see is that if the amount of data P, on 75 is
small, that transfer learning confers greater benefits. Since the above model implicitly depends on
the dataset size, but does not explicitly quantify how transfer learning depends on P, Ps,v1,72 ,
we next investigate the even simpler setting of linear networks.

2.3 TOY MODELS OF FINE-TUNING IN TWO-LAYER LINEAR NETWORKS

The results that follow are for deep linear models of fine-tuning when ¢(h) = h. The source task
T1 is generated by a linear target function y, , = %55 - &5, on random isotropic data x, , ~

N(0,Ip). The same is valid for the target task 75 with y; , = %Bt @y, and xy , ~ N(0,Ip).
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We pre-train on 7; with gradient flow on a squared loss, and then fine-tune the readout with gradient
flow on 7 and with £(t) = ﬁ|XtTK1/2,C§(t) — X,"B;|2, given K the adaptive NTK from 7;.
Result 2 (Data-rich pre-training consistently improves transfer) Consider the deep linear MLP
of Eq. with ¢(x) = x. Train by gradient flow on Ty and feature-learning strength v, > 0. In the
infinite-width limit N — oo, and then in the population limit Py — oo at fixed D, the adaptive NTK
after pre-training converges to

l
K{(X,X)=X [I + %ﬁsﬁj ] x'T, (7)

i.e., a rank-one spike along B3, . Moreover, x* increases strictly with ;.

With this adaptive NTK from Ty, freeze the features and fine-tune the readout on Ts. In the propor-
tional limit Po, D — oo with Py = vo D and for a fixed source/target alignment o = %ﬁs - By, the
downstream test loss at convergence is

B 2X€042V2 (XZ)ZQQVQQ

14+ xtve (14 xtn)?

Thus fine-tuning with the adaptive NTK is always better than the baseline L = 1 — vy, which one
would obtain from random initialization, whenever x* > 0 and o # 0.

L(va, o, xY) = (1 —vy) [1 } < (1—w9). (8)

To get this result, we build on a previous work from (Bordelon & Pehlevan, |2022). Here, the authors
show that for a model as Eq.with 0 = Vec{W? ... wl}, gradient flow £0 = —~v3NVyL from

Wi;(0),...,wk(0) ~ N(0,1) leads to an adaptive kernel K*(t) = (h‘(t)h'(t)") € R >,
where the average is over the stochastic process defined by DMFT saddle point equations (see Ap-

pendix [B.T). At limiting time, and for P, — oo at fixed D, the average over the randomly sampled
data leads to Eq.[7} Moreover, one can show for L = 1 that x = /1 + ~7 — 1 (see Appendix mi
Then, in 75 the error vector is vo(t) = B; — (K*)'/23(t), while the instantaneous training errors

are A(t) = D~'/2Xvy(t). The key quantities which determine the generalization dynamics on
T2 are the correlation functions

Calt.t) = 5 AWD: AW), Cult:t) = Fonlt) 0o(t), Conslt) = 5B (D), ©)

being vy (t) = \/T?X A(t). From these, train and test losses can be computed respectively from

L(t) = Calt,t), L(t) = Cy(t,1). (10)
In the joint limit P», D — oo, these correlation functions concentrate to deterministic quantities
at any time ¢, and each entry of the fields {vo(t), A(t),v1(t)} become statistically independent
and identically distributed, following a stochastic process known as the single-site process. These
stochastic processes are described by the DMFT saddle point equations, which also depend on re-
sponse functions {Ra (t,t'), Ry, (t,t')} that measure the response of the variables {A(t), vo(t)}
at time ¢ to a kick at time ¢’ in the noise sources of the system (see Appendix [B.1). Studying the
single-site processes at limiting time gives Eq.[9] from which one recovers Eq.

In the results that follow, the derivation for 75 test loss is similar in spirit, with the addition of
correlation and response functions that depend specifically on the adaptive kernel after 7;. We
restrict to two-layer setting, even though we believe that the adaptive kernels after feature learning
on 77 in the deep case have the same functional form as the one we study here.

Result 3 (Finite-sample size effects can harm fine-tuning gains) Consider the two-layer MLP of
Eq. with L =1 and ¢(x) = z at infinite width. In the proportional limit where Py, D — oo with
Py =D, rescale vy = 71/ VD for feature learning to happen at infinite width. After pre-training
on Ti, the adaptive NTK kernel at convergence is

KX.X)=X|T+%(g87 T+ 238487 + Bgg7 | X7 11
(X, X" +D(gﬁs+ﬁsg )+Dﬁsﬂs+Dgg , (11)

i.e., a low-rank deformation of the isotropic baseline: a signal spike 33/, a noise spike gg", and
a crosstalk term gB) + B.g'. The Gaussian vector g captures finite-sample fluctuations of the T,
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dataset and it is uncorrelated with Bs. Its covariance Cov(g) = V%CZO is set by the train loss at
convergence on Ty, given by
1 1 VD
X _ 15 - . = —_— _— T
CF = fm AWM AW). Al = =X (B, - ToWO wr). (2

The coefficients c1,ca,c3 are deterministic functions of (1,v1) given by the DMFT saddle point
equations.

With this adaptive NTK from T1, freeze the features and fine-tune the readout on To. Call oy =
% Bs B, ay = % g - B; the alignments of the target direction with the source and noise respectively.
The downstream test loss at convergence (for as = 1,0y = 0) is

(1 + c312)? + v

(1 + caro) (1 + care) — c?ug)z.

L(ci,co,c3,12) = (1 — 1) (13)

With finite data, pre-training on 77 leads to an adaptive NTK as in Eq. [TT] after a short path integral
derivation (see Appendix [B.2). Computing the constants ¢y, ¢a, c3 is in principle hard, because it
requires solving for correlations and response functions from DMFT at limiting time. We leave
them as constants and derive conclusions for some interpretable cases. We do not expect, in general,
transfer learning to have a positive effect when crosstalk and noise components ¢y, c3 grow large
compared to co. In the population limit where v; — oo, we expect instead Cov(g) — 0, thus
recovering the pure signal spike when there are no sample size fluctuations.

With this kernel, similarly to the sketch of Result 1, we study the limiting dynamics of the error field
vo(t) = By — K'/23(t). This time, together with the correlation functions Ca (¢, "), Cy, (t,t') that
define train and test losses, we get contributions from Cs, (t) = 5/3s-v1(t) and Cy, (t) = 5 g-v1(t)
which we need to study at limiting time.

Because of the dependency on many variables (i.e., v, i, oy, 1, C2, €3), in Eq. E] we report the
loss in the special case where a; = 1 and oy = 0 (see general expression in the Appendix [B.2).
Notice that this reduces to the linear-probe baseline £ = 1 — v5 for ¢; = ¢ = ¢3 = 0; improves
monotonically with co; and worsens with increasing crosstalk c; in this special case.

Result 4 (Unbounded feature learning undermines fine-tuning) Consider the two-layer MLP of
Eq. \l|with L = 1, ¢(z) = x and v1 = 41/\/'D at infinite width. On Ty, consider the balance
condition O;( WW T —ww ") = 0. When 3, — 0o, or equivalently for small weight initialization,
then W = wv' is low-rank with v € RP. In the proportional regime P, = v, D, solve for
v at limiting time through DMFT. The adaptive NTK after pre-training on Ty is K(X,X') «
X(Hvv")X'T, ie

K(X.X) = x [Agp] + Ut gqr VU0 (g 07 g7 )] X7, (4

D D D

which is a rank-one kernel with signal 35 and noise g ~ N(0,I), such that g | (3. A noiseless
linear target y; = %Xt—r B¢ is exactly solvable iff B; € span{v}. Otherwise, only the projection

of B; onto v is learnable, giving an asymptotic test loss
L(vi,aq,ay) =1 — (Vias + V1 —via,)?, (15)
with ag = %ﬁs B0 = %g - B¢ the alignments with the source and noise respectively. In the

data-rich limit v, — 1, the learned feature collapses to the signal (v — Bs) and the downstream
loss to L =1 — o2, which is the residual (unexplained) variance of y;.

This result can be considered as a special case of Result[3] when there is no bulk component in the
adaptive NTK after learning 71 (see Eq.[T4]and Appendix [B.3|for details). The loss of Eq.[I5]does
not depend on the amount of data v5 in 75, since any dependency on P, comes from how well it is
possible to estimate a single scalar coefficient in this rank-1 feature, which vanishes as P, — oo.

3 TRANSFER LEARNING PHENOMENOLOGY

In the following, we illustrate the interplay between transfer learning, feature learning strength,
sample size and task similarity leveraging our theoretical results in Section [2| We start with the
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fine-tuning setting, where data on both 77 and 7 tasks are generated by linear target functions, and
then proceed to the jointly rich setting, allowing feature learning on both tasks. By increasing the
task complexity, we derive conclusions on the benefit of transfer learning from polynomial to real
datasets.

3.1 FINE-TUNING

--- No pre-training
— a=025

— a=05 08
— a=075
— a=1

-=- No pre-training 10
— 2,=025
— =05
— =075
— a=1.0
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\
— =038
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(a) v, — o0 (b) v finite (©)v0 — o0

Figure 1: Fine-tuning from an adaptive kernel from 77. Dashed black: no pre-training (linear probe).
(a) Loss is strictly decreasing with «.. (b) Non-zero alignment with the noise can cause negative
transfer at high v5. (c) Test loss on 73 depends only on source data 14 and the alignments (g, o).

Infinite data on 77 In the population risk limit from Result 2} when 11 — oo, the test loss is a
monotonically decreasing function of source/task alignment « (see Fig. [[(a)) and thus fine-tuning
has always a positive gain from feature learning on 7.

Finite data on 7; By contrast, when v is finite the features learned on 7; are noisy because of
finite sample size fluctuations: the adaptive NTK (see Eq.[[T)) acquires, in addition to the useful sig-
nal spike (controlled by c2), both a noise spike (controlled by c3) and a crosstalk term (proportional
to c1). As a consequence, the test loss is no longer a decreasing function of source/task alignment o
(see Fig b)). If we suppose the target task having a non-zero alignment with the noise oy 7# 0, then
transfer is most helpful in the low v, regime and when source/target similarity o is high; although,
with enough data on 73, both noise and crosstalk terms can corrupt the signal direction, making it
convenient to learn from scratch instead of using transfer learning.

The simple alignment case (as=1, a,=0) of Eq. |13| shows that there (i) larger c, always helps,
while (i¢) ¢; always hurt, since it rotates the high-gain direction towards the noise. Instead (i) c3
when the noise is uncorrelated with the target (ay = 0) act as a ridge (regularization effect) in high
dimension (see Appendix [B.2)).

Large 7o on 7;  Consistent with Eq.[15] when o,y = 0 (Fig[I[c)), since a5 € [—1,1], then with
this rank-one feature one can only learn up to £ = 1 — o2, and the perfect interpolation happens
only when target task is perfectly aligned with the source task (i.e., as = 1). This suggests that it
is in principle harmful to have an infinitely rich pre-training. We show in Appendix [B.4] that this is
consistent with what happens when fine-tuning a non-linear model on polynomial tasks.

Real datasets To concretely show that most of the conclusions one can derive from our theoreti-
cal models of fine-tuning are still applicable to non-linear models, we make some phenomenolog-
ical comparisons. As anticipated for finite 1, our theory from Result 3] predicts that the constants
c1, ¢, cg are functions of feature strength v; and ;. We make an ansatz for these functions at large
1 inspired by model in Result The test loss of Eq. will be then a function £(~1, v1, v2). When
vy is finite and so the alignment between noise and target tasks is non-zero (i.e., g # 0), our the-
ory in Fig. a) predicts that the optimal feature-learning strength v (v2) is large when v is small
(variance reduction dominates), and it decrease as v grows (bias from feature drift starts to hurt).
At large 15, there exists an optimal value of feature learning strength ~; that lowers the loss with
respect to the baseline (see Fig. a)). Similarly, after training a non-linear model on CIFAR10 with
different v; on 71, Figs. 2[b)/(c) show that larger ~; yields lower test loss at small P (x 1), but
the advantage shrinks and the curves collapse as P, increases; with enough target data, pre-training
feature strength matters less. Again, consistently with our theory, we also show in Fig. [§| that on
polynomial task high - can be detrimental when P is large.
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Figure 2: Fine-tuning with adaptive kernels from 7;. Losses vs v, and for different v, values on
T1. (a) Linear model from Resultwhen c1 = vi/vi (1 —v1)x, e2 = vy, ez = v1(1 — v1)x with
X = /1 —~% — 1 has optimal ; at large 5. (b)/(c) Two-layer ReLU MLP on CIFAR10: source
task is regression on {0, 1} classes; target task is regression on {0, 9} classes.

3.2 TRANSFER LEARNING OF POLYNOMIAL TASKS WITH NONLINEAR ACTIVATIONS

Low to High Degree Polynomials Kernel limits of neural networks are strongly biased to fit
their data with low degree polynomials when data is high dimensional and isotropic. This spectral
bias (Rahaman et al.l 2019} [Bordelon et al), 2020}, [Canatar et al.l 2021b)) reflects the fact that kernel
methods learn eigenfunctions in order of decreasing eigenvalue (Novak et al, 2018}, [Belkin et all}
2019; [Zhi-Qin John Xu et all, [2020). By contrast, networks trained in the feature-learning regime
can learn sparse polynomials from much fewer data and training steps (Mei et al., Dandi
et al.} [2023D} [Troiani et al), 2024} [Dandi et all, 2024). The staircase property (Abbe et al., 2021}
2023} 2024; [Yang et al., 2025) explored by Dandi et al.| (2023b) makes this hierarchy explicit in
multi-index polynomial settings.

Inspired by the utility of feature learning on sparse polynomials of Gaussian data  ~ N(0, I), we
study transfer from a linear source task to a quadratic target by employing the two-layer MLP model
of Result [T]in the jointly rich setting. Figure [3{a) shows that pretraining on the linear task (right
panel) lowers the test loss on the quadratic target compared to training from scratch (left panel). The
feature-learning strength -2 on 72 here accelerates early gains but it also induces stronger forgetting
of the source features during transfer learning, as pointed out in (Graldi et all,2024). Eventually,
there is an intermediate value of 7, that minimizes both target loss on 75 and catastrophic forgetting

on 7.

No pre-training Transfer learning No pre-training Transfer learning
--- DMFT

Test Loss

100 100 100 100 107 10° 10

107
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(a) Easy — hard (b) Hard — easy

Figure 3: Test losses of a two-layer ReLU MLP vs steps for different feature learning strength -
on 73. (a) Low degree polynomial source task y; () = D‘l/Qﬂ - with P, = 1000, D = 100 and
71 = 1.0. Target task is yo(x) = (D~/23 - x)? with P, = 100. (b) Source task Hes(3; - ) with
Py = 1000 and «y; = 1.0. Target task: Heo(832 - @) with P, = 600 and 3; - B2 = 0.8. Solid lines:
gradient-descent on an N = 20000 two-layer ReLU network. Dashed lines: DMFT theory.

High to Low Degree Polynomials In Figure [3(b), we compare the model performances when
learning a low degree Hermite polynomial target function from either a random initial condition
or the features learned from a high degree Hermite source task. In both cases, learning the target
is speeded up by feature learning strength .. Similarly to a grokking phenomena (Power et al.,
2022} [Liu et al.} 2022} [Kumar et al.| 2024} [Fan et al.|[2024), we conjecture that in this initial training
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phase the network begins memorizing its training set and slightly overfits, then after adapts features
to the data, leading to improved test loss at late times. This adaptations of features happens faster
when training with higher 75 (rich feature learning from Result[I). However, in this setting, because
the pre-training on 77 makes the target model at initialization to rely on spurious high-frequency
features components that are not needed by the simpler task 7, transfer learning has no benefit in
this scenario compared to no pre-training performance.

3.3 ROLE OF TRANSFER LEARNING ON REAL DATASETS

Moving beyond synthetic tasks, we consider simple image regression problems. We start with
CIFAR-10, where a model pre-trained on two source classes is then fine-tuned on two disjoint target
classes. We compare the performance of a target model trained on this second task 73 from ran-
dom initialization (Fig. @[a)) with the performance of the same model when using features learned
from a data-rich source 7; (Fig.[db)). Here, transfer learning leads to a lower test loss compared to
no-pretraining for each value of feature learning strength 5. In both cases, there exists an optimal
early stopping time which minimizes the loss before slightly overfitting. We show that our DMFT
theory from Result[I]is well-predictive of this jointly rich setting. In Fig.[d{c) the distribution preac-
tivations p(h) of the target model shows that, as o grows large, feature learning makes p(h) highly
non-Gaussian. In Appendix [A]we also show that, similarly to fine-tuning setting (i.e., linear probe)
on real datasets (Fig. [2(b)/(c)), feature learning on 7; is crucial when downstream task is data-poor
(small P5); with large P> the model is able to rely more on supervision signals from the data itself
and transfer learning offers little additional improvement.

No pre-training Transfer learning
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_\ DMFT '!~.\ DMFT 020 &
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Figure 4: (a)/(b) Transfer learning is beneficial for real tasks at any feature learning strength 7.
Source task: classes 1/2 of CIFAR-10 with P, = 10K and 7; = 1.0. Target task: classes 8/9 of
CIFAR-10 with P, = 200. (c) Preactivation distribution of the target model for different v,. Solid
lines: GD at convergence (N = 20000, two-layer ReLU MLP); black dashed lines: DMFT.

4 DISCUSSION AND CONCLUSION

In this work, we develop a theory of transfer learning in infinitely wide neural networks under gra-
dient flow. First, we provide the theory for non-linear MLPs, in the general setting which enables
feature learning on both pre-training and downstream tasks. Here, transfer learning on polynomial
tasks outperforms no pre-training when moving from easy (low degree) to hard (high degree) bench-
marks. No such gain is observed from hard to easy objectives, since the pre-trained model eventually
biases the representation toward high-degree components that are misaligned with the low-degree
task. On real vision tasks, transfer learning speeds up performance, showing a consistent improve-
ment in test loss. Consistently throughout these benchmarks, feature learning on downstream tasks
enhances performance with a data-limited target. Second, we study fine-tuning with fixed features
from a pre-trained rich source. Our results illustrate how the source/target similarity, the amount on
data and feature learning strength control the relative benefits of transfer learning compared to learn-
ing from scratch. Here, different pre-training regimes lead to different conclusions on fine-tuning
benefits. (i) If source task is data-rich, fine-tuning is always beneficial; (ii) for finite source data,
noise from finite sample-size fluctuations can corrupt fine-tuning gains; (iii) when source task is
infinitely rich, the target task is exactly solvable if and only if it is perfectly aligned with the source.

Future works could explore how representation learning in deeper networks enable transfer learning.
Specifically, it could be interesting to study what number of hidden layers should be preserved during
transfer learning (Bansal et al., [2021]).
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A  DEEP INFINITE WIDTH TRANSFER LEARNING DYNAMICS

Using the dynamical mean field theory techniques of Bordelon & Pehlevan|(2022)), we can track the
dynamics of preactivations he(:c, t) and pre-gradients z*(x, t) which are defined as

R (x,t) = —=W'()¢(h'(x, 1))

Aaw

g'(2,t) = $(h'

2,1) © 2 (1) , 2 (. 1) = ﬁw%ffg”l(m,t). (16)

On task one and times ¢ € (0, ¢1) we have
t
B (e, t) = u' (2, 1) + 7 /d:c’/ dt' [A (@, @1, 1) + pr(a) A, ) (@, ! 1, 8)] (' )
0

¢
2 x,t) = rz(:c,t) + 71 /d:c’/ dt’ [Be(w,w’,t,t') +p1($/)A($/,t/)Gé+l($,:B/,tﬂf’)] p(h(z',t"))
0

Z S(x—2a'), u' ~GP0,® 1), rf ~GP0,G™) (17)

x' €Ty
where the correlation functions ®¢, G¢ are defined as

Pl (x, ' 1, 1) = <¢(hé(w,t))¢(h£(w’,t’))> , Gz, 2! t,t) = <gz(w,t)gé(:c’,t’)> (18)

and the response functions are

Az, 2’ t,t) = <‘W(wt»> , Bz, ' t,t) = <W>. (19)

ort(x’ t') dul(x’,t')

On task-2 where t € (¢, t3) we have the following dynamics
R (x,t) = ut(x,t) + 7 /dm' /Otl at' [A =z, 2! 1) + pr(2) A, )z, 2, t,t)] g (2, 1)
+’72/dw’ /t dt' [A" Nz, 2/ t,t) + pa(2)A(2, )@z, 2, 8, t)] g (2, 1)
t1
2Ha,t) = rf(z,t) + 1 /dm’ /t1 dt' [BY(z,x, t,t') + po (') A2, )G (@, 2/, t,1)] p(h (2, 1))
0
+72/dw’ /t dt' [Al_l(%w’,t,t’) +pg(w’)A(w’,t’)GHl(w,w’,t,t')] d(h* (', 1)) (20)
t1
where pa(x) = P% Y wer, 0(x — ). The A(z, t) features for ¢ € (t1,t2) takes the form

—f x,1) ZIE G (@, 2t )0 (x, @ 1 ) A, ), fz,ty) = 0. (21)
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Figure 5: Test losses as a function of target data P, for different feature learning strength v, on
downstream task. Source task is a regression on two classes (0/1) of CIFAR with P; = 1000 labels
7 € {—1,1}"" and richness ; = 1.0. Target task is a regression on two classes of CIFAR (0/9)
with P, data points and labels y € {—1,1}%%.

B ToOY MODELS OF FINE-TUNING IN THE PROPORTIONAL REGIME

In the current section, we will develop theories of transfer learning in the proportional regime, i.e.
by allowing the data on both source and target tasks to grow arbitrarily large P;, P, — oo, such
that v, = % = Op(1) is fixed, with D input dimension. In the following, we will make three
distinctions regarding the source task 77. In general, 77 is defined by a teacher model 3, € R

1
sy = —Bs X 22
y Y \/55 14 ( )
for random isotropic data x,, ~ N(0, I) and labels |y|*> = 1. The student is instead a two-layer
model /b
D 1
fla,) = ~2qT (—W):c (23)
2 N~o VD .

with W € RV*P q € RN whose dynamics we study at limiting time ¢+ — oo after learning with
gradient flow (GF) and from random initial conditions W;;(0), a;(0) ~ A(0, 1). Depending on P,
pretraining learns either (i) a single rank-one spike aligned with the signal direction 3 (population
regime), or (ii) a finite rank deformation composed of the aligned spike plus several spikes correlated
with a noise direction g € RP and independent on the source direction 3. For this reason, we make
distinctions in pretraining with the following scenarios: infinite data on 77 (i.e., v; — 00); limited
data on 77 (i.e., finite 1), and feature learning strength v — oo on 77. In each of these settings,
we wonder if the NTK kernels after feature learning on 77 have either a positive or a negative effect
on transfer learning. For that, we consider a downstream task 75 defined by a target rule

1
Yt = ﬁﬂt c Ly (24)

withz, € N(0,1),8; € RP, |y;|*> = 1 and a fixed vo = %. We study gradient flow (GF) with the
final NTK kernels from 77, and in each case the dependency of the loss of 75 on the amount of data
{v1, 12}, the source/target alignment % B - Bs = a, and the feature learning strength ~yq.

B.1 INFINITE DATA ON T;

As pointed out in (Bordelon & Pehlevan, [2022), by sending width N — oo first at fixed P, the dy-
namics of a model such as Eq.with 0 = Vec{W, a} can be studied through the lens of dynamical

mean field theory (DMFT). If we choose a MSE loss on 71, i.e. £ = ﬁ ijlzl(ys,u — fu)? and
study gradient flow 46 = —?V,L from random initial conditions W;;(0), a;(0) ~ N(0, 1), we
get that one of the summary statistics we can track is the feature kernel K (t) = <h(t)h(t)T> €
R with hy,(t) = W ()@, being the preactivation vector. With isotropic data x,, €
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N(0,1), it is possible to show that the kernel K (¢) only grows in the rank one source direction
Ys ysT (see (Bordelon & Pehlevan, 2022) for a complete derivation). In particular, the limiting kernel
has the form lim; oo K (t) = I + xysy, , with x = y/1 + & — 1 which is an increasing function
of the feature learning strength .

Now, if we allow the 77 dataset P, — oo at fixed D, by averaging over the data distribution we get
a kernel after feature learning on 73 which has the form

K(X,z)=a" [I n %ﬁsﬁﬂ x 25)

where we recall 3, being the source task vector. For the downstream task 75 specified in
Eq. we consider the kernel from Eq. 25| and do gradient flow with a loss function £(t) =

Q—}DZ\XTKlﬂ,B(t) — X "3;]? and X € RP*"2_ This leads to

d oL
Z3(t) = - X 26
700 =2 26)
from which, by defining vy (t) = B; — KY/23(t), we get
d B X XX’
Zvo(t) = —(I+ $B.8] ) =5—vo + 3(t)B:. @7)
We can introduce the following auxiliary fields
1
A=——=X"v,eR” 28
i) 0 (28)
v, = QXA e RP (29)
1
Csv = Bﬂs ! (30)
and the above dynamics becomes
d
%UO = —-U (t) - Xﬁsc’sv(t) + 5(t)/6t (31)

with initial condition vo(0) = 3;.

B.1.1 DATA AVERAGE

Our goal is to track the statistics of the random field v, at limiting time, from which we will be
able to recover the loss function £ at convergence. Once we average over the random 7, dataset,
we expect this to depend on the finite sample fluctuations of 73 since v = % is fixed, and on the
alignment with the pretraining source which we is controlled by a hyperparameter o« = % By - Bs.

In order to do that, we develop a DMFT or path integral derivation (Agoritsas et al.| 2018;
Sarao Mannelli et al., 2020; Mignacco et al.l [2020; Mignacco & Urbani, [2022} |Gerbelot et al.,
2024} [Dandi et al., [2023a; [Bordelon & Pehlevanl 2022} [Bordelon et al., 2024a).

First, we enforce the definitions of the fields and the vy dynamics by functional J-constraints with

conjugate fields {0, A, by, é’sv}. The resulting moment generating function (MGF) Z of DMFT
depends linearly on the data matrix X

dCeydCyy [ dvodd dAdA [ dv,do _ X
g [He [dnt [202 [ o l / dtv0~(atvo+v1+xﬁscsv<t>6(%)]
2 2 2 T

X exp (- i/th~ (%XT’UO) —i/dtﬁl : (?XA))

X exp (z / dt (AD t vy ) +i / Aty (1)(Cun) - %58 - 'vl)>.

(32)
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Since the entries x,, ; ~ N(0, 1) are i.i.d., we can average over the data distribution

. 1 1 VD,
<exp [—z/dtTrXT (@UOAT+P 1AT> >X

= exp (— %/dtdt’ [llj'vo(t) cvo(t)A(E) - A(t) + llA(t) A0 (¢) - Mt’)D (33)

X exp ( / dtdt’%A(t) A )vo(t) .@1@')).

By defining the correlation and response functions

Cupanlt: 1) = S00(1) - (1) (34)
Canl(t,t) = %A(t) CA(t) (35)
Ryaltt) = —5A0) - A() 36)
Ruvn (1) = = Z500(0) - 1) @)

we can enforce their definitions with the use of delta functions, for instance

- / ACly 00 (t, ')A C g 0o (t, 1)
- 2rD-1

5D (5 o (1) G (1:1) = 5 Co (1,10 (1) - ol

(38)
thus getting

Z_/dcsv(t)désv(t)/dcvo,vg(t,t’)dévo,vo(tvt/)/dOA,A(tatl)déA,A(tatl)/dRA,A(tat/)déA,A(t’t/)
N 2

T 2T 2 2

x/dRUO,@l(t,t’)de@l(t,t’

2T

D A D A
)exp [2 / dtCs, (t)Csy (t) + > / dtdt' Cyy vy (£, ") Crog o (1)

- A A
X exp VZT/dtdt’CA,A(t,t’)CAA(t,t’) - zng/dtdt’RAA(t,t’)RAA(t,t’)]

X exp | — D/dztclt’Rvo,,g1 (t,t')Ryy 5, (t, 1) +D/dtdt’RAyA(t,t’)Rvml(t,t’)]

X exp ED: In Zo1 [Ca ., Covs Covs Ry 5] + zpj I Za [Cup o RUO,@IH
L i=1 j=1

(39)

where we collect every single site action (factorized respectively over input neurons and patterns)

~ ~ B d’l}(]d'f}() Dle’lA)l 1 A
Zo1 [Cas Cuns Cuns Co R 5] = [ 2 [ 220 exp[—2 / dtcsv@)ﬁsvl(t)]

v

T / At G0 (1°(F) — 5 / dtdt’cA,Aw)w’)]
xexp | — i/dtdt’RA Avo(t)01(t) +i/dtvl(t)@1(t)1

xexp | 41 / dtig (&svo +v1 + xBsCsu(t) — 5(75)575)

(40)
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dAdA
2T

exp

ZA CUD,’U07R’U0,’LA)176A(A,Ai| :/

- % / dtdt' Ca a(t, t)AR)AR)

1 L j .
X exp l— 5/dtdt’cvo,,,o(t,t’)A(t)A(t’) — i/dtdt’Rvo,@lA(t)A(t’)

Vo

X exp

—H’/th(t)A(t)
3D

B.1.2 DMFT ACTION

We now group all of the correlation and response functions, as well as their conjugate order param-
eters into a list named g. The MGF can be written in the compact form

Z = /dq exp ( - DS(q)) (42)

where S is the O(1) DMFT action
1 A 1 A
S=—2 /dtC’sv(t)C’sv(t) ~5 /dtdt/a,w0 (t,8")Clpy v (t, 1) —

1)

5 ) /dtdt’CAyA(t, t"YCaa(t,t)

D P
1 A 1
+ /dtdt/RA7ARvo,’ﬁ1 — B ii - In ZOl |:CA,A, Csv7 Csva RA7A:| - B jil In ZA |:01107U0a Rvo,’fh .

(43)

As D — oo, the moment-generating function Z is exponentially dominated by the saddle point of
S. The equations that define this saddle point also define our DMFT. First of all, we realize that at
the saddle point

1

Ry 5= Rupin (44)
A=
Ry, = Ry 4- (45)
The resulting equations % = 0 give
1 1 &
~ 300+ 552 (Bas(t)) =0 (46)
1 1 &
_ 2 AT 01004\ —
3Cmn(tt)+ 55 (@) =0 7)
v 1 -
2 / o / _
2 Caaltt) + 55 ; (amac )>j 0. (48)

Here, (), represents an average over the single site distribution defined by the moment generating
function Zp;. Similarly, (), is the average over the distribution defined by Za. Regarding the
response functions we have

J

. P
NS> <A(t)A(t’)>j —0 (49)
=1
z‘j -
Rupir + 5 2 (v0®)ar(t)) = (50)
i=1

Lastly, we have a collection of saddle point equations that defines the conjugated order parameters,
which must vanish at the saddle point (Crisanti & Sompolinsky, 2018}; |Bordelon & Pehlevan, [2022])

Cov(t) = Coywy = Caa(t,t') = 0. (51)
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B.1.3 HUBBARD TRANSFORMATION

Since we know that the correlation and response functions must take deterministic values in the limit

D — oo, we can represent the quadratic terms in the log-density in 71, A(t) as linear averages over
Gaussian variables w1 (t), ua (t)

1
exp (— o /dtdt’C’AA@l(t)@l(t')) = <exp ( —i/dt@l(t)ul(t))>u1~jv(o PR (52)

exp <_ % / dtdt'Cy v, (t,t’)A(t)Ntl)) = (exp _i/ th(t)uA(t)>>uA~N<o,cvo,uo>’
(53)

After introducing these Gaussian random variables, we can solve the integrals over the conjugated
fields g, 01, A, and obtain the defining equations for the random variables of interest

i (t) = ua (t) + / 0 Ry 5 (6, )0 (t) (54)
Do = —un(t) — / G Ry 4 (1 )v0(t') — XBCau(t) + 5(1)B, (55)
A(t) = ua(t) + V—Z/dt’Rvm(t,t’)A(t’). (56)

B.1.4 SIMPLIFYING THE RESPONSE FUNCTIONS

From the saddle point equations, we notice that the response functions involve averages over the

conjugated variables {A, 01 }, which we now argue can be replaced as derivatives with respect to the
Hubbard variables. For instance

Ry A(tt) /H dA At )A(t’)<exp (i/th(t) [A(t) —un(t) — V%/dt’Rm (t,t’)A(t’)D>UA
_ /H dA(Q)iA( )A(t)<8uf(t’) exp (i/th(t) [A(t) —ua(t) — :2 /dt R0, (t ')At )])>M
_ / At { (1) [C ] (t',t”)uA(t”)>UA
9A(2)
- <5‘uA(ff’) >uA
(57)
which holds via integration by parts and Stein’s lemma. The same can be said for R, ¢, (t,t’)
Ry, (8,1)) = < gsf((;)) > (58)

B.1.5 LIMITING TIME DYNAMICS

We can recognize that the response functions in the above system will have time-translation invariant
structure so that R(t,t") = R(t — t’). We can therefore take a Fourier transform of these equations,
which gives

1
R0 =~ 59
0 1<(U) ZW+RA7A(W) ( )
-1 -1
RA,A(W) = (1 — Yy Rvoﬂh (w)) (60)
being vy = %. The same for the random variables which define the DMFT equations
iwvg(w) = —u1(w) = By a(w)vo(w) = xCsu(w)Bs + B (61)
1
B — - Csv s . 62
) = oy [~ X () — ()] (62
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For compactness, we introduce a shorthand H(w) = L - Similarly for A(w) we have

iw+Ra (w

Alw) = RA,A(w)uA(w). (63)

The loss is governed by the two-frequency correlation function C, 4, (w,w’) = <UO (w)ve(w’ )>

By calling % Bs - B¢ = « the alignment between source and target task, C., 4, (w,w’) can be derived
as being

Co oo (w0, w) = H(w)H (W) |1+ X2Ci0(w) O (') — ax(Csv(w) T Csv(w’)> + %RA(M)RA(W/)CO,O(W, w’)] .
(64)

By collecting Cp o(w,w’), we get

B H(w)H()
1-— u{lRA(w)RA(w’)H(w)’H(w’)

C'U()v'UU ((JJ7 w/)

1+X2CSU(w)Csv(w/)—ax(C’sv(w)+C’sv(w/))

(65)
It is important to notice that, as soon as we send 9 — 0, which is the feature strength on source
task 77, then x — 0 and we recover the test loss
H(w)H(w")
1— vy ' Ra(w)Ra (W) H(w)H (w')

Clg o (w,w") = (66)

which is the one we would expect in absence of any dependency on the source vector 3, meaning
without any pretraining on 77. So, the interesting setting is the one for which x > 0 for a given
alignment value «. In particular, we would like to study the sign of the term in the brackets [-] of
Eq.when t — oo or, equivalently, when w,w’ — 0.

First, we can compute what the correlation Cl, (w) is

Cop(w) = (v1(w)Bs) = (ur(w)Bs) + Ra(w) (vo(w)Bs) = Ra(w)H(w) [ = xCu(w)]  (67)

R
__a AH . (68)
1+ xRAH
Now to get the final result, we take the w,w’ — 0 limit of the loss C'y, v, (w,w’)
lim Cyyo(t, ) = lim (iw)(iw")Cly.u, (w,w’). (69)
t,t'— 00 w,w’—0
Using the equation
1
RA=1——RAH = lim RAH =15 (70)
12} w—0
and by noticing that
L . W
i ) = B )~ b
we can combine all the results to get the loss at convergence
) _ (iwH)(iwH) 9 0
tlggo Cugwo(t,1) = m [1—2axCs + x°C3,] (72)
2 22,2
(1) x [1- A2, XA (73)

L+xra (14 xe)?

Some key observations about this result:

* The loss only depends on a? rather than « directly. This reflects the symmetry of the
problem 3; — — ;.
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* The loss is always lower than the original loss for any feature learning strength x > 0,
since

2
XVaox
L< (1) {1 1+XV2] < (1—1) (74)
which means that transfer learning has a positive effect in this setting, as soon as feature
learning happens on 77. This is because during pre-training we minimized population risk
by allowing P, — oo on T1. As a consequence, the NTK kernel is a rank-one spiked
kernel in the source direction 3,3, ; there are no spurious noise spikes, and as soon as
a > 0 (nonzero source—target ahgnment) transfer learning cannot hurt.

* When o = 0, meaning the target vector of the downstream task 3; lies in the orthogonal
space w.r.t. 35, we recover the usual £ = 1 — vy learning curve for linear probes (Hastie
et al.,|2022). This happens also when x = 0, meaning if we choose a lazy pretraining on
71. In that case, indeed, the NTK at initialization would have just the bulk structure with
no spike aligned with the source.

* If x — oo, which happens if the feature learning strength on the pretraining vo — oo, then
L=(1-w)1-a?. (75)

B.2 FINITE DATA ON 7;

In the proportional limit, i.e. when vy = % is fixed, the pretraining on 77 learns a noisy version
of the source vector 3, due to finite sample size fluctuations, and modulated by the feature learning
strength o on 77. As a consequence, we expect an interplay between signal and noise components
on the benefits of transfer learning on 75.

First, let’s recall the network definition, which is

VD /1
T)=—a (—=W)zx. 76
f@)=ya’ (5W) (76)
This means that GD dynamics 0t+1 = 0, —ny*>V, L for the parameters collection = Vec{W ,a}
and on a loss function £ = 53 S 1 (yu fu) can be written layer-wise as
W(t) = + R Z a7
t’<t
a(t) = a(0) + 12 Z Wt (78)
t/<t
having defined the fields
1
At)= —=Xw(t) e R 79
(t) 75 (t) (79)
vD
v(t) = B — W) Ta(t) = B —£() =0 ) Calt, 5)h(s) (80)
N’YO s<t
D
h(t) = gXTA(t) cRP. (81)

As a consequence, the feature matrix H () € RNV*P1 ig

H(t) = ( 77’70 Z ) xT (82)

t’<t

K(t) = wH(t) H()
T 2
o s,8'<t (83)
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with
VD .+
§6) = 3 W T (O)als) (84)
Cal(s,s) = %a(s)—ra(s’). (85)
If we proceed by substitution, we get
_ vD T 77 T
g(t)_mw (0)a(0) + W ;W
_ \/E T U T f T ’ h(S/)Th(S)
_T%W (0)a(0) + NW ;h +1 VOTW ();;Qa(s)T
=0 Y _h(s)+1°75 Y > Cls,sE(s)
s<t s<t s'<s
(86)

where we realized that NLﬁWT(O)a(O) = O(4/%) vanishes if we send N — oo at fixed D,

since W (0) and a(0) are uncorrelated at initialization, and that & W T (0)W (0) — Ip for the

h(s) T h(s")
D

same reason. Plus, we know that the correlations Cf (s, s’) = concentrates in the limit
1

D — oo; the same holds for Cy (s, s') = +-a’ (s)a(s’) in the N — oo limit.

Now, we can collect the time indices as rows of matrix variables, for instance & € RT*D and solve
for &, thus getting

2 2 a -1
£ = (I _n %ech) n©h (87)

eRTXT

being C (s,s") = Ci(s,5)O(s — ) the lower-triangular matrix and (©); , = 1(t > s). In the
same way, for the h(t) € RP field, which we can get from a short path integral derivation similarly
to what we have done above (see (Bordelon & Pehlevan, 2025)), we have

t)+ > Ra(t, s)v(s)

s<t (88)
)+ > Ralt,s) (ﬂs —&(s) =1 Y Cals, 3’)h(s’)>

with u(t) ~ GP(0, %CA) and v; = 2. Again, by collecting the time indices we can solve for
h € RT*P

-1
-1
h— (1 +RY (I - n%g‘@Ci) e+ nRZCj) [u + Rgmﬂ (89)
eRTxT
having defined
Ry(t,5) = O(t — s)Ra(t,s) (90)
Ci(s,s') = Culs,5)O(s — ). 1)

By starmg at Eqs m- we realize that, since time operators do not create new spatial direction,
both {&(t), h(t)} € R” fields can only grow in either the source direction 3 or in the uncorrelated
noise dlrectlon u(t), which comes from finite sample fluctuations of X . Consequently, {£(t), h(¢)}
admit the causal decomposition

h(t) = c(t)Bs + Y Ruult, s)u(s) 92)
&(t) = d(t)Bs + D Reult, s)uf(s) (93)
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where we replaced time-dependent scalars {c(t), d(t)}, which are functions of {1, o, v1}. These
represent the projection of the fields along the fixed teacher direction 3, while the { Ry, Re,, } are
the usual casual-time response functions which map the drive u(-) to the features h(-) and &(-).
Precisely

1 -1
Ry, = (I +nRY (I-1*3ect) o+ nRXCi) (94)

2 2 A
Rew =1 (I - ’yOQCh) OR;,,. (95)

In general, deriving the limiting time of the fields {h(t), £(¢)} requires to study the ¢ — oo limit of
correlation and response functions as they appear in Egs. [87][89] which is in principle hard. Because
of that, in the following derivation we will assume the casual decomposition as in Egs.[92] 03] and
recover the feature kernel from that.

B.2.1 ANSATZ ON THE KERNEL STRUCTURE

Given the above discussion, and going back to the kernel expression as in Eq. we can now
assume the kernel at convergence (¢ — co) having the functional form
KX, X)=X

C1 T T C2 T, .8 T T
I+ D(gﬁs + Bsg )+ Dﬁsﬁs + 599 X (96)

where g € RP is a Gaussian vector g | 3, such that Cov(g) = VLCZO, and with C =

1
limy—y 00 P%A(t) - A(t") which concentrates as P; — 0o0. As v — 00, we expect C — 0.

Instead, {c1, ca, c3} are constants which are functions of {1, o, v1 }.

Notice that, differently from before, the kernel depends now on the noise direction g tuned by the
constants {c1,c3}. We do not expect, in general, transfer learning to have a positive effect as soon
as the niose component c3 grow large compared to the signal spike tuned by c,.

Again, we do gradient flow with this final NTK and a loss function £(¢) = ﬁ|X;K1/26(t) -
X, B;|* and X € RP*F:

d . bo.dl .
—B(t)=K'?=— (B, - K'?8(t 97
ZB() (8- K240 ©7)
from which, by defining vy = 3; — K'/23(t) as usual, we get
d o C1 T T Co T C3 T )()(T
vo=—(1+ 5 (98] +8.97) + 588! + oo ) T v +508.  O8)
We can introduce the following fields
1
A=——=X"v, eR?” 99
D) 0 99)
v, = @XA e RP (100)
P,
1
Csv: Bﬂs'vl (101)
1
Cgv = 5,901 (102)
and getting the dynamics
d
Zvo = —vi(t) = (19 + 2B, ) Cuult) = (1B, +€29) Cou (D) + 6B (103)

By enforcing the fields definitions, we can do a path integral derivation similar to the one in Sec.
and so by averaging over the 75 dataset with v, = % fixed, we get the usual MGF of DMFT

Z = [dgexp ( — DS (q)) with g being the collection of correlation and response functions while
S being the DMFT action.
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B.2.2 DMFT ACTION

In this setting, the action takes the form
1 A 1 A 1 N
S=- 5 / dtCly (t)Csy (t) — B / dtCyy (t)Cyu(t) — 3 / dtdt' Cy vy (") Cyg o (£, 1)

— 5 dtdt'Ca a(t,t)Ca () + /dtdt’RAyA(t,t’)Rvoyﬁl (t, 1)

D l/2D
1 1 R
- 5 Z In ZOI |:CS’LH Cgva CA,A7 Csm Cgm Cvo,vm RA,A1| - 5 Z In ZA |:C’U(),’U0 5 Rvo,f)l ) CA,A] .
i=1 =1

(104)

with single site functions

- d’l)od'lA)O d’l)ld'lA)l 1 ’ “ “ ’ 1 A
3017/ o / o exp[ QV/dtdtCA,Avl(t)vl(t) 3 dtCs, (t)Bsv1(2)

X exp | — % / dtCyy (t)gus (t) — % / dtdt’ Cpy vy vo(t)vo(t') — i / dtdt' R, Avo(t)ﬁl(t')]
C1 C3
X exp /dtvo 8tvo +v1 + (\ﬁ \Fﬂé) Co(t) + (\/ZIBS + " g)C’gU(t) - 5(t)ﬂt)]
«exp |i / vy (1) (1)
(105)
and
AdA A
ZA :/ d2d exp l— f/dtdt Clog oo (G E)A(R)A(E) — f/dtdt Cant, t)YAR)A()
- l— i1 / dtdt Ruy o, (8, ) ADA®F) +i / dtADA()
(106)
Again, in the D — oo limit, the saddle point equations which make S locally stationary give
D
1 1
—5Ca(t)+ 55 > <,st1( )> —0 (107)
D
1 1
= 500+ 352 (gui(®)) =0 (108)
1 1 &
_ / . / —
5 Cunan(t:) + 5 ; (wo(tyuo(t)) =0 (109)
v N . N
SCaaltt)+ 2P2;<A(t)A(t)>j -0 (110)
and the same for the response functions
T
Roa+— <A(t)A(t’)> =0 (111)
’ 2 =1 J
i D
Rupir + 75 ; (wo(on(t)) =0 (112)
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being the averages (-), , (-); over the single site distributions Zo; and Zx (factorized over i € {D}
and j € {P»} respectively). At the same time, as usual, the conjugated fields vanish

Coo(t) = Coyvo = Canlt, t') =0. (113)

Since in the Py, D — oo limit with v, = % fixed all the correlation and response functions
concentrate, we can use Hubbard-Stratonovich transformations to linearize the quadratic terms in
Zy1 and Za by introducing some Gaussian fields

1
exp (— oA /dtdt'CA,Aﬁl(t)@l(t/)> = <eXP ( - i/dtﬁl(t)u1(t))>u1NN(0 1 Can)
(114)

uAa NN(OaCUO ,v0 )

exp (— ;/dtdt’cvo,vo(t,t’)A(t)A(t’)> = <e><p ( - i/th(t)UA(t)»

(115)
As a consequence, the DMFT equations that describe the single site stochastic processes are
1
v () = ur (t) + / 'Ry 5(E)oo(t'), wi(t) ~ GP (o, ;CA,A) (116)
2
Opvg = —uq(t) — /dt/RAVA(t/)UO(tI) — (c19 4 285)Csu(t) — (c1B8s + ¢39)Cyu(t) + (1) 5,
117)
1
A =ual®)+ o [ ARy, AE), ust) ~GP(0.Copy). (118)
2

B.2.3 SIMPLIFYING THE RESPONSE FUNCTIONS

As we did in Sec. via integration by parts and Stein’s lemma we can simplify the saddle point
equations for the correlation functions, which become

o 8’1}0(75)
Rvo,ln - <au1(t,>> (119)

[ 0A0)
Rya= <8M<t,)> : (120)

B.2.4 LIMITING TIME DYNAMICS

We notice again that the loss can be obtained from the time-time diagonal of the correlation function
Crowo = (vo(t)vo(t)), which we would like to study at limiting time. Because of that, and by
noticing that the system is time translational invariant, we can take a Fourier transform of Eq.[117]
thus getting

iwvo(w) = —u1 () = Ra(@)0(w) = Cou(@) (e19 + c284) = Cy (@) (18 + es9) + By

1 (121)
= vo(w) = i+ Ba(@) [51: —up(w) — Csu(w)(clg + 8255) - Ogu(w)(clﬁs + ng)]
where we call H(w) = m as before. The same can be done for A(w)
A(w) = Ra(w)ua(w) (122)

and for both the correlations of v; with the signal 3, and the noise g directions of 77, once we define
the alignments

1

as = Bﬁt - Bs (123)
1

Qg = B'Bt 9. (124)
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Recalling their definitions, we get
Cyo(w) = (g1(w)) = gRa(@){v0(w))
= Ra(w)H(w) {ag — 10 (w) — 03Cgv(w)]

(125)
R L7, P
oA [y — €1 Cun ()]
and
Con(w) = (v (@)} = B Ra(w){vo(w) )
= Ra(w)H(w) {as — 20 (w) — chgv(w)} (126)

RaH { (14 csRaH) vy — clRA’Hozg]
(1+ c2RaHt) (1 + csRaH) — GRAH?

which implies
Clg o (W, W) = <v0(w)vo(w/)>

H(w)H() /
1 Vi 'RA(w)Ra (W) H(w)H (w') [1 - (Clag + 02as> (Csv(w) + Csp(w ))

— (10 + ¢35 ) (Con (@) + Coul@)) + (¢ + B)Cl () Cu ()

+ (0103 + 0162) (CSU (w)Cyp (W) + Cop (W) Cyy (w))

+ (C% + C%)Cgv(w)cgv (w’)] .

127)
Now to get the final result, we take the w,w’ — 0 limits. Using the equation
1
Ra=1— —RaAH = lim RAH =15 (128)
1%) w—0
which implies also
lim (iw)H =1—1, (129)
w—0
we can derive the limiting time of correlation functions
V2
Cul0) = 2 [ag — c1Co (0 130
0 = T [ty = 10 (0) (130)
1 s —
Cn(0) = LA o) s — Cutata] (131)

(14 cova) (1 4 cava) — civs

Because of the dependency of many variables, let’s study the loss in the special case where agy = 1
and oy = 0. In this case, one obtains the following loss

N2 2 9
6:(1—112)(1+ch[2))2 + vy (132)
with
D = (14 cora) (1 + c3v) — c3va (133)
12 (1 + CgVQ)
Cyp(0) = 134
(0) (14 cova) (1 + c3va) — c3v2 (134)
ClVg
Cyu(0) = — 5 - (135)

(1+ cova) (1 + carn) — 22
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It is now interesting to distinguish between some limiting cases in the overparameterized setting
where v5 € [0, 1]. First of all, for the kernel to be PSD it is sufficient to restrict to the span {3, g},
from which we get the conditions

(I14+c2)(1+c3) > C%;

1+co >0

* Baseline (c1 = ¢o = ¢35 = 0): we recover

0.8

0.6

0.4

0.2

0.0

£:1—V2

as the reference loss of a linear probe with no pretraining on 7.

If the signal term ¢, = 0, then
L=(1-

— No crosstalk (¢; = 0), then

(1 + c3v2)? + v

VQ)

£:1—V2,

(14 cavg — 33

(137)
225 (138)
Ves (139)

so the noise has no effect on the baseline loss in this aligned setting (o = 0, s = 1).

In this setting, crosstalk proportional to ¢; can never actually help because of PSD

conditions on the kernel, which means that ¢; # 0 has always a negative effect on
transfer learning. One would need oy # 0 to get a non empty range of values for

which ¢; can actually help.

---- No pre-training
c1=0

c1=0.5
c1=0.75

=1

0.8

0.6

0.4

0.2

- No pre-training
c3=0
c3=1
c3=5
c3=10

0.6 0.8 1.0

)

(@) {c2 =0,c3 = 0.5}

0.0

0.0

0.6 0.8 1.0

V2

(b) {c1 = 0.5,¢0 = 0}

Figure 6: Fine-tuning from an adaptive kernel with limited data on source task (v; finite): loss vs
downstream data vy = P»/D. Dashed black: no pre-training (linear probe). In absence of signal
from 77 (i.e., ca = 0) (a) crosstalk ¢; has a negative effect on transfer since oy = 0; (b) noise
c3 uncorrelated with the target acts has a regularization effect on the loss, pushing it towards the
baseline £L =1 — 1.

If the crosstalk term ¢; = 0, then

L=(1-m);

and the loss is independent on the noise c3, while the signal ca > 0 strictly helps.

If the noise term c3 = 0, then

£:(17V2)<

1
- 140
1+ 1/202)2 ( )
1 2.2
+av) (141)

1+ covg — 2v2)2

and the loss is a monotonically increasing function of the crosstalk term ¢y # 0.
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-=- No pre-training
— =0

-~ No pre-training -——- No pre-training
— =0 . — =0
— =1 08 — o1
— =5 — =5
A — =10

— =10

(a) {CQ = 1, C3 = 0} (b) {Cl = O7 C3 = 05} (C) {Cl = 05, Co2 — 05}

Figure 7: Fine-tuning from an adaptive kernel with limited data on source task (v; finite): loss vs
downstream data o = P»/D. Dashed black: no pre-training (linear probe). No crosstalk (¢; = 0):
(a) positive signal co > 0 from 77 strictly lowers the loss compared to the baseline; (b) at fixed
signal, curves collapse for any noise c3, since it is uncorrelated with the target direction in this case
(ag = 0).

B.3 FEATURE LEARNING STRENGTH 75 — 00 ON T

If, at initialization Wy, a¢ are small on 77, under gradient flow

OH(WW'T —aa’)=0 (142)
which, if we choose exactly WoW,| = aga, , implies that W = av . Since f = %X 35, with
X € RP*P then we can solve for v € R” and studying the dynamics

op(t) = —%(XTX)(v(t) —Bs) (143)

from which the feature kernel can be derived as M = WTW ‘“‘ vv . By calling vy(t) =
Bs — v(t), we get

dvo(t) = —v1(?) (144)
A(t) = %Xvo(t) e RN (145)
vi(t) = ‘FXTA( t) € RP. (146)

With a short path integral (or cavity) derivation similar to what we did in previous sections, it is pos-
sible to exploit translational invariance of the model, thus getting the DMFT equations that describe
the single site stochastic processes. In the current setting, those are

vi(t) = ur(t) + / A Ra(tt)oo(t), wi(t) ~GP(0, %CA) (147)
Ovo(t) = —uq(t) — /dt’RA(t,t’)vo(t’) +6(t) Bs (148)
At) = ual(t) + yil / dt'Ror () AW),  ua(t) ~ GP(0,Coo) (149)
where, as usual if P; = 11 D, then
P
S <A > (150)
]:1
1 D
Coo(t,t") Z< t)vo(t > (151)
=1
_/0A)
Ra(t.t) = (5 Sunl?) > (152)
7 Ouo(t)
Roa(t,t') _< 0 > (153)
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being the averages respectively over
AdA R 1
ZA = / dd< exp <+i/th(t) [A(t) —up(t) — — /dt’Rm (t,t’)A(t’)D>
2 151
and
dvodd dv1do
Zo1 = / todty / v ”1<exp [+i / dtin (1) (01 (1) — wa (1) - / dt’RA(t,t’)uo(t’))D
T 2

X exp [—i—i/dt 0o (t) <8tv0(t) + vl(t)>.

ua~N(0,Co)
(154)

u1~N(O,ﬁCA)

(155)
Taking a Fourier transform the DMFT equations simplify
(@) = = [ B — w1 ()] (156)
YO o+ Raw) 17 T
ua(w)
A = 157
W=7 TH(w) (157
1
_ _ - _ 158
Foi(w) iw+ Ra(w) H(w) (158)
1
R e 159
and the loss function can be written as
Coolw,w') = (vo(w)vo(w))
1 (160)
=H(w)H(W) |1+ V—C’O,O(w, W)RA(W)RA (W)
1
while the correlation
Ca(w,w) = { AlwW)A(W
aw.e) = (AWAW)) .
= Ra(w)Ra(w')Coo(w,w").
B.3.1 LIMITING TIME DYNAMICS ON 73
If 4 € [0, 1], then from the equation
1 RA
=1-—— 162
Ba 1w+ Ra (162)

Vi
1—V1 ’

we find that, at limiting time Ra (0) =
Bs — v(t) we get

From the definition vy (t) =

v = lim B — iwvp(w)
w—0
= ul)i_)rno(l —iwH(w))Bs + iwH(w)u, (163)
~vBs +Vrn(l—w)g

by defining g ~ N(0, I) as Gaussian vector uncorrelated with the source 3s. As a consequence,
the kernel is

vo! = [Vl/gs +/vi(l— 1/1)9} |:V1ﬂs +/vi(l— Vl)g} T- (164)
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With this kernel, as we did above, we would now like to study a fine-tuned model with fixed pre-
trained features and a linear readout that has to align with the downstream task 7 identified by a

target vector 3; € RP.

We call vy = ,Bt — K'/2/3(t) and get the dynamics

drvg = v1/3( )/38+V1 V1<1 - ’/l)( v1g( )ﬁs+cv1ﬁ( )9 >+V1(1_V1)Cv1g(ﬁ)g}+

where
1
A(t) = —— Xwvy(t) € R

VD
v, = @XA e RP
Py

1

Cvlﬁ = Evl . Bs

1
CUlg -

ag=—0t-9
As a consequence

0rCuy(t) = *Vl{ Conp(t) + V11 (T = v1)Clyy (1) ] + ad(t)

OiCuyg(t) = —v/m1(T = 1) [11Cu, (1) + Vi (L= 11)Coy (8)] + ().
At this point, by realizing through DMFT that
v (t) = w(t) + /dt’RA(t, t)vo(t')
and by taking a Fourier transform of Eqs. [T72] [T73|we get

ivaog( )=—-1 {Vlcvoﬁ ) + mcvog } +as
1wCyyq(w) = —v/11(1 —11) {Vlcvoﬁ + V1 (1= 11)Clyg(w) } oy

with Ra = 1. By solving the above system at limiting time we get that

vias + /(1 —v)ayg

Cvoﬁ (0) -

1%
vi(l—1q) (Vlozs + (1l - 1/1)049>

2
LS

Cvog(o) =

From these, the loss function is

1— 2
L= lim iwiw'vy- vy =1— (s + Vil Vl)ag)
w,w’—0 141

We list some interesting conclusions that can be derived in this setting.

5(t)Be

(165)

(166)

(167)
(168)
(169)
(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

* The loss, as well as the correlation functions, do not depend on v5 in this setting. This
is reasonable, since any dependence on the amount of P, data only comes from how well
you can estimate a single scalar coefficient in this rank-1 feature, and that vanishes as the

sample size P, grows.
e Asv; — 0, then £ = 17042.

e In the limit where v; = 1 we find £ = 1 — o2, which is what one would expect when
the learned feature after 77 is a rank-1 along ,88 In this case, indeed, the best predictor

explains o fraction of y2’s variance, so the residual variance is exactly 1 — o2

eIfag =0,then L =1— v1a2 is a decreasing function of vy; if g = 0, then £ is an

increasing function of v1.
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B.4 FINE-TUNING ON POLYNOMIAL TASKS

In this small section, we make comparison between the takes of our linear models of fine-tuning, and
what actually happens when training a non-linear model on polynomial tasks, from an easy source
to a hard target. In Fig. [§|we show that for a data-rich source fine-tuning is always beneficial, while
for a data-poor source feature learning on 77 and related finite-sample size fluctuations can harm
performance on the downstream task.

No pre-training 10 —— No pre-training
y1=0.1 \ — y1=1.0
y1=0.5 0.9 — y1=5.0

y1=1.0 —— y1=10.0
¥1=20.0

N~—

V2 V2
@v1 =2 (b)vy =0.1

Figure 8: Test loss vs target data v for different pre-training richness levels ;. Source task is
Hez(8s - x), target task is Hes(3: - «) with 3, - B; = 0.8. (a) When source task is data-rich, fine-
tuning is always beneficial and the higher 1, the higher the gain. (b) When source task is data-poor,
high feature learning on 77 can be harmful comparing to no-pretraining.

C SETTING AND RELATED WORKS FOR BAYESIAN NN

In this section, we would like to study the effect of transfer learning for infinitely wide Bayesian
neural networks. Here, we suppose that a two layer NN with parameters 8 = Vec{W,w} has to

learn a target task 75 composed of P, input-output pairs {x,, y#}fjil, where the input vector is
z, € RP, {D, P} = Ox(1) are fixed, and the network width N is going to infinity. The case
where the solution space is sampled from a posterior that is a Gibbs distribution with generic log-
likelihood £(6, 7)) and a Gaussian prior £||6/|? has been studied in (Lauditi et al., 2025). Here, the
purpose is to integrate the effect of transfer learning from a source task 7; with the effect of feature

learning on 7.

We consider the weights @ = Vec{W ,w} of a pre-trained model on T; = {Z,,, 5, } -, as quenched
disorder variables for the target task 7, since these weights adapt only on 77, while the target task
variables are annealed & = Vec{W ,w}. The quantity of interest we would like to compute is the
free energy

= . 1 -
P
o1 BN~s Loz 9 37112
== Jim SEw.pem)n [/d" exp (‘2/;5(9’75) = 5lIl° = SlIW = WIF|.

(180)

Here, the dependency on the source weights W € R *P appears through an elastic coupling § that

acts as a form of regularization for the target task weights W € RY*P of T;. To guarantee that the
source configuration effectively solved 77, we take the expectation over the posterior distribution of
the source weights as sampled from the Gibbs measure

. 1 N 1
p(OIT)) = 5 exp (—52” > L6.7) - 2||¢9|2> : (181

=—e
Z =

32



Under review as a conference paper at ICLR 2026

As clarified in the main text, both {J0,7} = ©n(1) in the mean-field parameterization act as
richness parameters that tune the level of feature learning strength, respectively on 77 and 75 (Bor-
delon & Pehlevan, [2022} Bordelon et al.,2024b; |[Lauditi et al., 2025)). This is the reason why, in our
theory, representation learning remains an O (1) effect at infinite width even when P = Oy (1),
contrary to what would happen in the theories of (Li & Sompolinsky, 2021} [Pacelli et al., [2023)),
whose infinitely overparameterized limit « = P/N — 0 recovers the NNGP lazy kernel at infinite
width.

The way on constraining the target weights to the source weights through an elastic coupling as in
Eq. equation[T80] was first proposed by (Ingrosso et al.,[2025)) in the context of transfer learning and
then studied by (Shan et al.| [2025)) in the continual learning setting. This is common practice in the
theory of spin glasses, where the form of Eq. equation [I80]is known under the name of Franz-Parisi
potential (Franz & Parisi, [1995)), used to bias the posterior measure through metastable states in the
energy landscape. In the context of machine learning theory, a line of works (Baldassi et al.| 2015}
20165 2019; 2021} |2022)) focused on shallow architectures, made use of the Franz-Parisi potential
in order to target subdominant flat regions of solutions in the loss landscape of a given task 7.
Here, we stress that our theory of transfer learning described by Eq. equation[T80] leads to different
results than the theory of (Ingrosso et al., 2025). The authors of (Ingrosso et al., 2025) focused on a
proportional limit where both the size of the training sets (P;, P in our notation) and the width N
go to infinity with some fixed ratios a; = P;/N and s = P»/N. The network parameterization
they study is the standard NTK parameterization. In order to be able to study the proportional limit,
they make a Gaussian Equivalence assumption for non-linear activation functions. Their theory
predicts that, at finite «, the effect of transfer learning occurs due to a renormalization effect of a
fixed source-target kernel, accordingly to the Bayesian theories of (L1 & Sompolinsky, |2021; [Pacelli
et al.| [2023). More importantly, in the o — 0 overparameterized limit we are considering here, their
theory predicts that TL has no effect on learning, since they recover the NNGP lazy kernel in this
limit.

On the contrary, here we study the effect of mean-field (1P) parameterization to transfer learning
in the overparameterized limit. As clarified by Eq. equation we scale the likelihood by N in
order to ensure we get a non-trivial contribution from the likelihood in the infinite width limit, and
we scale the network readout with v9/N. The form of our posterior combined with the parame-
terization we choose allows us to get a theory of feature learning where kernels adapt to data in a
non-trivial manner even when P = ©(1). In fact, as clarified in (Lauditi et al., 2025), the posterior
of Eq. equation[I8T]do not recover the NNGP lazy kernel, and the effect of transfer learning remains
non-negligible in our theory at finite P. Our theory do not require any Gaussian Equivalence as-
sumptions on the pre-activation distribution. Indeed, the combined effect of feature and transfer
learning leads to non-Gaussian pre-activations. We get a set of saddle point equations for the ker-
nels of both source (77) and downstream (72) tasks that have to be solved self-consistently. Thus,
the kernels in our theory are not fixed but adapt to data, because representation learning shapes the
pre-activation distribution.
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D THEORETICAL DERIVATION OF THE FREE ENERGY

Here, we proceed in reporting the actual computation of the free energy in Eq. equation 180} In order
to compute the average over the source posterior we use the replica trick In Z = lim,,_,o -2, and
we introduce a set of n replicas a € {n} for the source weights {W*, w“}. As a consequence, we
get

I : Np2 . NG
EZ" = / AW dw | [ dW“dw"dfdf; exp —% S U= - g% SO Ul

a=1 nET a=1 peTs

1 & 1« 1 1= § -
exp <—QZ|W[L|2—2Z|wa2—2|w|2—2|W2—22|Wa—W|2>
a=1 a=1 a=1
R _ 2 n R 1 1 -
/ II dnsdng T] dhpdhexp (0> ks (hﬁ—\/ﬁ :cu)—HZh ( \/EW%)

a,pn€T HET2 a=1peTs neT

[dizdfues (32 fr (Vs —wt o) + X Fu (N - w0 6(R,)
a,u€T2 HETL
(182)

Step 1. The first step consists in integrating out over W and w®. We will write these as averages
over a standard normal matrices (the prior)

Ewa~ar(o,(145)-1)exp | W W — 72 Z hZW“a}H
a peT:
1 5 5 L
=exp | —5——= > hL-hlCu +—=|W[—i he - h,
21+6) o= 2(1+6) L+6 =
fa a a N fa faga
Ewenno)exp | = Y fio(hs) -w* | =exp ?Z > fefees, | . (183)

a peET: a p,veTs

We see that we must introduce the kernels anq their dual variables {@ZW P v Y uveTs ae{n} as order
parameters, but these are decoupled over replica index

1
o, = ok - olht) (184)

and enforce their definitions through some Dirac-delta functions

= [ama (o, Lomgron) = [ ity (iig, (o, Lo -on))

_ (185)
Step 2: integrate over W and w
on - 5%n
Ewexp | —— W + —— = |W Z h Wz,
2 2(149) \FueTluTz
]. fa o
~n—0 €XP _5 Z C/,Luh;t ~h,
preT1UT2
S _ N -SR-S

EENN(OJ) exp | — Z fu¢(hu) W | = €exp 5 Z ;qucbuu (186)
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Here, similarly as we did in Eq. equation[I84] we enforce the definitions of the source task kernels
{®,,, @, }weT: » which do not carry any replica index.

Step 3: Factorize everything across the /N hidden neurons

P . R =2 _ 2
(Z™) m/d@d(i)df#dfﬂ [ doddedfdf exp —&2% S U=yl - % SN I )

a=1 nETL a peTs

exp (N’Yo ST fare A NS fufu + % S b 00, + % 3 <i>W<i>W>
pa p v

apv

N co Faa N A & _
exp (2 Z ufu (I)HV + ) Z Sufu®uv + Nhleoint>
Nz

apv

(187)

where Z;,:n: is the joint single-site density that carries contributions from both 77 and 75. It has the
form

Zjoint :/dhzdhzdhudhu exp | — 1+ 5 Z h“ha _ Z¢ ha ha (ba
ll#l/€7—2 alw
exp | - > - Z¢ ) > " hyh,
2 1+0
prvETLUT, an

exp ( Zh“ha —&—iZIAz,LhM) .
o
(188)

Notice that, if § = 0 in Eq. equation [188] the single site densities on 77 and 72 are perfectly
decoupled as it should be, since no transfer learning effect would come into play. Instead, as soon
as we keep d > 0, there is an interaction between the fields of the source task h and the dual fields

of the target task he that will modify the p(h®) distribution as we show in the next section.

D.1 RS ANSATZ

Step 3: Staring at these equations the only solution that makes sense is the Replica-Symmetric
solution ¢ = ® and f* = f. Plugging this ansatz into the expressions and taking the n — 0 limit,
we get

_ 2 1 2 2 — 2 S
In Zjoint = In / dhdhesp | =5 huhl,CW— 3 bh)¢(h) B +i S huhy

pr €T UTs ;weTl neTIUTS
X exp (n In Z, [ﬁ])
=InZ +Infl+n <1n22[ﬁ]>1] ~InZ +n <1nZg[i_L]>1

where In Z, is the single site density for task 75

_ . 1 - 1
Z,[h] :/dhudh#exp ) > hyh Crw = 5 > ¢(h)o(h
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— R S
X exp (z Zhuhu — zm Z hﬂhu>
Iz Iz
1+0 o - 0 - 1 .
= /dhueXP _%Z (hu 75]1 >C v (h,, - Hhu> ) Z O(y.) P ()P

ng
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Again, if 6 = 0, there would be no dependency on the source task 7; in Eq. equation We
stress that transfer learning has the effect of shifting and scaling all the moments of the distribution
p(h) towards p(h) as § becomes larger and larger, while feature learning effect on Eq. equation
appear through the contribution of the non-Gaussian exponent proportional to the dual kernel b,

D.2 SADDLE POINT EQUATIONS

In the infinite width N — oo limit the replicated action of Eq. equation[I87]is dominated by the set
of kernels {®, ®} € T; and {®, ®} € 75 that makes the action S locally stationary (55 = 0)

(zm) = /dédcidfdfexp (Nsl({(i),(i)})> [/d@dédfdfexp (NSQ({<I>,«1>}))]"
~ _ A A _ A ~2 _
S1 = %Z (i)uy‘fplw + %Z fuf,,(b“y + Y0 Z fﬂf/t — % Z[f” _ glt]Q +1nZ;
pv py u 1
Z = /dﬁﬂdﬁﬂ exp (; > @, 0(h)d(hy) - %Z Tl G+ Z#B#>
pv py u

~ ~ A 2 A —
S =203 fufut 5 3 Fufottus — PSP 5 S b + (0 2[R,
I 1

nv nv
R 1 . - 1 - . 2 17
2, = / dhyudh,, exp (—Mhuhucﬂy -3 Z B0 d(h,)b(hy) + i Z ha(hy — 6(1+ ) lhm.)
(189)

From these definitions, the saddle point equations give

os 1. 1 -

o= 2% 3 (o0em), + 0w

0s 1 1

oe = 3% = 5 (0o ), =0

aS A

ﬁ = 'YOfu - B'Yg[fu - yu] =0

o

08 P

A = Z¢;,wfu +’YOf;,L =0

afl‘« v

95 - 1. 4

%Z(I);Lu'f'ifufuzo (190)

D.3 REGRESSION TASKS

These equations are generic for any loss function £(6, T). In the following, for simplicity, we will
specialize to regression problems where £(6,7) = 1 25:1( fu — yu)? for both source and target

tasks. In this particular case, one can solve for both { fu, fu} and {f,, fu} explicitly, since the
squared-error loss (SE) allows to integrate out the last layer readouts. From that, one gets for the
dual source and target kernels

d— —73(% + é)flggT (é + &})71
$ — ﬂg(é + ¢)>_1ny (é + cb)_l. (191)

Notice that the two equations are functionally equivalent, but what changes is the dependency on
different task labels {g} € 71 vs {y} € Ta, different levels of feature learning strength in principle
{%0,70}, and especially different adaptive kernels ® vs P.
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D.4 GENERALIZATION ERROR

Knowing the form of the transfer free energy of Eq. equation[I80] makes it easy to compute the test
error of the target model on a new (unseen) example (g, yo). For a generic loss, this is defined as

€g(%0,90) = Ewopia171) (£(0;{Z0, %0 })) op(o172,W) (192)

and can be easily computed by realizing that, if we introduce a “test-point coupling” € into the
transfer free energy by adding a weighted loss for the unseen sample (g, yo), we get an extended
free energy

. 1 BN~2
Fle) == lim <Ep g7 n / dO exp | —— | Y L(6;T2) + eL(6: {zo. m0})
HET2
1 1 -
—Zl@ 2 Y o 2
<oxp (= l61F - 51w - w?)
from which the test loss can be easily computed as
2 9F(e)
€g = =5 . (193)
I 57{% Oe e=0
For regression task and SE loss, consistently with (Lauditi et al.,2025), this gives the kernel predictor
I,,7-1 \2
oo 0) = (w0~ 2 Bos [ + 5] ) (194)
nv
being ®(7, the train-test kernel from the saddle point equation
@op = (6006 a1 (195)

similarly to Eq. equation[T90]for the train kernel. We explicitly derive the close form of the train-test
kernel for linear networks in the following Sec.{D.5]

Test Loss

°
@
N

0.31

Figure 9: Langevin simulations of a N = 20000 two-layer ReLU network as a function of § and
for different feature learning strength values . Test loss at convergence: the network is trained for
10° and averaged after t = 5 x 10* every 103 steps. Lazy learning are smallest benefit from transfer
learning. Optimal intermediate value of q.

D.5 LINEAR NETWORKS

If we specialize to linear networks where ¢(h) = h and to regression tasks, the target action can be
solved explicitly. Indeed, this is given by

1 5 %, T I\~ h
Sy = —§§¢W¢>W + 5y (<I> + B) y — (In Z5[h])y (196)
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where the single-site remains now Gaussian even after feature learning, being

. 1 . 1 . ~— -
Z, = /dhudhu exp (—MthUCW ) > Suuhuhy, +iY  hy(hy = 6(1+6) 1hu)> :
pv Iz

197
Here, we can think h, h as jointly Gaussian with
h
[h] ~N(p, X)
_[a+otc —id) T [~is(1 +8) A s_[a+o7tC i -
=1 —ir & 0 S RS | -
The mean and covariance are equal to
q-1 _ -1
(h).p, =6 {(1 TP Youtm @} C~'h, Cov.;(h) = {(1 TP Youtm @} . (198)

We can thus compute the correlation of h|h as (hh'") = (h) (h)" + Cov(h)
~1—1 1—1 o a1
(RhT) = [0+ 0)C 48] 42 [1+0)C 48] CTRpRLCT 1490 + @]
(199)

Now, we must perform the covariance of ii using Z;. Note that this is technically h restricted to the
second dataset 5. The full covariance of h for both 77 U 75 has the structure
a -1 a -1
(hRT) = {C;fm.z + {‘(I)’ 3” = Crun, {I + E; g] CTM-Q} . (200)

We are interested in the lower (2, 2) block of this matrix, which gives the Schur complement

I A1 -1
(hrht,) = {[0_1]22 —[C7x ([C_l]u + ‘I’) [C™ iz } : (201)
Thus we are left with the final equations for the target kernels

~1—1
® = [(1+0)C7! + 8

+ 62 [(1 +6)Cr) + <i>] o c;! {[C—l]22 —[C Y ([C—l] et @)71 [0—1}12} c;! [(1 +6)Cy) + <i>} o

=2 (@+5'0) yy (@ +5) (203)

being the action

Sy =— %Tr(iﬂi)) + %gyT ((I) + é)ily + %lndet [I—I— (1(;_’?“5><f}
52

~1-1 _
-5 Te( {(cﬁ)—l (1+8)(Cr) " + @] (CB)—l} (h7:RT)] ).
The saddle point equations for the source kernels were firstly derived in (Lauditi et al.l [2025) and
are instead

3 [C;ll + &}71

=R (o451 gy (@+pT)". (204)
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D.5.1 TRAIN-TEST ADAPTIVE KERNELS

In order to compute the test-train kernel to get the network predictor in the linear case, we need to
compute @7 = (hoh") = (ho)(h") + Cov(hg, h ). The covariance is computed by resorting to
the single site extended to the test point with index 0

) Ps | P . Cpp N1 . | P A
2t [ [onon (3 3 (= pgh) (£25)7 (= i) -5 3 hunbe)

pr=0 pr=1
(205)
from which
00\ 206
— ~1 v

[A_<(1+n)C +(0 q))> ] (206)

and Cov(hg,h") = Agr. It remains to compute
< (o). n ) — 9 ( Aoo(Coo ho + Cor h) + Aor (Crgho + Crrh) ) (207)

<h>|ﬁ ATO(C&)lhO + C(;Tlh) + ATT(C;(}hO + C;vllwh)

where the subscript 0 refers to the test point while 7 to the training points P» € 7. From the above
equation, we get

(ho).ia (BT =n*Aoo (Ci'hohq it + Cgthoh T Crg + Cthh] Cii' + CthhT €1 ) Aor

+ 12800 (Cihoh Cgt + Ci'hoh Ct + Cithb] Ciif + CithRT Crf ) A

+ 12 Aor (Crohohq Coot + Crghoh” Cr + Crhhh{ Cyil + CrthhT Cri ) Aoy

-1

+ % Aor (C;(}EOROT Cyt + Crlhoh Cpl + Crhhh] Cot + C;}RETCTT)

(208)

As we did for the train kernels in the previous section, we are now interested in the lower (2, 2) block
of each kernel matrix (hh )7, in Eq. equation 208} which would give the source kernel predictions
of train and test kernels on 73, having learned the source task 7.

[ ]
" 0.8 E EnE
2 2 i
o s = |
0.7 g = m» |
@ | |
= 0.6 H B E
u | |
05
: ol Y
04 & npE u
0 2 4 6 8 10 _— " =
6
m =0 m = 0.5 m = 0.75 m=1
(a) Alignment and Elastic Term Improve
Transfer (b) Adaptive Feature Kernels

Figure 10: The benefit of transfer learning increases with the similarity between source and target
tasks. (a) Test losses of a two-layer linear model as a function of the elastic coupling ¢ for different
levels « of task-similarity. Data are generated from an isotropic Gaussian distribution & ~ N (0, I).
Target vector is given by a linear model y = w - « with ||w||]2 = 1. Here, the target depends
on the source task vector 3 (such that ||3||2 = 1) by the relation w = a3 + v/1 — a?w, where
w -w, = 0. Solid lines taken from Langevin dynamics on N = 20000 network, black dashed lines
from Bayesian theory. (b) Target kernels as a function of task similarity m =y - y.

In this setting, studying the test loss as given by Sec. as a function of § requires to itera-
tively solve the saddle point equations equation 204] after having the adaptive source kernel values

{®, &)} € 7. Fig. |§|shows that, depending on the feature strength - value on 75, transfer learning
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Figure 11: Test losses as a function of the elastic constraint 7. Source task is a regression on two
classes (0/1) of MNIST with P; = 400 labels 4 € {—1,1}" and richness 79 = 0.5. Target
task is a regression on two classes of Fashion MNIST (2/5) with P, = 50 data points and labels
y € {—1,1}L for different .

(@) = 0,70 = 0.1 (b) 5 = 10,70 = 2.0

Figure 12: Kernels clustered by labels y = {41} (P, = 50 Fashion-MNIST data from classes
2/5) improve their task alignment with § > 0 and high 7. “Init” represents the Gram matrix of
data, "Theory” and “Expt” refers to the adaptive feature kernels ®.

advantage and so the dependency of test loss to 6 may vary. When ~yq is small and the target network
is almost lazy on 7s, transfer learning has a minor effect in improving the test performance. There
exists some optimal values of feature learning strength ¢ and § (which tunes how much the target
network relies on source task features) which optimizes the network performance. In Fig. |12] we
clearly show how the clustering of data points by labels pops out in the kernel appearance as soon
as we both tune 7 and 6.

D.5.2 DECOUPLED CruT;

A special case we can study is the one in which data are whitened, and uncorrelated across both
source and target tasks, meaning

I 0] (209)

Criur = [0 I
In this case, we have
(hhT) =T (210)
which simplifies the kernel saddle points on target task as
11 12
& — [(1+6)I+<I>} + 62 [(1+6)I+@]
=R (@+pT) yy (@+pT)". @11)

As mentioned in the main text, since in this case the kernel only grow in the rank-one ny direction,
by solving for the overlaps ® = ¢pyy " and @ = pyy ', we get

$=(1+0+¢) 7 +5(1+5+¢) 7 (212)
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and similarly that

o=-B"+¢) % (213)

In the same way, the saddle point equations for the source task 77 can be simplified in the source
direction gy ', giving

é=(1+¢)!
o= (B +6) 2 (214)

Interestingly, here, when § — oo, since source and target tasks are uncorrelated, then ¢ = 1, which
means that the source kernel @ is the identity along the target direction y as expected.

D.5.3 SAME DATA ON BOTH TASKS

Another relevant case is the one where both source and target tasks share the same data and labels.
If data are whitened, then

s aq—1
I I = I I b &
GmBZL J,®M=L-ij@ ﬂ (215)
which means
_ 2y -1 2 Ay -1
(hoho) =~ (T+@) ®+1=(1+@) 216)
giving
-1 -1 Ay —1 -1
P = [(1+5)I+<1>} 482 [(1 +5)I+<1>} (I+¢») [(1 +5)I+<1>} .
Again, we can solve for the overlaps, knowing that for 77
6=(1+0)" (218)
6=-WB+0)2 (219)
For 75 we get
p=1+06+¢) ' +6%p(1+35+¢)72 (220)
o=—%B"+o) % (221)

Contrary to the previous uncorrelated case, here, when the elastic constraint § — oo, then ¢ = q_S
and the target kernel converges to the source kernel as expected.

D.5.4 SAME DATA, DIFFERENT LABELS
Suppose again that

I ] (222)

Crium = [I I

but that in principle, in this case,

From the saddle point equations for 77, we know that
=1+ (¢ 1)y, (223)
and since the saddle point equations for 75 are
e=[tnr+@] [0 tnIre] T+ @-Dyel) [0 ]
® = —13(®) 'yoys (2) 7 (224)
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4x10°

3 x10°

2 x10°

Figure 13: Transfer learning for linear networks trained on whitened data C' = I increases the
overlap ¢ with the label direction y ' @y = ¢ if the source is richer than the target model. (a)/(b)
Overlaps ¢ vs elastic constraint § for a two-layer linear model trained on P = 8 patterns with
y = {£1}. Source network is pre-trained on the same data as the target, with a richness parameter

~s = 5.0. Solid lines taken from Langevin dynamics on N = 20000 network, dashed lines from the
Bayesian theory. (c)/(d) Examples of learned kernels as a function of the elastic coupling 4.

oo
e

@y =7

5=10

© s <n @ ys <7
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i
W

Figure 14: Kernels (theory vs experiments) as a function of the elastic constraint § with the source
task (71). When v, = s, there exists an optimal ¢ value for alignment with 7, since in the target
task you saw twice the data than in 73.

one realizes that the only non-trivial contributions to ® comes from the span{y;, y=}, so in principle
one can decompose

®=al+byry +c(yiys +y2y)) +dysys (225)
which means
d—al+[y1 wl|” © vy (226)
1 2 c d y;’
from which
P! = (aI + uC’uT)f1 =a 'T—a2u (Cil + a*lu—ru)71 u' (227)
and
i [T
'y =aly—aPu(C +auu) ! [yllyz} (228)

being le y2 = m. It turns out, one can solve for {a, b, ¢, d} self consistently and for different values
of m.
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