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ABSTRACT

We develop a theory of transfer learning in infinitely wide neural networks under
gradient flow that quantifies when pretraining on a source task improves gener-
alization on a target task. We analyze both (i) fine-tuning, when the downstream
predictor is trained on top of source-induced features and (ii) a jointly rich setting,
where both pretraining and downstream tasks can operate in a feature learning
regime, but the downstream model is initialized with the features obtained after
pre-training. In this setup, the summary statistics of randomly initialized networks
after a rich pre-training are adaptive kernels which depend on both source data and
labels. For (i), we analyze the performance of a readout for different pretraining
data regimes. For (ii), the summary statistics after learning the target task are still
adaptive kernels with features from both source and target tasks. We test our the-
ory on linear and polynomial regression tasks as well as real datasets. Our theory
allows interpretable conclusions on performance, which depend on the amount of
data on both tasks, the alignment between tasks, and the feature learning strength.

1 INTRODUCTION

Modern deep-learning models achieve remarkable accuracy by scaling parameters, computation, and
data (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022). Yet collecting such large
volumes of data is prohibitively expensive or outright impossible in many settings. Transfer learning
offers a principled escape from this data bottleneck: by repurposing representations learned on data-
rich source tasks, it reduces sample complexity while improving generalization (Tan et al., 2018;
Brown et al., 2020; Li et al., 2020; Isik et al., 2025). Therefore, understanding which properties of
the pretraining and downstream data distributions enable effective transfer is critical for modern deep
learning. Despite its empirical success, transfer learning still lacks a principled theory that predicts
when it will succeed. In this paper, we present a novel theory of transfer learning in multi-layer
neural networks that elucidate the rich phenomenology of transfer learning.

Mathematically analyzing transfer learning is challenging, in part because representation learning
in generic neural networks remains poorly understood. To overcome this difficulty, we focus on
transfer after representation learning in infinite-width neural networks in the µP/mean-field pa-
rameterization (Song et al., 2018a; Chizat & Bach, 2018; Yang & Hu, 2021; Bordelon & Pehlevan,
2023). In this parameterization, feature learning is preserved even as the width of the network goes
to infinity. We focus on supervised learning for both source and target tasks and derive results for
the network performance after each phase of transfer learning. In particular, we analyze (1) linear
toy models of fine-tuning with adaptive kernels after feature learning on source task and (2) non-
linear models of transfer learning when both source and target tasks can operate in a feature learning
regime. Our theory enables accurate predictions of the resulting network models for wide but finite
neural networks.

Concretely, the contributions of this work are the following:

• We develop theory of transfer learning for randomly initialized infinite width MLPs. This
theory, in its most general form, allows for arbitrary laziness on task-1 (pre) or task-2 (post)
training. In general (for models with more than one hidden layer), this theory is quite com-
plex and involves non-markovian history dependence during both phases of optimization.
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• To gain more analytical tractability we specialize our theory to two layer neural networks
and investigate transfer learning in this setting. We analyze both fine tuning, where training
on the second task is lazy, and rich learning where training on the second task can cause
large changes in the hidden features. In the regime of finetuning, we can utilize results for
the final feature kernels to characterize the predictors on the second task.

• We develop linear toy models of finetuning where we can explicitly compute typical test
losses on the second task when sampling random pre and post training sets. These linear toy
models reveal many aspects of the phase diagram of (un)successful transfer learning. If the
pretraining (source) task is data rich, fine-tuning strictly improves over a two-layer linear
model trained from random initialization. With limited data during pretraining, noise due to
finite sample-size effects can cause negative transfer. For very rich pre-training, fine-tuning
is sample efficient if and only if the target has significant projection on the pre-training
source feature.

• We extend this investigation beyond linear tasks to polynomial source/target tasks and on
real computer vision datasets. Consistently with our theoretical predictions, when the pre-
training task is data-rich, fine-tuning on the second task after rich pretraining improves
performance and sample-efficiency. With limited source data, rich pretraining can induce
representation overfitting by causing negative transfer. In this setting, rich learning on the
second task is often favorable.

1.1 RELATED WORKS

Theory of Transfer Learning in Linear Models. Several works have studied how properties of
a representation support generalization from few examples on a downstream task (Bordelon et al.,
2020; Canatar et al., 2021a; Sorscher et al., 2022; Dhifallah & Lu, 2021; Gerace et al., 2022). A
general result is that the geometry of the neural representation (kernel-task alignment) controls the
ability to learn a new supervised task from limited data (Canatar et al., 2021b). However, these the-
ories at infinite width would predict a fixed representation at initialization, not allowing for features
to adapt during learning, for either the source or the downstream tasks.

Training Dynamics in Wide Networks. Recent years have seen significant research on the learn-
ing dynamics of wide, randomly initialized neural networks. In standard / neural tangent parame-
terization, wide neural networks are described by kernel methods (Jacot et al., 2020; Arora et al.,
2019; Lee et al., 2020). In this same parameterization, corrections to this limit at large but finite
width reveal weak (perturbative) feature learning corrections to this limit, linearizing the dynamics
of hidden representations around their static infinite width value (Roberts et al., 2022; Zavatone-
Veth et al., 2021). Alternatively, other works have explored parameterizations that allow infinite
width networks to learn features, known as mean-field or µP scaling, resulting in fundamentally
nonlinear predictor dynamics. These works developed tools to study the representation learning dy-
namics during gradient descent training in infinite width neural networks, which require adoption
of the mean-field/µP scaling of network width (Song et al., 2018b; Chizat & Bach, 2018; Yang &
Hu, 2021; Bordelon & Pehlevan, 2023; Bordelon et al., 2024c; Bordelon & Pehlevan, 2022). In this
infinite limit, the dynamics for kernels cannot be linearized around the lazy learning solution.

Learning in Wide Bayesian Networks. In contrast to gradient descent training, some works have
pursued theory of networks sampled from a Bayesian posterior (Welling & Teh, 2011). In the in-
finite width N → ∞ limit with NTK parameterization and dataset size P held constant, networks
converge to neural network Gaussian process (NNGP) models, which lacks representation learning
(Lee et al., 2018). Beyond this kernel limit, extensions of deep Bayesian MLPs in NTK parameter-
ization under the proportional limit P,N → ∞ with P/N = α reveal scale–renormalized kernels
after training (Li & Sompolinsky, 2021; Pacelli et al., 2023; Baglioni et al., 2024), with extensions
to convolutional architectures (Aiudi et al., 2023; Bassetti et al., 2024). Large-deviation analyses
in NTK parameterization further show kernel adaptation in finite-width/proportional limits (Fischer
et al., 2024; Rubin et al., 2024b; Seroussi et al., 2023; Andreis et al., 2025). An alternative strategy is
to adopt a mean-field/µP-like parameterization where even the N → ∞ limit at fixed P give rise to
significant changes in the kernels and predictor statistics compared to NNGP regression (Aitchison,
2020; Lauditi et al., 2025). Proportional limits in deep Bayesian networks have also been analyzed
under the mean field scaling (Rubin et al., 2024a; van Meegen & Sompolinsky, 2024).
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Transfer Learning in Wide Networks. Bayesian networks have been studied in a general multi-
task framework in NTK parameterization in both lazy and proportional (P/N = α) limits (Ingrosso
et al., 2025; Shan et al., 2025). The works (Ingrosso et al., 2025; Shan et al., 2025) first introduced
a Bayesian transfer-learning framework in which the target model is regularized to remain in the
vicinity of the pre-trained source weights (which are treated as fixed realizations of the source pos-
terior). In (Tahir et al., 2024) the authors analyze deep linear models of fine-tuning on synthetic
data, in the special case when the source task has infinite data and the kernel is low rank, by show-
ing that positive transfer learning depends on feature similarity between source and target tasks. A
recent work analyzes fine-tuning for two-layer mean-field models under KL-regularized empirical
risk minimization (Aminian et al., 2024). Here, we develop a theory for fine-tuning using adaptive
kernels from source task, and in a finite-data regime where sample fluctuations can hurt generaliza-
tion. Plus, we extend the theory for non-linear networks and in the jointly rich setting where feature
learning can also happen on target task.

Continual Learning Dynamics. Gradient descent training under continual learning in large-width
networks under mean-field scaling has been studied in Graldi et al. (2024). This analysis revealed
that richer training dynamics could lead to more catastrophic forgetting in a sequential multi-task
learning, where the task distribution shifts over training time. Average accuracy across tasks was
often maximized at an intermediate feature learning strength. However, these results have not yet
been studied within a theoretical framework.

2 MODEL AND TRANSFER LEARNING DEFINITIONS

Before specializing to specific transfer learning settings (such as fine tuning or linear networks), we
first provide a general framework where we subsumes all of our analysis. Our width N and depth L
MLP architecture has the form

f(x) =
1

N
wL · ϕ(hL(x)) , hℓ+1 =

1√
N

W ℓϕ(hℓ(x)) , h1 =
1√
D
W 0x (1)

where x ∈ RD is an input to the model and the variables hℓ ∈ RN represent the hidden preactivation
features in the forward pass. During pretraining, the model parameters {W ℓ} are optimized with
(S)GD on the source or task-1 dataset T1 = {(x(1)

µ , y
(1)
µ )}P1

µ=1 where the loss function on the P1

training points in T1 takes the form

LT1
(θ) = Ex,y∈T1

ℓ
(
γ−1
1 f(x,θ), y

)
, (2)

where ℓ is the per-data-point loss function (e.g. MSE or cross-entropy). The parameter γ1 represents
the richness/nonlinearity of optimization for task-1 pretraining with γ1 → 0 corresponding to lazy /
kernel learning (Chizat et al., 2020; Geiger et al., 2020; Bordelon & Pehlevan, 2022). This generates
a final set of parameters θ1. Using the final parameters from pretraining θ1 as a starting point for
transfer, we then run (S)GD on a second task T2 = {(x(2)

µ , y
(2)
µ )}P2

µ=1 on a loss function using a
second richness parameter γ2.

LT2(θ) = Ex,y∈T2 ℓ(γ
−1
2 f(x,θ), y) (3)

We are ultimately interested in the solutions (and generalization performance) of the model that was
post-trained on task-2. We will refer to the case where lazy learning on task-2 is performed γ2 → 0
as fine-tuning 1.

This general setting can be extended for Bayesian networks (see Appendix D), by considering the
source task weights as quenched disordered variables for the target task T2. Here, an elastic weight
coupling controls the reuse of features during transfer learning.

2.1 UTILIZING INFINITE WIDTH FEATURE LEARNING LIMITS

To make analytical progress on this problem, we focus our attention on infinite width neural networks
N → ∞ trained with gradient flow. Because the networks are in the meanfield/µP parameterization,
this infinite limit preserves feature learning for γ > 0 Bordelon & Pehlevan (2022). If the weights

1Technically, to control initialization variance, we take N → ∞ first before taking γ2 → 0.

3
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are initialized i.i.d. with unit variance, and the model is trained with SGD with learning rate ηi =
η0Nγ

2
i for i ∈ {1, 2}, then the final predictor f(x) after post-training on task-2 can be expressed in

terms of a collection of kernels that include

Φℓ(x,x′, t, t′) =
1

N
ϕ(hℓ(x, t)) · ϕ(hℓ(x′, t′)) (4)

where t, t′ are distinct time values for training across both gradient flow time in task-1 and task-
2 (Yang & Hu, 2022; Bordelon & Pehlevan, 2022; Lauditi et al., 2025; Graldi et al., 2024). In the
infinite widthN → ∞ limit, these functions become deterministic in their evolution and the neurons
become statistically independent over the random initialization of weights. While this (in principle)
provides a closed set of equations for the evolution of the network predictions f(x), the resulting
dynamics are quite complex (see Appendix A). To gain more insight into the mechanisms of transfer
learning we will next specialize to simpler settings.

2.2 TWO STAGE GRADIENT FLOW DYNAMICS FOR TWO LAYER NETWORKS

First, we will examine the training dynamics for two layer networks where the dynamics in feature
space are Markovian.

Result 1 (In data-poor downstream regimes, feature learning on target task helps) Consider a
two-layer (L = 1) MLP trained with gradient flow on T1 for times t ∈ (0, t1) with γ1 and then
subsequently trained on task T2 for times t ∈ (t1, t2) with richness parameter γ2. The infinite width
N → ∞ dynamics of the second model under gradient flow and with weight decay converges after
a training time t > t1 to a predictor f(x, t) on a test point x

f1(x, t) = γ−1
1 ⟨z(t)ϕ(h(x, t))⟩ (5)

where the average ⟨·⟩ represents an average over the measure of hidden neuron activations. The
preactivations hµ(t) =

1√
D
W 0(t)xµ and the readout variables z(t) = w1(t) evolve as single-site

stochastic processes (neuron - decoupled)

h(x, t) = χ(x) + γ1

∫ t1

0

ds
∑
µ∈T1

∆µ(s)gµ(s)Kx(x,xµ) + γ2

∫ t

t1

ds
∑
ν∈T2

∆ν(s)gν(s)Kx(x,xν)

z(t) = ψ + γ1

∫ t1

0

ds
∑
µ∈T1

∆µ(s)ϕ(hµ(s)) + γ2

∫ t

t1

ds
∑
µ∈T2

∆µ(s)ϕ(hµ(s))

gµ(t) = ϕ̇(hµ(t))z(t). (6)

and the average ⟨·⟩ is over both ψ ∼ N (0, 1) and χ(x) ∼ GP(0,Kx) where Kx(x,x
′) = 1

Dx ·x′,
while ∆µ(t) = −∂fµℓ(fµ, yµ) represents error signals for the training points in T1 and T2. The
predictor on the second task can be computed as f2(x, t) = γ−1

2 ⟨z(t)ϕ(h(x, t))⟩ for any t > t1.

This result indicates that there is a history dependence of the dynamics on the downstream task
T2 that is inherited from the dynamics of pretraining on task T1, consistent with prior works on
mean field continual/transfer learning (Graldi et al., 2024; Aminian et al., 2024). In this two layer
setting, this dependence only enters through the random variables {h(t1), z(t1)} which set the initial
condition for the downstream task T2 due to the above Markov structure. This property does not hold
in deeper models (see Appendix A). We provide simulations of transfer learning using the above
stochastic processes in Figures 3, 4 revealing that (γ1, γ2) can both impact the impact of pretraining
on transfer learning. One finding that we consistently see is that if the amount of data P2 on T2 is
small, that transfer learning confers greater benefits. Since the above model implicitly depends on
the dataset size, but does not explicitly quantify how transfer learning depends on P1, P2, γ1, γ2 ,
we next investigate the even simpler setting of linear networks.

2.3 TOY MODELS OF FINE-TUNING IN TWO-LAYER LINEAR NETWORKS

The results that follow are for deep linear models of fine-tuning when ϕ(h) = h. The source task
T1 is generated by a linear target function ys,µ = 1√

D
βs · xs,µ on random isotropic data xs,µ ∼

N (0, ID). The same is valid for the target task T2 with yt,µ = 1√
D
βt · xt,µ and xt,µ ∼ N (0, ID).

4
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We pre-train on T1 with gradient flow on a squared loss, and then fine-tune the readout with gradient
flow on T2 and with L(t) = 1

2P2
|X⊤

t K1/2β̂(t)−X⊤
t βt|2, given K the adaptive NTK from T1.

Result 2 (Data-rich pre-training consistently improves transfer) Consider the deep linear MLP
of Eq. 1 with ϕ(x) ≡ x. Train by gradient flow on T1 and feature-learning strength γ1 > 0. In the
infinite-width limit N → ∞, and then in the population limit P1 → ∞ at fixed D, the adaptive NTK
after pre-training converges to

Kℓ(X,X ′) = X

[
I +

χℓ

D
βsβ

⊤
s

]
X ′⊤, (7)

i.e., a rank-one spike along βsβ
⊤
s . Moreover, χℓ increases strictly with γ1.

With this adaptive NTK from T1, freeze the features and fine-tune the readout on T2. In the propor-
tional limit P2, D → ∞ with P2 = ν2D and for a fixed source/target alignment α = 1

Dβs · βt, the
downstream test loss at convergence is

L(ν2, α, χℓ) = (1− ν2)

[
1− 2χℓα2ν2

1 + χℓν2
+

(χℓ)2α2ν22
(1 + χℓν2)2

]
≤ (1− ν2). (8)

Thus fine-tuning with the adaptive NTK is always better than the baseline L = 1 − ν2, which one
would obtain from random initialization, whenever χℓ > 0 and α ̸= 0.

To get this result, we build on a previous work from (Bordelon & Pehlevan, 2022). Here, the authors
show that for a model as Eq. 1 with θ = Vec{W 0, . . . ,wL}, gradient flow d

dtθ = −γ21N∇θL from
Wij(0), . . . , w

L
j (0) ∼ N (0, 1) leads to an adaptive kernel Kℓ(t) = ⟨hℓ(t)hℓ(t)⊤⟩ ∈ RP1×P1 ,

where the average is over the stochastic process defined by DMFT saddle point equations (see Ap-
pendix B.1). At limiting time, and for P1 → ∞ at fixed D, the average over the randomly sampled
data leads to Eq. 7. Moreover, one can show for L = 1 that χ =

√
1 + γ21 − 1 (see Appendix B.1).

Then, in T2 the error vector is v0(t) = βt − (Kℓ)1/2β̂(t), while the instantaneous training errors
are ∆(t) = D−1/2X⊤

t v0(t). The key quantities which determine the generalization dynamics on
T2 are the correlation functions

C∆(t, t
′) =

1

P2
∆(t) ·∆(t′), Cv0(t, t

′) =
1

D
v0(t) · v0(t

′), Csv1(t) =
1

D
βs · v1(t), (9)

being v1(t) =
√
D

P2
X∆(t). From these, train and test losses can be computed respectively from

L̂(t) = C∆(t, t), L(t) = Cv0(t, t). (10)

In the joint limit P2, D → ∞, these correlation functions concentrate to deterministic quantities
at any time t, and each entry of the fields {v0(t),∆(t),v1(t)} become statistically independent
and identically distributed, following a stochastic process known as the single-site process. These
stochastic processes are described by the DMFT saddle point equations, which also depend on re-
sponse functions {R∆(t, t

′), Rv0(t, t
′)} that measure the response of the variables {∆(t),v0(t)}

at time t to a kick at time t′ in the noise sources of the system (see Appendix B.1). Studying the
single-site processes at limiting time gives Eq. 9, from which one recovers Eq. 8.

In the results that follow, the derivation for T2 test loss is similar in spirit, with the addition of
correlation and response functions that depend specifically on the adaptive kernel after T1. We
restrict to two-layer setting, even though we believe that the adaptive kernels after feature learning
on T1 in the deep case have the same functional form as the one we study here.

Result 3 (Finite-sample size effects can harm fine-tuning gains) Consider the two-layer MLP of
Eq. 1 with L = 1 and ϕ(x) ≡ x at infinite width. In the proportional limit where P1, D → ∞ with
P1 = ν1D, rescale γ1 = γ̃1/

√
D for feature learning to happen at infinite width. After pre-training

on T1, the adaptive NTK kernel at convergence is

K(X,X ′) = X

[
I +

c1
D

(
gβ⊤

s + βsg
⊤
)
+
c2
D
βsβ

⊤
s +

c3
D
gg⊤

]
X ′⊤, (11)

i.e., a low-rank deformation of the isotropic baseline: a signal spike βsβ
⊤
s , a noise spike gg⊤, and

a crosstalk term gβ⊤
s + βsg

⊤. The Gaussian vector g captures finite-sample fluctuations of the T1

5
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dataset and it is uncorrelated with βs. Its covariance Cov(g) = 1
ν1
C∞

∆ is set by the train loss at
convergence on T1, given by

C∞
∆ = lim

t→∞

1

P1
∆(t) ·∆(t), ∆(t) =

1√
D
X(βs −

√
D

γ1N
W (t)⊤w(t)). (12)

The coefficients c1, c2, c3 are deterministic functions of (γ̃1, ν1) given by the DMFT saddle point
equations.

With this adaptive NTK from T1, freeze the features and fine-tune the readout on T2. Call αs =
1
Dβs ·βt, αg = 1

Dg ·βt the alignments of the target direction with the source and noise respectively.
The downstream test loss at convergence (for αs = 1, αg = 0) is

L(c1, c2, c3, ν2) = (1− ν2)
(1 + c3ν2)

2 + c21ν
2
2

((1 + c2ν2) (1 + c3ν2)− c21ν
2
2)

2 . (13)

With finite data, pre-training on T1 leads to an adaptive NTK as in Eq. 11 after a short path integral
derivation (see Appendix B.2). Computing the constants c1, c2, c3 is in principle hard, because it
requires solving for correlations and response functions from DMFT at limiting time. We leave
them as constants and derive conclusions for some interpretable cases. We do not expect, in general,
transfer learning to have a positive effect when crosstalk and noise components c1, c3 grow large
compared to c2. In the population limit where ν1 → ∞, we expect instead Cov(g) → 0, thus
recovering the pure signal spike when there are no sample size fluctuations.

With this kernel, similarly to the sketch of Result 1, we study the limiting dynamics of the error field
v0(t) = βt −K1/2β̂(t). This time, together with the correlation functions C∆(t, t

′), Cv0(t, t
′) that

define train and test losses, we get contributions fromCsv(t) =
1
Dβs ·v1(t) andCgv(t) =

1
Dg ·v1(t)

which we need to study at limiting time.

Because of the dependency on many variables (i.e., ν2, αs, αg, c1, c2, c3), in Eq. 13 we report the
loss in the special case where αs = 1 and αg = 0 (see general expression in the Appendix B.2).
Notice that this reduces to the linear-probe baseline L = 1 − ν2 for c1 = c2 = c3 = 0; improves
monotonically with c2; and worsens with increasing crosstalk c1 in this special case.

Result 4 (Unbounded feature learning undermines fine-tuning) Consider the two-layer MLP of
Eq. 1 with L = 1, ϕ(x) ≡ x and γ1 = γ̃1/

√
D at infinite width. On T1, consider the balance

condition ∂t(WW⊤ −ww⊤) = 0. When γ̃1 → ∞, or equivalently for small weight initialization,
then W = wv⊤ is low-rank with v ∈ RD. In the proportional regime P1 = ν1D, solve for
v at limiting time through DMFT. The adaptive NTK after pre-training on T1 is K(X,X ′) ∝
X( 1

Dvv⊤)X ′⊤, i.e.

K(X,X ′) = X

[
ν21
D

βsβ
⊤
s +

ν1(1− ν1)

D
gg⊤ +

ν1
√
ν1(1− ν1)

D

(
βsg

⊤ + gβ⊤
s

)]
X ′⊤, (14)

which is a rank-one kernel with signal βs and noise g ∼ N (0, I), such that g ⊥ βs. A noiseless
linear target yt =

1√
D
X⊤

t βt is exactly solvable iff βt ∈ span{v}. Otherwise, only the projection
of βt onto v is learnable, giving an asymptotic test loss

L(ν1, αs, αg) = 1− (
√
ν1αs +

√
1− ν1αg)

2, (15)

with αs = 1
Dβs · βt, αg = 1

Dg · βt the alignments with the source and noise respectively. In the
data-rich limit ν1 → 1, the learned feature collapses to the signal (v → βs) and the downstream
loss to L = 1− α2

s, which is the residual (unexplained) variance of yt.

This result can be considered as a special case of Result 3, when there is no bulk component in the
adaptive NTK after learning T1 (see Eq. 14 and Appendix B.3 for details). The loss of Eq. 15 does
not depend on the amount of data ν2 in T2, since any dependency on P2 comes from how well it is
possible to estimate a single scalar coefficient in this rank-1 feature, which vanishes as P2 → ∞.

3 TRANSFER LEARNING PHENOMENOLOGY

In the following, we illustrate the interplay between transfer learning, feature learning strength,
sample size and task similarity leveraging our theoretical results in Section 2. We start with the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

fine-tuning setting, where data on both T1 and T2 tasks are generated by linear target functions, and
then proceed to the jointly rich setting, allowing feature learning on both tasks. By increasing the
task complexity, we derive conclusions on the benefit of transfer learning from polynomial to real
datasets.

3.1 FINE-TUNING

(a) ν1 → ∞ (b) ν1 finite (c) γ0 → ∞

Figure 1: Fine-tuning from an adaptive kernel from T1. Dashed black: no pre-training (linear probe).
(a) Loss is strictly decreasing with α. (b) Non-zero alignment with the noise can cause negative
transfer at high ν2. (c) Test loss on T2 depends only on source data ν1 and the alignments (αg, αs).

Infinite data on T1 In the population risk limit from Result 2, when ν1 → ∞, the test loss is a
monotonically decreasing function of source/task alignment α (see Fig. 1(a)) and thus fine-tuning
has always a positive gain from feature learning on T1.

Finite data on T1 By contrast, when ν1 is finite the features learned on T1 are noisy because of
finite sample size fluctuations: the adaptive NTK (see Eq. 11) acquires, in addition to the useful sig-
nal spike (controlled by c2), both a noise spike (controlled by c3) and a crosstalk term (proportional
to c1). As a consequence, the test loss is no longer a decreasing function of source/task alignment αs

(see Fig 1(b)). If we suppose the target task having a non-zero alignment with the noise αg ̸= 0, then
transfer is most helpful in the low ν2 regime and when source/target similarity αs is high; although,
with enough data on T2, both noise and crosstalk terms can corrupt the signal direction, making it
convenient to learn from scratch instead of using transfer learning.

The simple alignment case (αs=1, αg=0) of Eq. 13 shows that there (i) larger c2 always helps,
while (ii) c1 always hurt, since it rotates the high-gain direction towards the noise. Instead (iii) c3
when the noise is uncorrelated with the target (αg = 0) act as a ridge (regularization effect) in high
dimension (see Appendix B.2).

Large γ0 on T1 Consistent with Eq. 15, when αg = 0 (Fig 1(c)), since αs ∈ [−1, 1], then with
this rank-one feature one can only learn up to L = 1 − α2

s, and the perfect interpolation happens
only when target task is perfectly aligned with the source task (i.e., αs = 1). This suggests that it
is in principle harmful to have an infinitely rich pre-training. We show in Appendix B.4 that this is
consistent with what happens when fine-tuning a non-linear model on polynomial tasks.

Real datasets To concretely show that most of the conclusions one can derive from our theoreti-
cal models of fine-tuning are still applicable to non-linear models, we make some phenomenolog-
ical comparisons. As anticipated for finite ν1, our theory from Result 3 predicts that the constants
c1, c2, c3 are functions of feature strength γ1 and ν1. We make an ansatz for these functions at large
γ1 inspired by model in Result 4. The test loss of Eq. 13 will be then a function L(γ1, ν1, ν2). When
ν1 is finite and so the alignment between noise and target tasks is non-zero (i.e., αg ̸= 0), our the-
ory in Fig. 2(a) predicts that the optimal feature-learning strength γ⋆1 (ν2) is large when ν2 is small
(variance reduction dominates), and it decrease as ν2 grows (bias from feature drift starts to hurt).
At large ν2, there exists an optimal value of feature learning strength γ1 that lowers the loss with
respect to the baseline (see Fig. 2(a)). Similarly, after training a non-linear model on CIFAR10 with
different γ1 on T1, Figs. 2(b)/(c) show that larger γ1 yields lower test loss at small P2 (∝ ν2), but
the advantage shrinks and the curves collapse as P2 increases; with enough target data, pre-training
feature strength matters less. Again, consistently with our theory, we also show in Fig. 8 that on
polynomial task high γ2 can be detrimental when P2 is large.
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(a) Optimal γ1 (b) ν1 ≃ 0.1 (c) ν1 ≃ 0.1

Figure 2: Fine-tuning with adaptive kernels from T1. Losses vs ν2 and for different γ1 values on
T1. (a) Linear model from Result 3 when c1 = ν1

√
ν1(1− ν1)χ, c2 = ν21χ, c3 = ν1(1− ν1)χ with

χ =
√
1− γ21 − 1 has optimal γ1 at large ν2. (b)/(c) Two-layer ReLU MLP on CIFAR10: source

task is regression on {0, 1} classes; target task is regression on {0, 9} classes.

3.2 TRANSFER LEARNING OF POLYNOMIAL TASKS WITH NONLINEAR ACTIVATIONS

Low to High Degree Polynomials Kernel limits of neural networks are strongly biased to fit
their data with low degree polynomials when data is high dimensional and isotropic. This spectral
bias (Rahaman et al., 2019; Bordelon et al., 2020; Canatar et al., 2021b) reflects the fact that kernel
methods learn eigenfunctions in order of decreasing eigenvalue (Novak et al., 2018; Belkin et al.,
2019; Zhi-Qin John Xu et al., 2020). By contrast, networks trained in the feature-learning regime
can learn sparse polynomials from much fewer data and training steps (Mei et al., 2018; Dandi
et al., 2023b; Troiani et al., 2024; Dandi et al., 2024). The staircase property (Abbe et al., 2021;
2023; 2024; Yang et al., 2025) explored by Dandi et al. (2023b) makes this hierarchy explicit in
multi-index polynomial settings.

Inspired by the utility of feature learning on sparse polynomials of Gaussian data x ∼ N (0, I), we
study transfer from a linear source task to a quadratic target by employing the two-layer MLP model
of Result 1 in the jointly rich setting. Figure 3(a) shows that pretraining on the linear task (right
panel) lowers the test loss on the quadratic target compared to training from scratch (left panel). The
feature-learning strength γ2 on T2 here accelerates early gains but it also induces stronger forgetting
of the source features during transfer learning, as pointed out in (Graldi et al., 2024). Eventually,
there is an intermediate value of γ2 that minimizes both target loss on T2 and catastrophic forgetting
on T1.

(a) Easy → hard (b) Hard → easy

Figure 3: Test losses of a two-layer ReLU MLP vs steps for different feature learning strength γ2
on T2. (a) Low degree polynomial source task y1(x) = D−1/2β · x with P1 = 1000, D = 100 and
γ1 = 1.0. Target task is y2(x) = (D−1/2β · x)2 with P2 = 100. (b) Source task He5(β1 · x) with
P1 = 1000 and γ1 = 1.0. Target task: He2(β2 · x) with P2 = 600 and β1 · β2 = 0.8. Solid lines:
gradient-descent on an N = 20000 two-layer ReLU network. Dashed lines: DMFT theory.

High to Low Degree Polynomials In Figure 3(b), we compare the model performances when
learning a low degree Hermite polynomial target function from either a random initial condition
or the features learned from a high degree Hermite source task. In both cases, learning the target
is speeded up by feature learning strength γ2. Similarly to a grokking phenomena (Power et al.,
2022; Liu et al., 2022; Kumar et al., 2024; Fan et al., 2024), we conjecture that in this initial training
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phase the network begins memorizing its training set and slightly overfits, then after adapts features
to the data, leading to improved test loss at late times. This adaptations of features happens faster
when training with higher γ2 (rich feature learning from Result 1). However, in this setting, because
the pre-training on T1 makes the target model at initialization to rely on spurious high-frequency
features components that are not needed by the simpler task T2, transfer learning has no benefit in
this scenario compared to no pre-training performance.

3.3 ROLE OF TRANSFER LEARNING ON REAL DATASETS

Moving beyond synthetic tasks, we consider simple image regression problems. We start with
CIFAR-10, where a model pre-trained on two source classes is then fine-tuned on two disjoint target
classes. We compare the performance of a target model trained on this second task T2 from ran-
dom initialization (Fig. 4(a)) with the performance of the same model when using features learned
from a data-rich source T1 (Fig. 4(b)). Here, transfer learning leads to a lower test loss compared to
no-pretraining for each value of feature learning strength γ2. In both cases, there exists an optimal
early stopping time which minimizes the loss before slightly overfitting. We show that our DMFT
theory from Result 1 is well-predictive of this jointly rich setting. In Fig. 4(c) the distribution preac-
tivations p(h) of the target model shows that, as γ2 grows large, feature learning makes p(h) highly
non-Gaussian. In Appendix A we also show that, similarly to fine-tuning setting (i.e., linear probe)
on real datasets (Fig. 2(b)/(c)), feature learning on T1 is crucial when downstream task is data-poor
(small P2); with large P2 the model is able to rely more on supervision signals from the data itself
and transfer learning offers little additional improvement.

(a) (b) (c)

Figure 4: (a)/(b) Transfer learning is beneficial for real tasks at any feature learning strength γ2.
Source task: classes 1/2 of CIFAR-10 with P1 = 10K and γ1 = 1.0. Target task: classes 8/9 of
CIFAR-10 with P2 = 200. (c) Preactivation distribution of the target model for different γ2. Solid
lines: GD at convergence (N = 20000, two-layer ReLU MLP); black dashed lines: DMFT.

4 DISCUSSION AND CONCLUSION

In this work, we develop a theory of transfer learning in infinitely wide neural networks under gra-
dient flow. First, we provide the theory for non-linear MLPs, in the general setting which enables
feature learning on both pre-training and downstream tasks. Here, transfer learning on polynomial
tasks outperforms no pre-training when moving from easy (low degree) to hard (high degree) bench-
marks. No such gain is observed from hard to easy objectives, since the pre-trained model eventually
biases the representation toward high-degree components that are misaligned with the low-degree
task. On real vision tasks, transfer learning speeds up performance, showing a consistent improve-
ment in test loss. Consistently throughout these benchmarks, feature learning on downstream tasks
enhances performance with a data-limited target. Second, we study fine-tuning with fixed features
from a pre-trained rich source. Our results illustrate how the source/target similarity, the amount on
data and feature learning strength control the relative benefits of transfer learning compared to learn-
ing from scratch. Here, different pre-training regimes lead to different conclusions on fine-tuning
benefits. (i) If source task is data-rich, fine-tuning is always beneficial; (ii) for finite source data,
noise from finite sample-size fluctuations can corrupt fine-tuning gains; (iii) when source task is
infinitely rich, the target task is exactly solvable if and only if it is perfectly aligned with the source.

Future works could explore how representation learning in deeper networks enable transfer learning.
Specifically, it could be interesting to study what number of hidden layers should be preserved during
transfer learning (Bansal et al., 2021).
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A DEEP INFINITE WIDTH TRANSFER LEARNING DYNAMICS

Using the dynamical mean field theory techniques of Bordelon & Pehlevan (2022), we can track the
dynamics of preactivations hℓ(x, t) and pre-gradients zℓ(x, t) which are defined as

hℓ+1(x, t) =
1√
N

W ℓ(t)ϕ(hℓ(x, t))

gℓ(x, t) = ϕ̇(hℓ(x, t))⊙ zℓ(x, t) , zℓ(x, t) =
1√
N

W ℓ(t)⊤gℓ+1(x, t). (16)

On task one and times t ∈ (0, t1) we have

hℓ(x, t) = uℓ(x, t) + γ1

∫
dx′

∫ t

0

dt′
[
Aℓ−1(x,x′, t, t′) + p1(x

′)∆(x′, t′)Φℓ−1(x,x′, t, t′)
]
gℓ(x′, t′)

zℓ(x, t) = rℓ(x, t) + γ1

∫
dx′

∫ t

0

dt′
[
Bℓ(x,x′, t, t′) + p1(x

′)∆(x′, t′)Gℓ+1(x,x′, t, t′)
]
ϕ(hℓ(x′, t′))

p1(x) =
1

P1

∑
x′∈T1

δ(x− x′) , uℓ ∼ GP(0,Φℓ−1) , rℓ ∼ GP(0,Gℓ+1) (17)

where the correlation functions Φℓ, Gℓ are defined as

Φℓ(x,x′, t, t′) =
〈
ϕ(hℓ(x, t))ϕ(hℓ(x′, t′))

〉
, Gℓ(x,x′, t, t′) =

〈
gℓ(x, t)gℓ(x′, t′)

〉
(18)

and the response functions are

Aℓ(x,x′, t, t′) =

〈
δϕ(hℓ(x, t))

δrℓ(x′, t′)

〉
, Bℓ(x,x′, t, t′) =

〈
δgℓ(x, t)

δuℓ(x′, t′)

〉
. (19)

On task-2 where t ∈ (t1, t2) we have the following dynamics

hℓ(x, t) = uℓ(x, t) + γ1

∫
dx′

∫ t1

0

dt′
[
Aℓ−1(x,x′, t, t′) + p1(x

′)∆(x′, t′)Φℓ−1(x,x′, t, t′)
]
gℓ(x′, t′)

+ γ2

∫
dx′

∫ t

t1

dt′
[
Aℓ−1(x,x′, t, t′) + p2(x

′)∆(x′, t′)Φℓ−1(x,x′, t, t′)
]
gℓ(x′, t′)

zℓ(x, t) = rℓ(x, t) + γ1

∫
dx′

∫ t1

0

dt′
[
Bℓ(x,x′, t, t′) + p2(x

′)∆(x′, t′)Gℓ+1(x,x′, t, t′)
]
ϕ(hℓ(x′, t′))

+ γ2

∫
dx′

∫ t

t1

dt′
[
Aℓ−1(x,x′, t, t′) + p2(x

′)∆(x′, t′)Gℓ+1(x,x′, t, t′)
]
ϕ(hℓ(x′, t′)) (20)

where p2(x) = 1
P2

∑
x′∈T2

δ(x− x′). The ∆(x, t) features for t ∈ (t1, t2) takes the form

d

dt
f(x, t) =

∑
ℓ

Ex′Gℓ+1(x,x′, t, t)Φℓ(x,x′, t, t)∆(x′, t′) , f(x, t1) = 0. (21)
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Figure 5: Test losses as a function of target data P2 for different feature learning strength γ2 on
downstream task. Source task is a regression on two classes (0/1) of CIFAR with P1 = 1000 labels
ȳ ∈ {−1, 1}P1 and richness γ1 = 1.0. Target task is a regression on two classes of CIFAR (0/9)
with P2 data points and labels y ∈ {−1, 1}P2 .

B TOY MODELS OF FINE-TUNING IN THE PROPORTIONAL REGIME

In the current section, we will develop theories of transfer learning in the proportional regime, i.e.
by allowing the data on both source and target tasks to grow arbitrarily large P1, P2 → ∞, such
that ν2 = P2

D = ΘD(1) is fixed, with D input dimension. In the following, we will make three
distinctions regarding the source task T1. In general, T1 is defined by a teacher model βs ∈ RD

ys,µ =
1√
D
βs · xµ (22)

for random isotropic data xµ ∼ N (0, I) and labels |ys|2 = 1. The student is instead a two-layer
model

f(xµ) =

√
D

Nγ0
a⊤
( 1√

D
W
)
xµ (23)

with W ∈ RN×D,a ∈ RN whose dynamics we study at limiting time t → ∞ after learning with
gradient flow (GF) and from random initial conditions Wij(0), aj(0) ∼ N (0, 1). Depending on P1,
pretraining learns either (i) a single rank-one spike aligned with the signal direction βs (population
regime), or (ii) a finite rank deformation composed of the aligned spike plus several spikes correlated
with a noise direction g ∈ RD and independent on the source direction βs. For this reason, we make
distinctions in pretraining with the following scenarios: infinite data on T1 (i.e., ν1 → ∞); limited
data on T1 (i.e., finite ν1), and feature learning strength γ0 → ∞ on T1. In each of these settings,
we wonder if the NTK kernels after feature learning on T1 have either a positive or a negative effect
on transfer learning. For that, we consider a downstream task T2 defined by a target rule

yt,µ =
1√
D
βt · xµ (24)

with xµ ∈ N (0, 1),βt ∈ RD, |yt|2 = 1 and a fixed ν2 = P2

D . We study gradient flow (GF) with the
final NTK kernels from T1, and in each case the dependency of the loss of T2 on the amount of data
{ν1, ν2}, the source/target alignment 1

Dβt · βs = α, and the feature learning strength γ0.

B.1 INFINITE DATA ON T1

As pointed out in (Bordelon & Pehlevan, 2022), by sending width N → ∞ first at fixed P1, the dy-
namics of a model such as Eq. 23 with θ = Vec{W ,a} can be studied through the lens of dynamical
mean field theory (DMFT). If we choose a MSE loss on T1, i.e. L = 1

2P1

∑P1

µ=1(ys,µ − fµ)
2, and

study gradient flow d
dtθ = −γ2∇θL from random initial conditions Wij(0), aj(0) ∼ N (0, 1), we

get that one of the summary statistics we can track is the feature kernel K(t) =
〈
h(t)h(t)⊤

〉
∈

RP1×P1 , with hµ(t) ≡ 1√
D
W (t)xµ being the preactivation vector. With isotropic data xµ ∈
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N (0, 1), it is possible to show that the kernel K(t) only grows in the rank one source direction
ysy

⊤
s (see (Bordelon & Pehlevan, 2022) for a complete derivation). In particular, the limiting kernel

has the form limt→∞ K(t) = I + χysy
⊤
s , with χ =

√
1 + γ20 − 1 which is an increasing function

of the feature learning strength γ0.

Now, if we allow the T1 dataset P1 → ∞ at fixed D, by averaging over the data distribution we get
a kernel after feature learning on T1 which has the form

K(X,x′) = x⊤
[
I +

χ

D
βsβ

⊤
s

]
x (25)

where we recall βs being the source task vector. For the downstream task T2 specified in
Eq. 24, we consider the kernel from Eq. 25 and do gradient flow with a loss function L(t) =
1

2P2
|X⊤K1/2β̂(t)−X⊤βt|2 and X ∈ RD×P2 . This leads to

d

dt
β̂(t) = −∂L

∂β̂
(26)

from which, by defining v0(t) = βt −K1/2β̂(t), we get

d

dt
v0(t) = −

(
I +

χ

D
βsβ

⊤
s

)XX⊤

P
v0 + δ(t)βt. (27)

We can introduce the following auxiliary fields

∆ =
1√
D
X⊤v0 ∈ RP (28)

v1 =

√
D

P
X∆ ∈ RD (29)

Csv =
1

D
βs · v1 (30)

and the above dynamics becomes

d

dt
v0 = −v1(t)− χβsCsv(t) + δ(t)βt. (31)

with initial condition v0(0) = βt.

B.1.1 DATA AVERAGE

Our goal is to track the statistics of the random field v0 at limiting time, from which we will be
able to recover the loss function L at convergence. Once we average over the random T2 dataset,
we expect this to depend on the finite sample fluctuations of T2 since ν2 = P2

D is fixed, and on the
alignment with the pretraining source which we is controlled by a hyperparameter α = 1

Dβt · βs.

In order to do that, we develop a DMFT or path integral derivation (Agoritsas et al., 2018;
Sarao Mannelli et al., 2020; Mignacco et al., 2020; Mignacco & Urbani, 2022; Gerbelot et al.,
2024; Dandi et al., 2023a; Bordelon & Pehlevan, 2022; Bordelon et al., 2024a).

First, we enforce the definitions of the fields and the v0 dynamics by functional δ-constraints with
conjugate fields {v̂0, ∆̂, v̂1, Ĉsv}. The resulting moment generating function (MGF) Z of DMFT
depends linearly on the data matrix X

Z =

∫
dCsvdĈsv

2π

∫
dv0dv̂0

2π

∫
d∆d∆̂

2π

∫
dv1dv̂1

π
exp

[
i

∫
dtv̂0 ·

(
∂tv0 + v1 + χβsCsv(t)− δ(t)βt

)]

× exp

(
− i

∫
dt∆̂ ·

( 1√
D
X⊤v0

)
− i

∫
dtv̂1 ·

(√D
P

X∆
))

× exp

(
i

∫
dt
(
∆∆̂+ v1v̂1

)
+ i

∫
dtĈsv(t)

(
Csv(t)−

1

D
βs · v1

))
.

(32)
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Since the entries xµ,i ∼ N (0, 1) are i.i.d., we can average over the data distribution〈
exp

[
− i

∫
dtTrX⊤

(
1√
D
v0∆̂

⊤ +

√
D

P
v̂1∆

⊤

)]〉
X

= exp

(
− 1

2

∫
dtdt′

[
1

D
v0(t) · v0(t

′)∆̂(t) · ∆̂(t′) +
1

ν

1

P
∆(t) ·∆(t′)v̂1(t) · v̂1(t

′)

])

× exp

(∫
dtdt′

1

P
∆(t) · ∆̂(t′)v0(t) · v̂1(t

′)

)
.

(33)

By defining the correlation and response functions

Cv0,v0
(t, t′) ≡ 1

D
v0(t) · v0(t

′) (34)

C∆,∆(t, t
′) ≡ 1

P
∆(t) ·∆(t′) (35)

R∆,∆̂(t, t
′) ≡ − i

P
∆(t) · ∆̂(t′) (36)

Rv0,v̂1(t, t
′) ≡ − i

D
v0(t) · v̂1(t

′) (37)

we can enforce their definitions with the use of delta functions, for instance

1 ≡
∫
dCv0,v0(t, t

′)dĈv0,v0(t, t
′)

2πD−1
exp

(D
2
Cv0,v0(t, t

′)Ĉv0,v0(t, t
′)− 1

2
Ĉv0,v0(t, t

′)v0(t) · v0(t
′)
)

(38)
thus getting

Z =

∫
dCsv(t)dĈsv(t)

2π

∫
dCv0,v0(t,t′)dĈv0,v0(t, t

′)

2π

∫
dC∆,∆(t, t

′)dĈ∆,∆(t, t
′)

2π

∫
dR∆,∆̂(t, t

′)dR̂∆,∆̂(t, t
′)

2π

×
∫
dRv0,v̂1(t, t

′)dR̂v0,v̂1(t, t
′)

2π
exp

[
D

2

∫
dtCsv(t)Ĉsv(t) +

D

2

∫
dtdt′Cv0,v0(t, t

′)Ĉv0,v0(t, t
′)

]

× exp

[
ν2D

2

∫
dtdt′C∆,∆(t, t

′)Ĉ∆,∆(t, t
′)− ν2D

∫
dtdt′R∆,∆̂(t, t

′)R̂∆,∆̂(t, t
′)

]

× exp

[
−D

∫
dtdt′Rv0,v̂1(t, t

′)R̂v0,v̂1(t, t
′) +D

∫
dtdt′R∆,∆̂(t, t

′)Rv0,v̂1(t, t
′)

]

× exp

[
D∑
i=1

lnZ01

[
C∆,∆, Csv, Ĉsv, R∆,∆̂

]
+

P∑
j=1

lnZ∆

[
Cv0,v0

, Rv0,v̂1

]]
(39)

where we collect every single site action (factorized respectively over input neurons and patterns)

Z01

[
C∆,∆, Csv, Ĉsv, Ĉv0,v0 , R∆,∆̂

]
=

∫
dv0dv̂0
2π

∫
Dv1Dv̂1

2π
exp

[
− 1

2

∫
dtĈsv(t)βsv1(t)

]

× exp

[
− 1

2

∫
dtdt′Ĉv0,v0v

0(t)v0(t′)− 1

2ν

∫
dtdt′C∆,∆v̂1(t)v̂1(t

′)

]

× exp

[
− i

∫
dtdt′R∆,∆̂v0(t)v̂1(t

′) + i

∫
dtv1(t)v̂1(t)

]

× exp

[
+ i

∫
dtv̂0

(
∂tv0 + v1 + χβsCsv(t)− δ(t)βt

)]
(40)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Z∆

[
Cv0,v0 , Rv0,v̂1 , Ĉ∆,∆

]
=

∫
d∆d∆̂

2π
exp

[
− 1

2

∫
dtdt′Ĉ∆,∆(t, t

′)∆(t)∆(t′)

]

× exp

[
− 1

2

∫
dtdt′Cv0,v0(t, t

′)∆̂(t)∆̂(t′)− i

ν2

∫
dtdt′Rv0,v̂1∆(t)∆̂(t′)

]

× exp

[
+ i

∫
dt∆(t)∆̂(t)

]
.

(41)

B.1.2 DMFT ACTION

We now group all of the correlation and response functions, as well as their conjugate order param-
eters into a list named q. The MGF can be written in the compact form

Z =

∫
dq exp

(
−DS(q)

)
(42)

where S is the O(1) DMFT action

S = −1

2

∫
dtCsv(t)Ĉsv(t)−

1

2

∫
dtdt′Cv0,v0

(t, t′)Ĉv0,v0(t, t
′)− ν2

2

∫
dtdt′C∆,∆(t, t

′)Ĉ∆,∆(t, t
′)

+

∫
dtdt′R∆,∆̂Rv0,v̂1

− 1

D

D∑
i=1

lnZ01

[
C∆,∆, Csv, Ĉsv, R∆,∆̂

]
− 1

D

P∑
j=1

lnZ∆

[
Cv0,v0

, Rv0,v̂1

]
.

(43)

As D → ∞, the moment-generating function Z is exponentially dominated by the saddle point of
S. The equations that define this saddle point also define our DMFT. First of all, we realize that at
the saddle point

R̂∆,∆̂ =
1

ν2
Rv0,v̂1 (44)

R̂v0,v̂1 = R∆,∆̂. (45)

The resulting equations ∂S
∂q = 0 give

− 1

2
Csv(t) +

1

2D

D∑
i=1

〈
βsv1(t)

〉
i
= 0 (46)

− 1

2
Cv0,v0(t, t

′) +
1

2D

D∑
i=1

〈
v0(t)v0(t′)

〉
i
= 0 (47)

− ν2
2
C∆,∆(t, t

′) +
1

2D

P∑
j=1

〈
∆(t)∆(t′)

〉
j
= 0. (48)

Here, ⟨⟩i represents an average over the single site distribution defined by the moment generating
function Z01. Similarly, ⟨⟩j is the average over the distribution defined by Z∆. Regarding the
response functions we have

R∆,∆̂ +
i

P

P∑
j=1

〈
∆(t)∆̂(t′)

〉
j
= 0 (49)

Rv0,v̂1 +
i

D

D∑
i=1

〈
v0(t)v̂1(t

′)
〉
i
= 0 (50)

Lastly, we have a collection of saddle point equations that defines the conjugated order parameters,
which must vanish at the saddle point (Crisanti & Sompolinsky, 2018; Bordelon & Pehlevan, 2022)

Ĉsv(t) = Ĉv0,v0 = Ĉ∆,∆(t, t
′) = 0. (51)
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B.1.3 HUBBARD TRANSFORMATION

Since we know that the correlation and response functions must take deterministic values in the limit
D → ∞, we can represent the quadratic terms in the log-density in v̂1, ∆̂(t) as linear averages over
Gaussian variables u1(t), u∆(t)

exp

(
− 1

2ν

∫
dtdt′C∆,∆v̂1(t)v̂1(t

′)

)
=
〈
exp

(
− i

∫
dtv̂1(t)u1(t)

)〉
u1∼N (0, 1

ν2
C∆,∆)

(52)

exp

(
− 1

2

∫
dtdt′Cv0,v0(t, t

′)∆̂(t)∆̂(t′)

)
=
〈
exp

(
− i

∫
dt∆̂(t)u∆(t)

)〉
u∆∼N (0,Cv0,v0

)
.

(53)
After introducing these Gaussian random variables, we can solve the integrals over the conjugated
fields v̂0, v̂1, ∆̂, and obtain the defining equations for the random variables of interest

v1(t) = u1(t) +

∫
dt′R∆,∆̂(t, t

′)v0(t
′) (54)

∂tv0 = −u1(t)−
∫
dt′R∆,∆̂(t, t

′)v0(t
′)− χβsCsv(t) + δ(t)βt (55)

∆(t) = u∆(t) +
1

ν2

∫
dt′Rv0,v̂1(t, t

′)∆(t′). (56)

B.1.4 SIMPLIFYING THE RESPONSE FUNCTIONS

From the saddle point equations, we notice that the response functions involve averages over the
conjugated variables {∆̂, v̂1}, which we now argue can be replaced as derivatives with respect to the
Hubbard variables. For instance

R∆,∆̂(t, t
′) = −i

∫ ∏
t

d∆(t)d∆̂(t)

2π
∆(t)∆̂(t′)

〈
exp

(
i

∫
dt∆̂(t)

[
∆(t)− u∆(t)−

1

ν2

∫
dt′Rv0,v̂1(t, t

′)∆(t′)
])〉

u∆

=

∫ ∏
t

d∆(t)d∆̂(t)

2π
∆(t)

〈 ∂

∂u∆(t′)
exp

(
i

∫
dt∆̂(t)

[
∆(t)− u∆(t)−

1

ν2

∫
dt′Rv0,v̂1(t, t

′)∆(t′)
])〉

u∆

=

∫
dt′′
〈
∆(t) [Cv0,v0 ]

−1
(t′, t′′)u∆(t

′′)
〉
u∆

=
〈 ∂∆(t)

∂u∆(t′)

〉
u∆

(57)

which holds via integration by parts and Stein’s lemma. The same can be said for Rv0,v̂1(t, t
′)

Rv0,v̂1(t, t
′) =

〈 ∂v0(t)
∂u1(t′)

〉
u1

. (58)

B.1.5 LIMITING TIME DYNAMICS

We can recognize that the response functions in the above system will have time-translation invariant
structure so that R(t, t′) = R(t− t′). We can therefore take a Fourier transform of these equations,
which gives

Rv0,v̂1(ω) = − 1

iω +R∆,∆̂(ω)
(59)

R∆,∆̂(ω) =
(
1− ν−1

2 Rv0,v̂1(ω)
)−1

(60)

being ν2 = P2

D . The same for the random variables which define the DMFT equations

iωv0(ω) = −u1(ω)−R∆,∆̂(ω)v0(ω)− χCsv(ω)βs + βt (61)

v0(ω) =
1

iω +R∆,∆̂(ω)

[
βt − χCsv(ω)βs − u1(ω)

]
. (62)
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For compactness, we introduce a shorthand H(ω) = 1
iω+R∆(ω) . Similarly for ∆(ω) we have

∆(ω) = R∆,∆̂(ω)u∆(ω). (63)

The loss is governed by the two-frequency correlation function Cv0,v0(ω, ω
′) ≡

〈
v0(ω)v0(ω

′)
〉

.

By calling 1
Dβs ·βt = α the alignment between source and target task, Cv0,v0

(ω, ω′) can be derived
as being

Cv0,v0(ω, ω
′) = H(ω)H(ω′)

[
1 + χ2Csv(ω)Csv(ω

′)− αχ
(
Csv(ω) + Csv(ω

′)
)
+

1

ν2
R∆(ω)R∆(ω

′)C0,0(ω, ω
′)

]
.

(64)

By collecting C0,0(ω, ω
′), we get

Cv0,v0(ω, ω
′) =

H(ω)H(ω′)

1− ν−1
2 R∆(ω)R∆(ω′)H(ω)H(ω′)

[
1+χ2Csv(ω)Csv(ω

′)−αχ
(
Csv(ω)+Csv(ω

′)
)]
.

(65)
It is important to notice that, as soon as we send γ0 → 0, which is the feature strength on source
task T1, then χ→ 0 and we recover the test loss

Cv0,v0
(ω, ω′) =

H(ω)H(ω′)

1− ν−1
2 R∆(ω)R∆(ω′)H(ω)H(ω′)

(66)

which is the one we would expect in absence of any dependency on the source vector βs, meaning
without any pretraining on T1. So, the interesting setting is the one for which χ > 0 for a given
alignment value α. In particular, we would like to study the sign of the term in the brackets [·] of
Eq. 65 when t→ ∞ or, equivalently, when ω, ω′ → 0.

First, we can compute what the correlation Csv(ω) is

Csv(ω) = ⟨v1(ω)βs⟩ = ⟨u1(ω)βs⟩+R∆(ω) ⟨v0(ω)βs⟩ = R∆(ω)H(ω) [α− χCv(ω)] (67)

=
αR∆H

1 + χR∆H
. (68)

Now to get the final result, we take the ω, ω′ → 0 limit of the loss Cv0,v0(ω, ω
′)

lim
t,t′→∞

Cv0,v0(t, t
′) = lim

ω,ω′→0
(iω)(iω′)Cv0,v0(ω, ω

′). (69)

Using the equation

R∆ = 1− 1

ν2
R∆H =⇒ lim

ω→0
R∆H = ν2 (70)

and by noticing that

lim
ω→0

iωH(ω) = lim
ω→0

iω

iω + ν2/(iωH)
= 1− ν2 (71)

we can combine all the results to get the loss at convergence

lim
t→∞

Cv0,v0(t, t) =
(iωH)(iωH)

1− ν−1
2 RHRH

[
1− 2αχCsv + χ2C2

sv

]
(72)

= (1− ν2)×
[
1− 2χα2ν2

1 + χν2
+

χ2α2ν22
(1 + χν2)2

]
. (73)

Some key observations about this result:

• The loss only depends on α2 rather than α directly. This reflects the symmetry of the
problem βs → −βs.
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• The loss is always lower than the original loss for any feature learning strength χ > 0,
since

L ≤ (1− ν2)

[
1− χν2α

1 + χν2

]2
≤ (1− ν2) (74)

which means that transfer learning has a positive effect in this setting, as soon as feature
learning happens on T1. This is because during pre-training we minimized population risk
by allowing P1 → ∞ on T1. As a consequence, the NTK kernel is a rank-one spiked
kernel in the source direction βsβ

⊤
s ; there are no spurious noise spikes, and as soon as

α > 0 (nonzero source–target alignment), transfer learning cannot hurt.
• When α = 0, meaning the target vector of the downstream task βt lies in the orthogonal

space w.r.t. βs, we recover the usual L = 1 − ν2 learning curve for linear probes (Hastie
et al., 2022). This happens also when χ = 0, meaning if we choose a lazy pretraining on
T1. In that case, indeed, the NTK at initialization would have just the bulk structure with
no spike aligned with the source.

• If χ→ ∞, which happens if the feature learning strength on the pretraining γ0 → ∞, then

L = (1− ν2)(1− α2). (75)

B.2 FINITE DATA ON T1

In the proportional limit, i.e. when ν1 = P1

D is fixed, the pretraining on T1 learns a noisy version
of the source vector βs due to finite sample size fluctuations, and modulated by the feature learning
strength γ0 on T1. As a consequence, we expect an interplay between signal and noise components
on the benefits of transfer learning on T2.

First, let’s recall the network definition, which is

f(x) =

√
D

Nγ0
a⊤
( 1√

D
W
)
x. (76)

This means that GD dynamics θt+1 = θt−ηγ2∇θtL for the parameters collection θ = Vec{W ,a}
and on a loss function L = 1

2P1

∑P1

µ=1(yµ − fµ)
2 can be written layer-wise as

W (t) = W (0) +
ηγ0√
D

∑
t′<t

a(t′)h(t′)⊤ (77)

a(t) = a(0) +
ηγ0√
D

∑
t′<t

W (t′)h(t′) (78)

having defined the fields

∆(t) =
1√
D
Xv(t) ∈ RP1 (79)

v(t) = βs −
√
D

Nγ0
W (t)⊤a(t) = βs − ξ(t)− η

∑
s<t

Ca(t, s)h(s) (80)

h(t) =

√
D

P
X⊤∆(t) ∈ RD. (81)

As a consequence, the feature matrix H(t) ∈ RN×P1 is

H(t) =

(
W (0) +

ηγ0√
D

∑
t′<t

a(t′)h(t′)⊤

)
X⊤ (82)

hence, the kernel

K(t) =
1

N
H(t)⊤H(t)

= X

[
W⊤(0)W (0)

N
+
ηγ20
D

∑
s<t

(
ξ(s)h(s)⊤ + h(s)ξ(s)⊤

)
+
η2γ20
D

∑
s,s′<t

Ca(s, s
′)h(s)h(s′)⊤

]
X⊤

(83)
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with

ξ(s) =

√
D

Nγ0
W⊤(0)a(s) (84)

Ca(s, s
′) =

1

N
a(s)⊤a(s′). (85)

If we proceed by substitution, we get

ξ(t) =

√
D

Nγ0
W⊤(0)a(0) +

η

N
W⊤(0)

∑
s<t

W (s)h(s)

=

√
D

Nγ0
W⊤(0)a(0) +

η

N
W⊤(0)W (0)

∑
s<t

h(s) + η2γ20

√
D

N
W⊤(0)

∑
s<t

∑
s′<s

a(s′)
h(s′)⊤h(s)

D

= η
∑
s<t

h(s) + η2γ20
∑
s<t

∑
s′<s

Ch(s, s
′)ξ(s′)

(86)

where we realized that
√
D

Nγ0
W⊤(0)a(0) = O(

√
D
N ) vanishes if we send N → ∞ at fixed D,

since W (0) and a(0) are uncorrelated at initialization, and that 1
NW⊤(0)W (0) → ID for the

same reason. Plus, we know that the correlations Ch(s, s
′) = h(s)⊤h(s′)

D concentrates in the limit
D → ∞; the same holds for Ca(s, s

′) = 1
N a⊤(s)a(s′) in the N → ∞ limit.

Now, we can collect the time indices as rows of matrix variables, for instance ξ ∈ RT×D and solve
for ξ, thus getting

ξ =
(
I − η2γ20ΘC↓

h

)−1

︸ ︷︷ ︸
∈RT×T

ηΘh (87)

being C↓
h(s, s

′) = Ch(s, s
′)Θ(s − s′) the lower-triangular matrix and (Θ)t,s = 1(t > s). In the

same way, for the h(t) ∈ RD field, which we can get from a short path integral derivation similarly
to what we have done above (see (Bordelon & Pehlevan, 2025)), we have

h(t) = u(t) +
∑
s<t

R∆(t, s)v(s)

= u(t) +
∑
s<t

R∆(t, s)

(
βs − ξ(s)− η

∑
s′<s

Ca(s, s
′)h(s′)

) (88)

with u(t) ∼ GP(0, 1
ν1
C∆) and ν1 = P1

D . Again, by collecting the time indices we can solve for
h ∈ RT×D

h =

(
I + ηR↓

∆

(
I − η2γ20ΘC↓

h

)−1

Θ+ ηR↓
∆C

↓
a

)−1

︸ ︷︷ ︸
∈RT×T

[
u+R↓

∆1β
⊤
s

]
(89)

having defined

R↓
∆(t, s) = Θ(t− s)R∆(t, s) (90)

C↓
a(s, s

′) = Ca(s, s
′)Θ(s− s′). (91)

By staring at Eqs. 87, 89 we realize that, since time operators do not create new spatial direction,
both {ξ(t),h(t)} ∈ RD fields can only grow in either the source direction βs or in the uncorrelated
noise direction u(t), which comes from finite sample fluctuations of X . Consequently, {ξ(t),h(t)}
admit the causal decomposition

h(t) = c(t)βs +
∑
s<t

Rhu(t, s)u(s) (92)

ξ(t) = d(t)βs +
∑
s<t

Rξu(t, s)u(s) (93)
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where we replaced time-dependent scalars {c(t), d(t)}, which are functions of {η, γ0, ν1}. These
represent the projection of the fields along the fixed teacher direction βs, while the {Rhu, Rξu} are
the usual casual-time response functions which map the drive u(·) to the features h(·) and ξ(·).
Precisely

Rhu =

(
I + ηR↓

∆

(
I − η2γ20ΘC↓

h

)−1

Θ+ ηR↓
∆C

↓
a

)−1

(94)

Rξu = η
(
I − η2γ20ΘC↓

h

)−1

ΘRhu. (95)

In general, deriving the limiting time of the fields {h(t), ξ(t)} requires to study the t→ ∞ limit of
correlation and response functions as they appear in Eqs. 87, 89, which is in principle hard. Because
of that, in the following derivation we will assume the casual decomposition as in Eqs. 92, 93, and
recover the feature kernel from that.

B.2.1 ANSATZ ON THE KERNEL STRUCTURE

Given the above discussion, and going back to the kernel expression as in Eq. 83, we can now
assume the kernel at convergence (t→ ∞) having the functional form

K(X,X) = X

[
I +

c1
D

(
gβ⊤

s + βsg
⊤
)
+
c2
D
βsβ

⊤
s +

c3
D
gg⊤

]
X⊤ (96)

where g ∈ RD is a Gaussian vector g ⊥ βs such that Cov(g) = 1
ν1
C∞

∆ , and with C∞
∆ =

limt→∞
1
P1

∆(t) · ∆(t′) which concentrates as P1 → ∞. As ν1 → ∞, we expect C∞
∆ → 0.

Instead, {c1, c2, c3} are constants which are functions of {η, γ0, ν1}.

Notice that, differently from before, the kernel depends now on the noise direction g tuned by the
constants {c1, c3}. We do not expect, in general, transfer learning to have a positive effect as soon
as the niose component c3 grow large compared to the signal spike tuned by c2.

Again, we do gradient flow with this final NTK and a loss function L(t) = 1
2P2

|X⊤
t K1/2β̂(t) −

X⊤
t βt|2 and X ∈ RD×P2

d

dt
β̂(t) = K1/2XX⊤

P2

(
βt −K1/2β̂(t)

)
(97)

from which, by defining v0 = βt −K1/2β̂(t) as usual, we get

d

dt
v0 = −

(
I +

c1
D

(
gβ⊤

s + βsg
⊤
)
+
c2
D
βsβ

⊤
s +

c3
D
gg⊤

)XX⊤

P2
v0 + δ(t)βt. (98)

We can introduce the following fields

∆ =
1√
D
X⊤v0 ∈ RP2 (99)

v1 =

√
D

P2
X∆ ∈ RD (100)

Csv =
1

D
βs · v1 (101)

Cgv =
1

D
g · v1 (102)

and getting the dynamics
d

dt
v0 = −v1(t)−

(
c1g + c2βs

)
Csv(t)−

(
c1βs + c3g

)
Cgv(t) + δ(t)βt. (103)

By enforcing the fields definitions, we can do a path integral derivation similar to the one in Sec. B.1,
and so by averaging over the T2 dataset with ν2 = P2

D fixed, we get the usual MGF of DMFT

Z =
∫
dq exp

(
−DS(q)

)
with q being the collection of correlation and response functions while

S being the DMFT action.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.2.2 DMFT ACTION

In this setting, the action takes the form

S =− 1

2

∫
dtCsv(t)Ĉsv(t)−

1

2

∫
dtCgv(t)Ĉgv(t)−

1

2

∫
dtdt′Cv0,v0(t, t

′)Ĉv0,v0(t, t
′)

− ν2
2

∫
dtdt′C∆,∆(t, t

′)Ĉ∆,∆(t, t
′) +

∫
dtdt′R∆,∆̂(t, t

′)Rv0,v̂1(t, t
′)

− 1

D

D∑
i=1

lnZ01

[
Csv, Cgv, C∆,∆, Ĉsv, Ĉgv, Ĉv0,v0 , R∆,∆̂

]
− 1

D

ν2D∑
j=1

lnZ∆

[
Cv0,v0 , Rv0,v̂1 , Ĉ∆,∆

]
.

(104)

with single site functions

Z01 =

∫
dv0dv̂0
2π

∫
dv1dv̂1
2π

exp

[
− 1

2ν

∫
dtdt′C∆,∆v̂1(t)v̂1(t

′)− 1

2

∫
dtĈsv(t)βsv1(t)

]

× exp

[
− 1

2

∫
dtĈgv(t)gv1(t)−

1

2

∫
dtdt′Ĉv0,v0v0(t)v0(t

′)− i

∫
dtdt′R∆,∆̂v0(t)v̂1(t

′)

]

× exp

[
i

∫
dtv̂0

(
∂tv0 + v1 + (

c1√
ν1
g +

c2√
ν1
βs)Csv(t) +

( c1√
ν1
βs +

c3
ν1
g
)
Cgv(t)− δ(t)βt

)]

× exp

[
i

∫
dtv1(t)v̂1(t)

]
(105)

and

Z∆ =

∫
d∆d∆̂

2π
exp

[
− 1

2

∫
dtdt′Cv0,v0(t, t

′)∆̂(t)∆̂(t′)− 1

2

∫
dtdt′Ĉ∆,∆(t, t

′)∆(t)∆(t′)

]

× exp

[
− iν−1

∫
dtdt′Rv0,v̂1(t, t

′)∆(t)∆̂(t′) + i

∫
dt∆(t)∆̂(t)

]
.

(106)

Again, in the D → ∞ limit, the saddle point equations which make S locally stationary give

− 1

2
Csv(t) +

1

2D

D∑
i=1

〈
βsv1(t)

〉
i
= 0 (107)

− 1

2
Cgv(t) +

1

2D

D∑
i=1

〈
gv1(t)

〉
i
= 0 (108)

− 1

2
Cv0,v0(t, t

′) +
1

2D

D∑
i=1

〈
v0(t)v0(t

′)
〉
i
= 0 (109)

− ν

2
C∆,∆(t, t

′) +
1

2P2

P2∑
j=1

〈
∆(t)∆(t′)

〉
j
= 0 (110)

and the same for the response functions

R∆,∆̂ +
i

P2

P2∑
j=1

〈
∆(t)∆̂(t′)

〉
j
= 0 (111)

Rv0,v̂1 +
i

D

D∑
i=1

〈
v0(t)v̂1(t

′)
〉
i
= 0 (112)
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being the averages ⟨·⟩i , ⟨·⟩j over the single site distributions Z01 and Z∆ (factorized over i ∈ {D}
and j ∈ {P2} respectively). At the same time, as usual, the conjugated fields vanish

Ĉsv(t) = Ĉv0,v0 = Ĉ∆,∆(t, t
′) = 0. (113)

Since in the P2, D → ∞ limit with ν2 = P2

D fixed all the correlation and response functions
concentrate, we can use Hubbard-Stratonovich transformations to linearize the quadratic terms in
Z01 and Z∆ by introducing some Gaussian fields

exp

(
− 1

2ν2

∫
dtdt′C∆,∆v̂1(t)v̂1(t

′)

)
=
〈
exp

(
− i

∫
dtv̂1(t)u1(t)

)〉
u1∼N (0, 1

ν2
C∆,∆)

(114)

exp

(
− 1

2

∫
dtdt′Cv0,v0(t, t

′)∆̂(t)∆̂(t′)

)
=
〈
exp

(
− i

∫
dt∆̂(t)u∆(t)

)〉
u∆∼N (0,Cv0,v0

)
.

(115)

As a consequence, the DMFT equations that describe the single site stochastic processes are

v1(t) = u1(t) +

∫
dt′R∆,∆̂(t

′)v0(t
′), u1(t) ∼ GP

(
0,

1

ν2
C∆,∆

)
(116)

∂tv0 = −u1(t)−
∫
dt′R∆,∆̂(t

′)v0(t
′)− (c1g + c2βs)Csv(t)− (c1βs + c3g)Cgv(t) + δ(t)βt

(117)

∆(t) = u∆(t) +
1

ν2

∫
dt′Rv0,v̂1∆(t′), u∆(t) ∼ GP

(
0, Cv0,v0

)
. (118)

B.2.3 SIMPLIFYING THE RESPONSE FUNCTIONS

As we did in Sec. B.1.4, via integration by parts and Stein’s lemma we can simplify the saddle point
equations for the correlation functions, which become

Rv0,v̂1 =

〈
∂v0(t)

∂u1(t′)

〉
u1

(119)

R∆,∆̂ =

〈
∂∆(t)

∂u∆(t′)

〉
u∆

. (120)

B.2.4 LIMITING TIME DYNAMICS

We notice again that the loss can be obtained from the time-time diagonal of the correlation function
Cv0,v0 = ⟨v0(t)v0(t)⟩, which we would like to study at limiting time. Because of that, and by
noticing that the system is time translational invariant, we can take a Fourier transform of Eq. 117,
thus getting

iωv0(ω) = −u1(ω)−R∆(ω)v0(ω)− Csv(ω)
(
c1g + c2βs

)
− Cgv(ω)

(
c1βs + c3g

)
+ βt

⇒ v0(ω) =
1

iω +R∆(ω)

[
βt − u1(ω)− Csv(ω)

(
c1g + c2βs

)
− Cgv(ω)

(
c1βs + c3g

)]
.

(121)

where we call H(ω) = 1
iω+R∆(ω) as before. The same can be done for ∆(ω)

∆(ω) = R∆(ω)u∆(ω) (122)

and for both the correlations of v1 with the signal βs and the noise g directions of T1, once we define
the alignments

αs =
1

D
βt · βs (123)

αg =
1

D
βt · g. (124)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Recalling their definitions, we get

Cgv(ω) =
〈
gv1(ω)

〉
= gR∆(ω)

〈
v0(ω)

〉
= R∆(ω)H(ω)

[
αg − c1Csv(ω)− c3Cgv(ω)

]
=

R∆H[
1 + c3R∆H

][αg − c1Csv(ω)
] (125)

and

Csv(ω) =
〈
βsv1(ω)

〉
= βsR∆(ω)

〈
v0(ω)

〉
= R∆(ω)H(ω)

[
αs − c2Csv(ω)− c1Cgv(ω)

]
=

R∆H
[
(1 + c3R∆H)αs − c1R∆Hαg

]
(1 + c2R∆H) (1 + c3R∆H)− c21R

2
∆H2

(126)

which implies

Cv0,v0(ω, ω
′) ≡

〈
v0(ω)v0(ω

′)
〉

=
H(ω)H(ω′)

1− ν−1
2 R∆(ω)R∆(ω′)H(ω)H(ω′)

[
1−

(
c1αg + c2αs

)(
Csv(ω) + Csv(ω

′)
)

−
(
c1αs + c3αg

)(
Cgv(ω) + Cgv(ω

′)
)
+ (c21 + c22)Csv(ω)Csv(ω

′)

+
(
c1c3 + c1c2

)(
Csv(ω)Cgv(ω

′) + Csv(ω
′)Cgv(ω)

)
+ (c21 + c23)Cgv(ω)Cgv(ω

′)

]
.

(127)

Now to get the final result, we take the ω, ω′ → 0 limits. Using the equation

R∆ = 1− 1

ν2
R∆H ⇒ lim

ω→0
R∆H = ν2 (128)

which implies also
lim
ω→0

(iω)H = 1− ν2 (129)

we can derive the limiting time of correlation functions

Cgv(0) =
ν2

1 + c3ν2

[
αg − c1Csv(0)

]
(130)

Csv(0) =
ν2 [(1 + c3ν2)αs − c1ν2αg]

(1 + c2ν2) (1 + c3ν2)− c21ν
2
2

(131)

Because of the dependency of many variables, let’s study the loss in the special case where αs = 1
and αg = 0. In this case, one obtains the following loss

L = (1− ν2)
(1 + c3ν2)

2 + c21ν
2
2

D2
(132)

with

D = (1 + c2ν2) (1 + c3ν2)− c21ν
2
2 (133)

Csv(0) =
ν2 (1 + c3ν2)

(1 + c2ν2) (1 + c3ν2)− c21ν
2
2

(134)

Cgv(0) = − c1ν
2
2

(1 + c2ν2) (1 + c3ν2)− c21ν
2
2

. (135)
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It is now interesting to distinguish between some limiting cases in the overparameterized setting
where ν2 ∈ [0, 1]. First of all, for the kernel to be PSD it is sufficient to restrict to the span {βs, g},
from which we get the conditions

(1 + c2)(1 + c3) ≥ c21; 1 + c2 ≥ 0; 1 + c3 ≥ 0. (136)

• Baseline (c1 = c2 = c3 = 0): we recover

L = 1− ν2 (137)

as the reference loss of a linear probe with no pretraining on T1.

• If the signal term c2 = 0, then

L = (1− ν2)
(1 + c3ν2)

2 + c21ν
2
2

(1 + c3ν2 − c21ν
2
2)

2
. (138)

– No crosstalk (c1 = 0), then
L = 1− ν2, ∀c3 (139)

so the noise has no effect on the baseline loss in this aligned setting (αg = 0, αs = 1).
– In this setting, crosstalk proportional to c1 can never actually help because of PSD

conditions on the kernel, which means that c1 ̸= 0 has always a negative effect on
transfer learning. One would need αg ̸= 0 to get a non empty range of values for
which c1 can actually help.

(a) {c2 = 0, c3 = 0.5} (b) {c1 = 0.5, c2 = 0}

Figure 6: Fine-tuning from an adaptive kernel with limited data on source task (ν1 finite): loss vs
downstream data ν2 = P2/D. Dashed black: no pre-training (linear probe). In absence of signal
from T1 (i.e., c2 = 0) (a) crosstalk c1 has a negative effect on transfer since αg = 0; (b) noise
c3 uncorrelated with the target acts has a regularization effect on the loss, pushing it towards the
baseline L = 1− ν2.

• If the crosstalk term c1 = 0, then

L = (1− ν2)
1

(1 + ν2c2)2
(140)

and the loss is independent on the noise c3, while the signal c2 > 0 strictly helps.

• If the noise term c3 = 0, then

L = (1− ν2)
1 + c21ν

2
2

(1 + c2ν2 − c21ν
2
2)

2
(141)

and the loss is a monotonically increasing function of the crosstalk term c1 ̸= 0.
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(a) {c2 = 1, c3 = 0} (b) {c1 = 0, c3 = 0.5} (c) {c1 = 0.5, c2 = 0.5}

Figure 7: Fine-tuning from an adaptive kernel with limited data on source task (ν1 finite): loss vs
downstream data ν2 = P2/D. Dashed black: no pre-training (linear probe). No crosstalk (c1 = 0):
(a) positive signal c2 > 0 from T1 strictly lowers the loss compared to the baseline; (b) at fixed
signal, curves collapse for any noise c3, since it is uncorrelated with the target direction in this case
(αg = 0).

B.3 FEATURE LEARNING STRENGTH γ0 → ∞ ON T1

If, at initialization W0,a0 are small on T1, under gradient flow

∂t(WW⊤ − aa⊤) = 0 (142)
which, if we choose exactly W0W

⊤
0 = a0a

⊤
0 , implies that W = av⊤. Since f = 1√

D
Xβs, with

X ∈ RP1×D, then we can solve for v ∈ RD and studying the dynamics

∂tv(t) = − 1

P
(X⊤X)(v(t)− βs) (143)

from which the feature kernel can be derived as M = 1
NW⊤W = |a|2

N vv⊤. By calling v0(t) =
βs − v(t), we get

∂tv0(t) = −v1(t) (144)

∆(t) =
1√
D
Xv0(t) ∈ RP1 (145)

v1(t) =

√
D

P
X⊤∆(t) ∈ RD. (146)

With a short path integral (or cavity) derivation similar to what we did in previous sections, it is pos-
sible to exploit translational invariance of the model, thus getting the DMFT equations that describe
the single site stochastic processes. In the current setting, those are

v1(t) = u1(t) +

∫
dt′R∆(t, t

′)v0(t
′), u1(t) ∼ GP

(
0,

1

ν1
C∆

)
(147)

∂tv0(t) = −u1(t)−
∫
dt′R∆(t, t

′)v0(t
′) + δ(t)βs (148)

∆(t) = u∆(t) +
1

ν1

∫
dt′R01(t, t

′)∆(t′), u∆(t) ∼ GP
(
0, C0,0

)
(149)

where, as usual if P1 = ν1D, then

C∆(t, t
′) =

1

P1

P1∑
j=1

〈
∆(t)∆(t′)

〉
j

(150)

C0,0(t, t
′) =

1

D

D∑
i=1

〈
v0(t)v0(t

′)
〉
i

(151)

R∆(t, t
′) =

〈 ∂∆(t)

∂u∆(t′)

〉
u∆

(152)

R01(t, t
′) =

〈 ∂v0(t)
∂u1(t′)

〉
u1

(153)
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being the averages respectively over

Z∆ =

∫
d∆d∆̂

2π

〈
exp

(
+ i

∫
dt∆̂(t)

[
∆(t)− u∆(t)−

1

ν1

∫
dt′R01(t, t

′)∆(t′)
])〉

u∆∼N (0,C0)

(154)

and

Z01 =

∫
dv0dv̂0
2π

∫
dv1dv̂1
2π

〈
exp

[
+ i

∫
dtv̂1(t)

(
v1(t)− u1(t)−

∫
dt′R∆(t, t

′)v0(t
′)
)]〉

u1∼N (0, 1
ν1

C∆)

× exp
[
+ i

∫
dt v̂0(t)

(
∂tv0(t) + v1(t)

)
.

(155)

Taking a Fourier transform the DMFT equations simplify

v0(ω) =
1

iω +R∆(ω)

[
βs − u1(ω)

]
(156)

∆(ω) =
u∆(ω)

1 + 1
ν1
H(ω)

(157)

R01(ω) = − 1

iω +R∆(ω)
= −H(ω) (158)

R∆(ω) =
1

1 + 1
ν1
H(ω)

(159)

and the loss function can be written as

C0,0(ω, ω
′) ≡

〈
v0(ω)v0(ω

′)
〉

= H(ω)H(ω′)

[
1 +

1

ν1
C0,0(ω, ω

′)R∆(ω)R∆(ω
′)

]
(160)

while the correlation

C∆(ω, ω
′) ≡

〈
∆(ω)∆(ω′)

〉
= R∆(ω)R∆(ω

′)C0,0(ω, ω
′).

(161)

B.3.1 LIMITING TIME DYNAMICS ON T1

If ν1 ∈ [0, 1], then from the equation

R∆ = 1− 1

ν1

R∆

iω +R∆
(162)

we find that, at limiting time R∆(0) =
ν1

1−ν1
, and so 1

ν1
C∆ = ν1

(1−ν1)
. From the definition v0(t) =

βs − v(t) we get

v = lim
ω→0

βs − iωv0(ω)

= lim
ω→0

(1− iωH(ω))βs + iωH(ω)u1

∼ ν1βs +
√
ν1(1− ν1)g

(163)

by defining g ∼ N (0, I) as Gaussian vector uncorrelated with the source βs. As a consequence,
the kernel is

vv⊤ =
[
ν1βs +

√
ν1(1− ν1)g

][
ν1βs +

√
ν1(1− ν1)g

]⊤
. (164)
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With this kernel, as we did above, we would now like to study a fine-tuned model with fixed pre-
trained features and a linear readout that has to align with the downstream task T2 identified by a
target vector βt ∈ RD.

We call v0 = βt −K1/2β̂(t) and get the dynamics

∂tv0 = −
[
ν21Cv1β(t)βs+ν1

√
ν1(1− ν1)

(
Cv1g(t)βs+Cv1β(t)g

)
+ν1(1−ν1)Cv1g(t)g

]
+δ(t)βt

(165)
where

∆(t) =
1√
D
Xv0(t) ∈ RP2 (166)

v1 =

√
D

P2
X∆ ∈ RD (167)

Cv1β =
1

D
v1 · βs (168)

Cv1g =
1

D
v1 · g (169)

αs =
1

D
βt · βs (170)

αg =
1

D
βt · g. (171)

As a consequence

∂tCv0β(t) = −ν1
[
ν1Cv1β(t) +

√
ν1(1− ν1)Cv1g(t)

]
+ αsδ(t) (172)

∂tCv0g(t) = −
√
ν1(1− ν1)

[
ν1Cv1β(t) +

√
ν1(1− ν1)Cv1g(t)

]
+ αgδ(t). (173)

At this point, by realizing through DMFT that

v1(t) = u1(t) +

∫
dt′R∆(t, t

′)v0(t
′) (174)

and by taking a Fourier transform of Eqs. 172, 173 we get

iωCv0β(ω) = −ν1
[
ν1Cv0β(ω) +

√
ν1(1− ν1)Cv0g(ω)

]
+ αs (175)

iωCv0g(ω) = −
√
ν1(1− ν1)

[
ν1Cv0β(ω) +

√
ν1(1− ν1)Cv1g(ω)

]
+ αg (176)

with R∆ = 1. By solving the above system at limiting time we get that

Cv0β(0) =
ν1αs +

√
ν1(1− ν1)αg

ν1
(177)

Cv0g(0) =

√
ν1(1− ν1)

(
ν1αs +

√
ν1(1− ν1)αg

)
ν21

(178)

From these, the loss function is

L = lim
ω,ω′→0

iωiω′v0 · v0 =1−
(ν1αs +

√
ν1(1− ν1)αg)

2

ν1
(179)

We list some interesting conclusions that can be derived in this setting.

• The loss, as well as the correlation functions, do not depend on ν2 in this setting. This
is reasonable, since any dependence on the amount of P2 data only comes from how well
you can estimate a single scalar coefficient in this rank-1 feature, and that vanishes as the
sample size P2 grows.

• As ν1 → 0, then L = 1− α2
g .

• In the limit where ν1 = 1 we find L = 1 − α2
s, which is what one would expect when

the learned feature after T1 is a rank-1 along βs. In this case, indeed, the best predictor
explains α2

s fraction of y2t ’s variance, so the residual variance is exactly 1− α2
s.

• If αg = 0, then L = 1 − ν1α
2
s is a decreasing function of ν1; if αs = 0, then L is an

increasing function of ν1.
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B.4 FINE-TUNING ON POLYNOMIAL TASKS

In this small section, we make comparison between the takes of our linear models of fine-tuning, and
what actually happens when training a non-linear model on polynomial tasks, from an easy source
to a hard target. In Fig. 8 we show that for a data-rich source fine-tuning is always beneficial, while
for a data-poor source feature learning on T1 and related finite-sample size fluctuations can harm
performance on the downstream task.

(a) ν1 = 2 (b) ν1 = 0.1

Figure 8: Test loss vs target data ν2 for different pre-training richness levels γ1. Source task is
He2(βs · x), target task is He3(βt · x) with βs · βt = 0.8. (a) When source task is data-rich, fine-
tuning is always beneficial and the higher γ1, the higher the gain. (b) When source task is data-poor,
high feature learning on T1 can be harmful comparing to no-pretraining.

C SETTING AND RELATED WORKS FOR BAYESIAN NNS

In this section, we would like to study the effect of transfer learning for infinitely wide Bayesian
neural networks. Here, we suppose that a two layer NN with parameters θ = Vec{W ,w} has to
learn a target task T2 composed of P2 input-output pairs {xµ, yµ}P2

µ=1, where the input vector is
xµ ∈ RD, {D,P2} = ΘN (1) are fixed, and the network width N is going to infinity. The case
where the solution space is sampled from a posterior that is a Gibbs distribution with generic log-
likelihood L(θ, T ) and a Gaussian prior 1

2 ||θ||
2 has been studied in (Lauditi et al., 2025). Here, the

purpose is to integrate the effect of transfer learning from a source task T1 with the effect of feature
learning on T2.

We consider the weights θ̄ = Vec{W̄ , w̄} of a pre-trained model on T1 = {x̄µ, ȳµ}P1
µ=1 as quenched

disorder variables for the target task T2, since these weights adapt only on T1, while the target task
variables are annealed θ = Vec{W ,w}. The quantity of interest we would like to compute is the
free energy

EW̄∼p(θ̄|T1)F [W̄ ] = − lim
N→∞

1

N
EW̄∼p(θ̄|T1) lnZ[W̄ ]

= − lim
N→∞

1

N
EW̄∼p(θ̄|T1) ln

[ ∫
dθ exp

(
−βNγ

2
0

2

P2∑
µ=1

L(θ, T2)

)
− 1

2
||θ||2 − δ

2
||W − W̄ ||2

]
.

(180)

Here, the dependency on the source weights W̄ ∈ RN×D appears through an elastic coupling δ that
acts as a form of regularization for the target task weights W ∈ RN×D of T2. To guarantee that the
source configuration effectively solved T1, we take the expectation over the posterior distribution of
the source weights as sampled from the Gibbs measure

p(θ̄|T1) =
1

Z1
exp

(
−βNγ̄

2
0

2

P1∑
µ=1

L(θ̄, T1)−
1

2
||θ̄||2

)
. (181)
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As clarified in the main text, both {γ̄0, γ0} = ΘN (1) in the mean-field parameterization act as
richness parameters that tune the level of feature learning strength, respectively on T1 and T2 (Bor-
delon & Pehlevan, 2022; Bordelon et al., 2024b; Lauditi et al., 2025). This is the reason why, in our
theory, representation learning remains an ΘN (1) effect at infinite width even when P = ΘN (1),
contrary to what would happen in the theories of (Li & Sompolinsky, 2021; Pacelli et al., 2023),
whose infinitely overparameterized limit α = P/N → 0 recovers the NNGP lazy kernel at infinite
width.

The way on constraining the target weights to the source weights through an elastic coupling as in
Eq. equation 180 was first proposed by (Ingrosso et al., 2025) in the context of transfer learning and
then studied by (Shan et al., 2025) in the continual learning setting. This is common practice in the
theory of spin glasses, where the form of Eq. equation 180 is known under the name of Franz-Parisi
potential (Franz & Parisi, 1995), used to bias the posterior measure through metastable states in the
energy landscape. In the context of machine learning theory, a line of works (Baldassi et al., 2015;
2016; 2019; 2021; 2022) focused on shallow architectures, made use of the Franz-Parisi potential
in order to target subdominant flat regions of solutions in the loss landscape of a given task T .
Here, we stress that our theory of transfer learning described by Eq. equation 180, leads to different
results than the theory of (Ingrosso et al., 2025). The authors of (Ingrosso et al., 2025) focused on a
proportional limit where both the size of the training sets (P1, P2 in our notation) and the width N
go to infinity with some fixed ratios α1 = P1/N and α2 = P2/N . The network parameterization
they study is the standard NTK parameterization. In order to be able to study the proportional limit,
they make a Gaussian Equivalence assumption for non-linear activation functions. Their theory
predicts that, at finite α, the effect of transfer learning occurs due to a renormalization effect of a
fixed source-target kernel, accordingly to the Bayesian theories of (Li & Sompolinsky, 2021; Pacelli
et al., 2023). More importantly, in the α→ 0 overparameterized limit we are considering here, their
theory predicts that TL has no effect on learning, since they recover the NNGP lazy kernel in this
limit.

On the contrary, here we study the effect of mean-field (µP ) parameterization to transfer learning
in the overparameterized limit. As clarified by Eq. equation 180, we scale the likelihood by N in
order to ensure we get a non-trivial contribution from the likelihood in the infinite width limit, and
we scale the network readout with γ0N . The form of our posterior combined with the parame-
terization we choose allows us to get a theory of feature learning where kernels adapt to data in a
non-trivial manner even when P = ΘN (1). In fact, as clarified in (Lauditi et al., 2025), the posterior
of Eq. equation 181 do not recover the NNGP lazy kernel, and the effect of transfer learning remains
non-negligible in our theory at finite P . Our theory do not require any Gaussian Equivalence as-
sumptions on the pre-activation distribution. Indeed, the combined effect of feature and transfer
learning leads to non-Gaussian pre-activations. We get a set of saddle point equations for the ker-
nels of both source (T1) and downstream (T2) tasks that have to be solved self-consistently. Thus,
the kernels in our theory are not fixed but adapt to data, because representation learning shapes the
pre-activation distribution.
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D THEORETICAL DERIVATION OF THE FREE ENERGY

Here, we proceed in reporting the actual computation of the free energy in Eq. equation 180. In order
to compute the average over the source posterior we use the replica trick lnZ = limn→0

Zn−1
n , and

we introduce a set of n replicas a ∈ {n} for the source weights {W a,wa}. As a consequence, we
get

EZn =

∫
dW̄ dw̄

n∏
a=1

dW adwadfaµdf̄
a
µ exp

−Nβγ
2
0

2

∑
µ∈T1

[f̄µ − ȳµ]
2 − Nβγ20

2

n∑
a=1

∑
µ∈T2

[faµ − yµ]
2


exp

(
−1

2

n∑
a=1

|W a|2 − 1

2

n∑
a=1

|wa|2 − 1

2
|w̄|2 − 1

2
|W̄ |2 − δ

2

n∑
a=1

|W a − W̄ |2
)

∫ ∏
a,µ∈T1

dhaµdĥ
a
µ

∏
µ∈T2

dh̄µd
ˆ̄hµ exp

i n∑
a=1

∑
µ∈T2

ĥaµ

(
haµ − 1√

D
W axµ

)
+ i

∑
µ∈T1

ˆ̄hµ

(
h̄µ − 1√

D
W̄xµ

)
∫
df̂aµd

ˆ̄fµ exp

 ∑
a,µ∈T2

f̂aµ
(
Nγ0f

a
µ −wa · ϕ(ha

µ)
)
+
∑
µ∈T1

f̂µ
(
Nγ0f̄µ − w̄ · ϕ(h̄µ)

)
(182)

Step 1. The first step consists in integrating out over W a and wa. We will write these as averages
over a standard normal matrices (the prior)

EW a∼N (0,(1+δ)−1) exp

δW a · W̄ − i√
D

∑
a

∑
µ∈T2

ĥaµW
axµ


=exp

− 1

2(1 + δ)

∑
µ,ν∈T2

ĥa
µ · ĥa

ν Cµν +
δ2

2(1 + δ)
|W̄ |2 − i

δ

1 + δ

∑
µ∈T2

ĥa
µ · h̄µ


Ewa∼N (0,1) exp

−
∑
a

∑
µ∈T2

f̂aµϕ(h
a
µ) ·wa

 = exp

N
2

∑
a

∑
µ,ν∈T2

f̂aµ f̂
a
νΦ

a
µν

 . (183)

We see that we must introduce the kernels and their dual variables {Φa
µν , Φ̂µν}µν∈T2,a∈{n} as order

parameters, but these are decoupled over replica index

Φa
µν ≡ 1

N
ϕ(ha

µ) · ϕ(ha
ν) (184)

and enforce their definitions through some Dirac-delta functions

1 =

∫
dΦa

µν δ
(
Φa

µν−
1

N
ϕ(ha

µ)·ϕ(ha
ν)
)
=

∫
dΦa

µν dΦ̂
a
µν

2π
exp

(
iΦ̂a

µν

(
Φa

µν − 1

N
ϕ(ha

µ) · ϕ(ha
ν)
))

.

(185)
Step 2: integrate over W̄ and w̄

EW̄ exp

−δn
2
|W̄ |2 + δ2n

2(1 + δ)
|W̄ |2 − i√

D

∑
µ∈T1∪T2

ˆ̄hµW̄xµ


∼n→0 exp

−1

2

∑
µν∈T1∪T2

Cµν
ˆ̄hµ · ˆ̄hν


Ew̄∼N (0,1) exp

−
∑
µ∈T1

ˆ̄fµϕ(hµ) · w̄

 = exp

N
2

∑
µ,ν∈T1

ˆ̄fµ
ˆ̄fνΦ̄µν

 (186)
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Here, similarly as we did in Eq. equation 184, we enforce the definitions of the source task kernels
{Φ̄µν ,

ˆ̄Φµν}µν∈T1
, which do not carry any replica index.

Step 3: Factorize everything across the N hidden neurons

⟨Zn⟩ ∝
∫
dΦ̄d ˆ̄Φdf̄µd

¯̂
fµ

n∏
a=1

dΦadΦ̂adfadf̂a exp

−βNγ̄
2
0

2

∑
µ∈T1

[f̄µ − yµ]
2 − βNγ20

2

∑
a

∑
µ∈T2

[faµ − yµ]
2


exp

(
Nγ0

∑
µa

f̂aµf
a
µ +Nγ̄0

∑
µ

ˆ̄fµf̄µ +
N

2

∑
aµν

Φ̂a
µνΦ

a
µν +

N

2

∑
µν

Φ̄µν
ˆ̄Φµν

)

exp

(
N

2

∑
aµν

f̂aµ f̂
a
νΦ

a
µν +

N

2

∑
µν

ˆ̄fµ
ˆ̄fµΦ̄µν +N lnZjoint

)
(187)

where Zjoint is the joint single-site density that carries contributions from both T1 and T2. It has the
form

Zjoint =

∫
dhaµdĥ

a
µdh̄µd

ˆ̄hµ exp

− 1

2(1 + δ)

∑
aµν∈T2

ĥaµĥ
a
νCµν − 1

2

∑
aµν

ϕ(haµ)ϕ(h
a
ν)Φ̂

a
µν


exp

−1

2

∑
µν∈T1∪T2

ˆ̄hµ
ˆ̄hνCµν − 1

2

∑
µν

ϕ(h̄µ)ϕ(h̄ν)
ˆ̄Φµν − i

δ

1 + δ

∑
aµ

h̄µĥ
a
µ


exp

(
i
∑
aµ

ĥaµh
a
µ + i

∑
µ

ˆ̄hµh̄µ

)
.

(188)

Notice that, if δ = 0 in Eq. equation 188, the single site densities on T1 and T2 are perfectly
decoupled as it should be, since no transfer learning effect would come into play. Instead, as soon
as we keep δ > 0, there is an interaction between the fields of the source task h̄ and the dual fields
of the target task ĥa that will modify the p(ha) distribution as we show in the next section.

D.1 RS ANSATZ

Step 3: Staring at these equations the only solution that makes sense is the Replica-Symmetric
solution Φa = Φ and fa = f . Plugging this ansatz into the expressions and taking the n→ 0 limit,
we get

lnZjoint = ln

∫
dh̄dˆ̄h exp

−1

2

∑
µν∈T1∪T2

ˆ̄hµ
ˆ̄hνCµν − 1

2

∑
µν∈T1

ϕ(h̄µ)ϕ(h̄ν)
ˆ̄Φµν + i

∑
µ∈T1∪T2

ˆ̄hµh̄µ


× exp

(
n lnZ2[h̄]

)
= lnZ1 + ln

[
1 + n

〈
lnZ2[h̄]

〉
1

]
∼ lnZ1 + n

〈
lnZ2[h̄]

〉
1

where lnZ2 is the single site density for task T2

Z2[h̄] =

∫
dhµdĥµ exp

− 1

2(1 + δ)

∑
µν∈T2

ĥµĥνCµν − 1

2

∑
µν∈T2

ϕ(hµ)ϕ(hν)Φ̂µν


× exp

(
i
∑
µ

ĥµhµ − i
δ

1 + δ

∑
µ

h̄µĥµ

)

=

∫
dhµ exp

− (1 + δ)

2

∑
µν

(
hµ − δ

1 + δ
h̄µ

)
C−1

µν

(
hν − δ

1 + δ
h̄ν

)
− 1

2

∑
µν∈T2

ϕ(hµ)ϕ(hν)Φ̂µν

 .
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Again, if δ = 0, there would be no dependency on the source task T1 in Eq. equation 189. We
stress that transfer learning has the effect of shifting and scaling all the moments of the distribution
p(h) towards p(h̄) as δ becomes larger and larger, while feature learning effect on Eq. equation 189
appear through the contribution of the non-Gaussian exponent proportional to the dual kernel Φ̂.

D.2 SADDLE POINT EQUATIONS

In the infinite width N → ∞ limit the replicated action of Eq. equation 187 is dominated by the set
of kernels {Φ̄, ˆ̄Φ} ∈ T1 and {Φ, Φ̂} ∈ T2 that makes the action S locally stationary (δS = 0)

⟨Zn⟩ =
∫
dΦ̄d ˆ̄Φdf̄d ˆ̄f exp

(
NS1({Φ̄, ˆ̄Φ})

) [ ∫
dΦdΦ̂dfdf̂ exp

(
NS2({Φ, Φ̂})

) ]n
S1 =

1

2

∑
µν

ˆ̄ΦµνΦ̄µν +
1

2

∑
µν

ˆ̄fµ
ˆ̄fνΦ̄µν + γ̄0

∑
µ

ˆ̄fµf̄µ − βγ̄20
2

∑
µ

[f̄µ − ȳµ]
2 + lnZ1

Z1 =

∫
dh̄µd

ˆ̄hµ exp

(
−1

2

∑
µν

ˆ̄Φµνϕ(h̄µ)ϕ(h̄ν)−
1

2

∑
µν

ˆ̄hµ
ˆ̄hνCµν + i

∑
µ

ˆ̄hµh̄µ

)

S2 = γ0
∑
µ

fµf̂µ +
1

2

∑
µν

f̂µf̂νΦµν − βγ20
2

∑
µ

[fµ − yµ]
2 +

1

2

∑
µν

Φ̂µνΦµν +
〈
lnZ2[h̄]

〉
1

Z2 =

∫
dhµdĥµ exp

(
− 1

2(1 + δ)
ĥµĥνCµν − 1

2

∑
µν

Φ̂µνϕ(hµ)ϕ(hν) + i
∑
µ

ĥµ(hµ − δ(1 + δ)−1h̄µ).

)
(189)

From these definitions, the saddle point equations give

∂S

∂ ˆ̄Φ
=

1

2
Φ̄− 1

2

〈
ϕ(h̄)ϕ(h̄)

〉
1
+O(n)

∂S

∂Φ̂
=

1

2
Φµν − 1

2

〈
⟨ϕ(hµ)ϕ(hν)⟩·|h̄

〉
h̄
= 0

∂S

∂fµ
= γ0f̂µ − βγ20 [fµ − yµ] = 0

∂S

∂f̂µ
=
∑
ν

Φµν f̂ν + γ0fµ = 0

∂S

∂Φ
= Φ̂µν +

1

2
f̂µf̂ν = 0 (190)

D.3 REGRESSION TASKS

These equations are generic for any loss function L(θ, T ). In the following, for simplicity, we will
specialize to regression problems where L(θ, T ) = 1

2

∑P
µ=1(fµ − yµ)

2 for both source and target

tasks. In this particular case, one can solve for both {f̂µ, ˆ̄fµ} and {fµ, f̂µ} explicitly, since the
squared-error loss (SE) allows to integrate out the last layer readouts. From that, one gets for the
dual source and target kernels

ˆ̄Φ = −γ̄20
(I
β
+ Φ̄

)−1

ȳȳ⊤
(I
β
+ Φ̄

)−1

Φ̂ = −γ20
(I
β
+Φ

)−1

yy⊤
(I
β
+Φ

)−1

. (191)

Notice that the two equations are functionally equivalent, but what changes is the dependency on
different task labels {ȳ} ∈ T1 vs {y} ∈ T2, different levels of feature learning strength in principle
{γ̄0, γ0}, and especially different adaptive kernels Φ̄ vs Φ.
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D.4 GENERALIZATION ERROR

Knowing the form of the transfer free energy of Eq. equation 180, makes it easy to compute the test
error of the target model on a new (unseen) example (x0, y0). For a generic loss, this is defined as

ϵg(x0, y0) = EW̄∼p(θ̄|T1)⟨L(θ; {x0, y0})⟩θ∼p(θ|T2,W̄ ) (192)

and can be easily computed by realizing that, if we introduce a “test-point coupling” ϵ into the
transfer free energy by adding a weighted loss for the unseen sample (x0, y0), we get an extended
free energy

F(ϵ) =− lim
N→∞

1

N
EW̄∼p(θ̄|T1) ln

∫
dθ exp

−βNγ
2
0

2

∑
µ∈T2

L(θ; T2) + ϵL(θ; {x0, y0})


× exp

(
−1

2
||θ||2 − δ

2
||W − W̄ ||2

)
from which the test loss can be easily computed as

ϵg =
2

βγ20

∂F(ϵ)

∂ϵ

∣∣∣∣
ϵ=0

. (193)

For regression task and SE loss, consistently with (Lauditi et al., 2025), this gives the kernel predictor

ϵg(x0, y0) =
(
y0 −

∑
µν

Φ0µ

[
Φµν +

Iµν
β

]−1

yν

)2
(194)

being Φ0T2
the train-test kernel from the saddle point equation

Φ0µ =
〈
⟨ϕ(h0)ϕ(hµ)⟩·|{h̄0,h̄}

〉
{h̄0,h̄}

(195)

similarly to Eq. equation 190 for the train kernel. We explicitly derive the close form of the train-test
kernel for linear networks in the following Sec.‘D.5.

Figure 9: Langevin simulations of a N = 20000 two-layer ReLU network as a function of δ and
for different feature learning strength values γ0. Test loss at convergence: the network is trained for
105 and averaged after t = 5× 104 every 103 steps. Lazy learning are smallest benefit from transfer
learning. Optimal intermediate value of γ0.

D.5 LINEAR NETWORKS

If we specialize to linear networks where ϕ(h) ≡ h and to regression tasks, the target action can be
solved explicitly. Indeed, this is given by

S2 = −1

2

∑
µν

ΦµνΦ̂µν +
γ20
2
y⊤
(
Φ+

I

β

)−1

y − ⟨lnZ2[h̄]⟩1 (196)

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where the single-site remains now Gaussian even after feature learning, being

Z2 =

∫
dhµdĥµ exp

(
− 1

2(1 + δ)
ĥµĥνCµν − 1

2

∑
µν

Φ̂µνhµhν + i
∑
µ

ĥµ(hµ − δ(1 + δ)−1h̄µ)

)
.

(197)

Here, we can think ĥ,h as jointly Gaussian with[
ĥ
h

]
∼ N (µ,Σ)

µ =

[
(1 + δ)−1C −iI

−iI Φ̂

]−1 [−iδ(1 + δ)−1h̄
0

]
, Σ =

[
(1 + δ)−1C −iI

−iI Φ̂

]−1

.

The mean and covariance are equal to

⟨h⟩·|h = δ
[
(1 + δ)C−1 + Φ̂

]−1

C−1h̄ , Cov·|h̄(h) =
[
(1 + δ)C−1 + Φ̂

]−1

. (198)

We can thus compute the correlation of h|h̄ as
〈
hh⊤〉 = ⟨h⟩ ⟨h⟩⊤ + Cov(h)〈

hh⊤〉
·|h̄ =

[
(1 + δ)C−1 + Φ̂

]−1

+ δ2
[
(1 + δ)C−1 + Φ̂

]−1

C−1h̄T2
h̄⊤
T2
C−1

[
(1 + δ)C−1 + Φ̂

]−1

.

(199)

Now, we must perform the covariance of h̄ using Z1. Note that this is technically h̄ restricted to the
second dataset T2. The full covariance of h̄ for both T1 ∪ T2 has the structure〈

h̄h̄⊤〉 = [C−1
T1∪T2

+

[
ˆ̄Φ 0
0 0

]]−1

= CT1∪T2

[
I +

[
ˆ̄Φ 0
0 0

]
CT1∪T2

]−1

. (200)

We are interested in the lower (2, 2) block of this matrix, which gives the Schur complement〈
h̄T2h̄

⊤
T2

〉
=

[
[C−1]22 − [C−1]21

([
C−1

]
11

+ ˆ̄Φ
)−1

[C−1]12

]−1

. (201)

Thus we are left with the final equations for the target kernels

Φ =
[
(1 + δ)C−1

T2
+ Φ̂

]−1

+ δ2
[
(1 + δ)C−1

T2
+ Φ̂

]−1

C−1
T2

[
[C−1]22 − [C−1]21

([
C−1

]
11

+ ˆ̄Φ
)−1

[C−1]12

]−1

C−1
T2

[
(1 + δ)C−1

T2
+ Φ̂

]−1

(202)

Φ̂ = −γ20
(
Φ+ β−1I

)−1
yy⊤ (Φ+ β−1I

)−1
(203)

being the action

S2 =− 1

2
Tr(ΦΦ̂) +

γ20
2
y⊤
(
Φ+

I

β

)−1

y +
1

2
ln det

[
I +

( CT2

1 + δ

)
Φ̂
]

− δ2

2
Tr
([

(CT2
)−1
[
(1 + δ)(CT2

)−1 + Φ̂
]−1

(CT2
)−1

] [〈
h̄T2

h̄⊤
T2

〉] )
.

The saddle point equations for the source kernels were firstly derived in (Lauditi et al., 2025) and
are instead

Φ̄ =
[
C−1

T1
+ ˆ̄Φ

]−1

ˆ̄Φ = −γ̄20
(
Φ̄+ β−1I

)−1
ȳȳ⊤ (Φ̄+ β−1I

)−1
. (204)
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D.5.1 TRAIN-TEST ADAPTIVE KERNELS

In order to compute the test-train kernel to get the network predictor in the linear case, we need to
compute Φ0T = ⟨h0h

⊤⟩ = ⟨h0⟩⟨h⊤⟩+ Cov(h0,h
⊤). The covariance is computed by resorting to

the single site extended to the test point with index 0

Z2[h̄] ∝
∫ P2∏

µ=0

dhµ exp

(
−1

2

P2∑
µν=0

(
hµ − η

1 + η
h̄µ

)( Cµν

1 + η

)−1(
hν − η

1 + η
h̄ν

)
− 1

2

P2∑
µν=1

hµhνΦ̂µν

)
(205)

from which [
Λ =

(
(1 + η)C−1 +

(
0 0

0 Φ̂

))−1]
(206)

and Cov(h0,h
⊤) = Λ0T . It remains to compute(
⟨h0⟩·|h̄
⟨h⟩·|h̄

)
= η

(
Λ00(C

−1
00 h̄0 +C−1

0T h̄) +Λ0T (C
−1
T0 h̄0 +C−1

TT h̄)
ΛT0(C

−1
00 h̄0 +C−1

0T h̄) +ΛTT (C
−1
T0 h̄0 +C−1

TT h̄)

)
(207)

where the subscript 0 refers to the test point while T to the training points P2 ∈ T2. From the above
equation, we get

⟨h0⟩·|h̄⟨h⊤⟩·|h̄ =η2Λ00

(
C−1

00 h̄0h̄
⊤
0 C

−1
00 +C−1

00 h̄0h̄
⊤C−1

T0 +C−1
0T h̄h̄⊤

0 C
−1
00 +C−1

0T h̄h̄⊤C−1
T0

)
Λ0T

+ η2Λ00

(
C−1

00 h̄0h̄
⊤
0 C

−1
0T +C−1

00 h̄0h̄
⊤C−1

TT +C−1
0T h̄h̄⊤

0 C
−1
0T +C−1

0T h̄h̄⊤C−1
TT

)
ΛTT

+ η2Λ0T

(
C−1

T0 h̄0h̄
⊤
0 C

−1
00 +C−1

T0 h̄0h̄
⊤C−1

T0 +C−1
TT h̄h̄

⊤
0 C

−1
00 +C−1

TT h̄h̄
⊤C−1

T0

)
Λ0T

+ η2Λ0T

(
C−1

T0 h̄0h̄
⊤
0 C

−1
0T +C−1

T0 h̄0h̄
⊤C−1

TT +C−1
TT h̄h̄

⊤
0 C

−1
0T +C−1

TT h̄h̄
⊤C−1

TT

)
ΛTT .

(208)

As we did for the train kernels in the previous section, we are now interested in the lower (2, 2) block
of each kernel matrix ⟨h̄h̄⊤⟩T2

in Eq. equation 208, which would give the source kernel predictions
of train and test kernels on T2, having learned the source task T1.

(a) Alignment and Elastic Term Improve
Transfer (b) Adaptive Feature Kernels

Figure 10: The benefit of transfer learning increases with the similarity between source and target
tasks. (a) Test losses of a two-layer linear model as a function of the elastic coupling δ for different
levels α of task-similarity. Data are generated from an isotropic Gaussian distribution x ∼ N (0, I).
Target vector is given by a linear model y = w · x with ||w||2 = 1. Here, the target depends
on the source task vector β (such that ||β||2 = 1) by the relation w = αβ +

√
1− α2w⊥ where

w ·w⊥ = 0. Solid lines taken from Langevin dynamics on N = 20000 network, black dashed lines
from Bayesian theory. (b) Target kernels as a function of task similarity m = ȳ · y.

In this setting, studying the test loss as given by Sec. D.4 as a function of δ requires to itera-
tively solve the saddle point equations equation 204 after having the adaptive source kernel values
{Φ̄, ˆ̄Φ} ∈ T1. Fig. 9 shows that, depending on the feature strength γ0 value on T2, transfer learning
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Figure 11: Test losses as a function of the elastic constraint η. Source task is a regression on two
classes (0/1) of MNIST with P1 = 400 labels ȳ ∈ {−1, 1}P1 and richness γ̄0 = 0.5. Target
task is a regression on two classes of Fashion MNIST (2/5) with P2 = 50 data points and labels
y ∈ {−1, 1}P2 for different γ0.

(a) δ = 0, γ0 = 0.1 (b) δ = 10, γ0 = 2.0

Figure 12: Kernels clustered by labels y = {±1}P2 (P2 = 50 Fashion-MNIST data from classes
2/5) improve their task alignment with δ > 0 and high γ0. ”Init” represents the Gram matrix of
data, ”Theory” and ”Expt” refers to the adaptive feature kernels Φ.

advantage and so the dependency of test loss to δ may vary. When γ0 is small and the target network
is almost lazy on T2, transfer learning has a minor effect in improving the test performance. There
exists some optimal values of feature learning strength γ0 and δ (which tunes how much the target
network relies on source task features) which optimizes the network performance. In Fig. 12 we
clearly show how the clustering of data points by labels pops out in the kernel appearance as soon
as we both tune γ0 and δ.

D.5.2 DECOUPLED CT1∪T2

A special case we can study is the one in which data are whitened, and uncorrelated across both
source and target tasks, meaning

CT1∪T2
=

[
I 0
0 I

]
(209)

In this case, we have 〈
h̄h̄⊤〉 = I (210)

which simplifies the kernel saddle points on target task as

Φ =
[
(1 + δ)I + Φ̂

]−1

+ δ2
[
(1 + δ)I + Φ̂

]−2

Φ̂ = −γ20
(
Φ+ β−1I

)−1
yy⊤ (Φ+ β−1I

)−1
. (211)

As mentioned in the main text, since in this case the kernel only grow in the rank-one yy⊤ direction,
by solving for the overlaps Φ = ϕyy⊤ and Φ̂ = ϕ̂yy⊤, we get

ϕ = (1 + δ + ϕ̂)−1 + δ2(1 + δ + ϕ̂)−2 (212)
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and similarly that

ϕ̂ = −γ20(β−1 + ϕ)−2. (213)

In the same way, the saddle point equations for the source task T1 can be simplified in the source
direction ȳȳ⊤, giving

ϕ̄ = (1 + ˆ̄ϕ)−1

ˆ̄ϕ = −γ̄20(β−1 + ϕ̄)−2. (214)

Interestingly, here, when δ → ∞, since source and target tasks are uncorrelated, then ϕ = 1, which
means that the source kernel Φ̄ is the identity along the target direction y as expected.

D.5.3 SAME DATA ON BOTH TASKS

Another relevant case is the one where both source and target tasks share the same data and labels.
If data are whitened, then

CT1∪T2 =

[
I I
I I

]
,
〈
h̄h̄
〉
=

[
I I
I I

] [
I + ˆ̄Φ ˆ̄Φ

0 I

]−1

(215)

which means 〈
h̄2h̄2

〉
= −

(
I + ˆ̄Φ

)−1
ˆ̄Φ+ I =

(
I + ˆ̄Φ

)−1

(216)

giving

Φ =
[
(1 + δ)I + Φ̂

]−1

+ δ2
[
(1 + δ)I + Φ̂

]−1 (
I + ˆ̄Φ

)−1 [
(1 + δ)I + Φ̂

]−1

. (217)

Again, we can solve for the overlaps, knowing that for T1

ϕ̄ = (1 + ˆ̄ϕ)−1 (218)

ˆ̄ϕ = −γ̄20(β−1 + ϕ̄)−2. (219)
For T2 we get

ϕ = (1 + δ + ϕ̂)−1 + δ2 ϕ̄ (1 + δ + ϕ̂)−2 (220)

ϕ̂ = −γ20(β−1 + ϕ)−2. (221)

Contrary to the previous uncorrelated case, here, when the elastic constraint δ → ∞, then ϕ = ϕ̄
and the target kernel converges to the source kernel as expected.

D.5.4 SAME DATA, DIFFERENT LABELS

Suppose again that

CT1∪T2 =

[
I I
I I

]
(222)

but that in principle, in this case,

From the saddle point equations for T1, we know that

Φ̄ = I + (ϕ̄− 1)y1y
⊤
1 (223)

and since the saddle point equations for T2 are

Φ =
[
(1 + η)I + Φ̂

]−1

+ η2
[
(1 + η)I + Φ̂

]−1 (
I + (ϕ̄− 1)y1y

⊤
1

) [
(1 + η)I + Φ̂

]−1

Φ̂ = −γ20(Φ)−1y2y
⊤
2 (Φ)−1 (224)
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(a) γs ≥ γt (b) γs ≤ γt

(c) γs ≤ γt (d) γs ≤ γt

Figure 13: Transfer learning for linear networks trained on whitened data C = I increases the
overlap ϕ with the label direction y⊤Φy = ϕ if the source is richer than the target model. (a)/(b)
Overlaps ϕ vs elastic constraint δ for a two-layer linear model trained on P = 8 patterns with
y = {±1}P . Source network is pre-trained on the same data as the target, with a richness parameter
γs = 5.0. Solid lines taken from Langevin dynamics on N = 20000 network, dashed lines from the
Bayesian theory. (c)/(d) Examples of learned kernels as a function of the elastic coupling δ.

(a) γs = γt

Figure 14: Kernels (theory vs experiments) as a function of the elastic constraint δ with the source
task (T1). When γs = γs, there exists an optimal δ value for alignment with T2, since in the target
task you saw twice the data than in T1.

one realizes that the only non-trivial contributions to Φ comes from the span{y1,y2}, so in principle
one can decompose

Φ = a I + by1y
⊤
1 + c (y1y

⊤
2 + y2y

⊤
1 ) + dy2y

⊤
2 (225)

which means

Φ = aI + [y1 y2]

[
b c
c d

] [
y⊤
1

y⊤
2

]
(226)

from which

Φ−1 =
(
aI + uCu⊤)−1

= a−1I − a−2u
(
C−1 + a−1u⊤u

)−1
u⊤ (227)

and

Φ−1y2 = a−1y2 − a−2u
(
C−1 + a−1u⊤u

)−1
[
y⊤
1 y2

1

]
(228)

being y⊤
1 y2 = m. It turns out, one can solve for {a, b, c, d} self consistently and for different values

of m.
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