
Under review as a conference paper at ICLR 2024

PROTOREG: PRIORITIZING DISCRIMINATIVE INFOR-
MATION FOR FINE-GRAINED TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer learning leverages a pre-trained model with rich features to fine-tune it
for downstream tasks, thereby improving generalization performance. However,
we point out the “granularity gap” in fine-grained transfer learning, a mismatch
between the level of information learned by a pre-trained model and the semantic
details required for a fine-grained downstream task. Under these circumstances,
excessive non-discriminative information can hinder the sufficient learning of dis-
criminative semantic details. In this study, we address this issue by establishing
class-discriminative prototypes and refining the prototypes to gradually encapsu-
late more fine-grained semantic details, while explicitly aggregating each feature
with the corresponding prototype. This approach allows the model to prioritize
fine-grained discriminative information, even when the pre-trained model con-
tains excessive non-discriminative information due to the granularity gap. Our
proposed simple yet effective method, ProtoReg, significantly outperforms other
transfer learning methods in fine-grained classification benchmarks with an av-
erage performance improvement of 6.4% compared to standard fine-tuning. Par-
ticularly in limited data scenarios using only 15% of the training data, ProtoReg
achieves an even more substantial average improvement of 13.4%. Furthermore,
ProtoReg demonstrates robustness to shortcut learning when evaluated on out-of-
distribution data.

1 INTRODUCTION

Training a model from scratch suffers from overfitting to non-discriminative signals since the model
has no prior knowledge of task-specific discriminative information (Goodfellow et al., 2016; Geirhos
et al., 2020). The model can be biased towards easy-to-fit and non-discriminative patterns, such as
high-frequency patterns or shortcuts, that disrupt generalized learning for the task (Ilyas et al., 2019;
Xiao et al., 2020; Geirhos et al., 2018; Izmailov et al., 2022). Transfer learning can alleviate such
issues by leveraging information learned by a pre-trained model. Consequently, transfer learning
enables a model to achieve better generalization performance compared to training the model from
scratch (Kornblith et al., 2019b; Donahue et al., 2014).

We highlight a potential challenge in transfer learning when it is applied to a downstream task with
finer granularity, demanding detailed discriminative information, which leads to the emergence of
a granularity gap compared to the pre-trained knowledge. Due to the granularity gap, the coarse
information learned by pre-trained models often does not align with the discriminative signals re-
quired to solve fine-grained downstream tasks. For example, when transferring to classify aircraft
types (FGVC Aircraft (Maji et al., 2013)), an ImageNet pre-trained model may capture general in-
formation about the overall appearance of aircraft but may lack class-discriminative attributes of a
particular aircraft model, such as swept-back wings and vertical tail fins, which are characteristic of
the Boeing 707-200 model. The presence of excessive non-discriminative information can lead the
model to overfit non-discriminative information in the training data, hindering effective fine-grained
transfer learning. Figure 1 illustrates that the retrieved images using features from the pre-trained
model belong to different classes than the query image, while sharing coarse and non-discriminative
information (such as color or background). In such scenarios, fine-tuning with cross-entropy (CE)
loss alone fails to adequately capture class-discriminative information (e.g., the distinct facial pat-
terns of a cardinal) without any constraints to prioritize class-discriminative information.

1

Under review as a conference paper at ICLR 2024

Summer
Tanager

Summer
Tanager

Summer
Tanager

CE

Gadwall Winter Wren Mallard

Cardinal Cardinal Cardinal Cardinal

ProtoReg

American Pipit American Pipit American PipitAmerican Pipit

Pine
Grosbeak

Pine
Grosbeak

Summer
Tanager

Pre-trained

Louisiana
Waterthrush

Rusty
Blackbird

Vermilion
Flycatcher

Figure 1: Image retrieval results on CUB-200-2011 using a ResNet-50 pre-trained on ImageNet.
The three cases include: direct use of the pre-trained model (bottom), fine-tuning with cross-entropy
loss only (middle), and applying the proposed ProtoReg with cross-entropy loss (top). In the pre-
trained representation space, the images retrieved from the query image share coarse and non-
discriminative information (left: red color, right: water background). Although fine-tuning using
only cross-entropy loss faces challenges in capturing fine-grained class-discriminative information,
our proposed regularizer alleviates this issue.

In this study, we introduce a simple yet effective method that aims to enhance transferability to
downstream tasks by prioritizing fine-grained and class-discriminative information when excessive
non-discriminative information exists in the pre-trained model due to the granularity gap. To this
end, we introduce adaptively evolving prototypes for each class, which are initialized to contain
class-discriminative information. During transfer learning, we regularize the feature space to align
the features with their corresponding prototypes, encouraging the features to contain more class-
discriminative information. Furthermore, as the model learns additional class-discriminative infor-
mation required for the downstream task, we enhance the prototypes to adaptively incorporate the
class-discriminative information.

Our proposed method, ProtoReg, significantly improves performance across various fine-grained
visual classification tasks, especially outperforming in limited data scenarios that are particularly
vulnerable to overfitting of non-discriminative information. For instance, it achieves an average
performance improvement of 6.4% on four fine-grained downstream datasets and an average im-
provement of 13.4% when using only 15% of the training data from the same datasets. Additionally,
to verify whether the model performs robust predictions based on the class-discriminative informa-
tion of objects, we evaluate the model fine-tuned on the CUB-200-2011 (Wah et al., 2011) using
the Waterbirds (Sagawa et al., 2019) test dataset. This dataset intentionally changes the background
in which the birds are placed to disrupt correlations between the background and the objects. Our
proposed method exhibited a notably smaller accuracy drop when compared to other methods, un-
derscoring the model’s efficacy in acquiring fine-grained class-discriminative information.

2 RELATED WORK

2.1 TRANSFER LEARNING

Two standard approaches for transfer learning are linear probing and fine-tuning. Linear prob-
ing involves freezing the encoder responsible for feature extraction and training only a new linear
classifier for the downstream task. On the other hand, fine-tuning adjusts the entire model for the
downstream task, typically outperforming linear probing (Chen et al., 2021; Yosinski et al., 2014).
A recent study (Kumar et al., 2022) has pointed out that fine-tuning can lead to feature distortion
in pre-trained models, and it proposes LP-FT as a method that initially employs linear probing and
subsequently fine-tunes the entire model.

2

Under review as a conference paper at ICLR 2024

(a) Random initialization (b) Pre-trained (c) CE (d) ProtoReg

Figure 2: T-SNE visualization of validation features for FGVC Aircraft using (a) a randomly initial-
ized model, (b) a pre-trained model, (c) a model fine-tuned with cross-entropy loss, and (d) a model
fine-tuned jointly with ProtoReg. All models are ResNet-50, with the pre-trained model trained on
ImageNet-1K. We visualized the first 20 classes, where each color represents a specific class.

2.2 REGULARIZATION METHODS FOR TRANSFER LEARNING

To prevent the over-fitting in transfer learning, various regularization methods have been developed.
L2-SP (Xuhong et al., 2018) constrains the fine-tuned model weights to be close to their correspond-
ing pre-trained weights. DELTA (Li et al., 2019) regularizes the behavior of the fine-tuned model
by decreasing the feature map distances between the pre-trained and fine-tuned models. To alleviate
negative transfer, BSS (Chen et al., 2019) penalizes the small singular values of the penultimate
layer features. On the other hand, SN (Kou et al., 2020) replaces Batch Normalization (Ioffe &
Szegedy, 2015) with its stochastic variant to transfer the running statistics. By additionally tun-
ing a pre-trained linear classifier leveraging the relationship between the source and target classes,
Co-tuning (You et al., 2020) aims to fully fine-tune the entire model to improve transferability. Al-
though various regularization methods have been proposed for transfer learning, direct consideration
of the granularity gap has been lacking. Our approach introduces a regularization method aimed at
prioritizing fine-grained discriminative signals, particularly in scenarios where an abundance of non-
class-discriminative information exists in the pre-trained information due to the granularity gap.

3 MOTIVATIONAL OBSERVATIONS

Figure 2a and 2b illustrate the t-SNE visualization (Van der Maaten & Hinton, 2008) of the FGVC
Aircraft (Maji et al., 2013) validation features obtained from the random initialized and pre-trained
ResNet-50 (He et al., 2016) models, respectively. The pre-trained model was trained on the
ImageNet-1K dataset (Deng et al., 2009) and we used penultimate features to visualize. Each color in
the figure corresponds to a different class. In contrast to the previous findings that the feature repre-
sentations of downstream data with similar granularity, such as CIFAR10 (Krizhevsky et al., 2009),
acquired from the ImageNet pre-trained model exhibit a high degree of linear separability (Chen
et al., 2020; Kumar et al., 2022), Figure 2b demonstrates that the pre-trained model remains suscep-
tible to non-class-discriminative features in the context of the fine-grained classification.

Furthermore, Figure 2a and 2b show a comparable degree of class separation, indicating overfit-
ting to non-class-discriminative signals, commonly encountered when training a randomly initial-
ized model, can also arise when transferring pre-trained knowledge to a fine-grained downstream
task. Figure 2c displays the visualization of the validation features after fine-tuning using only
cross-entropy loss. Despite achieving a training accuracy of 100%, the clusters of validation fea-
tures exhibit noisy separation between classes, signifying that the model acquired limited class-
discriminative features. This implies that the model has overfit to non-class-discriminative patterns,
rather than capturing the intricate semantic patterns that distinguish between fine-grained classes
during fine-tuning.

These observations underscore the importance of pre-trained models prioritizing their class-
discriminative information during fine-tuning, especially when addressing fine-grained downstream
tasks that exhibit a granularity gap with the pre-trained knowledge. In the following section, we will
describe our approach, ProtoReg, designed to effectively regulate the model to facilitate improved
acquisition of class-discriminative information during transfer learning. ProtoReg enhances learn-
ing of class-discriminative information, leading to improved discriminability of validation features
(Figure 2d).

3

Under review as a conference paper at ICLR 2024

4 METHOD

4.1 PROBLEM FORMULATION

We consider a classification task as the downstream task for transfer learning. The pre-trained model
is composed of a feature extractor Fθ and, in cases where the pre-trained model has been trained
through classification, a linear classifier Hψ . During the transfer for the downstream task, Hψ is
removed. Subsequently, a new linear classifier Gϕ is introduced for downstream task and the entire
model Gϕ ◦ Fθ is fine-tuned. The downstream data D consists of samples belonging to K classes.
Di denotes a set of samples from class i, and xi,n denotes the n-th sample from class i:

D =

K⋃
i=1

Di, Di =

Ni⋃
n=1

{(xi,n, i)}, (1)

where Ni is the number of samples in class i. D is split into a disjoint set D train, D val, and D test for
training, validation, and testing.

4.2 PROTOTYPE INITIALIZATION

To prioritize and focus on the class-discriminative information during fine-tuning, we first initialize
class-discriminative prototypes {ci}Ki=1, where ci denotes the prototype of class i. An intuitive
approach for defining prototypes is to utilize the sample mean of features for each class (Snell et al.,
2017) such that

ci =
1

N train
i

N train
i∑

n=1

zi,n ∈ Rd, (2)

where zi,n denotes the encoded feature of xi,n (i.e., zi,n := Fθ(xi,n)), N train
i denotes the number of

training samples of class i, and d denotes the feature dimension. The linear classifier Gϕ is randomly
initialized. However, when samples from different classes share non-discriminative information,
as shown in Figure 1, using the sample mean may not adequately encompass class-discriminative
information. To enhance the incorporation of class-discriminative information into the prototypes,
we introduce an alternative method for their initialization. This involves utilizing the discriminative
classifier weights obtained from linear probing, as follows:

ϕ̂ = argmax
ϕ

ACC(D val;Gϕ ◦ Fθ̄), ci = ϕ̂i,:, (3)

where ACC denotes the classification accuracy, θ̄ denotes the frozen encoder parameters, and ϕ̂i,:

denotes the i-th row of ϕ̂ ∈ RK×d. To determine ϕ that maximizes validation accuracy, we use early
stopping when the validation accuracy begins to decrease. The prototypes initialized from the linear
classifier weights, serving as decision boundaries that separate downstream classes in a pre-trained
feature space, explicitly provide downstream task-specific discriminative information contained in
the pre-trained model to the downstream model during fine-tuning. To utilize the linear classifier Gϕ
as the class prototypes directly, we trained the classifier without using a bias term.

4.3 PROTOTYPE REFINEMENT

During fine-tuning, the model is trained to progressively encode task-discriminative information. To
ensure that the class-discriminative prototypes adapt to the additional information learned, we refine
prototypes during fine-tuning. When the prototypes are initialized based on class-wise mean features
(Eq 2), we utilize a similar approach for prototype refinement. Specifically, we introduce class-wise
memory banks {Mt

i}Ki=1 to refine prototypes at the end of each epoch. For every iteration at epoch
t, the batch features are enqueued to their corresponding class-wise memory banks. At the end of
epoch t, the updated prototype ct+1

i is determined as the sample mean of the enqueued features in
Mt

i as follows:

ct+1
i =

1

N train
i

N train
i∑

n=1

Mt
i(n) ∈ Rd, (4)

4

Under review as a conference paper at ICLR 2024

where Mt
i(n) denotes the n-th feature enqueued in Mt

i. After the refinement, the memory banks are
flushed and updated as {Mt+1

i }Ki=1 where the features at epoch t+1 are enqueued iteratively. Refin-
ing prototypes by averaging over samples across progressively shifted features spaces is beneficial
for stable training, given the gradual shift towards task-discriminative feature spaces.

When initializing prototypes based on linear classifier weights (Eq 3), we do not utilize updated
features to refine prototypes. Instead, we set the prototypes to be learnable and refine them through
backpropagation while optimizing Eq 7. Both refinement methods play a crucial role in encourag-
ing prototypes to adaptively evolve to incorporate class-discriminative information, ensuring stable
class-discriminative feature learning during the fine-tuning phase.

4.4 REGULARIZATION BY PROTOTYPE AGGREGATION AND SEPARATION

To prioritize fine-grained discriminative information when the pre-trained model contains excessive
non-class-discriminative information, we explicitly aggregate features towards their corresponding
class-discriminative prototype by increasing the cosine similarity as follows:

Laggr(zi,n) = −sim(zi,n, ci), (5)

where sim(·, ·) is a cosine similarity function. The aggregation term encourages features to be
more focused on class-discriminative information. Additionally, to mitigate reliance on class-shared
information, such as red color which is non-discriminative information across some bird species in
Figure 1, we employ a separation loss that enforces features to be dissimilar from prototypes of
different classes as follows:

Lsep(zi,n) = log
∑
s̸=i

exp(sim(zi,n, cs)). (6)

Consequently, Laggr and Lsep are jointly optimized with the cross-entropy loss Lce to encourage the
model to explicitly prioritize class-discriminative information during fine-tuning:

Ltotal = Lce + λaggrLaggr + λsepLsep, (7)

where λaggr and λsep are the coefficient hyper-parameters for Laggr and Lsep, respectively. We
provide the pseudo code for ProtoReg in Appendix A.1.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

We conducted experiments on six well-known image classification benchmarks, which include four
fine-grained datasets (FGVC Aircraft (Maji et al., 2013), Stanford Cars (Krause et al., 2013), CUB-
200-2011 (Wah et al., 2011), NABirds (Van Horn et al., 2015)) and two general datasets (Cal-
tech101 (Li et al., 2022), CIFAR100 (Krizhevsky et al., 2009)). In order to simulate scenarios where
models are more susceptible to overfitting to non-class-discriminative information, we randomly
sampled each training dataset with four different sampling rates of 15%, 30%, 50%, and 100%,
adopting evaluation protocol of prior studies (Kou et al., 2020; You et al., 2020).

In all experiments, we used ResNet-50 (He et al., 2016) pre-trained on ImageNet-1K (Deng et al.,
2009), and the pre-trained weights were obtained from Torchvision (Falbel, 2022). We report the
test accuracy using the model with the highest accuracy on the validation data. In case the validation
set is not available in the benchmark, we randomly selected 20% of the training data to construct the
validation data, which was performed before sampling the train data. More detailed explanations
regarding datasets and implementation details can be found in Appendix A.2.

5.2 MAIN RESULTS

Table 1 presents the overall performance comparison of ProtoReg with the compared methods. We
refer to the case where we initialize prototypes using class-wise mean features (Eq 2) as ProtoReg
(self), and the case using linear classifier weights (Eq 3) as ProtoReg (LP). Our proposed method
outperforms all the compared methods by a large margin across all benchmarks and sampling rates.

5

Under review as a conference paper at ICLR 2024

Table 1: The overall performance of the test accuracy (%) on the four benchmarks. The network is
ResNet-50 pre-trained on ImageNet-1K. The baseline is fine-tuning with cross-entropy loss (CE).
The compared methods are L2-SP (Xuhong et al., 2018), BSS (Chen et al., 2019), SN (Kou et al.,
2020), Co-tuning (You et al., 2020), LP-FT (Kumar et al., 2022), Robust FT (Xiao et al., 2023), and
DR-Tune (Zhou et al., 2023).

Dataset Method Sampling rate
15% 30% 50% 100%

FGVC Aircraft

CE 23.91 38.14 49.54 66.01
L2-SP 24.00 37.87 49.29 65.39
BSS 24.31 38.75 50.34 66.72
SN 26.49 41.56 52.39 68.71
Co-tuning 26.60 40.89 52.57 68.67
LP-FT 24.39 38.19 49.36 66.76
Robust FT 23.91 37.84 49.09 65.08
DR-Tune 24.42 40.89 50.65 68.80
ProtoReg (self) 33.66 46.83 59.95 75.25
ProtoReg (LP) 34.35 50.41 61.45 77.89

Stanford Cars

CE 25.75 52.66 70.26 84.54
L2-SP 25.81 52.63 70.21 84.31
BSS 26.28 54.06 71.54 85.10
SN 29.62 56.88 72.74 84.54
Co-tuning 29.88 57.46 74.38 86.10
LP-FT 27.50 53.07 70.25 84.47
Robust FT 25.07 52.63 70.10 84.29
DR-Tune 26.80 56.04 73.55 84.80
ProtoReg (self) 39.95 65.91 78.36 87.74
ProtoReg (LP) 42.52 69.32 81.62 89.60

CUB-200-2011

CE 45.16 57.94 69.56 78.12
L2-SP 45.19 57.74 69.61 78.24
BSS 45.89 59.77 70.62 79.24
SN 49.89 62.48 71.11 79.28
Co-tuning 50.35 63.43 71.12 79.99
LP-FT 48.48 59.91 69.45 78.69
Robust FT 43.34 57.66 68.35 78.53
DR-Tune 44.84 58.49 69.62 79.10
ProtoReg (self) 57.09 67.48 74.53 81.22
ProtoReg (LP) 59.08 69.49 76.30 82.38

NABirds

CE 39.87 55.80 65.89 74.98
L2-SP 39.63 55.68 65.32 74.95
BSS 40.53 57.07 66.43 75.96
SN 43.86 57.95 66.72 75.44
Co-tuning 44.85 60.85 69.20 77.41
LP-FT 41.06 56.09 66.00 74.79
Robust FT 39.00 55.17 65.46 74.86
DR-Tune 41.37 57.07 66.99 76.16
ProtoReg (self) 50.75 63.68 70.84 78.40
ProtoReg (LP) 52.42 64.83 72.33 79.51

For example, ProtoReg (LP) achieves a test accuracy of 77.89% on the FGVC Aircraft at a 100%
sampling rate, outperforming the baseline by 11.88% and the best-performing compared method
by 9.18%. Notably, in limited data scenarios where models are more susceptible to overfitting to
non-class-discriminative information, ProtoReg shows significant improvements compared to the
other methods. For example, when using only 15% of the training samples of the Stanford Cars,
ProtoReg outperforms the best-performing compared method by 6.74%p with ProtoReg (self) and
8.73%p with ProtoReg (LP). On average, it exhibits a 6.4% performance improvement compared to
standard fine-tuning across four fine-grained downstream tasks and achieves an average performance
improvement of 13.4% in limited data scenarios using only 15% of the training data on each dataset.

5.3 EFFECTIVE LEARNING OF CLASS-DISCRIMINATIVE INFORMATION

To verify that ProtoReg effectively learns class-discriminative information, we evaluated a model
trained on CUB-200-2011 on the Waterbirds (Sagawa et al., 2019) test dataset. The dataset consists
of bird images from the CUB-200-2011 dataset with backgrounds replaced by other scenes from the
Places (Zhou et al., 2017). This modification intentionally disrupts the correlation between objects

6

Under review as a conference paper at ICLR 2024

Table 2: Test accuracy (%) on CUB-200-2011 (ID) and Waterbirds (OOD) test datasets for a model
trained on CUB-200-2011. ↓ represents the drop rate (%) in OOD test accuracy compared to ID test
accuracy.

Method
Sampling rates

15% 30% 50% 100%
ID OOD ↓ ID OOD ↓ ID OOD ↓ ID OOD ↓

CE 45.2 23.1 49 57.9 36.5 37 69.6 47.5 32 78.1 60.2 24
Co-tuning 50.4 34.3 32 63.4 48.0 24 71.1 58.7 17 80.0 68.9 14
LP-FT 48.5 26.3 46 59.9 36.0 40 69.5 47.7 31 78.7 58.8 25
ProtoReg (self) 57.1 42.8 25 67.5 52.8 22 74.5 59.6 20 81.2 70.3 13
ProtoReg (LP) 59.0 47.5 19 69.5 57.8 17 76.3 65.2 13 82.4 74.3 10

Class
American
Redstart

Scott
Oriole

Red-winged
Blackbird

Prob. 0.765 0.169 0.027

Class
American
Redstart

Scott
Oriole

Red-winged
Blackbird

Prob. 0.836 0.072 0.032

Class
Scott

Oriole
Pigeon

Guillemot
American
Redstart

Prob. 0.794 0.061 0.027

Class
American
Redstart

Scott
Oriole

Red-winged
Blackbird

Prob. 0.532 0.205 0.072

CE

ProtoReg

CE

ProtoReg

Figure 3: Predicted class probabilities for a sample from CUB-200-2011 (left) and its corresponding
sample from Waterbirds (right). The ground truth is American Redstart. For the left in-distribution
sample, both CE and ProtoReg accurately predict the ground truth. However, when the background
is changed while maintaining the object’s fine-grained class-discriminative information, ProtoReg
still predicts accurately, while CE makes overconfident incorrect predictions.

and backgrounds in bird images. As a result, models that fail to adequately learn fine-grained class-
discriminative information and rely more on coarse information are expected to encounter a more
significant accuracy drop on the out-of-distribution (OOD) dataset.

Table 2 provides a comparison of test accuracy for CUB-200-2011 (ID) and Waterbirds (OOD)
across four different sampling rates. The model fine-tuned with ProtoReg exhibits better robustness
to changes in the background, with an accuracy drop rate of only 10% at a sampling rate of 100%,
compared to the drop rate of 24% with cross-entropy loss alone. Especially in a limited data scenario
where only 15% of the training data is used, our method demonstrates an accuracy drop of only 19%,
surpassing both the baseline with a 49% drop and the best-compared method with a 32% drop in
OOD test accuracy.

Figure 3 illustrates the predicted probabilities for a sample from CUB-200-2011 and its correspond-
ing sample from the Waterbirds (ground truth: American Redstart). The model fine-tuned using
cross-entropy loss shows a significant decrease in the ground truth probability from 0.765 to 0.027.
On the other hand, the model regularized with ProtoReg not only accurately predicts the class but
also maintains the top-3 predicted class rank. GradCAM (Selvaraju et al., 2017) visualization in
Figure 10 demonstrates that ProtoReg effectively captures the discriminative features of the object
for prediction, while CE shows a noticeable bias towards the background.

5.4 ANALYSIS OF PROTOREG

In this subsection, we analyze the impact of ProtoReg on transfer learning and the effectiveness of
each of its components. Unless stated otherwise, the experiments are based on ProtoReg (self) on
FGVC Aircraft with a 100% sampling rate. Additional results can be found in Appendix B.

5.4.1 IMPACT ON THE REPRESENTATION SPACE

To show how CE, ProtoReg (self), and ProtoReg (LP) have transformed the representation space
of the pre-trained model, Figure 4 presents CKA similarities (Cortes et al., 2012) between the pre-
trained model and each fine-tuned model. The CKA similarity measures the similarity between the
layer representations of two models. A lower CKA score indicates that the two layers encode differ-

7

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10 12 14
Pre-trained

0

2

4

6

8

10

12

14

CE

CE vs Pre-trained

(a) CE

0 2 4 6 8 10 12 14
Pre-trained

0

2

4

6

8

10

12

14

Pr
ot

oR
eg

 (s
el

f)

ProtoReg (self) vs Pre-trained

(b) ProtoReg (self)

0 2 4 6 8 10 12 14
Pre-trained

0

2

4

6

8

10

12

14

Pr
ot

oR
eg

 (L
P)

ProtoReg (LP) vs Pre-trained

(c) ProtoReg (LP)

Figure 4: CKA similarities between the pre-trained model and CE, ProtoReg (self), and ProtoReg
(LP). The indices along the two axes represent the 16 blocks that comprise ResNet-50. A lower
CKA similarity indicates that the two layers encode different information.

0 1 5 10 15 20 25
(aggr)

62
64
66
68
70
72
74
76

Ac
cu

ra
cy

 (%
)

Aircraft/100

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

Figure 5: Test accuracy (%) for various com-
binations of λaggr and λsep.

20 30
Linear probe validation accuracy (%)

72.5

75.0

77.5
Te

st
 a

cc
ur

ac
y

(%
)

Aircraft (r=0.92)

Figure 6: Effects initializing discriminative
prototypes for transfer accuracy.

ent information from each other (Kornblith et al., 2019a; Raghu et al., 2021). For CE, the decrease
in CKA similarity with the pre-trained model is most pronounced in the penultimate layer, which
deals with high-level semantic information. This observation suggests that the model failed to learn
substantial new information but rather leaned heavily on the pre-existing pre-trained knowledge. On
the other hand, both ProtoReg (self) and ProtoReg (LP) exhibit substantial changes in representation
space even in intermediate layers preceding the penultimate layer. This suggests that ProtoReg not
only relies on pre-trained knowledge but also acquires additional class-discriminative information.

5.4.2 IMPORTANCE OF THE AGGREGATION AND SEPARATION STRENGTHS

Figure 5 presents the test accuracies achieved by various combinations of λaggr and λsep, which
correspond to Laggr and Lsep, respectively. As λaggr increases to a certain level, test accuracy
consistently improves, resulting in a performance improvement of more than 8%p. This observa-
tion suggests that applying strong aggregation towards their class-discriminative prototypes, which
encourages the model to focus on class-discriminative information, leads to enhanced transfer per-
formances. Furthermore, a moderate degree of λsep further enhances the test accuracy when used
with a high λaggr. However, using λsep alone or with a small λaggr can degrade the test accuracy.
The results on different datasets and sampling rates are provided in Appendix B.2.

5.4.3 INITIALIZING DISCRIMINATIVE PROTOTYPES IMPROVES TRANSFER LEARNING

Figure 6 illustrates the correlation between the validation accuracy of linear probing accuracy and the
downstream test accuracy in ProtoReg (LP). A higher linear probing validation accuracy indicates
that the initialized prototypes are more class-discriminative. We vary the linear probing epoch from
1 to 15, setting the prototypes to be less discriminative when they are trained with fewer epochs.

8

Under review as a conference paper at ICLR 2024

Table 3: Test accuracy (%) when Laggr and
Lsep are applied in different stages: early
stage (epoch 1 - 30), middle stage (epoch 31
- 60), or late stage (61 - 100).

Laggr

Early Middle Late

Early 72.9 70.6 69.3
Lsep Middle 72.7 70.7 69.3

Late 71.7 71.0 70.7

Table 4: Ablation study on each component of Pro-
toReg.

Lce Laggr Lsep Refine Accuracy (%)

✓ 66.01
✓ ✓ 66.34
✓ ✓ 70.93
✓ ✓ ✓ 71.23
✓ ✓ ✓ 63.79
✓ ✓ ✓ 74.71
✓ ✓ ✓ ✓ 75.25

The experimental results reveal a Pearson correlation of 0.92, indicating that initializing prototypes
to be discriminative is highly correlated with the downstream test accuracy.

5.4.4 REGULARIZATION IN THE EARLY TRANSFER MATTERS

If the pre-trained model does not initially focus well on the limited fine-grained class-discriminative
information it contains, the model can be overfitted to excessive non-class discriminative infor-
mation, potentially leading to insufficient learning of semantic details. Table 3 illustrates the sig-
nificance of early-stage feature regularization of ProtoReg by selectively applying Laggr and Lsep

during the early, middle, or late stages of the training process. Among the nine combinations tested,
incorporating both Laggr and Lsep in the early stage yields the highest performance, outperforming
the worst case by 3.6%p, which involves applying Lsep early and Laggr late. Notably, the early-stage
application of Laggr consistently outperforms its late-stage application.

5.5 ABLATION STUDY

Table 4 presents the results of the ablation study. When Lsep is used without Laggr and prototype
refinement, the accuracy slightly increases compared to the baseline (row 2). When using only
Laggr without Lsep and prototype refinement, the features are solely aggregated towards the initial
prototypes from the pre-trained model. This leads to an increase of 4.92%p in performance as the
pre-trained model is regularized to focus on task-relevant features (row 3). Moreover, when Laggr is
used with prototype refinement, which enables the prototypes to evolve from coarse to fine-grained,
the performance is further improved by 8.70%p (row 6). Furthermore, the addition of Lsep allows
the prototypes to focus more on the discriminative features between classes, leading to a significant
increase of 9.24%p (row 7).

Table 5: Test accuracy (%) according to the num-
ber of fine-tuning epochs.

Method Epoch
100 200 300 400

CE 66.01 65.95 66.25 67.12
ProtoReg 75.25 76.03 76.30 77.50

The results in Table 5 demonstrate that Pro-
toReg serves as a powerful regularizer. In CE,
increasing the fine-tuning epoch did not lead to
any noticeable improvement in the test accu-
racy, indicating that no additional discrminative
information is learned. However, when using
ProtoReg, performance is enhanced by 2.25%p
when increasing the adaptation epoch from 100
epochs to 400 epochs.

6 CONCLUSION

We introduce ProtoReg, a simple yet effective method for fine-grained transfer leraning that en-
hances learning class-discriminative information in the presence of granularity gap due to the exces-
sive non-discriminative information in the pre-trained model. We first initialize class-discriminative
prototypes by utilizing either the class-wise feature mean or linear probing classifier. Then the
aggregation and separation loss are utilized to prioritize class-discriminative information. During
fine-tuning, prototypes are refined to contain more fine-grained discriminative knowledge of the
downstream data. ProtoReg substantially improves fine-grained transfer learning performance on
multiple benchmarks. Comprehensive experimental results demonstrate that ProtoReg effectively
enhances learning fine-grained discriminative information.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers, 2021.

Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting
meets negative transfer: Batch spectral shrinkage for safe transfer learning. Advances in Neural
Information Processing Systems, 32, 2019.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based
on centered alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In Inter-
national conference on machine learning, pp. 647–655. PMLR, 2014.

Daniel Falbel. torchvision: Models, Datasets and Transformations for Images, 2022.
https://torchvision.mlverse.org, https://github.com/mlverse/torchvision.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in
the presence of spurious correlations. Advances in Neural Information Processing Systems, 35:
38516–38532, 2022.

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMLR, 2019a.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–
2671, 2019b.

Zhi Kou, Kaichao You, Mingsheng Long, and Jianmin Wang. Stochastic normalization. Advances
in Neural Information Processing Systems, 33:16304–16314, 2020.

10

Under review as a conference paper at ICLR 2024

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022.

Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and Pietro Perona. Caltech 101, 4 2022.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan.
Delta: Deep learning transfer using feature map with attention for convolutional networks. arXiv
preprint arXiv:1901.09229, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI conference on artificial intelligence,
volume 29, 2015.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34:12116–12128, 2021.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 595–604, 2015.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.

Yao Xiao, Ziyi Tang, Pengxu Wei, Cong Liu, and Liang Lin. Masked images are counterfactual
samples for robust fine-tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20301–20310, 2023.

LI Xuhong, Yves Grandvalet, and Franck Davoine. Explicit inductive bias for transfer learning
with convolutional networks. In International Conference on Machine Learning, pp. 2825–2834.
PMLR, 2018.

11

Under review as a conference paper at ICLR 2024

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Kaichao You, Zhi Kou, Mingsheng Long, and Jianmin Wang. Co-tuning for transfer learning. Ad-
vances in Neural Information Processing Systems, 33:17236–17246, 2020.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452–1464, 2017.

Nan Zhou, Jiaxin Chen, and Di Huang. Dr-tune: Improving fine-tuning of pretrained visual mod-
els by distribution regularization with semantic calibration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1547–1556, 2023.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PSEUDO CODE

Algorithm 1: PyTorch-style Pseudocode for ProtoReg

mb: class-wise memory banks
cross-entropy: cross-entropy loss function
aggregation: aggregation loss function
separation: separation loss function
lambda_aggr, lambda_sep: coefficients of the aggregation and separation

loss

initialize class-discriminative prototypes
if protoreg_self:

with torch.no_grad():
model.eval()
for inputs, labels in loader:

features, _ = model(inputs, labels)
mb.enqueue(features, labels)

model.set_prototypes(mb)
mb.flush()

elif protoreg_lp:
model.freeze_backbone()
for epoch in range(N):

for inputs, labels in loader:
_, outputs = model(inputs, labels)
loss_ce = cross-entropy(outputs, labels)
loss.backward()
optimizer.step()

if no_improvement:
break

model.set_prototypes(model.linear_classifier)
model.unfreeze_backbone()

fine-tune for M epochs
model.train()
for epoch in range(M):

for inputs, labels in loader:
features, outputs = model(inputs, labels)

loss calculation
loss_ce = cross-entropy(outputs, labels)
loss_aggr = aggregation(features, labels, model.prototypes)
loss_sep = separation(features, labels, model.prototypes)
loss = loss_ce + lambda_aggr * loss_aggr + lambda_sep * loss_sep

optimization
loss.backward()
optimizer.step()

enqueue features for prototype refinement
if protoreg_self:

mb.enqueue(features.clone().detach(), labels.clone().detach())
prototype refinement after each epoch
if protoreg_self:

model.set_prototypes(mb)
mb.flush()

A.2 ADDITIONAL DATASET AND IMPLEMENTATION DETAILS

FGVC Aircraft includes 100 aircraft model variants with 10,000 images in total. The aircraft model
variants are organized hierarchically into 30 manufacturers and 70 families. The dataset is split into
three equal parts for training, validation, and testing.

13

Under review as a conference paper at ICLR 2024

Table 6: The number of samples for the six benchmarks across four different sampling rates. In case
the validation set is not available in the benchmark, we randomly selected 20% of the training data
to construct the validation data.

Dataset Sampling
rate Train Validation Test

FGVC Aircraft
15% 500

3,333 3,33330% 1,000
50% 1,634
100% 3,334

Stanford Cars
15% 961

1,635 8,04130% 1,936
50% 3,261
100% 6,509

CUB-200-2011
15% 794

1,200 5,79430% 1,400
50% 2,400
100% 4,794

NABirds
15% 2,836

4,780 24,63330% 5,703
50% 9,563
100% 19,149

Caltech101
15% 650

2,169 2,17030% 1,302
50% 2,169
100% 4,338

CIFAR100
15% 6,000

10,000 10,00030% 12,000
50% 20,000
100% 40,000

Stanford Cars is a dataset comprising 196 different car models. The dataset consists of 16,185
images and is split into equal sizes to construct training and test sets. Therefore, each class of
training data contained approximately 40 images of cars.

CUB-200-2011 is a dataset comprising 200 different bird species. It contains a total of 11,788
images: 5,994 images were used for training, while the remaining 5,794 images were used for
testing.

NABirds encompasses 555 distinct bird species native to North America. It consists of a total of
48,562 images, with 23,929 of these images utilized in the training, and the remaining 24,633 images
used for testing.

Caltech101 is a dataset that contains a diverse collection of images belonging to 101 different cat-
egories, including animals, vehicles, household items, and more. It consists of a total of 8,677
images.

CIFAR100 contains 100 different object classes, each with 600 images, resulting in a total of 60,000
images. The dataset consists of 50,000 training images and 10,000 test images.

Table 6 shows the number of samples we used in four different sampling rate settings.

For data augmentation, we augmented training data with a random resized crop of 224x224 and
a random horizontal flip. Validation and test data were first resized to 256x256 and then resized
to 224x224 with center cropping. When we initialize prototypes from pre-trained features, we did
not use data augmentation to get the representative vector from samples not affected by data aug-
mentation. Each model was optimized using stochastic gradient descent with Nesterov momentum
and cosine learning rate scheduling (Loshchilov & Hutter, 2016) over 100 epochs, starting from an
initial learning rate of 0.001, except for the linear classifier Gϕ. We used a 10 times larger learn-
ing rate for Gϕ, following the settings of prior studies (You et al., 2020; Yosinski et al., 2014).
We used a batch size of 64 for all the benchmarks. We used a momentum of 0.9 and weight de-

14

Under review as a conference paper at ICLR 2024

Table 7: The overall performance of the test accuracy (%) on Caltech101 and CIFAR100. The net-
work is ResNet-50 pre-trained on ImageNet-1K. The baseline is fine-tuning with cross-entropy loss
(CE). The compared methods are L2-SP (Xuhong et al., 2018), BSS (Chen et al., 2019), SN (Kou
et al., 2020), Co-tuning (You et al., 2020), LP-FT (Kumar et al., 2022), Robust FT (Xiao et al.,
2023), and DR-Tune (Zhou et al., 2023).

Dataset Method Sampling rate
15% 30% 50% 100%

Caltech101

CE 86.54 90.55 92.26 94.29
L2-SP 87.28 91.06 92.67 94.24
BSS 87.65 91.75 92.86 94.42
SN 86.96 90.97 93.09 94.56
Co-tuning 87.05 90.42 92.58 94.47
LP-FT 86.50 91.01 93.04 94.70
Robust FT 86.18 90.65 93.04 93.96
DR-Tune 87.60 91.29 92.90 94.75
ProtoReg (self) 88.76 92.21 93.92 94.98
ProtoReg (LP) 88.57 92.17 93.92 94.89

CIFAR100

CE 72.19 76.95 79.95 83.20
L2-SP 71.64 77.12 79.87 83.25
BSS 71.94 77.30 80.10 83.48
SN 71.14 76.26 79.49 82.58
Co-tuning 68.26 75.25 78.20 82.44
LP-FT 71.25 75.99 79.45 82.64
Robust FT 71.92 76.12 79.54 83.09
DR-Tune 72.47 77.23 80.18 83.53
ProtoReg (self) 73.58 78.09 80.16 83.81
ProtoReg (LP) 73.51 77.87 80.58 83.53

cay of 0.0001 for the stochastic gradient descent optimizer. Each model was trained using one
NVIDIA A40 GPU. We note that our results for the baseline and compared methods are differ-
ent from the prior study (You et al., 2020) because the number of training samples is different
from our implementation. The hyper-parameters were searched for λaggr ∈ {25, 20, 15, 10, 5, 1, 0}
and λsep ∈ {5, 3, 1, 0.1, 0.01, 0} in ProtoReg (self), and λaggr ∈ {100, 80, 60, 40, 20} and λsep ∈
{100, 80, 60, 40, 20} in ProtoReg (LP) using the validation accuracy.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 TRANSFER LEARNING ON GENERAL IMAGE DATASET

Table 7 presents the transfer learning performance on more general datasets, Caltech101 and CI-
FAR100. ProtoReg demonstrates superior performance compared to the other methods on both of
these datasets.

B.2 IMPACT OF THE AGGREGATION AND SEPARATION STRENGTHS

In this subsection, we provide the hyper-parameter search results for the three benchmarks across
the four sampling rates. Figure 7, 8, and 9 show the test accuracies for FCVC Aircraft, Stanford
Cars, and CUB-200-2011 across different sampling rates and hyper-parameter combinations, re-
spectively. The leftmost bar in each subfigure, where λaggr = 0 and λsep = 0, corresponds to the
test accuracy obtained when fine-tuning using only cross-entropy loss without employing ProtoReg.
Across all three benchmarks, we consistently observed that increasing the λaggr leads to a continu-
ous improvement in test accuracy. This implies that constraining the pre-trained knowledge that the
model utilizes during fine-tuning via Laggr plays a significant role in improving the performance of
the fine-grained downstream tasks.

15

Under review as a conference paper at ICLR 2024

0 1 5 10 15 20 25
(aggr)

20
22
24
26
28
30
32
34

Ac
cu

ra
cy

 (%
)

Aircraft/15

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(a) Sampling rate = 15%

0 1 5 10 15 20 25
(aggr)

34
36
38
40
42
44
46
48

Ac
cu

ra
cy

 (%
)

Aircraft/30

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(b) Sampling rate = 30%

0 1 5 10 15 20 25
(aggr)

46
48
50
52
54
56
58
60

Ac
cu

ra
cy

 (%
)

Aircraft/50

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(c) Sampling rate = 50%

0 1 5 10 15 20 25
(aggr)

62
64
66
68
70
72
74
76

Ac
cu

ra
cy

 (%
)

Aircraft/100

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(d) Sampling rate = 100%

Figure 7: Test accuracy (%) for different values of λaggr and λsep (dataset: FGVC Aircraft).

0 1 5 10 15 20 25
(aggr)

20
22
24
26
28
30
32
34
36
38
40

Ac
cu

ra
cy

 (%
)

Cars/15

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(a) Sampling rate = 15%

0 1 5 10 15 20 25
(aggr)

44
46
48
50
52
54
56
58
60
62
64
66

Ac
cu

ra
cy

 (%
)

Cars/30

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(b) Sampling rate = 30%

0 1 5 10 15 20 25
(aggr)

64
66
68
70
72
74
76
78

Ac
cu

ra
cy

 (%
)

Cars/50

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(c) Sampling rate = 50%

0 1 5 10 15 20 25
(aggr)

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

Cars/100

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(d) Sampling rate = 100%

Figure 8: Test accuracy (%) for different values of λaggr and λsep (dataset: Stanford Cars).

0 1 5 10 15 20 25
(aggr)

42
44
46
48
50
52
54
56
58

Ac
cu

ra
cy

 (%
)

CUB200/15

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(a) Sampling rate = 15%

0 1 5 10 15 20 25
(aggr)

54
56
58
60
62
64
66
68

Ac
cu

ra
cy

 (%
)

CUB200/30

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(b) Sampling rate = 30%

0 1 5 10 15 20 25
(aggr)

64
66
68
70
72
74

Ac
cu

ra
cy

 (%
)

CUB200/50

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(c) Sampling rate = 50%

0 1 5 10 15 20 25
(aggr)

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

CUB200/100

(sep)
0.0
0.01
0.1
1.0
3.0
5.0

(d) Sampling rate = 100%

Figure 9: Test accuracy (%) for different values of λaggr and λsep (dataset: CUB-200-2011).

Furthermore, the selection of an appropriate λaggr is affected by the size of the dataset. In particular,
in the sampling rate of 15% (Figure 7a, 8a, and 9a), the test accuracy continues to increase for a
large value of λaggr than that of the higher sampling rate cases. This suggests that in a scenario with
limited data, where the model is more susceptible to shortcut learning, it becomes more significant to
restrict the impact of pre-trained knowledge that is irrelevant to the specific fine-grained downstream
task.

Additionally, we have found that increasing the λsep can occasionally lead to a substantial decrease
in test accuracy. Specifically, when using a large λsep of 5 in the Stanford Cars and CUB-200-
2011 benchmarks, the decline in accuracy was more significant compared to not using λsep at all.
Furthermore, this phenomenon was more noticeable when λaggr had a smaller value.

B.3 EFFECTS ON SHORTCUT LEARNING

Figure 10 presents the GradCAM (Selvaraju et al., 2017) visualizations obtained by evaluating the
model trained on the CUB-200-2011 using the Waterbirds test data. When fine-tuning was per-
formed using only cross-entropy loss, the model exhibited a tendency to focus on the changed back-
ground, rather than the fine-grained discriminative features of the object. Specifically, in layer 4, the
model made predictions based on the waves present in the sea. Additionally, layer 2 concentrated
on noisy patterns appearing in the surrounding background. In contrast, the model fine-tuned with
ProtoReg clearly focused on the bird object. Even in the lower layers, the model exhibited a strong
emphasis on the discriminative features of the bird rather than being biased towards the surrounding
background.

Table 8 demonstrates that when fine-tuning the model only with cross-entropy loss, shortcut learn-
ing occurs from early in the fine-tuning process, hindering the learning of discriminative features
required for fine-grained downstream tasks. Specifically, after 5 epochs of training, the training

16

Under review as a conference paper at ICLR 2024

Table 8: Shortcut learning in the early stage of fine-tuning. The CUB-200-2011 is used as the
in-distribution (ID) data, while the out-of-distribution (OOD) data is Waterbirds. The Gen. err.
represents the generalization error, indicating the disparity between training and validation accuracy.
↓ denotes the accuracy drop rate on the OOD test data compared to the validation ID accuracy.

Method Train (ID) Validation (ID) Gen. err. Test (OOD) ↓
CE (epoch=5) 71.26 68.92 2.34 51.59 25
ProtoReg (epoch=5) 62.97 65.25 -2.28 52.09 20

CE (epoch=10) 86.47 75.67 10.80 58.99 22
ProtoReg (epoch=10) 78.61 74.75 3.86 62.29 17

CE (epoch=100) 98.56 79.25 19.31 60.2 24
ProtoReg (epoch=100) 97.19 81.08 16.11 70.3 13

Layer 2 Layer 4

(a) CE

Layer 2 Layer 4

(b) ProtoReg

Figure 10: GradCAM visualizations when evaluating the model trained on the CUB-200-2011 train-
ing dataset on a test data sample of Waterbirds.

accuracy is higher in CE, but ProtoReg exhibits lower generalization error and performs better in
OOD. This trend persists even after 10 epochs of training, and notably, ProtoReg demonstrates a
greater improvement in both generalization error and OOD test accuracy compared to CE.

B.4 EFFECTS ON FINE-GRAINED CLASSIFICATION

707-320 727-200

737-200 737-300

Figure 11: Examples of the four more fine-
grained classes within FGVC Aircraft.

Table 9 compares the classification performance
of CE and ProtoReg on more fine-grained classes
within the Aircraft benchmark. The four classes pre-
sented in Table 9 are aircraft variants manufactured
by Boeing, sharing similar characteristics and ex-
hibiting more fine-grained features within the Air-
craft dataset. Figure 11 shows the examples of the
four fine-grained classes.

When the pre-trained model is fine-tuned with CE,
these specific classes demonstrate an average ac-
curacy of 51.07%, which is approximately 15%p
lower than the overall class accuracy of 66.01%.
In contrast, fine-tuning with ProtoReg yields an av-
erage accuracy of 69.14%, showing an increase of
18.07%p compared to CE. Moreover, this accuracy
is only around 6%p lower than the overall class ac-
curacy of 75.25%. These results indicate that Pro-
toReg successfully captures more fine-grained and subtle features, leading to superior classification
performance even in more fine-grained classes.

17

Under review as a conference paper at ICLR 2024

Table 9: Validation accuracy (%) on more fine-grained classes within the Aircraft dataset. The four
fine-grained classes (707-320, 727-200, 737-200, and 737-300) are aircraft variants from the same
manufacturer, i.e., Boeing. @1 and @5 denote the top-1 and top-5 accuracy, respectively.

Method
Class Average707-320 727-200 737-200 737-300

@1 @5 @1 @5 @1 @5 @1 @5 @1 @5

CE 57.58 90.91 58.82 88.24 66.67 81.82 21.21 78.79 51.07 84.94
ProtoReg 72.73 90.91 73.53 94.12 84.85 93.94 45.46 93.94 69.14 93.23
∆ 15.15 0.00 14.71 5.88 18.18 12.12 24.25 15.15 18.07 8.29

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

Pr
ot

ot
yp

e
di

sc
re

pa
nc

y

ProtoReg
CE

(a) Ei

[
∥ctraini − cvali ∥

] 0 20 40 60 80 100
Epoch

22

24

26

Pr
ot

ot
yp

e
L2

-n
or

m

ProtoReg
CE

(b) Ei [∥ci∥]

0 20 40 60 80 100
Epoch

0.2

0.3

0.4

0.5

sim
(c

i,P
C1

i)

ProtoReg
CE

(c) Ei [sim(ci,PC1i)]

0 20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0 ProtoReg
CE

(d)
EiEn[∥zi,n−ci∥]
Ej ̸=k[∥cj−ck∥]

Figure 12: (a) Expected L2 distance between the training and validation prototype of the same class.
(b) Expected L2-norm of the prototype. (c) Expected cosine similarity between prototype and the
first principal component of the corresponding class features. (d) Change in the ratio between the
distance of a prototype to its corresponding intra-features and the distance between prototypes when
the model is fine-tuned using only cross-entropy loss (CE) or jointly with ProtoReg.

B.5 EFFECTS ON PROTOTYPES

The impact of ProtoReg on the features and prototypes is demonstrated in Figure 12. Figure 12a
shows the expected L2 distance between the training and validation prototype of the same class. A
high distance indicates a discrepancy between the training and validation prototype, meaning that
the prototype is over-fitted to the training data, thereby not appropriately representing the class.
When fine-tuning with cross-entropy, the discrepancy increases, especially during the early stage.
In contrast, the prototypes regularized with ProtoReg are much less susceptible to discrepancies,
and the discrepancy is decreased during the fine-tuning. These findings demonstrate that ProtoReg
mitigates the bias towards certain irrelevant features during training, enabling the training prototypes
and validation prototypes of each class to better encompass the representative characteristics of the
class. This effect is particularly crucial in the early stages of training.

Figure 12b demonstrates that as fine-tuning progresses, ProtoReg exhibits an increasing expected
norm of prototypes compared to CE. The Laggr of ProtoReg enhances the similarity between fea-
tures and their corresponding prototypes, causing the angle between the features and prototypes to
diminish, thereby constraining the feature representation space. Instead, the increasing norm can
be seen as a means for gradually acquiring a larger space in which the features can represent fine-
grained information. Figure 12c shows the expected cosine similarity between the prototype and the
first principal component of the corresponding class features. The first principal component of class
i, denoted as PC1i, is computed through principal component analysis (Jolliffe, 2002) applied to
the features of class i, i.e., {zi,n}

Ntrain
i

n=1 . When using ProtoReg, the prototypes become more aligned
with their corresponding principal components, which suggests that the prototypes are oriented to-
ward the direction that contains more information about the class.

Furthermore, Figure 12d illustrates the ratio between EiEn [∥zi,n − ci∥], i.e., the expected Eu-
clidean distance between the features and their corresponding prototype, and Ej ̸=k [∥cj − ck∥], i.e.,
the expected Euclidean distance between different prototypes. Here zi,n denotes the penultimate
feature of xi,n, i.e., zi,n = Fθ(xi,n). We found that EiEn [∥zi,n − ci∥] > Ej ̸=k [∥cj − ck∥] holds
in the initial state, indicating a high intra-class variance compared to the distance between prototypes

18

Under review as a conference paper at ICLR 2024

in the pre-trained feature space for the fine-grained downstream task. As fine-tuning progresses,
Laggr decreases the intra-class variance, while Lsep increases the distance between prototypes. Con-
sequently, this leads to a decreased ratio between EiEn [∥zi,n − ci∥] and Ej ̸=k [∥cj − ck∥] com-
pared to when using only CE.

B.6 LEARNING CURVES

0 50 100 150 200 250 300 350 400
Epoch

0

20

40

60

80

100

Tr
ai

n
ac

cu
ra

cy
 (%

)

ProtoReg
CE

(a) Train accuracy (%)

0 50 100 150 200 250 300 350 400
Epoch

20

30

40

50

60

70

80

Va
lid

at
io

n
ac

cu
ra

cy
 (%

)

ProtoReg
CE

(b) Validation accuracy (%)

Figure 13: Learning curves of the training and valida-
tion accuracy.

Figure 13 represents the learning curves
for training and validation accuracy on the
FGVC Aircraft dataset. The pre-trained
model is fine-tuned for 400 epochs, with
ProtoReg employing values of λaggr and
λsep set to 40 and 5, respectively. Fine-
tuning with only the CE results in a rapid
convergence of the training accuracy, typi-
cally within approximately 50 epochs, and
a plateau in validation accuracy. In con-
trast, adopting the ProtoReg regularizer
leads to a slower convergence of the train-
ing accuracy, yet the validation accuracy
continues to improve gradually. This ob-
servation suggests that the regularized features adapt at a slower pace, allowing them to acquire
more generalizable characteristics over time.

B.7 ABLATION STUDY ON PROTOTYPE SELF-REFINEMENT

Table 10: Test accuracy (%) for different proto-
type self-refinement methods.

Refinement Accuracy (%) Relative Time

Per-epoch 73.99 1.2
Per-step 74.26 22.2
Ours 75.25 1

Table 10 presents the results of an ablation
study on the prototype self-refinement ap-
proach. ProtoReg utilizes class-wise memory
banks, where the computed features from each
mini-batch are enqueued into their correspond-
ing memory banks. At the end of each epoch,
these features are utilized to update the proto-
types. As alternatives, we compared the per-
step method, where the prototypes are updated
after each iteration step by recomputing the en-
tire feature set, and the per-epoch method, where the prototypes are updated after each epoch by
recomputing the entire feature set. Our approach demonstrated higher accuracy compared to the
comparative methods, with improvements of 1.26%p and 0.99%p respectively. Additionally, our
method had the advantage of faster training speed since there was no need to recompute the features
at each update.

B.8 EFFECTS ON MODEL CALIBRATION

Table 11: Expected Calibra-
tion Error (ECE) on the vali-
dation data.

Method ECE ↓
CE 0.115
ProtoReg 0.038

To evaluate the calibration of the model, we computed the ex-
pected calibration error (ECE) (Naeini et al., 2015) on the valida-
tion dataset. ECE quantifies the discrepancy between the predicted
confidence of a model and its true accuracy. The results in Table 11
demonstrate that the model trained with ProtoReg achieved a signif-
icantly lower ECE of 0.038, compared to the ECE of 0.115 obtained
by fine-tuning with cross-entropy loss. This suggests that ProtoReg
is effective in improving the calibration of the model.

B.9 ADDITIONAL RESULTS ON IMAGE RETRIEVAL

Figures 14 and 15 present additional image retrieval results on
CUB-200-2011 validation samples. In the left results of Figure 14, the features obtained from the
pre-trained model exhibit a bias towards the background (in this case, the ground). With CE, there is

19

Under review as a conference paper at ICLR 2024

White crowned Sparrow

Western Meadowlark Western Meadowlark

Indigo Bunting Cerulean Warbler Lazuli Bunting

CE

Cape May Warbler Canada Warbler

Lazuli Bunting Lazuli Bunting Lazuli Bunting Lazuli Bunting

ProtoReg

Western MeadowlarkWestern Meadowlark

White crowned Sparrow Red bellied Woodpecker

Pre-trained

Magnolia Warbler Prairie Warbler Scott Oriole

Western Meadowlark

Figure 14: Qualitative evaluation of image retrieval using the validation samples from the CUB-
200-2011 dataset. Ground truth: Lazuli Bunting (left), Western Meadowlark (right).

White necked Raven Belted Kingfisher

CE

Yellow bellied Flycatcher Blue headed Vireo

Bobolink Bobolink Bobolink Bobolink

ProtoReg

Least Flycatcher Least Flycatcher Least FlycatcherLeast Flycatcher

Song Sparrow Tree Sparrow

Pre-trained

Warbling Vireo

Bobolink

Bobolink

Least Flycatcher

Blue headed Vireo Yellow bellied Flycatcher

Figure 15: Qualitative evaluation of image retrieval using the validation samples from the CUB-
200-2011 dataset. Ground truth: Bobolink (left), Least Flycatcher (right).

a bias towards the color of the birds, while ProtoReg successfully retrieves birds of the same class.
In the right results of Figure 14, the pre-trained model shows a bias towards the yellow color. CE
still exhibits a bias towards color, resulting in the retrieval of yellow birds without the distinctive
characteristics of the ground truth.

In the left results of Figure 15, when retrieved from the pre-trained model, samples from different
classes but with similar backgrounds are retrieved. With CE, there is a retrieval of samples with
similar colors. On the other hand, ProtoReg successfully retrieves samples from the same class
regardless of the background. In the right results of Figure 15, a similar pattern can be observed.
The pre-trained model and CE retrieve birds in similar poses perched on branches, while ProtoReg
captures the distinctive features of the corresponding class more effectively.

B.10 QUANTITATIVE RESULTS ON IMAGE RETRIEVAL

In addition to the qualitative visual samples, we present quantitative metrics related to image re-
trieval: mAP @K and recall @K. mAP calculates the average precision of search results, with mAP
@K focusing on the average precision within the top K results. A higher mAP @K indicates in-
creased accuracy and consistency in retrieval. Conversely, recall @K measures the ability to retrieve
actual positive instances within the top K results, with higher values indicating better capability in
finding relevant items. Table 12 demonstrates that using ProtoReg leads to a significant improvement
in both metrics compared to CE.

20

Under review as a conference paper at ICLR 2024

Table 12: mAP @K and recall @K on image retrieval.

Method K =1 K = 3 K = 5

mAP Recall mAP Recall mAP Recall

CE 0.640 0.640 0.701 0.548 0.690 0.461
ProtoReg (self) 0.699 0.699 0.754 0.631 0.742 0.553
ProtoReg (LP) 0.738 0.738 0.787 0.689 0.781 0.612

Table 13: Winning ratio in classifying OOD test data.

(a) ProtoReg (self) vs CE

K ProtoReg (self) win CE win Both wrong Both correct

1 11.65 2.71 28.41 57.23
3 9.04 1.42 14.34 75.20
5 7.77 0.86 10.32 81.05

(b) ProtoReg (LP) vs CE

K ProtoReg (LP) win CE win Both wrong Both correct

1 16.88 2.76 23.18 57.18
3 11.75 1.40 11.63 75.22
5 10.22 1.16 7.87 80.76

B.11 QUANTITATIVE RESULTS ON LEARNING CLASS-DISCRIMINATIVE INFORMATION

In Table 2 and Figure 3, we demonstrated that ProtoReg robustly classifies OOD test data where
the non-discriminative and coarse information is disrupted, indicating that the regularized model
effectively focuses on the fine-grained discriminative information. To further verify the effective
learning of discriminative information in ProtoReg, we further provide a quantitative analysis of
whether CE tends to misclassify the misclassified samples on ProtoReg. For Waterbirds test data,
we compared methods A and B by calculating ratios for four cases: 1) A correct and B incorrect,
2) A incorrect and B correct, 3) both incorrect, and 4) both correct. Table 13 presents the results
for top-K predictions based on the values of K. ProtoReg (self) and ProtoReg (LP) significantly
outperform CE, winning by 11.65% and 16.88%, respectively. A noteworthy observation is that
when ProtoReg makes a mistake, CE tends to make the same mistake in almost all cases. Out of
the 31.12% errors made by ProtoReg (self), only 2.71% are correctly predicted by CE, while the
remaining 28.41% are also misclassified for CE.

B.12 COMPUTAIONAL OVERHEAD

Table 14: Computation overhead com-
pared to CE.

Method Relative Time

CE 1
ProtoReg (self) 1.03
ProtoReg (LP) 1.12

As the similarity computation can be implemented with
a single matrix multiplication, ProtoReg results in min-
imal computational overhead. Specifically, using l2-
normalized feature matrix F ∈ RB×d and l2-normalized
prototypes matrix C ∈ RK×d (where B is batch size, d
is feature dimension, and K is the number of classes),
the cosine similarity between each sample and proto-
type is computed in a single matrix multiplication via
FCT ∈ RB×K . The element (i, j) indicates the cosine
similarity between the i-th sample and the j-th class pro-
totype. Table 14 demonstrates the relative time comparison against CE when experiments are con-
ducted on the same device. ProtoReg (self) has a negligible computational overhead of only 3%,
while ProtoReg (LP) has a 12% overhead due to the linear probing process for prototype initial-
ization. In both cases, the overhead is sufficiently low, considering the significant performance
improvement they offer.

21

	Introduction
	Related Work
	Transfer Learning
	Regularization Methods for Transfer Learning

	Motivational Observations
	Method
	Problem Formulation
	Prototype Initialization
	Prototype Refinement
	Regularization by Prototype Aggregation and Separation

	Experiments
	Datasets and Implementation Details
	Main Results
	Effective Learning of Class-discriminative Information
	Analysis of ProtoReg
	Impact on the Representation Space
	Importance of the Aggregation and Separation Strengths
	Initializing Discriminative Prototypes Improves Transfer Learning
	Regularization in the Early Transfer Matters

	Ablation Study

	Conclusion
	Appendix
	Pseudo Code
	Additional Dataset and Implementation Details

	Additional Experimental Results
	Transfer Learning on General Image Dataset
	Impact of the Aggregation and Separation Strengths
	Effects on Shortcut Learning
	Effects on Fine-grained Classification
	Effects on Prototypes
	Learning Curves
	Ablation Study on Prototype Self-refinement
	Effects on Model Calibration
	Additional Results on Image Retrieval
	Quantitative Results on Image Retrieval
	Quantitative Results on Learning Class-discriminative Information
	Computaional Overhead

