
Under review as submission to TMLR

Federated Learning under Evolving Distribution Shifts

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) is a distributed learning paradigm that facilitates training a global
machine learning model without collecting the raw data from distributed clients. Recent
advances in FL have addressed several considerations that are likely to transpire in realistic
settings such as data distribution heterogeneity among clients. However, most of the existing
works still consider clients’ data distributions to be static or conforming to a simple dynamic,
e.g., in participation rates of clients. In real FL applications, client data distributions change
over time, and the dynamics, i.e., the evolving pattern, can be highly non-trivial. Further,
evolution may take place from training to testing. In this paper, we address dynamics in
client data distributions and aim to train FL systems from time-evolving clients that can
generalize to future target data. Specifically, we propose two algorithms, FedEvolve and
FedEvp, which are able to capture the evolving patterns of the clients during training and
are test-robust under evolving distribution shifts. Through extensive experiments on both
synthetic and real data, we show the proposed algorithms can significantly outperform the
FL baselines across various network architectures.

1 Introduction

Federated learning (FL) is a widely used distributed learning framework where multiple clients, using their
local data, train machine learning models collaboratively, orchestrated by a server (McMahan et al., 2017;
Yang et al., 2019; Zhang et al., 2021a). A problem that has been extensively studied in FL literature is
learning from heterogeneous clients, i.e., ensuring convergence of FL training and avoiding degradation of
accuracy when clients’ data are not identically and independently distributed (non i.i.d.) (Diao et al., 2021;
Achituve et al., 2021; Reisizadeh et al., 2020).

Although a variety of approaches such as robust FL (Reisizadeh et al., 2020) and personalized FL (Wang
et al., 2019) have been proposed to tackle the issue of data heterogeneity, most of them still assume that the
data distribution of each client is static and, in particular, remains fixed between training and testing. Some
recent works (Jiang & Lin, 2022; Gupta et al., 2022) move one step further by proposing test-robust FL
models when there exist distribution shifts between training and testing data. However, they only consider
one-step shift between training and testing while the training data distribution is still assumed to be static.
In practice, FL systems are trained and deployed in dynamic environments that may continually change over
time, e.g., satellite data evolve due to environmental changes, clinical data evolve due to changes in disease
prevalence, etc. Existing FL algorithms without considering such evolving distribution shifts may result in
inaccurate models and even fail to converge during the training phase.

In this paper, we will explore two questions:

• How can data stream with evolving distribution shifts impact FL systems (with or without client hetero-
geneity)?

• How can we exploit the evolving patterns from training data (source domains) and deploy our model on
the unseen future distribution (target domain)?

The goal is to continuously train an FL model from distributed, time-evolving data that can generalize well
on future target data. Figure 1 shows one motivating example.

1

Under review as submission to TMLR

Note that although the problem of learning under evolving distribution shifts has been studied recently in
the centralized setting (typically known as evolving domain generalization), e.g., see Wang et al. (2022); Qin
et al. (2022), it remains unclear how evolving distribution shifts can impact FL training and how to design
FL algorithms when both evolving distribution shifts and data heterogeneity exist. The most relevant line of
research to ours is continual federated learning (CFL) (Yoon et al., 2021; Casado et al., 2022), which aims to
train an FL system continuously from a set of distributed time series. However, the primary objective of
these works is to stabilize the training process and tackle the issue of catastrophic forgetting (i.e., prevent
forgetting the previously learned old knowledge as the model is updated on new data). This differs from our
work where we aim to explicitly learn evolving patterns and leverage them to adapt the model on future
unseen data.

1920s 1950s 1980s 2010s
Source Domain Target Domain

Client 2

Client 1

Figure 1: Illustration of evolving distribution shifts and client heterogeneity: Consider an FL system trained
from distributed time-evolving photos (Ginosar et al., 2015) for gender classification. In this example, data
exhibits obvious evolving patterns (e.g., changes in facial expression and hairstyle, improvement in the quality
of images). Besides, clients are non-i.i.d and they have different class distributions. Our goal is to train an FL
model that captures the evolving pattern of source domains and generalizes it to the future target domain.

To answer the above two questions, we will examine the performance of existing FL methods on time-evolving
data, including a wide range of methods such as traditional FL methods, personalized FL methods, test-time
adaptation methods, domain generalization methods, and continual FL methods. We observe that existing
methods cannot capture evolving patterns and fail to generalize on future data. We then propose FedEvolve,
an FL algorithm that learns the evolving patterns of clients during the training process and can generalize to
future test data.

Specifically, FedEvolve learns the evolving pattern of source domains through representation learning. It
assumes there exists a mapping function for each client that captures the transition of any two consecutive
domains. To learn such transition, each client in FedEvolve learns two distinct representation mappings that
map the inputs of domains in two consecutive time steps to a representation/latent space. By minimizing the
distance between the distributions of these feature representations, FedEvolve captures the transition over
two consecutive steps.

Although FedEvolve shows superior performance in learning from evolving distribution shifts in empirical
experiments, the need for two distinct representation mappings brings double overhead during FL training.
To reduce the computation cost and communication overhead, we further develop FedEvp as a more efficient
and versatile version of FedEvolve by updating one representation mapping when evolving distribution shifts
occur. Moreover, FedEvp better tackles heterogeneous data by incorporating the personalization strategy to
partially personalize the model on each client’s local data.

2

Under review as submission to TMLR

We illustrate via extensive experiments that our algorithms significantly outperform current benchmarks of
FL when the feature domain is evolving, on multiple datasets (Rotated MNIST/EMNIST, Circle, Portraits,
Caltran) using different models (MLP, CNN, ResNet). Our main contributions are:

• We identify the evolving distribution shift in FL that the current robust FL, personalized FL, and
test-robust FL frameworks have failed to consider.

• We propose FedEvolve to actively capture the evolving pattern from evolving source domains and generalize
to unseen target domains.

• We propose a more efficient and versatile version of algorithm FedEvp that learns domain-invariant
representation from evolving prototypes.

• We empirically study how FL systems are affected when both evolving shifts and local heterogeneity exist.
Experiments on multiple datasets show the superior performance of our methods compared to previous
benchmark models.

2 Related Work

We briefly review related previous works in this section.

Tackle client heterogeneity in FL. Many approaches have been proposed to tackling data heterogeneity
issues in FL and they can be roughly categorized into four classes. The first method is to add a regularization
term. For example, Li et al. (2020; 2021b) proposed to steer the local models towards a global model by
adding a regularization term to guarantee convergence when the data distributions among different clients are
non-IID. The second method is clustering (Briggs et al., 2020; Ghosh et al., 2020; Sattler et al., 2020). By
aggregating clients with similar distribution into the same cluster, the clients within the same cluster have
lower statistical heterogeneity. Then, a cluster model that performs well for clients within this cluster can be
found to reduce the performance degradation of statistical heterogeneity. The third method is to mix models
or data. For example, Zhao et al. (2018) proposed a data-sharing mechanism where clients update models
according to both the local train data and a small amount of globally shared data. Wu et al. (2022); Shin
et al. (2020) developed mixup data augmentation techniques to let local devices decode the samples collected
from other clients. Mansour et al. (2020) find a mixture of the local and global models according to a certain
weight. The fourth method is robust FL. For instance, Reisizadeh et al. (2020); Deng et al. (2020b) obtain
robust Federated learning models by finding the best model for worst-case performance. Notably, Reisizadeh
et al. (2020) only considers the affine transformation of data distributions and Deng et al. (2020b) focuses on
varying weight combinations over local clients. In addition, different personalization methods are applied to
local clients, such as personalization (Wang et al., 2019; Yu et al., 2020; Arivazhagan et al., 2019; Huang
et al., 2023; Bao et al., 2023), representation learning (Arivazhagan et al., 2019; Collins et al., 2021; Chen &
Chao, 2022; Jiang & Lin, 2022), and meta-learning (Fallah et al., 2020).

FL with dynamic data distributions. While most previous works on statistical heterogeneity have
considered static situations (i.e., the local heterogeneity stays constant during training), another line of
literature focuses on FL in a dynamic environment where various distribution drifts occur. Some works aim
to tackle drifts caused by time-varying participation rates of clients with local heterogeneity (Rizk et al.,
2020; Park et al., 2021; Wang & Ji, 2022; Zhu et al., 2021), while other works assume the global distributions
are also evolving (Guo et al., 2021; Casado et al., 2022; Yoon et al., 2021). However, among all previous
works, Jiang & Lin (2022); Gupta et al. (2022) are the only ones considering the distribution shift between
training and testing, but they assume the training distribution itself is static.

Evolving domain generalization. Domain Generalization (DG) has been extensively studied to generalize
ML algorithms to unseen domains where different methods including data manipulation (Khirodkar et al.,
2019; Robey et al., 2021), representation learning (Blanchard et al., 2017; Deshmukh et al., 2019), and domain
adversarial learning (Rahman et al., 2020; Zhao et al., 2020). To go one step further, a few works have
considered the evolving patterns of the domains (Hong Liu, 2020; Zhang & Davison, 2021; Kumar et al.,
2020; Wang et al., 2022; Qin et al., 2022), but only Wang et al. (2022); Qin et al. (2022) consider Evolving
Domain Generalization (EDG) where the target domain is not accessible. Wang et al. (2022) developed an
algorithm to learn embeddings of the previous domain and the current domain such that their representations

3

Under review as submission to TMLR

Representation Aligning

Inference:
 Proximity to prototypes

Source
domains

Personalization Inference:
 Output logits

Source domains

Representation Aligning

Figure 2: Illustration of FedEvolve (left) and FedEvp (right): (i). FedEvolve consists of two distinct modules
ϕ and ψ, where ϕ calculates the prototypes for domain Sm, individually for each class, using mean values as
class representations. Then, ψ represents a data batch from the domain Sm+1. Both modules are updated
based on the distance between Sm+1 representations and Sm prototypes. During inference, ψ computes the
distance to the latest domain’s prototypes, then selects the minimal one as the prediction result. (ii). FedEvp
simplifies FedEvolve by removing ψ and integrating a classifier w with ϕ. This decreases the communication
cost during federated training. Instead of using localized prototypes from just Sm, FedEvp builds global
prototypes from domains S1 to Sm. These prototypes align with the representations of the succeeding domain
Sm+1, providing an integrated feature representation across diverse domains. By emphasizing consistent
feature representation, FedEvp ensures its classifier adeptly handles an unseen domain, making predictions
resilient and versatile across changing data contexts.

are invariant. Qin et al. (2022) developed a dynamic probabilistic framework to model the underlying latent
variables across domains. However, all these previous works consider the centralized setting. Thus, there is a
gap for EDG under distributed settings, and in particular for FL.

3 Problem Formulation

Consider a federated learning (FL) system consisting of K clients, whose data distributions vary dynamically
over time. Define {S1, ..., SM} as M consecutive domains that characterize the evolution of the clients’
global distribution. Let Dkm be the local dataset of client k ∈ {1, . . . ,K} at m-th domain. The clients are
heterogeneous and they may have access to different class labels. Given an FL model with parameter h, let
ℓ(x, y;h) be the corresponding loss evaluated on a labeled data sample (x, y). Our goal is to learn an FL
model h from K clients over M domains that can generalize on a subsequent target domain SM+1. That is,
we wish to find h∗ that minimizes the total loss at target domain SM+1 over K clients:

h∗ = arg min
h∈Rd

K∑
k=1

αkLk(h) (1)

where αk is the weight of client k (e.g., the proportion of sample size), and Lk(h) := E(xi,yi)∼Dk
M+1

ℓ(xi, yi;h)
is the local loss of client k evaluated on target domain SM+1.

4 Methodology

To learn an FL model from time-evolving data that generalizes well to the future domain, we need to learn the
evolving pattern of source domains during federated training. Motivated by (Wang et al., 2022; Snell et al.,
2017), we assume there is a mapping capturing the transition between every two consecutive domains Sm and
Sm+1. Instead of learning evolving patterns directly in the input space, we consider representation learning to
learn the evolution in a representation space. Next, we introduce two algorithms FedEvolve and FedEvp, which
align data representation from evolving domains and facilitate local personalization. Specifically, FedEvolve is
designed to actively identify the evolving pattern between two consecutive domains, while FedEvp first learns
invariant representation across all existing domains, then generalizes to the unknown evolving domain.

4

Under review as submission to TMLR

4.1 FedEvolve

To actively capture the evolving patterns of source domains, FedEvolve learns two distinct representation
mapping functions fϕ, fψ. Given two consecutive domain Sm and Sm+1:

• fϕ(Sm) is the estimated representation of subsequent domain Sm+1 using input Sm.

• fψ(Sm+1) is the representation of input domain Sm+1.

Because fϕ estimates the representation of subsequent domain, we can use it to predict unknown target
domain SM+1 from source domains {S1, ..., SM}. Let ϕ, ψ be the learnable parameters of fϕ, fψ, respectively.
To learn the evolving pattern, we aim to learn ϕ, ψ such that the estimated future domain representation
fϕ(Sm) is sufficiently accurate and close to the actual representation fψ(Sm+1), i.e., we need minimize the
distance between fϕ(Sm) and fψ(Sm+1). Inspired by (Wang et al., 2022), to align the two representations
while capturing the class characteristics across evolving domains, we leverage prototypical learning (Snell
et al., 2017) to directly align their representation prototypes.

Specifically, for each client k and domain Sm, we define the prototype Ckm,y of class y on the client’s local
dataset Dkm as the mean value of the representations produced by f

ϕ̃k
, where ϕ̃k is the local parameter learned

on client k, i.e.,
Ckm,y = 1

|Dk
m,y|

∑
x∈Dk

m,y
f
ϕ̃k

(x) (2)

where Dkm,y ⊆ Dkm is a subset of data instances with label y, |Dkm,y| is the cardinality of this set. For the
next domain Sm+1, FedEvolve minimizes the distance between its representation f

ψ̃k
(Sm+1) and f

ϕ̃k
(Sm)

estimated from Sm. This can be achieved by aligning the representation f
ψ̃k

for data points from the domain
Sm+1 to its corresponding class prototype Ckm,y. Mathematically, we minimize the loss defined below:

ℓ(x, y) = log
exp

(
−d

(
f
ψ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d

(
f
ψ̃k

(x), Ckm,y′

)) (3)

where (x, y) is a sample pair from Dkm+1 and YDk
m+1

including all class labels in Dkm+1. d is a distance measure
(e.g. Euclidean distance, cosine distance) that quantifies the difference between the feature representation
f
ψ̃k

(x) and the prototype Ckm,y of class y from the local dataset Dkm. In this paper, we employ Euclidean
distance.

By minimizing Eqn. equation 3 on all active clients, local models learn the evolving pattern by aligning
representations of domain Sm+1 with prototypes from the former domain Sm. After local updates, active
clients It send local parameters to the server and the server performs an average aggregation to update the
global parameters ϕ = 1

|It|
∑
k∈It ϕ̃k, ψ = 1

|It|
∑
k∈It ψ̃k. These aggregations encapsulate global information

with diverse data contributions of all clients. Once consolidated, these models can be directly dispatched to
the clients and facilitate continuous model adaptations to the evolving data distributions across the federated
network.

After training on source domains, we can use the learned mappings fϕ, fψ to predict the target domain SM+1.
Specifically, we first compute the prototypes of fϕ(SM) on SM . Then, we apply fψ to test samples in SM+1
to generate representations fψ(SM+1) and classify them based on proximity to prototypes. We present the
pseudocode of FedEvolve in Algorithm 1 in Appendix A.

4.2 FedEvp

Because the two distinct representation mappings fϕ and fψ in FedEvolve are usually large neural networks such
as ResNet (He et al., 2016), there is a non-negligible additional overhead to transmit an extra representation
mapping, rendering deployment challenges in environments with limited computational resources or network
bandwidth. To address the potential overhead of FedEvolve, we also present FedEvp, an efficient and
streamlined strategy that achieves similar performance as FedEvolve.

5

Under review as submission to TMLR

Unlike the dual model mechanism of FedEvolve, FedEvp adopts a single-model strategy to reduce communica-
tion costs while simultaneously accelerating training. As shown in the right plot of Figure 2, FedEvp aims to
find a domain-invariant representation mapping fϕ by continuously aligning data to prototypes from previous
domains. With this generalized mapping, a single classifier suffices for all domains. To further address local
heterogeneity, we incorporate an efficient personalization step for the classifier.

To ensure a consistent learning process, FedEvp maintains evolving prototypes according to the classes of
consecutive domains. In essence, the prototypes learned by FedEvp consolidate the global information from
all previous domains to enable the learning of domain-invariant features. For each class y within client k, an
evolving prototype Ckm,y is established as follows: Ck0,y is set to zero; for other domains ranging from 1 to M ,
the prototype is updated as Eqn. equation 4,

Ckm,y = (m− 1)
m

Ckm−1,y + 1
m

(
1

|Dkm,y|

) ∑
x∈Dk

m,y

f
ϕ̃k

(x) (4)

where Dkm,y is the set of all instances in the current domain m that belongs to class y, and f
ϕ̃k

(xi) denotes
the representation of instance xi under the client k’s local model parameters ϕ̃k. Such an iterative update
mechanism ensures that the prototype Ckm,y evolves as new domains are introduced, gradually incorporating
information from each one. As a result, CkM,y becomes a representative prototype of class y across all available
training domains for client k.

We then align the data from domain Sm+1 to the prototypes Ckm to update parameter ϕ. We adopt the same
loss function as FedEvolve given in Eqn. equation 5,

ℓf (x, y) = log
exp

(
−d

(
f
ϕ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d

(
f
ϕ̃k

(x), Ckm,y′

)) (5)

where d is the same distance metric as in FedEvolve. And d(f
ϕ̃k

(x), Ckm,y) is the distance between the feature
representation f

ϕ̃k
(x) of instance x and the prototype Ckm,y of class y, YDk

m+1
is the set of classes in the m+ 1

domain.

Besides minimizing ℓf to learn domain-invariant representation, we introduce a classifier w̃k which is updated
by minimizing empirical risk ℓe defined as:

ℓe(x, y) = −y log
exp

(
gy
w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈YDkm

exp
(
gy

′

w̃k

(
f
ϕ̃k

(x)
)) (6)

where gy
w̃k

(
f
ϕ̃k

(x)
)

is the predicted outputs of the class y for instance (x, y) ∈ Dkm,y, computed by the
classifier w̃k. In our experiments, ℓe is the classical cross-entropy loss.

After local updates, FedEvp aggregates the local parameters at the server ϕ = 1
|It|

∑
k∈It ϕ̃k, w = 1

|It|
∑
k∈It w̃k.

These aggregated global models are then sent back to clients for future updates. As FedEvp relies on the
classifier using evolving domain invariant features instead of directly using the difference between two
consecutive domain representations, the prediction may be influenced by the client’s heterogeneity. To handle
the issue raised by local heterogeneity, a personalization mechanism, akin to local fine-tuning, is further
incorporated. Specifically, we personalize each client by updating both the classifier w̃ and the last layer of
the feature extractor f̃ϕ for an additional epoch on the client’s local dataset. The pseudocode of FedEvp is
given in Algorithm 2 in Appendix A.

6

Under review as submission to TMLR

5 Experiments

All experiments are conducted on a server equipped with multiple NVIDIA A5000 GPUs, two AMD EPYC
7313 CPUs, and 256GB memory. The code is implemented with Python 3.8 and PyTorch 1.13.0 on Ubuntu
20.04. To evaluate our methods, we consider classification tasks using various network architectures and
report accuracy. Our FL model was trained across 20 clients over 50 communication rounds, each of which
independently ran local training for 5 epochs per communication round. Due to the limitation of data, we use
10 clients for Circle and Caltran data. The minibatch size is 32 for all datasets. We consider heterogeneous
clients where each client may have access to different class labels. The level of heterogeneity is specified
by a Dirichlet distribution with parameter Dir ∈ [0,∞); the smaller Dir implies that the clients are more
heterogeneous.

We report the average performance across clients and the performance on the server. Both are evaluated on
the test domain after the last epoch. The implementations of network architectures and hyperparameters
are in the Appendix. The federated training phase follows typical FL steps. In each communication round
t, a subset It of K clients join the system and the server distributes global parameters ϕ and ψ to client
k ∈ It. Upon receiving these parameters, each client k initializes its local parameters to those and performs
τ local updates. During the local training, for FedEvolve, each client k samples data from its local datasets
(Dkm,Dkm+1) to construct two data batches which are subsequently used to update the local parameters ϕ̃k, ψ̃k
of the two representation mappings. For FedEvp, it tracks the average prototypes from all training domains
and adapts data from the current domain to previous prototypes, aiming to learn a domain-invariant feature
representation.

5.1 Datasets and Networks

We evaluate FedEvolve and FedEvp on both synthetic data (Circle) and real data (Rotated MNIST,
Rotated EMNIST, Portraits, and Caltran). All datasets either come with evolving patterns or are adapted
to evolving environments. For all datasets, the last domain is viewed as the target domain. The feature
extractor in the neural network is viewed as ϕ and ψ, and the classifier is w mentioned in the previous section.

Circle (Pesaranghader & Viktor, 2016). This synthetic data has 30 evolving domains. 30000 instances
within these domains are sampled from 30 two-dimensional Gaussian distributions, with the same variance
but different means that are uniformly distributed on a half-circle. We use a 5-layer multilayer perception
(MLP) with 3 layers serving as a feature extractor and the remaining 2 layers as a classifier.

Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Cohen et al., 2017). The Rotated
MNIST is a variation of the MNIST data, where we rotate the original handwritten digit images to produce
different domains. Specifically, we partition the data into 12 domains and rotate the images within each
domain by an angle θ, beginning at θ = 0◦ and progressing in 15-degree increments up to θ = 165◦. We also
consider other increments spanning from 0◦ to 25◦ to simulate varying degrees of evolving shifts. EMNIST is
a more challenging alternative to MNIST with more classes including both hand-written digits and letters.
We use the hand-written letters subset and split it into 12 domains by rotating images with a degree of
θ = {0◦, 8◦, ..., 88◦}. We design a model consisting of a 4-layer convolutional neural network (CNN) for
representation layers, followed by two linear layers for classification.

Portraits (Ginosar et al., 2015). It is a real dataset consisting of frontal-facing American high school
yearbook photos over a century. This time-evolving dataset reflects the changes in fashion (e.g., high style
and smile). We resize images to 32 × 32 and split the dataset by every 12 years into 9 domains. We use
WideResNet (Zagoruyko & Komodakis, 2016) as the backbone to train the gender classifiers. Note that the
data is only intended to compare various methods.

Caltran (Hoffman et al., 2014). This real surveillance dataset comprises images captured by a fixed
traffic camera. We divide the dataset into 12 domains where the samples from every 2-hour block form a
domain (evolving shifts arising from changes in light intensity). ResNet18 (He et al., 2016) is used as the
feature extractor and the classifier.

7

Under review as submission to TMLR

Table 1: Average accuracy over three runs of experiments on rotated MNIST under i.i.d and non-i.i.d
distribution. The client heterogeneity(Dir) is determined by the value of Dirichlet distribution (Yurochkin
et al., 2019).

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 65.92±1.01 66.34±0.34 62.35±0.97 63.16±1.78 51.68±0.73 51.59±2.48
GMA 65.94±0.91 66.17±0.21 61.49±0.30 61.68±0.66 50.86±1.15 51.32±2.47
Memo(G) 65.94±1.34 66.78±2.30 61.39±0.94 62.91±2.55 49.76±5.58 52.06±1.23
FedAvgFT 48.70±1.03 66.61±0.59 57.95±2.91 62.61±1.02 69.51±1.97 51.59±1.70
APFL 62.37±1.08 65.57±1.54 67.58±1.09 63.98±2.31 70.37±2.19 50.66±0.47
FedRep 60.04±1.00 68.09±3.10 63.95±0.75 63.49±2.62 76.35±1.67 52.25±1.75
Ditto 65.23±0.87 65.35±1.50 68.14±0.92 64.64±1.45 75.55±2.56 50.89±2.79
FedRod 52.30±1.87 67.93±1.05 54.00±3.98 63.32±2.33 64.11±3.68 53.02±1.22
Memo(P) 51.70±2.48 65.35±1.47 59.84±0.61 64.75±1.59 69.46±2.77 50.27±2.85
T3A 53.94±0.76 66.61±0.59 61.60±2.49 62.61±1.02 71.73±1.63 51.59±1.70
FedTHE 66.84±1.51 67.43±0.23 67.98±0.43 62.55±1.98 78.52±3.92 53.40±0.74
FedSR 69.91±1.14 71.79±1.75 67.00±1.23 68.01±2.65 61.49±2.60 59.88±3.54
CFL 63.75±0.98 64.33±2.17 60.29±1.85 60.82±1.97 50.76±1.41 51.04±2.49
CFeD 70.22±0.63 71.66±0.66 68.07±0.72 68.64±1.38 60.41±2.33 61.27±2.93
FedEvolve 84.75 ±1.39 84.43±1.21 79.93±1.00 77.25±1.82 83.86±1.81 71.66±1.95
FedEvp 75.99±0.31 77.63±1.99 77.91±1.80 73.85±1.53 83.15±0.49 61.84±3.34

5.2 Baselines

We compare FedEvolve and FedEvp with various existing FL methods. These baselines cover a broad range of
methods including traditional FL, strong personalized FL (PFL), centralized test-time adaptation (TTA)
methods, federated TTA methods, and continual federated learning methods.
• FedAvg (McMahan et al., 2017): A FL method that learns the global model by averaging the client’s local

model.

• GMA (Tenison et al., 2022): A FL method using gradient masked averaging approach to aggregate local
models.

• FedAvg + FT : Fine-tunes the global model on local training data, an effective strategy for personalization
in FL.

• MEMO (Zhang et al., 2022): A TTA method and we adapt it to FL. Following (Jiang & Lin, 2022), we
term MEMO applied to the global model as MEMO(G) and to the FedAvg + FT model as MEMO(P).

• APFL (Deng et al., 2020a): A PFL method that leverages a weighted ensemble of personalized and global
models.

• FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2021): PFL methods that use a decoupled
feature extractor and classifier to enhance personalization in FL.

• Ditto (Li et al., 2021a): A fairness-aware PFL method that has been shown to outperform other fairness
FL methods.

• T3A (Iwasawa & Matsuo, 2021): A TTA method that is adapted to personalized FL by adding test-time
adaptation to FedAvg + FT.

• FedTHE (Jiang & Lin, 2022): A TTA PFL method that tackles the data heterogeneity issue while learning
test-time robust FL under distribution shifts.

• FedSR (Nguyen et al., 2022): A TTA FL method using the regular domain generalization method.

• CFL (Guo et al., 2021): A continual federated learning method that learns from time-series data while
preventing catastrophic forgetting.

• CFeD (Ma et al., 2022): It uses distillation to tackle catastrophic forgetting in continual federated learning.

8

Under review as submission to TMLR

Table 2: Average accuracy over three runs of experiments on rotated EMNIST-Letter under i.i.d and non-i.i.d
distribution.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 53.83±1.84 54.18±1.72 52.72±4.45 52.77±3.74 46.72±2.55 45.71±1.77
GMA 54.23±1.77 55.10±1.71 51.23±1.93 51.42±0.79 48.40±1.75 48.61±2.13
Memo(G) 53.32±1.38 53.85±0.72 50.33±2.06 50.37±1.10 47.53±2.09 47.20±1.86
FedAvgFT 44.20±2.54 54.09±1.30 52.16±4.62 53.82±2.13 66.96±0.68 46.87±0.60
APFL 44.98±1.57 54.33±1.12 49.84±1.48 50.99±0.62 66.80±0.37 46.42±2.58
FedRep 39.01±2.03 46.39±2.49 47.26±2.64 47.25±0.93 67.51±1.35 44.12±0.46
Ditto 42.38±1.77 53.90±1.20 53.80±1.89 56.22±1.58 72.66±0.61 55.48±1.94
FedRod 44.25±1.60 51.79±2.77 49.53±0.81 50.32±2.61 67.31±2.03 45.74±3.99
Memo(P) 45.42±2.39 53.47±1.33 51.23±4.94 51.10±1.10 68.37±1.48 47.73±2.26
T3A 48.80±2.84 54.49±0.46 55.93±2.28 53.29±1.12 71.80±1.95 52.08±2.84
FedTHE 52.40±3.87 53.27±3.60 58.08±1.44 53.45±1.87 69.34±2.10 46.15±2.17
FedSR 55.71±0.09 56.92±0.44 51.40±4.65 55.35±3.93 44.38±2.30 49.43±2.48
CFL 40.65±2.19 41.41±1.86 45.82±2.34 46.13±1.01 40.24±3.50 39.37±4.29
CFeD 56.76±0.65 56.17±1.39 55.50±4.33 55.53±5.73 47.20±1.37 47.76±2.22
FedEvolve 83.58±1.45 82.91±1.36 82.13±0.48 78.68±0.25 87.67±0.55 72.85±1.03
FedEvp 67.30±1.35 71.94±1.50 73.61±1.70 68.91±0.30 87.01±0.22 58.73±0.96

Table 3: Average accuracy across various datasets over three runs. We consider the i.i.d setting that Dir→∞.

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 70.40±6.51 70.40±6.51 94.10±0.13 94.10±0.13 62.93±2.10 64.31±2.13
GMA 62.55±6.94 62.55±6.94 94.18±0.14 94.18±0.14 63.28±3.48 63.85±3.49
Memo(G) - - 94.38±0.07 94.63±0.31 63.41±2.81 63.82±2.92
FedAvgFT 60.85±3.07 63.55±5.67 90.99±0.74 93.21±1.86 63.82±0.70 63.98±3.22
APFL 59.90±2.48 63.55±5.67 90.54±0.29 94.64±0.16 62.11±1.85 63.17±3.29
FedRep 64.37±5.60 64.97±6.05 90.88±0.63 93.50±1.15 62.03±3.05 64.07±2.41
Ditto 62.60±2.64 63.10±6.00 91.46±0.13 94.07±0.30 62.44±2.59 63.58±3.43
FedRod 64.60±2.33 65.00±6.55 91.57±0.18 94.78±0.43 64.14±3.94 58.29±4.75
Memo(P) - - 91.30±0.16 94.34±0.28 63.66±2.93 63.58±3.43
T3A 62.20±4.11 66.50±4.95 91.84±0.61 94.59±0.34 63.90±0.60 63.98±3.22
FedTHE 64.03±4.79 63.27±5.05 94.13±0.24 93.48±0.98 60.48±1.44 58.17±3.18
FedSR 72.77±3.38 71.62±5.70 94.43±0.35 94.52±0.35 64.57±1.36 66.02±1.47
CFL 72.12±8.76 72.12±8.76 92.91±1.07 92.91±1.07 63.68±3.61 63.92±3.15
CFeD 71.60±6.77 71.60±6.77 93.64±0.27 93.64±0.27 63.48±3.87 63.55±3.27
FedEvolve 84.25±2.45 81.64±1.95 95.43±0.17 96.88±1.35 65.04±1.66 63.54±0.74
FedEvp 73.30±5.02 74.12±6.93 93.54±0.19 94.92 ±0.11 66.59±1.44 66.34±0.69

0 3 5 10 15 20 25
Incremental Rotation Degree

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

FedAvg Client
FedAvg Server
FedEvp Client
FedEvp Server
FedEvolve Client
FedEvolve Server

(a) Dir → ∞

0 3 5 10 15 20 25
Incremental Rotation Degree

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

FedAvg Client
FedAvg Server
FedEvp Client
FedEvp Server
FedEvolve Client
FedEvolve Server

(b) Dir = 1.0

0 3 5 10 15 20 25
Incremental Rotation Degree

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

FedAvg Client
FedAvg Server
FedEvp Client
FedEvp Server
FedEvolve Client
FedEvolve Server

(c) Dir = 0.1

Figure 3: Performance comparison of various methods across different rotation angles on RMNIST for distinct
distributions.

9

Under review as submission to TMLR

Table 4: Accuracy of baselines across various datasets over three runs (Dir=1.0).

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 66.53±4.74 66.53±4.74 94.37±0.86 94.37±0.86 66.34±2.41 65.12±4.87
GMA 65.93±6.01 65.93±6.01 93.75±0.68 93.75±0.68 65.12±1.95 63.05±4.51
Memo(G) - - 93.81±0.45 93.81±0.45 66.20±2.07 65.54±0.73
FedAvgFT 65.97±1.49 66.93±3.30 92.54±0.65 94.56±0.43 65.12±2.84 65.56±3.61
APFL 64.23±0.80 66.93±3.30 92.16±0.42 94.47±0.38 70.49±3.70 65.41±3.84
FedRep 66.87±4.91 69.07±5.42 92.50±0.65 94.19±0.56 65.27±1.86 65.90±3.39
Ditto 69.05±4.41 64.50±5.09 91.86±0.87 94.93±0.32 65.45±3.43 65.61±4.52
FedRod 63.70±1.96 77.20±4.98 92.64±0.58 95.26±0.31 73.27±3.35 64.88±4.03
Memo(P) - - 92.94±0.65 94.48±0.32 64.88±3.13 62.24±3.97
T3A 69.80±1.60 69.10±1.50 91.93±0.50 94.20±0.34 67.24±2.01 65.61±4.52
FedTHE 70.30±5.83 74.97±3.90 91.77±0.85 94.53±0.32 71.80±3.07 62.02±4.22
FedSR 73.88±3.10 72.08±4.85 93.99±0.79 94.22±0.77 62.99±2.11 68.35±0.53
CFL 70.82±5.43 70.82±5.43 93.84±0.30 93.84±0.30 64.50±3.17 65.28±3.50
CFeD 68.37±8.22 68.38±8.22 93.22±3.21 94.77±0.92 65.30±2.92 67.18±2.91
FedEvolve 82.52±1.94 83.59±5.91 93.84±1.62 96.54±1.39 75.04±4.03 64.06±3.83
FedEvp 74.80±1.69 77.93±4.20 94.50±0.28 93.91±2.19 73.46±0.90 68.24±1.08

5.3 Results

In Figure 3, we examine how the algorithm performance changes as the degree of evolving shifts varies.
Tables 1, 2 and 3 show the comparison with baselines, where we report both the averaged performance of
clients’ local models and the performance of the global model at the server. We also extend the experiments
in Table 3 to the setting when clients are heterogeneous (Dir = 1.0) and present the results in Table 4.

Impacts of distribution shifts and local heterogeneity. First, we examine the impact of distribution
shifts and client heterogeneity on FL systems. Figure 3 presents the results on RMNIST data under clients
with varying degrees of local heterogeneity (Dir = ∞, 1.0, 0.1). Each sub-figure shows how performance
changes as the extent of distribution shift changes from no distribution shift (0◦ incremental angle) to high
distribution shift (25◦ incremental angle):

• In the absence of significant distribution shifts (e.g. rotation incremental angle 0◦, 3◦, or 5◦), Figure 3a
shows that, when there is no client heterogeneity, our methods have similar performance as the traditional
FL methods. The learning task reduces to the standard FL task, and the classical FL methods maintain
competitive performance. As clients get more heterogeneous, Figures 3b and 3c show that all methods
experience the accuracy drop and the performance on the server for FedEvolve is marginally inferior to that
of FedAvg, while FedEvp with personalization still shows the robustness under heterogeneous clients. This
is further verified when Dir = 0.1. We also observe that FedEvolve is still robust when client heterogeneity
is large. The decline in performance due to heterogeneity mainly comes from the error of the classifier,
and FedEvolve avoids this by using representation distance to make predictions rather than relying on the
classifier.

• When the rotation increments increase, FedAvg experiences a significant performance drop (e.g., nearly
12% decrease when the incremental angle increases for 5 degrees, see Figure 3a). Such impacts are more
significant than the performance drop caused by client heterogeneity, indicating the challenge of evolving
shifts. However, our methods are still robust against such shifts and significantly better than baselines.
When both strong local heterogeneity and distribution shifts are present (Figure 3c), both the baselines and
ours experience a performance drop while ours exhibit a relatively slower decline. The better performance
on the clients compared to the server for FedEvp further validates the effectiveness of the personalization
mechanism of FedEvp.

Comparison with Baselines. We conduct extensive experiments on five datasets with different levels of
client heterogeneity. Table 1 and 2 and the results of Circle data in Table 3 compare different methods in
scenarios with strong evolving patterns. We observe that both FedEvolve and FedEvp outperform the baseline
methods. In particular, FedEvolve attains the highest accuracy (84.75%, 83.58%, and 84.25% on RMNIST,

10

Under review as submission to TMLR

REMNIST, and Circle respectively), demonstrating its capability to learn from the evolving pattern and
effectively address the distribution shifts. This advantage also shows on other datasets (Portraits and Caltran)
in Table 3 with less obvious evolving patterns.

For PFL or TTA baselines tuned on local source domains, without client heterogeneity (Dir → ∞), the
performance may deteriorate compared to classical FL such as FedAvg. Specifically, methods such as
FedAvgFT, APFL, and FedRep may experience a drop in client performance compared to the server on certain
datasets. These methods originally designed to tackle client heterogeneity without learning evolving patterns
suffer performance degradation; this further highlights the importance of considering evolving distribution
shifts in FL systems. Nonetheless, when clients are heterogeneous (Dir is 1.0 or 0.1 in Table 1 and 2), their
personalization or test-time adaptation can still be beneficial.

General domain generalization methods like FedSR and continual FL methods tend to achieve better results
than other baselines, indicating their capability to mitigate the influence of evolving distribution shifts. But
the gap between their performance and that of ours still emphasizes the need for a specific design to solve the
problem.

Among all methods, our proposed FedEvolve and FedEvp show the best performance and are robust to both
client heterogeneity and evolving shifts. FedEvp achieves comparable performance with FedEvolve but only
uses half numbers of parameters as FedEvolve. Specifically, when Dir = 0.1, FedEvolve achieves accuracy of
83.86% and 87.67% on RMNIST and REMNIST, while FedEvp achieves similar accuracy of 83.15% and
87.01%. Thus, a careful design of personalization can prevent the unintended consequence of performance
degradation.

Impact of Straggler. Stragglers in FL systems introduce heterogeneity at the system level; therefore, we
also study how our methods could be resilient to the straggler problem. We report the results in Table 5
when stragglers are present during the training phase. The results show our methods are not significantly
affected by stragglers. In this experiment, the straggler ratio represents the probability that a client will
train fewer local iterations than the specified number τ . For stragglers, the actual number of local iterations
is randomly selected, ranging from 1 to τ .

Table 5: Performance under different straggler ratio.

R-MNIST(Dir=1.0) 0 0.1 0.3 0.5 0.7 0.9
FedEvolve 79.93±1.00 78.56±4.17 77.50±4.87 77.42±3.45 75.88±2.58 71.87±0.98

FedEvp 77.91±1.80 77.79±1.69 77.11±0.83 77.00±1.14 76.91±0.84 76.60±1.54

Overhead Comparison. Table 6 compares transmission overhead. We use CNN as an example to
report the number of parameters and server-client transmission time in the MPI environment. Although
FedEvolve has the higher transmission overhead, its cost-efficient version FedEvp has comparable overhead as
the baselines.

Table 6: The number of model parameters and transmission time.

FedRod FedTHE FedSR FedEvolve(Ours) FedEvp (Ours) Others
Parameters 382106 382208 391937 741120 379392 379392
Time/ms 21.38± 0.45 21.95± 1.23 21.62± 0.87 46.32± 0.78 21.30± 0.86 21.26± 1.11

Ablation study. We also study the influence of personalization mechanisms of FedEvp on the performance
in Table 7. The results show personalizing part of the feature extractor and classifier can achieve the best
results. We also notice that personalizing the classifier brings the most significant improvement which means
the classifier is most sensitive to the client heterogeneity with evolving distribution shifts.

11

Under review as submission to TMLR

Table 7: Ablation for FedEvp (Dir=0.1). We compare the average accuracy on clients for FedEvp with three
versions: one without any personalization, another that personalizes only the classifier, and a third that
personalizes all parameters.

Method MNIST Acc EMNIST Acc
FedEvp 83.15±0.49 87.01±0.22
FedEvp w/o personalization 63.59±2.38 57.67±1.64
FedEvp personalize C 79.21±2.29 86.59±0.35
FedEvp personalize all 73.06±1.07 82.78±0.54

6 Conclusions

This paper studies FL under evolving distribution shifts. We explored the impacts of evolving shifts and
client heterogeneity on FL systems and proposed two algorithms: FedEvolve that precisely captures the
evolving patterns of two consecutive domains, and FedEvp that learns a domain-invariant representation
for all domains with the aid of personalization. Extensive experiments show both algorithms have superior
performance compared to SOTA methods.

References
Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan Fetaya. Personalized federated learning

with gaussian processes. Advances in Neural Information Processing Systems, 34, 2021.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers, 2019.

Wenxuan Bao, Tianxin Wei, Haohan Wang, and Jingrui He. Adaptive test-time personalization for federated
learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=rbw9xCU6Ci.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain general-
ization by marginal transfer learning. arXiv preprint arXiv:1711.07910, 2017.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering of local
updates to improve training on non-iid data. In 2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1–9. IEEE, 2020.

Fernando E Casado, Dylan Lema, Marcos F Criado, Roberto Iglesias, Carlos V Regueiro, and Senén Barro.
Concept drift detection and adaptation for federated and continual learning. Multimedia Tools and
Applications, pp. 1–23, 2022.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for image
classification. In International Conference on Learning Representations, 2021.

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for image
classification. In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=I1hQbx10Kxn.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist to
handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp. 2921–2926.
IEEE, 2017.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared representations for
personalized federated learning. In International Conference on Machine Learning, pp. 2089–2099. PMLR,
2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated learning.
arXiv preprint arXiv:2003.13461, 2020a.

12

https://openreview.net/forum?id=rbw9xCU6Ci
https://openreview.net/forum?id=rbw9xCU6Ci
https://openreview.net/forum?id=I1hQbx10Kxn
https://openreview.net/forum?id=I1hQbx10Kxn

Under review as submission to TMLR

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Distributionally robust federated averaging.
Advances in Neural Information Processing Systems, 33:15111–15122, 2020b.

Aniket Anand Deshmukh, Yunwen Lei, Srinagesh Sharma, Urun Dogan, James W Cutler, and Clayton Scott.
A generalization error bound for multi-class domain generalization. arXiv:1905.10392, 2019.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient federated
learning for heterogeneous clients. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=TNkPBBYFkXg.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theoretical
guarantees: A model-agnostic meta-learning approach. Advances in Neural Information Processing Systems,
33:3557–3568, 2020.

M. Ghifary, W. Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object recognition with multi-
task autoencoders. In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2551–2559,
2015. doi: 10.1109/ICCV.2015.293.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for clustered
federated learning. Advances in Neural Information Processing Systems, 33:19586–19597, 2020.

Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits: A visual
historical record of american high school yearbooks. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pp. 1–7, 2015.

Yongxin Guo, Tao Lin, and Xiaoying Tang. Towards federated learning on time-evolving heterogeneous data.
arXiv preprint arXiv:2112.13246, 2021.

Sharut Gupta, Kartik Ahuja, Mohammad Havaei, Niladri Chatterjee, and Yoshua Bengio. Fl games: A
federated learning framework for distribution shifts. In Workshop on Federated Learning: Recent Advances
and New Challenges (in Conjunction with NeurIPS 2022), 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation for evolving visual
domains. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 867–874, 2014.

Jianmin Wang Yu Wang Hong Liu, Mingsheng Long. Learning to adapt to evolving domains. In NIPS, 2020.

Hong Huang, Lan Zhang, Chaoyue Sun, Ruogu Fang, Xiaoyong Yuan, and Dapeng Wu. Distributed pruning
towards tiny neural networks in federated learning. In 2023 IEEE 43rd International Conference on
Distributed Computing Systems (ICDCS), pp. 190–201. IEEE, 2023.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic domain
generalization. Advances in Neural Information Processing Systems, 34, 2021.

Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. In The Eleventh
International Conference on Learning Representations, 2022.

Rawal Khirodkar, Donghyun Yoo, and Kris Kitani. Domain randomization for scene-specific car detection
and pose estimation. In WACV, pp. 1932–1940. IEEE, 2019.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain adaptation.
In International Conference on Machine Learning, pp. 5468–5479. PMLR, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pp. 6357–6368. PMLR, 2021a.

13

https://openreview.net/forum?id=TNkPBBYFkXg

Under review as submission to TMLR

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 6357–6368.
PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/li21h.html.

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning based on
knowledge distillation. In Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, volume 3, 2022.

Y. Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for personalization
with applications to federated learning. ArXiv, abs/2002.10619, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, pp.
1273–1282. PMLR, 2017.

A. Tuan Nguyen, Philip Torr, and Ser-Nam Lim. Fedsr: A simple and effective domain generalization method
for federated learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
mrt90D00aQX.

Tae Jin Park, Kenichi Kumatani, and Dimitrios Dimitriadis. Tackling dynamics in federated incremental
learning with variational embedding rehearsal. arXiv preprint arXiv:2110.09695, 2021.

Ali Pesaranghader and Herna Viktor. Fast hoeffding drift detection method for evolving data streams. pp.
96–111, 2016. ISBN 978-3-319-46226-4. doi: 10.1007/978-3-319-46227-1_7.

Tiexin Qin, Shiqi Wang, and Haoliang Li. Generalizing to evolving domains with latent structure-aware
sequential autoencoder. In Proceedings of the 39th International Conference on Machine Learning, volume
162, pp. 18062–18082. PMLR, 17–23 Jul 2022.

Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. Correlation-
aware adversarial domain adaptation and generalization. Pattern Recognition, 100:107124, 2020.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f5e536083a438cec5b64a4954abc17f1-Abstract.html.

Elsa Rizk, Stefan Vlaski, and Ali H. Sayed. Dynamic federated learning, 2020.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. In NeurIPS,
2021.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Xor mixup: Privacy-preserving data augmentation for one-shot federated learning. arXiv preprint
arXiv:2006.05148, 2020.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning, 2017.

Irene Tenison, Sai Aravind Sreeramadas, Vaikkunth Mugunthan, Edouard Oyallon, Eugene Belilovsky, and
Irina Rish. Gradient masked averaging for federated learning. arXiv preprint arXiv:2201.11986, 2022.

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays, and Daniel Ramage.
Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252, 2019.

14

https://proceedings.mlr.press/v139/li21h.html
https://openreview.net/forum?id=mrt90D00aQX
https://openreview.net/forum?id=mrt90D00aQX
https://proceedings.neurips.cc/paper/2020/hash/f5e536083a438cec5b64a4954abc17f1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5e536083a438cec5b64a4954abc17f1-Abstract.html

Under review as submission to TMLR

Shiqiang Wang and Mingyue Ji. A unified analysis of federated learning with arbitrary client participation.
Advances in Neural Information Processing Systems, 35:19124–19137, 2022.

William Wei Wang, Gezheng Xu, Ruizhi Pu, Jiaqi Li, Fan Zhou, Changjian Shui, Charles Ling, Christian
Gagné, and Boyu Wang. Evolving domain generalization. arXiv preprint arXiv:2206.00047, 2022.

Bingzhe Wu, Zhipeng Liang, Yuxuan Han, Yatao Bian, Peilin Zhao, and Junzhou Huang. Drflm: Distribu-
tionally robust federated learning with inter-client noise via local mixup. arXiv preprint arXiv:2204.07742,
2022.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology, 10(2):1–19, 2019.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated continual learning
with weighted inter-client transfer. In International Conference on Machine Learning, pp. 12073–12086.
PMLR, 2021.

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging federated learning by local adaptation. arXiv
preprint arXiv:2002.04758, 2020.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of neural networks. In International Conference on
Machine Learning, pp. 7252–7261. PMLR, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021a. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.
2021.106775. URL https://www.sciencedirect.com/science/article/pii/S0950705121000381.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and augmenta-
tion. arXiv preprint arXiv:2110.09506, 2021b.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and augmenta-
tion. Advances in Neural Information Processing Systems, 35:38629–38642, 2022.

Youshan Zhang and Brian D Davison. Adversarial continuous learning in unsupervised domain adaptation.
In Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10–15,
2021, Proceedings, Part II, pp. 672–687. Springer, 2021.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generalization via
entropy regularization. In NeurIPS, volume 33, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning
with non-iid data. 2018. doi: 10.48550/ARXIV.1806.00582. URL https://arxiv.org/abs/1806.00582.

Chen Zhu, Zheng Xu, Mingqing Chen, Jakub Konečnỳ, Andrew Hard, and Tom Goldstein. Diurnal or
nocturnal? federated learning of multi-branch networks from periodically shifting distributions. In
International Conference on Learning Representations, 2021.

15

https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://arxiv.org/abs/1806.00582

Under review as submission to TMLR

A Algorithm

We present the pseudo-code for FedEvolve and FedEvp in Alg.1 and Alg.2. We randomly sample a subset of
data from the dataset to train the model for each update instead of the whole dataset.

Algorithm 1 FedEvolve
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter ψ; local datasets Dkm and their known classes YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, ψ to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, ψ̃k := ψ
6: for τ local training iterations do
7: for m ∈ {1, . . . ,M − 1} do
8: A ← RandomSample(Dkm)
9: B ← RandomSample(Dkm+1)

10: for y ∈ YDk
m

do
11: Ay ← {(xi, yi) ∈ A|yi = y}
12: Ckm,y = 1

|Ay|
∑

(xi,yi)∈Ay
f
ϕ̃k

(xi)
13: end for
14: ℓ = 0
15: for (x, y) ∈ B do

16: ℓ = ℓ+ 1
|B| [log

exp
(

−d
(
f
ψ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ψ̃k

(x),Ck
m,y′

))
)
]

17: end for
18: ϕ̃k, ψ̃k = Update(ϕ̃k, ψ̃k, ℓ, η)
19: end for
20: end for
21: client k sends local parameters ϕ̃k, ψ̃k to server
22: end for
23: ϕ = 1

|It|
∑
k∈It ϕ̃k

24: ψ = 1
|It|

∑
k∈It ψ̃k

25: end for
26: Output ϕ and ψ

16

Under review as submission to TMLR

Algorithm 2 FedEvp
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter ψ; local datasets Dkm and their known classes YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, ψ to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, w̃k := w
6: for τ local training iterations do
7: for y ∈ YDk

m
do

8: Ck0,y = 0
9: end for

10: for m ∈ {1, . . . ,M} do
11: A ← RandomSample(Dkm)

12: ℓe ← − 1
|A|

∑
(xi,yi)∈A

yi log
exp

(
gy

w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈Y

Dkm

exp
(
gy

′

w̃k

(
f
ϕ̃k

(x)
))

13: for y ∈ YDk
m

do
14: Ay ← {(xi, yi) ∈ A|yi = y}
15: Ckm,y = (m−1)

m Ckm−1,y + 1
m

1
|Ay|

∑
(xi,yi)∈Ay

f
ϕ̃k

(xi)
16: end for
17: if m≥2 then
18: ℓf = 0
19: for (x, y) ∈ A do

20: ℓf = ℓf + 1
|A| log

exp
(

−d
(
f
ϕ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ϕ̃k

(x),Ck
m,y′

))
)

21: end for
22: ϕ̃k, w̃k = Update(ϕ̃k, w̃k, ℓf , ℓe, η)
23: end if
24: end for
25: end for
26: client k sends local parameters ϕ̃k, w̃k to server
27: end for
28: ϕ = 1

|It|
∑
k∈It ϕ̃k

29: w = 1
|It|

∑
k∈It w̃k

30: end for
31: Server Output ϕ, w
32: for each client k do
33: Client Output ϕ̃k, w̃k = personalize(ϕ, w, Dk)
34: end for

B Additional details

B.1 Datasets

B.1.1 Circle (Pesaranghader & Viktor, 2016)

We follow (Pesaranghader & Viktor, 2016) to generate this dataset. In this synthetic data set, we have
30 Gaussian distributions centered on a half circle with standard deviation 0.6, and the radius r is set

17

Under review as submission to TMLR

to 10. Each data point has two attributes, and the number of classes is 2. The decision boundary is
(x− x0)2 + (y − y0)2 ≤ r2, where (x0, y0) are the coordinates of the circle’s center (we set it as (0, 0)).

B.1.2 Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Ghifary et al., 2015)

For Rotated MNIST (RMNIST), We generate 12 domains by applying the rotations with angles of θ =
{0◦, 15◦, ..., 165◦} on each domain respectively. For Rotated EMNIST (REMNIST), we generate 12 domains
by applying the rotations with angles of θ = {0◦, 8◦, ..., 88◦} on each domain respectively.

B.1.3 Portraits (Ginosar et al., 2015)

The portraits dataset contains human face images from yearbooks spanning from 1905 to 2013. We partition
the data into nine domains by segmenting the dataset into 12-year intervals. All images are resized into
32×32 without any augmentation.

B.1.4 Caltran(Hoffman et al., 2014)

This real surveillance dataset comprises images captured by a fixed traffic camera deployed in an intersection.
The images in this dataset come with time attributes. We categorize the images into 12 distinct domains
based on their capture time throughout the day. Specifically, each domain represents a 2-hour interval. As
such, a 24-hour day is evenly divided into these 12 domains. We resize images in Caltran to 224×224.

B.2 Network Architecture

We present networks for each dataset in Table 8

Dataset Input Number NetworkDimension of Classes
Circle 2 2 MLP
RMNIST 28 × 28 10 CNN
REMNIST 28 × 28 26 CNN
Portraits 32 × 32 2 WideResNet
Caltran 3 × 224 × 224 2 ResNet18

Table 8: Networks for datasets

For the Circle dataset, we utilize a five-layer Multi-Layer Perceptron (MLP). The network architecture
consists of three dense layers (2x256, 256x256, 256x256) for feature extraction, followed by two linear layers
(256x64, 64x2) to determine the output classifications. Each layer is linked by a ReLU function.

For the Rotated MNIST dataset and Rotated EMNIST dataset, we employ a CNN with four convolutional
layers, each equipped with a 3x3 kernel. Group Normalization is applied post-convolution for stabilization
using groups of 8 channels. The architecture concludes with two linear layers: the hidden dimension is set to
64 for the Rotated MNIST and 128 for the EMNIST dataset.

Then we use the WideResNet(Zagoruyko & Komodakis, 2016) and ResNet18(He et al., 2016) for the Portraits
and Caltran respectively. The last linear layer serves as a classifier. We used the pre-trained weight for
ResNet18 to accelerate training.

C Implementation

We implement our framework based on Jiang & Lin (2022). Due to the constraints of our computing resources,
our experiments involve between 10 to 20 clients and are conducted over 50 communication rounds. In each
of these rounds, the model is trained for 5 epochs and then personalized for an additional epoch. Every
experiment was run using three different random seeds, and the results were averaged. Adam is used as an
optimizer Throughout all experiments.

18

Under review as submission to TMLR

For each dataset, we search the learning rate for each algorithm to find the best results. The training detail
is given in Table 9.

Dataset Num of Batch Learning Rate
Clients Size Range

Circle 10 32 1e-6, 5e-6, 1e-5, 5e-5, 1e-4
RMNIST 20 32 1e-3, 1e-2, 1e-1
REMNIST 20 96 1e-3, 5e-3, 1e-2, 5e-2, 1e-1
Portraits 20 32 1e-3, 5e-3, 1e-2
Caltran 10 32 1e-5, 5e-5, 1e-4, 5e-4

Table 9: Training Details for datasets

We use the same search strategy for hyperparameters to tune the models.

• For GMA(Tenison et al., 2022), we set the masking threshold as 0.1, searching from
{0.1, 0.2, 0.3, ..., 1.0}

• For FedRep(Collins et al., 2021), FedRod(Chen & Chao, 2022), and FedTHE(Jiang & Lin, 2022), the
last fc layer of the model is used as the head.

• For Ditto(Li et al., 2021a), the regularization factor λ is set to 0.1.

• For MEMO,(Zhang et al., 2021b) we use 32 augmentations and 3 optimization steps.

• For T3A(Iwasawa & Matsuo, 2021), M = 50 is used in our experiments.

• For FedSR(Nguyen et al., 2022), we follow the same setting in their paper: αL2R = 0.01 and
αCMI = 0.001.

D Supplementary Results

We compared the P-values of our proposed methods, FedEvolve and FedEvp, with various baseline federated
learning algorithms in Table 10. The p-values from our t-test statistical analysis indicated that our methods
significantly outperform the baseline methods.

Table 10: P-values comparing FedEvolve and FedEvp with baseline methods on rotated MNIST.

FedAvg GMA Memo(G) FedAvgFT APFL FedRep Ditto
FedEvolve 5.17 × 10−4 4.42 × 10−4 7.69 × 10−4 1.44 × 10−3 2.26 × 10−4 9.41 × 10−4 7.27 × 10−4

FedEvp 7.33 × 10−3 6.76 × 10−3 9.82 × 10−3 2.42 × 10−3 6.20 × 10−6 4.60 × 10−4 2.16 × 10−5

FedRod Memo(P) T3A FedTHE FedSR CFL CFeD
FedEvolve 6.21 × 10−4 1.04 × 10−3 8.09 × 10−4 8.92 × 10−4 6.27 × 10−4 2.46 × 10−4 1.41 × 10−3

FedEvp 2.71 × 10−3 1.20 × 10−3 7.71 × 10−4 2.27 × 10−4 2.77 × 10−2 4.04 × 10−3 4.40 × 10−2

19

	Introduction
	Related Work
	Problem Formulation
	Methodology
	FedEvolve
	FedEvp

	Experiments
	Datasets and Networks
	Baselines
	Results

	Conclusions
	Algorithm
	Additional details
	Datasets
	Circle pes2016
	Rotated MNIST rmnist2015 and Rotated EMNIST rmnist2015
	Portraits ginosar2015century
	CaltranHoffman2015

	Network Architecture

	Implementation
	Supplementary Results

