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ABSTRACT

Conditional diffusion models have achieved remarkable success in various gener-
ative tasks recently, but their training typically relies on large-scale datasets that
inevitably contain imprecise information in conditional inputs. Such supervision,
often stemming from noisy, ambiguous, or incomplete labels, will cause condition
mismatch and degrade generation quality. To address this challenge, we propose
DMIS, a unified framework for training robust Diffusion Models from Imprecise
Supervision, which is the first systematic study within diffusion models. Our
framework is derived from likelihood maximization and decomposes the objective
into generative and classification components: the generative component models
imprecise-label distributions, while the classification component leverages a dif-
fusion classifier to infer class-posterior probabilities, with its efficiency further
improved by an optimized timestep sampling strategy. Extensive experiments
on diverse forms of imprecise supervision, covering tasks of image generation,
weakly supervised learning, and noisy dataset condensation demonstrate that DMIS
consistently produces high-quality and class-discriminative samples.

1 INTRODUCTION

Diffusion models (DMs) (Ho et al., [2020; |Song et al., |2020; Karras et al., 2022)) have emerged as
powerful generative frameworks that have unprecedented capabilities in generating realistic data
(He et al.,|2025; 'Yang et al., |2024; [Ho et al.,|2022). With the classifier guidance (Ho & Salimans,
2022; Dhariwal & Nicholl [2021)), conditional diffusion models (CDMs) extended the capabilities of
DMs by conditioning the generation process on additional information, such as text descriptions or
class labels. These models have demonstrated remarkable performance in various tasks, including
text-to-image synthesis (Rombach et al., [2022; Saharia et al.| 2022)), image inpainting (Zhao et al.,
2024;|Corneanu et al., 2024)), and super-resolution (Esser et al., 2024} [Xie et al., 2025)).

Unfortunately, the conditioning information required by CDMs is often imprecise in real-world
scenarios. When sourced from the internet or obtained through crowdsourcing, such information
can be affected by factors such as privacy constraints or limited annotator expertise, leading to
various imperfections. In particular, the conditioning data may contain noise, exhibit ambiguity, or
suffer from missing and incomplete annotations. We refer to such cases collectively as imprecise
supervision (Chen et al.,[2024a), where the provided conditioning information is not fully aligned
with the true underlying labels. This includes scenarios such as noisy-label data (Li et al.,[2017; Wei
et al.,|2021)), partial-label data (Wang et al., |2025bja)), and supplementary-unlabeled data (He et al.,
2023)). These forms of imprecise supervision can introduce incorrect inductive biases during training
and severely affect the reliability and generalization of CDMs.

To address this, several recent studies have proposed adaptations of diffusion models to handle
imprecise supervision, such as noise-robust diffusion models (Na et al.,[2024; [L1 et al., |2024)) and
positive-unlabeled diffusion models (Takahashi et al.||2025). However, these approaches often focus
on specific types of imprecise supervision. Moreover, many of them rely on strong external priors to
guide the learning process. For example, |Na et al.[(2024) estimated a noise transition matrix using
external noisy-label learning methods, and L1 et al.| (2024) required risk confidence scores associated
with noisy samples. These diffusion-based methods not only rely on prior knowledge from data
or previous techniques, but are also designed with task-specific architectures for particular types
of supervision. Such reliance and structural complexity limit their applicability and efficiency in
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practice. There remains a need for a unified framework that can robustly train CDMs under diverse
forms of imprecise supervision without requiring strong prior assumptions.

In this paper, to train a robust CDM in a unified manner, we first formulate the overall learning
objective as a likelihood maximization problem (Section[d.I). Then we decompose this objective
into a generative term that models the imprecise data distribution (Section[4.2) and a classification
term that infers posterior label probabilities from imprecise supervision (Section f.3). During
generative modeling, we show that the imprecise-label conditional score can be expressed as a linear
combination of clean-label conditional scores, weighted by the corresponding posterior probabilities.
Building on this insight, we propose a weighted denoising score matching objective, which enables
the model to achieve label-conditioned learning without requiring clean annotations. Finally, to
reduce the time complexity of posterior inference, we further introduce an efficient timestep sampling
strategy (Section[5). Extensive experiments across multiple tasks, including image generation, weakly
supervised learning, and noisy dataset condensation show that CDMs trained with our framework
not only achieve strong generative quality but also produce class-discriminative samples. Our
contributions are summarized as follows:

* We propose a unified diffusion framework for training CDMs under diverse forms of
imprecise supervision, which is the first exploration in the diffusion model field.

* To improve efficiency, we develop an optimized timestep sampling strategy for diffusion
classifiers that greatly reduces the computation cost without compromising performance.

* Building on this framework, we pioneer the study of noisy dataset condensation, a practical
yet previously unexplored setting, and establish a solid baseline for future research.

» Extensive experiments on image generation, weakly supervised learning, and noisy dataset
condensation demonstrate the effectiveness and versatility of our unified framework.

2 RELATED WORK

2.1 ROBUST DIFFUSION MODELS

Training conditional diffusion models under limited or imperfect supervision is still relatively under-
explored. Recent work has begun to address specific forms of weak or noisy information, such as
noise-robust diffusion models (Na et al., 2024} [Li et al.| 2024) that mitigate corrupted labels, and
positive-unlabeled diffusion models (Takahashi et al.l [2025) that combine positive samples with
large unlabeled corpora to approximate conditional distributions. We take a different perspective:
rather than tailoring objectives to a single type of imperfect label, we formulate a unified conditional
score-learning framework that can be instantiated under multiple imprecise-label regimes.

2.2 IMPRECISE LABEL LEARNING

Imprecise label learning studies supervision that is incomplete, ambiguous, or corrupted relative to

clean ground-truth labels. Canonical settings include partial-label learning 2020}
et al.l 2022} [Tian et all, 2023}, [Lv et al.,[2020}; Wang et al.} [2025b), where each instance is associated
with a candidate label set containing the true label; semi-supervised learning (Berthelot et al.| 20195}
Zhang et al,[20214; [Yang et al, 2022} [2022c)), where only a subset of samples are
labeled; and noisy-label learning (Han et al., 2018} |Wei et al., 2021} [Han et al., 2020), where observed
labels are corrupted versions of the true labels. Beyond these settings, mixture imprecise-label
learning (Chen et al.} 20244} [Zhang et al.|[2020; [Wei et al.}, 2023}, [Shukla et al.| 2023} [Xie et al.} [2024)
combines several forms of imprecision in a single framework. Our work can be viewed as lifting
these ideas from discriminative prediction to conditional score modeling, providing a generative view
of learning with heterogeneous imprecise supervision.

2.3 DATASET CONDENSATION

Dataset distillation (DD) (Wang et al.l 2018) compresses a large labeled dataset into a compact
synthetic set that preserves task-relevant information, thereby reducing training cost while maintaining
competitive accuracy. Bi-level optimization methods learn synthetic data whose training signals
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match those of the original data via gradient, trajectory, or meta-model matching (Zhao et al., 2021}
Kim et al.; 2022} |Cazenavette et al.,[2022a; [Cu1 et al., 2023 Wang et al., 2018} Loo et al.,|2022), often
achieving high fidelity at nontrivial computational cost. Distribution-matching approaches instead
align statistics in pixel, feature, or kernel space (Wang et al., 2022bj}; [Sajedi et al.| [2023]; | Xue et al.,
2025 |Y1n et al.| 2024} Sun et al., [2024; Shao et al.,|2024; |Yin & Shen, [2024), enabling more scalable
DD. While DD primarily targets data efficiency under clean labels, our framework instead focuses on
robustness to imprecise supervision.

3 BACKGROUND

Diffusion Models. Let X C R? denote the d-dimensional input space. Given a clean input X := X
from the real data distribution with density ¢(xg), the forward diffusion process corrupts the data
into a sequence of noisy samples {x;}7_,['|by gradually adding Gaussian noise with a fixed scaling
schedule {c;}~_; and a fixed noise schedule {0} }7_;, as defined by

q(x¢|%0) = N (%45 arx0, 07 1), (1

where I denotes the identity matrix and N (x; p, ) denotes the Gaussian density with mean p
and covariance matrix 3. Assuming that the signal-to-noise ratio SNR(t) = a?/o} decreases
monotonically over time, the sample x; becomes increasingly noisier during the forward process.
The scaling and noise schedules are prescribed such that x7 nearly follows an isotropic Gaussian
distribution. The reverse process for Eq. (I) is defined as a Markov chain, which aims to approximate
q(xo) by gradually denoising from the standard Gaussian distribution p(x7) = N (x7; 0,1):

po(xor) =pGer) [T, polxe |, @

po(xi—1|x¢) = N (x¢—15 po(xe,t), 571), 3)

where pg is generally parameterized by a time-conditioned score prediction network sy (x;,t) (Song
et al.| 202052021} |Song & Ermon, [2019; 2020):

Q-1 2 of 2
o (x,t) = [xt + (at - — Ut—1) se(xt,t)] 4
Qi Qg

The reverse process can be learned by optimizing the variational lower bound on log-likelihood as

log po(x) = — By [wilso(x1, ) — Vi, logar(x)[3 + €, )

2 2
Tt X1

2
O't7

where [E denotes the expectation, w; = %?(
small and can be dropped (Song et al.| 2020). The expectation term is called the score matching

loss (Kingma et al., 2021), where V log ¢;(x;) is the gradient of data density at x; in data space.

— 1), and C is a constant that is typically

Pl
19%

The above definition can be reformulated to match other commonly used diffusion models, such as
those in|Ho et al.| (2020), |[Karras et al.|(2022) and Song et al.[(2020). The corresponding conversions
are detailed in Appendix[B.1] For clarity, we adopt the the elucidated diffusion model (EDM) (Karras
et al., [2022) as the default diffusion model throughout this paper, as it offers a unified structure and
well-optimized parameterization.

Imprecise Supervision. Imprecise-label data typically refers to settings where the true label is
not directly available, and instead only imprecise label information is provided. Let Y = [¢] :=
{1, ..., c} represent the label space with ¢ distinct classes. In this work, we primarily focus on three
representative forms of imprecise supervision that have been widely studied in the literature:

* Partial-label data, where each instance X is associated with a candidate label set S C [c] that is
guaranteed to contain the true label Y, i.e., p(Y € S| X, S) = 1. This setting is widely studied in
partial-label learning (Tian et al., 2023).

s Supplementary-unlabeled data, consisting of a small labeled subset (X', Y'!) together with a large
number of unlabeled samples (X", (). This scenario is the focus of semi-supervised learning (Yang
et al.l 2022)), which aims to exploit unlabeled data to improve generalization.

'We use the subscript ¢ of the sample x to denote the noisy version of the sample at timestep ¢.
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* Noisy-label data, where the observed label Y is a corrupted version of the underlying true label
Y, modeled by a conditional distribution p(Y | X, Y"). This gives rise to noisy-label learning (Han
et al.| 2020), which seeks to build models robust to label corruption.

4 METHODOLOGY

In this section, we first introduce the unified learning objective that integrates generative and classifi-
cation components. Then we elaborate on the formulation and optimization of these components.

4.1 UNIFIED LEARNING OBJECTIVE

To robustly learn a diffusion model with learnable parameters 6 under imprecise supervision (denoted
as Z C )), we treat the true label Y as a latent variable and maximize the likelihood of the joint
distribution of the input X and Z. By the maximum likelihood principle, our objective is to find

0" = arg maxy log pp(X, Z) = arg max, log Zypg (XY, 2), 6)

where * denotes the optimal parameter. Eq. (6)) involves the log of the marginalization over latent
variables and cannot generally be solved in closed form. To circumvent this intractability, we instead
maximize a variational lower bound on the marginal log-likelihood:

0" = arg max By, (v|x,z) [logpe(X,Y, Z)]

@)
= argmax {logpe(X|Z) +Ep,(vix,2) [ logpe (Y| X, Z)] },

where 0™ denotes the n-th estimate of 6, and ¢ is instantiated as the exponential moving average
(EMA) of 6 over its Ist through (n—1) iterates. A complete derivation of this variational lower
bound is provided in Appendix From Eq. (7), we can observe that maximizing the marginal
likelihood can be performed from generative and classification perspectives. The former focuses on
modeling the data distribution conditioned on the imprecise supervision, while the latter aims to infer
the posterior distribution based on the feature and the imprecise label. In this paper, we adopt the
commonly used class-conditional setting, where the generation of the imprecise label Z is assumed
to be independent of the input X given the true label Y (Yao et al.l[2020; Wen et al.l 2021).

4.2 GENERATIVE OBJECTIVE: MODELING THE IMPRECISE DATA DISTRIBUTION

Since samples are assumed to be independent of each other, we present the analysis in this and the
following subsections using a single sample (x, z) for notational clarity, with the final objective
computed over the entire dataset. Following the standard formulation of diffusion models in Eq. (3),
we parameterize the conditional generative process pg(x | z) using a score network sg(xy, z,t). The
corresponding variational lower bound on the conditional log-likelihood is given by

log pa(xo|2) > —E¢ {thSa(Xt,Z,t) — Vx, log gjo(x: |XO,Z)H§] + Cs, (3)

where CY is another constant. Directly optimizing the score network with this objective on imprecise-
label data would lead it to converge to the score of the imprecise conditional distribution.

Remark 1. Let § denote the parameters obtained by maximizing the lower bound in Eq. (8) using de-
noising score matching. In this case, the learned score function satisfies s;(x;, z,t) = Vi, log g (x|
z) forallx; € X,z C Y, and t € [T]. However, since ¢;(x: | z) corresponds to the imprecise-label
density, the resulting generation is biased and thus fails to fully recover the true data distribution. The
derivation and visualization of this bias is deferred to Appendix

Therefore, to align the learned score with the clean-label conditional score, we propose modifying
the objective to correct the gradient signal from score matching (Kingma et al., [2021). Building on
the linear relationship between clean- and noisy-label conditional scores modeled by |Na et al.|(2024)),
we further derive an explicit relationship that connects imprecise-label conditional scores to their
clean-label counterparts.



Under review as a conference paper at ICLR 2026

Theorem 1. Under the class-conditional setting, for all x; € X, z C Y, and t € [T),

Vi dogau(xe]2) =3 p(ylxi, 2) Vi, log au(x: |y)- ©)

The formal proof is in Appendix Since p(y | xt, z) >0 and 22:1 p(y|x¢,2)=1, Theorem
implies that the imprecise-label conditional score can be expressed as a convex combination of the
clean-label conditional scores, weighted by p(y | x¢, z). These weights represent the model’s posterior
probability over labels given x; and z, implicitly requiring the model to perform classification during
training. To our knowledge, this is the first work to explicitly reveal and exploit the classification
capability of diffusion models within the training process under imprecise supervision.

According to Remark|[I] directly optimizing the denoising score matching objective in Eq. (8] drives
the score network to approximate the imprecise-label conditional score. However, Theorem [I] shows
that this score can be decomposed as a convex combination of clean-label conditional scores, weighted
by the posterior probability p(y | x;, z). Motivated by this insight, we propose a new training objective
that supervises the clean-label score network sg(x;,y,t) through a reweighted aggregation of its
posterior outputs. The resulting weighted denoising score matching loss is

c 2
Lgen(0) = E; [wt ZU:I Py |xe, 2) so(xe, 9, 1) — Vi, 10g qyjo(x¢ | %o, Z)M . (10
This loss encourages the weighted aggregation of clean-label scores to approximate the imprecise
score derived from data, thereby enabling label-conditioned learning without the need for explicit
clean annotations. The following Proposition[I] with proof provided in Appendix guarantees
that the optimal solution recovers the clean-label conditional scores:

Proposition 1. Let 0, = argming Lgen(0) be the minimizer of Eq. (I0). Then, for all x; € X,
z C Y, andt € [T), the learned score function satisfies sg: (x¢,y,t) = Vx, log q:(x¢ |y).

4.3 CLASSIFICATION OBJECTIVE: INFERRING LABELS FROM IMPRECISE SIGNALS

We assume the class prior to be uniform, i.e., p(y) = 1/c. To infer the class-posterior probability
po(y|x¢), we adopt a diffusion-based approximation as defined below:

Definition 1 (Approximated Posterior Noised Diffusion Classifier (Chen et al.,|2024b))). Assuming
the uniform prior p(y), the class-posterior probability for a noisy input x; under a conditional
diffusion model can be derived using Bayes’ rule, as follows:

_ pe(xely) expllogpe(x:t|y)}
PoX) = S Geal) — 5, expllogpalee 1)} (n

Here, following Chen et al.| (2024b)), the conditional likelihood log py(x; |y) is approximated by the
conditional evidence lower bound (ELBO), given by

T-1

IOgPQ(Xt |y) ~ - ZT wTEq(xT|h9(xf,,y,t)) [HhO(XTy Y, T) - XOH;} ’ (12)

=t+1

2 2 2 —1 2
X | Oy oitoi. b log 0+ — Prean D
where hg(xT,y, T) = —i——aT Sg(X-,—,y, T) and w, = Ly - MTW exp{—i( 5p2 can) }

oo
T~ data std
This diffusion classifier can be extended to non-uniform priors by incorporating p(y) into the logits
of class y, where p(y) is estimated from the training set (Luo et al., 2024 Wang et al., [20224), as
detailed in Appendix[C.2] As training proceeds, the conditional ELBO converges towards the true

distribution ¢;(x; |y), thereby yielding increasingly accurate posterior estimates. For convenience,
we denote the class probability of a noisy input x; with the diffusion classifier as f(x;).

To derive the classification loss, we transform the maximization problem of the classification term in
Eq. (7) into the minimization of the negative log-likelihood. We show that the resulting objective,
ie, — >y ps(Y|X,Z)logpe(Y|X,Z), naturally aligns closely with prior work (Lv et al., 2020;
Tarvainen & Valpola, [2017; [Liu et al.,[2020) and has been shown to be effective in practice.

2As specified in the EDM (Karras et al., |2022), we use 0gata = 0.5, Pmean = —1.2 and Pyg = 1.2.
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Partial-label data. For partial-label data, the imprecise label Z is given as a candidate set S’ that is
guaranteed to include the true label. In this case, the posterior distribution py (Y| X, S) is restricted
to assign non-zero probability only to labels within the candidate set. Accordingly, for each sample
(x, s), we compute the classification loss from Eq. (7) as

LE(x) ==Y psly|x,s) logpa(y|x,s) = = > f§H(x)y log fo(x)y, (13)

yey YEs

where fP"(x) denotes the normalized probability over s such that > yes fP(x), = Land fPH(x), =
0 forally ¢ s. Eq. can be interpreted as an EMA-stabilized variant of the method called
progressive identification (PRODEN) (Lv et al., 2020), where EMA predictions serve as soft pseudo-
targets.

Supplementary-unlabeled data. In this scenario, the training set consists of a small portion of
labeled data and a larger number of unlabeled data. This setting can be regarded as a special case of
the partial-label formulation: labeled instances are assigned singleton candidate sets containing the
ground-truth label, while unlabeled instances are associated with the full label space. Accordingly,
the classification loss for each instance is defined as

LEX) == pslylx,2) logpa(y|x,2) = = > f3U(x)y log fa(x)y, (14)

yey yey

where f;U (x) denotes the pseudo-target distribution: for labeled samples, it reduces to a one-hot
vector of the ground-truth label, while for unlabeled samples, it corresponds to the EMA model’s
prediction over the entire label set. This loss can thus be viewed as an EMA-stabilized self-training
objective (Tarvainen & Valpolal 2017), a widely used strategy in semi-supervised learning that
leverages unlabeled data through soft pseudo-labels.

Noisy-label data. In practice, accurately distinguishing clean labels from noisy ones is often
difficult, making it challenging to retain reliable supervision while applying self-training for label
refinement. To mitigate this, we leverage the memorization effect in noisy-label learning, where
neural networks typically fit clean labels before overfitting to noise (Han et al.| [2020). Drawing
inspiration from the noisy-label learning method called early learning regularization (ELR) (Liu
et al.,[2020), we propose a simpler yet effective loss function that retains its core idea, defined as

fo(x) © ((fo(x), fo(x))1 — fs(x))
1= (fo(x), fo(x))

where y denotes the one-hot vector of the noisy label §, sg(-) is the stop-gradient operatorﬂ ®is the
Hadamard product, and (-, -) denotes the inner product. This formulation inherits the core principle
of ELR, stabilizing training through soft pseudo-targets derived from the EMA model. It effectively
amplifies the gradient contribution of cleanly labeled samples while suppressing the influence of
mislabeled ones, which we further analyze in detail in Appendix [C.1]

L) == se(r(x),log fo(x)y, r(x)=F—

yey

, (15)

5 TIME COMPLEXITY REDUCTION

The oracle diffusion classifier requires repeated calculations of the conditional ELBO across all classes
to make a prediction, resulting in a substantial computation cost. To address this issue, |Chen et al.
(2024b) showed that when estimating ELBO with Monte Carlo sampling, reusing the same X, across
classes and selecting timesteps at uniform intervals is sufficient for effective classification. However,
our experiments reveal that this strategy is empirically suboptimal as illustrated in Figure[I[a). We
identify the core reason to be the model’s varying discriminative ability across different timesteps,
with notable disparities in performance, as shown in Figure [T{(b) where the accuracy is evaluated
using only a single timestep. Specifically, when the timestep 7 is small, the added noise is negligible,
leading to reconstructions with low label sensitivity. Conversely, when the timestep 7 is large, the
input becomes overwhelmed by noise, rendering the predictions highly unreliable.

To this end, we aim to identify a compact subset of timesteps that enables efficient ELBO estimation
while maintaining sufficient classification performance. Let p(7) be a probability density function

3The stop-gradient operator sg(-) returns its input but blocks gradient flow, i.e., V. sg(r(x)) = 0.
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Figure 1: (a): Test accuracy (%) comparison on CIFAR-10 dataset under time complexity reduction
technique from Chen et al.|(2024c) and ours. (b): Test accuracy (%) on CIFAR-10 dataset evaluated
with only a single timestep per class. (c): Violin plot of class-wise ERR(, -, ) computed across
samples using a fixed subinterval length A. Wider regions of the violin indicate higher density.

over the interval 7 € (0, +00), satisfying f0+°o p(7) d7T = 1. Our objective is to select a subinterval
7 € [l, ] such that

. . . 2
m(l)IillII<11TZe ||]E7'~p(‘r|T6[l,r]) [A(r,y)] — Erp(r) (7, y)] HQ ) (16)

where A(7,y) = w,Ex_[||ho(x-,y,7) — %0l|3]. Eq. formalizes the goal of finding a representa-
tive range where the expected reconstruction error closely matches that of the full distribution. To
strike a compromise between signal and noise within the selected subinterval, we propose choosing it
around the median of p(7), so that signal-dominant early timesteps and noise-dominant later timesteps
complement each other. This strategy yields a more stable and representative approximation, es-
pecially when p(7) is skewed. Therefore, we provide a formal characterization of the subinterval
construction for the EDM by the following theorem.

Theorem 2. Consider an EDM where T is sampled from a log-normal distribution, i.e., In(7) ~
N (75 Prean, PS%d), where Ppean € R and Pyq > 0. Given a fixed subinterval length A, a sampling
range centered around the median of p(T) can be constructed by solving the following equation for
the left boundary l:

I =Solve, (F(1)+ F(t+A)—-1=0), r=1+A,

where Solve, (-) denotes a numerical root-finding algorithm over T, such as the Brent method (Brent,
2013), and F'(-) is the cumulative distribution function of p(T).

The proof of Theorem[2]as well as a similar conclusion for denoising diffusion probabilistic model
(DDPM) (Ho et al, |2020) are provided in Appendix Notably, our finding aligns with the
effective timestep hypothesis proposed in |Li et al.|(2023)) for the DDPM setting. Furthermore, based
on Eq. (I6), we can derive a necessary condition that any theoretically optimal subinterval must
satisfy, as formalized in the following theorem:

Theorem 3 (Necessary Condition for Optimal Subinterval). Given (I*,r*) be an optimal subinterval
of the support of p(T), a necessary condition for attaining the theoretical minimum of the squared
error objective in Eq. (I6)) is

h(l*,y) + (1", y)
2

ERR(l*v 7'*, Z/) = ETNp(T)\TE[l*,r*] [h(Tv y)] - =0. (17)

The proof of Theorem [3|can be found in Appendix[B.9] Based on Theorem 3| we empirically present
the class-wise distribution of ERR(-, -, y) across samples in Figure[1c), where the errors are generally
concentrated around zero, supporting the effectiveness of our proposed time complexity reduction
strategy. Notably, when the subinterval is reduced to a single sampling point, choosing the median of
p(7) (i.e., eFmn) yields the best classification performance as shown in Figure Ekb). This observation
is consistent with our earlier hypothesis regarding the informativeness of the median timestep. In
practical posterior inference, we combine timestep subinterval reduction strategy with x, reuse
technique (Chen et al.| 2024c) to further improve inference efficiency.
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Table 1: Generative results on CIFAR-10 and ImageNette under various settings. ‘uncond’ and ‘cond’
indicate unconditional and conditional metrics. Bold numbers indicate better performance.

Noisy-label supervision Partial-label supervision Suppl-unlabeled supervision

Metric Clean
Sym-40% Asym-40% Random Class-50% Random-1% Random-10%

Vanilla DMIS  Vanilla. DMIS  Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla

o o FID 3.33 3.47 3.23 3.10 7.76 2.26 11.75 2.77 3.16 3.12 2.93 2.89 2.05
< £ 9.56 9.68 9.02 9.73 9.09 9.80 9.62 9.68 10.03 10.57 9.80 9.83 10.61
% 3 Densuy 101.39  109.75 100.06 109.69 103.21 10649 108.76 109.06 97.19 108.18 99.96 108.87 112.59
= | Coverage 81.12  81.21 80.71 81.30 6845 8269 6490 8152 7844 81.00 8185 8200 8327

© ~ | CW-FID 1 29.84  13.85 1470 1324 27.18  10.65 3244  11.56 16.25 16.12 11.84 1177 9.83
£ | CW-Density T 7298 107.23  90.85 107.07 102.04 105.75 102.43 108.66 89.99 100.73 9629 107.94 111.70

S | CW-Coverage (T 7339  80.11  79.63  79.65 6545 82.09 6145 8124 7503 76.84 8080 81.12 8391
P FID 14.11 13.44 13.93 13.91 79.13 72,62 9128 7912  23.88 19.26 14.32 12.84 11.52
5 5 12.69 13.21 12.51 13.73 9.19 9.40 9.27 9.11 12.23 13.72 12.80  13.16 13.81
z 2 Densny 109.31 112,52 111.66 106.78 9533  99.83 9429 102.58 11594 125.68 10527 109.23 117.23
gn S | Coverage 76.62 7681 7832  79.81 2144 3248 16.69 2230 5353 5539 7379 7555  80.12
E ~ | CW-FID 1 80.31 60.12 6226 5820 15776  63.58 16345 67.92 7166 7027 4922 4431 40.20
£ | CW-Density T 7399 8112 9353 9458 9338 9583 9150 9521 11590 118.69 10341 115.67 120.35

S | CW-Coverage (T 67.89 7194 7418 7582 19.76  24.35 1588 1893 51.73 5215 7261 74.85  78.48

6 EXPERIMENTS

We present experiments on three tasks including image generation, weakly supervised learning,
and dataset condensation to demonstrate the utility and versatility of our method. Evaluations
are performed on three benchmark datasets widely used for both generation and classification,
covering image resolutions from 28 x28 (Fashion-MNIST (Xiao et al.,[2017)) and 32x32 (CIFAR-
10 (Krizhevsky et al.| 2009)) to 64 x64 (ImageNette (Deng et al.l 2009)). As a baseline, we refer
to the model trained with the generative objective in Eq. (8) as the Vanilla method. The training
hyperparameters are kept consistent with those used in the EDM model (Karras et al.| 2022).

Dataset construction. For partial-label data, we generate synthetic candidate label sets using both
class-dependent (Wen et al.,2021)) and random generation models (Feng et al.| 2020). In the class-
dependent setting, we construct a transition matrix that maps each true label to a set of semantically
similar labels, where each similar label is included in the candidate set with probability 50%. In
contrast, the random setting assign each incorrect label an equal probability 50% of being included in
the candidate set. For supplementary-unlabeled data, we follow a standard semi-supervised setup by
randomly selecting 10% and 1% of the training data classwise as labeled samples, and treating the
remaining data as unlabeled. For noisy-label data, we consider both symmetric and asymmetric noise.
In the symmetric case, labels are uniformly flipped to any incorrect class, whereas in the asymmetric
case, they are flipped to semantically similar classes according to a predefined mapping. In both
cases, the corruption probability is referred to as the noise rate, which is set to 40%.

6.1 TASK1: IMAGE GENERATION

Setup. We evaluate the trained CDMs using four unconditional metrics, including Fréchet Inception
Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016), Density, and
Coverage (Naeem et al.,[2020), as well as three conditional metrics, namely CW-FID, CW-Density,
and CW-Coverage (Chao et al.,|[2022). The Class-Wise (CW) metrics are computed per class and
then averaged. Detailed descriptions of these metrics are provided in the Appendix [E.T]

Results. Table[T0|reports the generative performance of the Vanilla model and our proposed DMIS
model on various settings. It can be seen that our model outperforms the baseline across almost all
cases with respect to both unconditional and conditional metrics. The performance gap is especially

(a) Fashion-MNIST " (b) CIFAR-10 © ImageNette '

Figure 2: Comparison of conditionally generated images from Vanilla (top) and our DMIS model
(bottom), each trained with 40% symmetric noise on Fashion-MNIST, CIFAR-10, and ImageNette.
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Table 2: Classification results (test accuracy, %) on Fashion-MNIST, CIFAR-10, and ImageNette
datasets under various types of imprecise supervision (: partial-label, ©: supplementary-unlabeled,
&: noisy-label). Bold numbers indicate the best performance

Dataset® Type PRODEN IDGP PiCO CRDPLL DIRK Vanilla DMISCE DMIS
Random  93. xlio 07 92. 26:[:0 25 93.3240.12  94.0340.14  94.114022  80. 20:t1 29 84.244-037 9. 27:!:0 55
F-MNIST  Class-50% ~ 93.44F021  93:07F0.16  93:32F033  93.80F023  9399F024 66.03F143  7845F0.46 F0.15
Random  90. ozio 22 89.6540.53 86404089 92744026  93.48+0.14  60.2540.17  91.4740.15  94.70-£0.49
CIFAR10  Cressth  S00aE041 S0@T031 H3E0& 803 83830 BREN IR 88D
Random  84.7540.13 84074026 82154023 84314025 87.90+0.11  56.0440.61  84.4940.05  89.31+0.21
ImageNette  Class-50% 83501060 82.18F0.13 844110093 88.08F034 87.47%0.17  59. HE0s BAEY BaRA
Dataset” Type Dash CoMatch FlexMatch SimMatch SoftMatch Vanilla DMISCE DMIS
Random-1%  84.73+0.09 85314029 84434030  84. 69:t0 17 84724023 78374072  82.92-+0. 17 85.92-0.13
F-MNIST Random-10% 91.16F0.20  90.52F0.12  90.690F£0.03  91.18%F0.13  91.22F0.11  90.50F1.00 91.07F0.18  92:97+0.21
Random-1%  70.1440.69  61.45+1.46 70724093  73.33£1.02  73. 74:|:0 82 53.4940.15 3040.17  76.4040.54
CIFAR-10 Rondomiion 4130068 HIRT08S  133E0R $30108  Rei0s (BN BIIH FHES
Random-1%  57.6842.19  63.8840.78  61.3940.70  58.1242.66 58504231  49.5540.99  62.640.24  68.2340.19
ImageNette Random-10% 74.66F0.81  7320F0.46  73.08£0.13  76.12£045 75751025 74701053 71391045  77.30£0.15
Dataset® Type CE Mixup Coteaching ELR PENCIL Vanilla DMISCE DMIS

Sym-40% 76.184£0.26  922140.03  92.1740.34  93.13£0.13  90.854+0.58  90.11£1.24  87.764+0.57  93.40+0.40
F-MNIST Asym-40%  82.01£0.06  92.01£1.02  92.78+0.25 92.824+0.09  91.77+0.69  8541+£0.96  83.39£0.24  93.2040.30

Sym-40% 67.2240.26  84.2640.64  86.544+0.57  85.68+0.13 85914026  80.22+£0.10  84.754+0.36  88.63+0.12
CIFAR-10 Asym-40%  76.98+£0.42  83.21+0.85  79.384+0.39  81.3240.31 84.894+049  86.311+0.10 84.21+0.18  88.83+£0.33

Sym-40% 58434077  76.65+1.62  66.55+£1.00 84.33+2.86 81944126 55864195 80.47+0.56  84.12+0.18
ImageNette  Asym-40%  71.81+£0.38  77.1640.71 75.1240.50  73.51+£031  77.20£1.15  5391£1.07  77.214+0.19  79.30+0.27

pronounced under partial-label supervision. These results indicate that DMIS not only enhances
the quality of samples but also produces generative distributions that more closely align with the
true data distribution. Furthermore, Figure [2] compares conditionally generated samples from the
Vanilla and DMIS models across different datasets. Compared to the Vanilla model which often
produces samples misaligned with the class, our model produces images of higher visual fidelity and
class-conditional generations that more accurately reflect the intended semantic categories.

6.2 TASK2: WEAKLY SUPERVISED LEARNING

Setup. We evaluate our method under three weakly supervised scenarios. In partial-label learning,
we compare against approaches including PRODEN (Lv et al.| |2020), IDGP (Qiao et al., [2023),
PiCO (Wang et al.|, 2023), CRDPLL (Wu et al., |2022)) and DIRK (Wu et al.| [2024)). For semi-
supervised learning, we adopt Dash (Xu et al.,|2021), CoMatch (Li et al.,|2021a), FlexMatch (Zhang
et al., [2021a)), SimMatch (Zheng et al.| [2022)) and SoftMatch (Chen et al.| [2023)) as comparison
methods. For noisy-label learning, we compare with Coteaching (Han et al.| [2018), ELR (Liu
et al.,2020), PENCIL (Yi & Wu,[2019)), as well as standard normal cross-entropy (CE) training and
Mixup (Zhang et al.l 2018). To ensure a fair comparison, the discriminative classifier is implemented
as Wide-ResNet-40-10 with 55.84M parameters, while our generative model contains 55.73M
parameters, and all models are trained from scratch without pre-training.

Results. The classification results for weakly supervised learning are reported in Table[2] Overall,
our method DMIS, evaluated via a diffusion classifier, achieves the best performance, demonstrating
the stronger generalization capability of diffusion models over prior discriminative approaches. Inter-
estingly, the Vanilla method still outperforms several baselines, particularly in the noisy-label setting,
suggesting that the vanilla denoising score matching objective still acts as an implicit regularizer
against label noise. Moreover, compared to standard CE training, the regenerate-classification variant
DMISE improves accuracy by up to 11.58%, 17.53%, and 22.13% on Fashion-MNIST, CIFAR-10,
and ImageNette dataset, respectively, showing that the regenerated dataset effectively mitigates label
imprecision and yields cleaner supervision for downstream discriminative training.

6.3 TASK3: Noisy DATASET CONDENSATION

While the task of dataset condensation has achieved remarkable progress recently, existing methods
are typically developed under the assumption of clean labels. However, label noise is inevitable and
cannot be fully eliminated in practice. Therefore, exploring how to condense a clean dataset from

SDMISE denotes regenerate-classification results, i.e., we regenerate datasets of the same size under
conditional sampling and then train a discriminative model on them using standard CE loss.



Under review as a conference paper at ICLR 2026

Table 3: Classification results (test accuracy, %) on noisy-label Fashion-MNIST, CIFAR-10, and
ImageNette datasets. ‘IPC’ indicates the number of images per class in the condensed dataset. Bold
numbers indicate the best performance.

Dataset Type IPC Random DC DSA DM MTT RDED SRE2L DMIS

10 34.4240.69 22.854+1.69 42.074+249 57.06+1.52 9.0343.81 18.57+1.06  15.80+0.38  70.18+0.37
Sym-40% 50 52.3640.60 35.644+2.26 55224151 68234047 10.914+0.82 23.1940.74 19.514+0.96  80.7340.07

[
E 100 55.1440.06 30.461+1.74 41.301+0.85 73.21+0.69 13.73£3.96 2543+021 19.66£1.91  84.2610.02
= 10 48.2840.34  53.174+1.59  57.154237  63.2741.60  8.7540.82 18.424+1.62 16.45+1.96  65.021+1.85
*) Asym-40% 50 69.4440.17  49.2140.69  77.201+0.34  76.39+0.57 8.76+2.11 223140.67 27.074+035  79.6510.63
100 70.804+0.91 36.951+0.57 80.241+0.54 78.43+0.63 12.59+1.22 24.03£0.97 26.52+1.46 83.2240.33
10 16.304£0.96  18.11+£1.02 18.06£1.72 23.714+040 12.06£046  19.85+0.88  13.12+1.04  27.83+0.98
=] Sym-40% 50 26.5940.70  20.634+0.22  28.764+0.57  29.50+0.56  17.96+£2.10 34.64+£0.58 14.23+1.67 46.471-0.41
& 100 31.1940.74  199140.54 294514034  32.26+0.75 18.04£3.55 44.03£021 14.21£0.93  56.5310.03
£ 10 24.89+165 18514135 22234180 26.534+0.07  9.62+1.45 23.4840.65 14.644+1.03  24.9410.49
) Asym-40% 50 40.95+0.59 25974097  40.81+029  43.09+0.76  16.544+1.88  39.12+0.13  16.03£0.21  47.7740.78
100 47.49+0.64 27.76+£0.72  42.96+0.84 51.61+£0.60 17.67+£2.53 44.45+0.19 17.554£091 55.89+0.39
10 23.0940.19  158940.73  27.7041.25 28.834+0.73  33.604+0.53  21.15+1.05 25.03+1.17 34.36+1.05
2 Sym-40% 50  33.83+0.28  24.62+0.73  32.074+1.01 42.66+1.27 38.3941.67 35874039 353740.82  44.9310.28
2 100 40.04+£0.71 22.81+£1.22 36.05£1.76  432542.13 39.61+£1.52 3587+0.39 41.74+1.37 56.23+0.84
50 10 26.5440.88 19264098  30.6242.09 33404048 33.65+1.29 26.23+0.06 25.74+221  37.09+0.29
£ Asym-40% 50  47.914+0.61  31.68+2.15 43.41+124 5097+1.61 38714124 32754043  3529+0.14  55.201-0.46

100 59.10£1.41  29.1940.21  53.79+0.84  60.70+£1.88  37.69+1.29  3548+0.22 4237+0.34  68.97+0.12

noisy-label data is natural and meaningful. To the best of our knowledge, this is the first work to
investigate dataset condensation under noisy supervision, which we term noisy dataset condensation.

Setup. During condensation, we employ our trained CDMs to synthesize images according to the spec-
ified IPC. For evaluation, we compare against both hard-label-based methods, including DC (Zhao
et al.,[2021), DSA (Zhao & Bilen,[2021)), DM (Zhao & Bilenl |2023)), and MTT (Cazenavette et al.,
2022b)), as well as soft-label-based methods, namely RDED (Sun et al.| [2024) and SRE2L (Yin et al.,
2024). Following common protocols (Sun et al.| [2024; Yin et al.| 2024)), we adopt ResNet-18 as the
backbone during condensation and evaluate the condensed datasets on a test set using ResNet-34.

Results. Table [3|presents the results of noisy dataset condensation, with qualitative visualizations
provided in Appendix [E.5] Our method consistently surpasses prior approaches across datasets and
noise types. These results highlight the advantage of generative condensation: rather than memorizing
noisy labels, DMIS implicitly denoises them during generation, leading to cleaner condensed datasets.
Notably, unlike the trends observed in clean dataset condensation, distribution-matching methods
(e.g., DM) achieve the second-best results in this noisy setting, suggesting that distribution alignment
helps regularize the effect of label noise. Moreover, instance-selection methods generally outperform
synthetic-generation methods (e.g., Random vs. DC/DSA/MTT and RDED vs. SRE2L), indicating
that discarding noisy samples during condensation is also an effective strategy to mitigate label noise.
Collectively, these findings not only demonstrate the superiority of our approach but also provide
useful insights for future work on noisy dataset condensation.

7 CONCLUSION

In this paper, we addressed the challenge of training CDMs under imprecise supervision, a setting
that frequently arises in real-world applications. We introduced a unified framework that formulates
the learning problem as likelihood maximization and decomposes it into generative and classification
components. Based on this formulation, we proposed a weighted denoising score matching objective
that enables label-conditioned learning without clean annotations, and developed an efficient timestep
sampling strategy to reduce the computational cost of posterior inference. Extensive experiments
across image generation, weakly supervised learning, and noisy dataset condensation verified the
effectiveness and versatility of our approach. Beyond establishing strong baselines, our work also
pioneers the study of noisy dataset condensation, opening new opportunities for future exploration in
robust and scalable diffusion modeling under weak supervision.
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The Use of Large Language Models (LLMs). LLMs were only used for language polishing and
proofreading. No part of the technical content, experiments, or analysis was generated by LLMs.

A NOTATION AND DEFINITIONS

We present the notation table for each symbol used in this paper in Table

Table 4: List of common mathematical symbols used in this paper.

Symbol Definition

A sample of training data

Imprecise label associated with a sample
Candidate label set for a sample

Class index label

Total number of classes

Input space from which x is drawn

Label space from which y is drawn

Random variable for training instances

Random variable for true labels

Random variable for imprecise labels

Random variable for partial labels

Random variable for noisy labels

Set of labeled data instances

Set of unlabeled data instances

Set of labels corresponding to X!

Empty label set

Parameters of the diffusion model to be optimized
Exponential moving average of 6 over training iteration
Zero vector

Identity matrix

Noisy version of the sample at timestep ¢
Continuous timestep variable

Scaling factor at timestep ¢

Noise scale at timestep ¢

Left boundary of a subsampled timestep interval
Right boundary of a subsampled timestep interval
Length of a subsampled timestep interval

~D>=< 923X n—coe\%s“gﬁ%%>cﬂN<>¢<kQ@ » n X

q(+) Real Data distribution

q(- 1 +) Real conditional data distribution
p(+) Marginal probability distribution

p(-|-) Model-infered conditional distribution
F() Cumulative distribution function of p(-)
1) Diffusion classifier

s(+, ) Time-conditioned score prediction network

N(, ) Gaussian distribution

B PROOF

B.1 CONNECTIONS AMONG DIFFERENT DIFFUSION MODELS.

The diffusion model we define in this paper can be reformulated to align with other common diffusion
frameworks, such as DDPM (Ho et al.,|2020), SMLD (Song & Ermon, 2019), VE-SDE (Song et al.|
2020) and VP-SDE (Song et al.| [2020), as well as with approaches like x-prediction (Ho et al., [2020),
v-prediction (Salimans & Hol [2022)), and e-prediction (Ho et al., 2020). This demonstrates that
our formulation is compatible with diverse diffusion paradigms while facilitating unified theoretical
analysis. To better demonstrate this transformation, we present the following pseudocodes.
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Algorithm 1 Our models to EDM

Requlre A score network sy, a noisy 1nput X;, noise level £, hnear schedule {a; 1 and {arz}z 1-

. Calculate the denoised image X using sg: Xo = (X; + 028¢ (X¢/ut, 01/ rt)) / oy

if performing x-prediction then
return Xxg.

end if

Calculate the noise component €: € =

if performing e-prediction then
return e.

end if

9: Calculate the noise component v: v = q € — 0:Xg

10: if performing v-prediction then

11: return v.

12: end if

DDPM. DDPM define a sequence {3;}_, and x; = \/H — Bi)xo + \/ 1- — Bi)e,

which can be seen as a special case of Eq. (1)) where we can set a; = Hi:O(l - 5i) and oy =
V1= T - 8.

SMLD. SMLD defines a noise schedule o (t)]_, and x; = xo + o(t)e, with o(1) < 0(2) < -++ <
o(T). In this setup, Eq. (1) reduces to oy = 1, 0y = o (1).

Xt —QrXo
Ot

°°\'°\U‘J>WN’—‘

VP-SDE. VP-SDE is the continuous case of DDPM, which define a stochastic differential equation
(SDE) as

4X, = L3 Xedt + /BOAW;, ¢ € [0,1],

where 3(t) = S - T. In this setup, oy = \/cxp (— f(f 5(s)ds>, oy =1—exp (— fot ,B(s)ds).

VE-SDE. VE-SDE is the continuous case of SMLD, whose forward process of VE-SDE is defined as

do(t)?
dt

dXt = th

In this setup, a; = 1 and 0y = \/02(t) — 02(0).

While the models above each define their own specific frameworks for the diffusion process,
EDM (Karras et al., [2022) proposes a unified structure and optimizes the parameters choice within
the diffusion process, making it both robust and adaptable. Therefore, for our implementation, we
adopt EDM as the foundational diffusion model. In EDM, the scaling and noise schedules are a
special case of VE-SDE, where the variance of the noise is given by o(¢) = t. Accordingly, we use
so(x/ay, ¢ /) to obtain the predicted score, as shown in Algorithm

B.2 DERIVATION OF EQ.

Maximizing the variational lower bound, or equivalently evidence lower bound (ELBO), to optimize
the diffusion model is a common approach. To avoid redundant proofs, we directly use the conclusion
from Eq. (58) in|Luo|(2022) as below:

log py (x) > B[~ Dicr.(q(x7[x0) (1)) +log pa (xo[x1) =Y Dicr.(q(xe—1 %1, %0)[|po (xs-1/%1))]
t>1
Although each KL divergence term Dkr, (q(x¢—1|Xt, X0)||po(x¢—1|%¢)) is difficult to minimize for
arbitrary posteriors, we can leverage the Gaussian transition assumption to make optimization
tractable. By Bayes rule, we have:
(% |x¢—1,%0)q(x¢—1|%0)
q(xt[x0)

Q(Xt—l\Xt,XO) =
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As we already know that q(x;|x) and g(x¢—1|xo) from Eq. (1)), g(x¢|x;—1,%o) can be derived from
its equivalent form g(x;|x;—1) as follows:

X; = 04X + 0€

*
Xt—1 — O0t—1€

= ay( )+ oi€o
A1
Qi *
= X1+ 0t€p — O1—1€g
Q1 Q1

(673 Qy 2
o;_4I).
t—1
a2

Now, knowing the forms of ¢(x¢|x;—1,X0), we can proceed to calculate the form of ¢(x;—1|x¢,X0)
by substituting into the Bayes rule expansion:

q(xe[x¢—1,%0)q(x¢—1/%0)
q(xt[x0)

2
«
N(xi; 575 x1-1,4 [ 0F = G20 DN (%215 @1-1%0, 00 4T)

N(Xt; X, UtI)

Q(thl‘XmXO) =

(x¢ — a?flxt—l)z (xp—1 — 4—1%0)? (x4 — Xp)?

2 2
2 _ o 9 20 20
2(of a7 o7 ) t—1 t

X 2 _9
_ _ t—1 Xi 1 Qr—1Xt—1X0
-5 2 + 2 + C(Xt7XO)

=exp

1 ( g )2 1 ay X: -
ocexp {— = + X —2 - + 21Xo X1
{ - 2

2 2 _af o o2 2 of 2 o
i t—1 A t—1
2 ay \2 2 _ t 2
1 | oiti(37)° + (0f — 24-0iq) —Xoxy 1%,
- t—1 P—1 2 a1 t—140
=expy{ —= X; 14— 2 5 + Xi_1
2 2 2 2 t—1 2 a2 o o2
(0f — a2—0i1)0i 4 Of = a7 01 t—1
2 Qy
_ 1 & 9 o1t o—1X0
=expq —5 2 ) g =17 2 of 2 o? =1
(0F — 520 1)oi Ot — a2 0t =1
L t—1 t—1
oy,
at—1 " " at—1X0
s ot e o,
1 UtZ 2 Utiafflaf_l
=exp D) 22 X1 —2 2 Xi-1
o} — 502 |)o &
(o aZ_ 0t-1)%1-1 s 2 .
(0f——t—0i 1)oi 4
t 2 oy
1 1 9 o X0+ (o ag_lgt—ﬂat—lxo
:eXp —5 3 (!12 N > thl — 2 0_2 Xt—1
(Ut*az’lgt—l)f’t—l t
o}
2 2
[ 2 2 o 2 2 oy 2 2
X0y + (0f — ag_lgt—l)@t—lxo (07 — a?_lat_l)at_l
(XN(thl; ) I)
2 2
O O

where in the fourth Equation, C(x¢,X¢) is a constant term with respect to x;_; computed as a
combination of only x;, xg, and « values. We have therefore shown that at each step, x;_1 ~
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q(x¢—1|%x¢,X0) is normally distributed, with mean pt,(x¢, Xo) that is a function of x; and xg, and
variance X, (t) as a function of « and o coefficients. These coefficients are known and fixed at each
timestep; they are either set permanently when modeled as hyperparameters, or treated as the current
inference output of a network that seeks to model them.

We can then set the variances of the two Gaussians to match exactly, optimizing the KL Divergence
term reduces to minimizing the difference between the means of the two distributions:

argemin Dxr(q(x¢—1]%¢, %0)||po (X¢—1]%¢))

1

sy Lo 0) = ol 30l (18)

=arg min
gg 20’3 t

2
2 o 2 2
(o *7%1’ oF_1)0F_1

where ag(t) = i 5 , the derivation is the same as in Eq. (92) in|Luo|(2022)), so we skip

the derivation here. To derive the score matching funciton, we appeal to Tweedie’s Formula |Efron
(2011)), which states E[p. 2] = 2+ 3,V log ¢(z) for a given Gausssion variable z ~ N (z; u,, X.,).
In this case, we apply it to predict the true posterior mean of x; given its samples. We can obtain:

Efpex, [x:] = x¢ + O-tzvxt log q(x¢) = axo

= Xt 07 Vy, log q(x¢) (19)
677

Then, we can plug Eq. (19) into our ground-truth denoising transition mean p,(x¢, Xo) once again
and derive a new form:
_ Xt+07 Vi, log g(x:)

2
. 1‘775 1%t + (07 oz o)1 o
“’q(xtaxo) = 2
0%
2
2 2 _ & 2 2 2
oo e Cr oz Ut 1)07 Vi, log q(x¢)
= o2 Xt + 2 _on X + 2 _ay
t t oy toy_q

Ol — (o7 Q.
== 1Xt+( ! 10—1»2t0—t2—1) Vi logQ(Xt)

o7 a0
2
Qp—1 2 ay 2
= xt+<a — ——0;_ >89 Xt,t:| (20)
a; [ t 0‘%—1 t—1 ( )

Finally, we plug Eq. (20) into our optimization function Eq. (T8), and we can get:

arg;nin Dxr(q(x¢—1]%¢,X0) ||po (x¢—1|x¢))

L 2
= a in —— 7t — , :|
rgmin 5 s o (xist) = g o)
. 1 Q1 Oé2
= argmin ) ( )2 (0f — —07_1)?|Ise(x¢,t) — Vi, logq(x:) |13
0 (03702t 0371)0371 (673 at—l
t*L?
2 5202
O Ot A1 5
Y -1 1) — Vi, 1
3 (57 a7~ Vliselxet) = Vi loga(xi)]2

B.3 DERIVATION OF VARITIONAL LOWER BOUND EQ. @
To model log py(X, Z), we introduce an auxiliary distribution Q(Y") over the latent variable Y:

log p (X, Z) = / Q) log po(X, Z)dY

~ [ Q) ogm(x. Z)Ww

pe (X,Y,2) pe(Y|X7 Z)
= [ty Q) Sy - J e o)
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where the first term is the ELBO and the second term is the KL divergence Dk, (Q(Y)||ps (Y| X, Z2)).
Since the KL divergence is non-negative, maximizing the ELBO provides a valid surrogate for
maximizing log pe (X, Z). Replacing Q(Y") with p,(Y'|X, Z) at each iteration will obtain as follows:

0* :arg;nax logpe(X, Z)
=arg ;nax Ep,vx,2)[logpe(X,Y, Z)]
=arg max Ep,(vix.2)llogpe(X|Z) +logpe(Y|X, Z) + log pe(Z)]
:arg;nax E,,(vix,2) [log po(X|2)] + E,,(vix.2) [log po (Y| X, Z)]
:arg;nax log pe(X|Z) + E,,(v|x,2) [logpe(Y|X, Z)].

which is exactly the variational lower bound presented in Eq. (7).

B.4 DERIVATION OF CONDITIONAL ELBO IN EQ. @]}

We provide a derivation of conditional ELBO in the following, which is similar to the unconditional
ELBO in|Ho et al.| (2020).
log py (x02)
:log/pe (x0:7|2) g (x1:7 [ %0, 2)

Q(X1T\X0, )

dxl:T

po (X7 2) po (X0.7—1| X7, 2)
= log ]Eq(xl:T|x0,z) |:

q (Xl |X07 Z)
[ o (x7|2) po (X0:7—1 | X7, 2)
Ratarixo.2) log q(x1.7 |X0 z)
:EQ(XLT‘XO,z) log (XTQ‘“ )HZ 0 p9 (X’L |Xl+1’ )
L Hi:o q (Xi41 %4, X0, 2)
[ T—1
po (X7 2) HZ-: Do (Xi|Xit1,2)
:EQ(XLT\XO,Z) 1Og U

Hrfl q(Xi+1(%0,2)q(Xi|Xi41,X0,2)
=0 q(xilx0,2)

- -
log Do (XT \ Z) Hizol Po (Xi |Xi+17 Z)

=Eq(x1.0/x0,2) T — log q (x7]x0, 2)
L Hizo Q(Xz‘\XHl,Xo,Z)
T—1
-F lo H@ 0 Po (Xi|Xit1,2) q (x7|x0, 2)
=Lyg(x1.7|x0,2) |08 — lo ( )
Hz 0 q(x1;|xi+1,x0,z) Do XTlZ

Po (Xi|Xit1,2)
lo - D
§: st 108 LI i (g, ) o e 2)

=0
- po (%i|Xi11, 2)
0 ) i+1
= Eq(xis1]x z Eq(xi|xis1,x z 1 -D )
2 q(xig1x0,2) B xi11,%0,2) [OgQ(Xi|Xi+17XO7z)] KL (¢ (X7 | X0, 2) |po (x72))
T—1
=C3 = Y Egx,irjxo.) [DKL (q (% [Xi11, %0, 2) [[po (Xi | Xig1, 2))]
=1

=—E; {wt lIse (x¢, 2z, t) — V log q(x¢ | %0, Z)||§] + Cs.
We get the result of Eq. ().

B.5 DERIVATION OF REMARK/[]]

Although this result follows directly from prior studies (Vincent,2011;[Song & Ermon| 2019)), we pro-
vide a brief derivation here for completeness. Let Lpsm (65 ¢(X,Y)) and Lrsm (6; ¢(X,Y)) denote
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T-shirt
Trouser
Pullover
Dress
Coat
Sandal
Shirt
Sneaker
Bag
Ankle boot

(a) Partial-label supervision (b) Suppl-unlabeled supervision (c) Noisy-label supervision

Figure 3: Examples of randomly generated Fashion-MNIST images from Vanilla models trained
under different types of imprecise supervision.

Airplane
Automobile
Bird
Cat
Deer
Dog
Frog
Horse
Ship
Truck

(a) Pamal label supervision (b) Suppl unlabeled superv151on (c) Noisy-label superv151on

Figure 4: Examples of randomly generated CIFAR-10 images from Vanilla models trained under
different types of imprecise supervision.

Tench
English springer
Cassette player
Chain saw
Church
French horn
Garbage truck
Gas pump
Golf ball
Parachute

(a) Partial-label supervision (b) Suppl-unlabeled supervision (c) N01sy -label superv151on

Figure 5: Examples of randomly generated ImageNette images from Vanilla models trained under
different types of imprecise supervision.

the denoising score matching (DSM) and explicit score matching (ESM) objectives, respectively:
2
£DSM(9; Q(Xv Y)) ::Et [A(t)Equ(Y)Exthtm(xt|x,y) ”SG (Xta Y, t) 7vXt10g Qt\O(Xt ‘ X, Y :y) H2:| ’

LESM(0§ Q(Xv Y)) ::Et |:/\(t)]Ey~q(Y)Ext~qt(Xt\y) HSG (Xta Y, t) vxt IOg Qt Xt | Y= H :|

It has been established (Vincent, 2011}, [Song & Ermon} [2019) that these two formulations differ only
by an additive constant independent of 6:

Lesm(9;9(X,Y)) = Lpsm(0;9(X,Y)) + Cs,
where C'3 does not depend on 6. Hence, both objectives admit the same minimizer.

Applying this result to an imprecise-label dataset by identifying ¥ = Z, let Ofqy =
argming Lrsm(0;¢(X, Z)).  Then the optimal score function satisfies sq._ (X, 2,t) =
Vx, logqi(x¢| Z = z). Since the same conclusion holds for Lpgn, we obtain SOzcy = SOhay =
Vx, log g:(x¢ | z), which is precisely the statement of Remark 1}
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To directly illustrate this bias, we train CDMs under different forms of imprecise supervision by
applying Eq. (8) directly, a baseline we refer to as Vanilla. We then visualize the images generated by
these biased models, as shown in the figures below. The results reveal the following patterns:

* Partial-label supervision: The generated images often lack diversity and typically capture
only the dominant object. This effect is particularly pronounced on the ImageNette dataset,
where samples within the same class appear highly similar. Interestingly, the generated
categories generally align with the ground-truth labels, suggesting that diffusion models can
still extract correct class information under partial-label supervision. However, the inherent
label ambiguity prevents the model from capturing intra-class variation.

* Noisy-label supervision: The generated samples tend to contain visual noise. Although
the model is able to capture class diversity, corrupted labels cause mismatches between
generated samples and their true categories.

* Supplementary-unlabeled supervision: The generated images are often both less diverse
and noisier. This phenomenon combines the limitations of partial-label supervision with
the challenge of abundant unlabeled samples. Because the model has limited access to
labeled examples, it relies on averaging confidence across all classes, which reduces its
discriminative boundaries and introduces noise.

B.6 PROOF OF THEOREM/[I]

The derivation here is analogous to that of Theorem 1 in|Na et al.[(2024), and we provide the full
proof below for completeness. First, for all ¢, the perturbed distribution g;(x;|z) satisified:

qe(x¢|2) Zpy| 2)qe(xtly) Vxe € X,z C ).

This implies that the transition from imprecise labels to clean labels is independent of the timesteps.
Consequently, Eq. (9) can be derived as follows,

vxt IOg qt (Xt IZ)
_ Vo qu(x¢]2)

1 (x¢]2)
_ 21 PY12) V@ (xely)
qt Xt\ )
P(ylz)ae(xely) Vi, qe(xe|y)
_yz_; q1(x¢]2) qt(x¢|y)
)

PR GY) G 1og g (x
qt(xt| ) th( t|y>

_ Z P(yl2) g (xt]y)

N ey PR Pl gk o
7yz=1p(y‘ ) o) el ) Y 0BE)
(

‘ X
=3 plely) - 29 9 og gyl
y:l

= Zp (zly, %) oz : ; - Vx, log ¢:(x¢|y) (Conditional indep. of z and x; given y.)
y=1

p , X X
_Z A t|x o + Vi, log i (xt]y)
t

= Zp(y\Xm )V, log i (x¢[y)
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B.7 PROOF OF PROPOSITIONI]
By Remark[T|and Theorem|T} the optimal solution ¢, to Eq. (10 satisfies

> p(ylx, 2) oz, (xi,y,t) = Vi, log qu(x¢ | 2) Zp ylxt,2) Vi, log g:(x¢ | y),
y=1

forallx, € X,z C Y, and ¢t € [T].

Next, recall the weighted denoising score matching loss:

2
ZP | x¢, 2) so(x¢,y, 1) ZP | x4, 2) xfIOth(XtW)HZ :

y=1

EGen( ) ]Et [wt

Differentiating with respect to sy(x;, y, t) and setting the derivative to zero yields
0

ol gy Laen(0) =2 ’ & Y, t) — xtl =0.
asg(xt’y’t) G ( ) ’U)tp(?]'Xt Z) (SgGen(Xt Y ) \V4 Oth(Xt|y))

Since wy; > 0, for any y such that p(y|x;, z) > 0, the optimality condition implies
sox (X1, Yy,t) = Vx, log qi(x¢|y).

In particular, under the partial-label learning setting, if p(y|x, z) = 0, the loss does not depend on
se(x¢,y, t), and the equality can be established without loss of generality. This completes the proof.

B.8 PROOF OF THEOREM[Z]

We first consider the case where the timestep 7 is sampled from a log-normal distribution, as defined
in the EDM framework. Specifically,

In(7) ~ N(Pmeana Ps2td)7

where the parameters are set to Pyean = 1.2 and Pytqg = —1.2. Accordingly, the probability density
function of 7 is given by

1 (In7 — Ppean)? >
T)=——exp|———F——"—], 7>0.

p( ) 7 Psta P ( 2P, sztd
The corresponding cumulative distribution function (CDF) is denoted as:

1 InT — P,
F(r)==|1+erf (meanﬂ,
( ) 2 |: }Ds,td\/i

where erf(x) denotes the error function.
The median of this distribution T4 is the value at which the CDF equals 0.5, i.e., F/(Tmia) = 0.5.

To ensure that the selected subinterval allows signal-dominant early timesteps and noise-dominant
later timesteps to complement each other, we require the cumulative probability mass on either side
of the median to be equal. Formally, for subinterval boundaries (I, r) with r = I + A, we enforce the
following symmetry condition:

F(r) — F(Tmia) = F(tmia) — F(1).
Rewriting this with » = [ + A gives:
F(l+A)+ F(l) = 2F (Tmia) = 1.
This implicit equation defines the subinterval (I,! + A) such that the cumulative probability mass is
centered around the median of p(7). To compute the left boundary [, we solve:
I =Solve, (F(1)+ F(tr+A)—-1=0), (21)

and set 7 = [ + A. The solution can be obtained using any standard root-finding algorithm, such as
the Brent method (Brent, 2013]).
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We then consider the DDPM setting, where the timestep 7 is uniformly sampled from a fixed interval.
Specifically, we assume 7 ~ U/(0, 1), whose CDF is given by

F(ry=r
Under this distribution, the symmetry condition in Eq. simplifies to

I =Solve, (F(r)+ F(tr+A)—1=0)

=Solve, (T+7+A—-1=0)

1-A

=5
andthusr =1+ A = %. This result implies that the optimal subinterval is symmetric around the
midpoint of the distribution. In the special case where only a single timestep is used (i.e., A — 0),
the best estimate of the conditional ELBO occurs exactly at the median. As the sampled timestep
deviates further from the midpoint, classification accuracy tends to degrade. This observation aligns
with the empirical findings of |L1 et al.| (2023), who reported that classification accuracy is maximized
near the median and declines towards the edges. Their use of evenly spaced timesteps centered
around the median further supports our strategy.

B.9 PROOF OF THEOREM[3]

For clarity, we abbreviate /i(7, y) as /i(7), since the proof does not depend explicitly on y. Define the
weighted integral of 7 and the normalization factor over an interval [I, r] as

A(l,yr) = /lr h(T)p(T)dr, Z(l,r) = /lrp(T) dr,

so that the local expectation can be written as p’ = A(l,7)/Z(l,7). Let " = B, (7 [2(7)] denote
the global expectation. The squared error objective in Eq. then becomes

g(l,r) = (W — u")?,

subject to the probability-mass constraint Z (I, r) = a.

!

We apply the method of Lagrange multipliers with
L) = (i — ") + A(/ p(r)dr — a).
l

By the Leibniz rule, the derivatives of A(l,r) and Z(l,r) with respect to the interval boundaries are

aAgZ, r) = —h(l) p(1), % = h(r) p(r), % = —p(l), % — p(r).
Hence, the derivatives of 1/ = A/Z are
o A MO G = e =)

Differentiating L w.r.t. [ and r gives

G =20 = B = ) - 200,
oL p(r)

5 = 20" = ") - 701 (h(r) — p') + Ap(r).

Setting both derivatives to zero yields the necessary conditions

200 = p") (W = h(0) = AZ(r), 20 = p")(A(r) — ') = AZ(1, 7).
Equating the two expressions gives
' —h(l)=h(r)—p = ' =35k +h(r)).
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Substituting back, we obtain

/l " p(r) h(r,y) dr =

Z(; r) (h(l,y) + h(r,y)), Z(,r) = /lTp(T) dr.

Equivalently, the necessary optimality condition is ERR(I*, 7*,y) = 0. Since Z(I*,r*) > 0, this is
also equivalent to

ERR(Z*, T‘*,y) = ETNp(T\TG[l*,T*])[h(T’ y)] — *(ﬁ(l*,y) + ﬁ( )) = 0.

This establishes the necessary condition for an optimal subinterval.

C DISCCUSION

C.1 ANALYSIS OF EARLY-LEARNING REGULARIZATION IN EQ. (13)

The effectiveness of Eq. (I5) can be better understood by examining the form of its gradient. For
clarity, we restate the loss with the following notation: given a noisy-labeled input (x, ), we denote
the model’s output probabilities as fy(x) and the corresponding EMA target as fy(x).

Let ¥ € R° be the one-hot vector corresponding to the noisy label ¢. Then the loss over the whole
dataset D = {(x[], §1)}7_, can be computed according to Eq. as

18 ‘ , o iy & (s111 — £, ([
LN (D) = —gZ@g(rm% log fo(x1)), r[z]:y[z]_)\fe(x ) 1(75[1_] fo(x ))’ 22)

i=1

where 61 = (f5(x[), f,(x[1)), sg(-) denotes the stop-gradient operator, and ® is the Hadamard
product. By construction r!¥ is treated as a constant w.r.t. 0 due to the stop-gradient.

Lemma 1. Let 1y(x) denote the pre-softmax logits such that fg(x) = softmax(¢g(x)). For the loss
in Eq. (I3), the gradients are

a‘CCI ( ) 4] [4] .
= = "y — ¢ hi=1,... 23
61/19( [1]) fe(x ) Sg (I‘ )a for eacni y , 1, (23)
and, by the chain rule,
VoLSE(D EJ@ DT o) = sg(x)] 4

where Jy,,(x) = 0z¢(x)/00 is the Jacobzan of the logits w.r.t. the parameters. Equivalently, expand-
ing rl¥l gives

‘ iy o (511 — £, (xl
VolNE(D ZJ (xl1)T [ ) (xl1) — y[l]—k)\sg(fa(x )Qf,gm Jolx )))]‘ 25)

Proof. Foranyi € {1,...,n}, let us first verify that r(!l sums to 1. With
P ol fo(xt1) © (6111 — fu(xl))
-y 1— 6 ’
we sum over classes and using (fy(x[1), 1) = 1 yields
3 3 = (Foet?), £ (<))
1 — 4§l

so rll lies on the simplex (hence Eq. is an ordinary cross-entropy with a fixed target). Let
Pl = 9hp(x) be the logits and recall %&W = I — softmax(z)1". For the per-sample
loss /1] = —(sg(rl]), log softmax(1")), the derivative w.r.t. logits is

o) , ,

o iy _ _ (4]

oy = softmaax(') = sg(el”) = o)) —sg(el),
which is Eq. . Applying the chain rule and averaging over ¢ gives Eq. . Replacing sg(rl?) by
its explicit form produces Eq. (23). O

17l =1

:1’
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Remark. Eq. shows that LN behaves like the standard cross-entropy gradient plus an ELR-like
corrective term. This term amplifies gradients on clean samples and counteracts gradients on noisy
samples. Specifically, we expand this ELR-like corrective term into:

i . fG(Xm) - i i i
& = T ) ) ;m(x[ D= Lo ),) fo o) (26)

If y* is the true class, then the y*th entry of f¢,(xm) tends to be dominant during early-learning. In
that case, the y*th entry of gl! is negative. This is useful both for examples with clean labels and for
examples with noisy labels. For examples with clean labels, the cross-entropy term fg(x[i]) — ylil
tends to vanish after the early-learning stage because fy(x[1) is very close to 17/, allowing examples
with wrong labels to dominant the gradient. Adding gl? counteracts this effect by ensuring that
the magnitudes of the coefficients on examples with clean labels remain large. Thus, g!? fulfils the
two desired properties that boosting the gradient of examples with clean labels, and neutralizing the
gradient of the examples with false labels.

C.2 CLASS-PRIOR ESTIMATION IN IMPRECISE-LABEL DATASETS

When the class priors p(y) (here we slightly abuse notation and denote them as ) are not directly
accessible to the learning algorithm, they can be estimated using off-the-shelf estimation methods (Luo
et al., 2024; |Wang et al., 2022a)). In this section, we present the problem formulation and outline how
class priors can be estimated in practice.

C.2.1 CLASS-PRIOR ESTIMATION IN PARTIAL-LABEL DATASETS

In partial-label learning, each instance is associated with a candidate label set rather than a single
ground-truth label. This label ambiguity makes it difficult to estimate the class prior distribution,
since simply counting training samples per class is no longer feasible. To address this issue, we adopt
an iterative estimation strategy that updates the class prior in a moving-average manner.

We use the model’s predicted labels as a proxy for class prior estimation. Since predictions in the
early stage of training are often unreliable, we design a moving-average update rule that gradually
stabilizes the estimated distribution. The update starts from a uniform priorr = [1/¢c,...,1/c], and
is refined at each training epoch as

1 n .
r<+ ur+(1—pu)z, 2=~ Z}I(] = argzré%xfj(xi)) , 27)
i=1 ‘

where 1 € [0,1] is a momentum parameter, S; is the candidate label set for sample z;, and f;(x;)
denotes the model prediction for class j. This rule progressively refines r as the model improves,
leading to more accurate and stable class-prior estimates.

C.2.2 CLASS-PRIOR ESTIMATION IN SUPPLEMENTARY-UNLABELED DATASETS

In the case of supplementary-unlabeled datasets, which also is called semi-supervised datasets,
the estimation of class-prior is relatively straightforward. We assume that the distribution of the
labeled dataset is consistent with that of the unlabeled dataset. Therefore, the class-prior can be
directly obtained by counting the class distribution over the labeled dataset, which serves as a reliable
approximation of the overall data distribution.

C.2.3 CLASS-PRIOR ESTIMATION IN NOISY-LABEL DATASETS

We consider the widely adopted class-dependent label noise setting (Yao et al., [2020), where the
observed noisy label of each x € X depends only on its underlying clean label. Formally, the
transition probability from class 7 to class j is defined as

P(Y =¢;|Y =¢;,X =x) = P(Y = ¢;|Y =¢;) =Ty, Vi, j e[,

where T = [T},] € [0,1]°%¢ is the noise transition matrix. To make the estimation of T feasible, we
follow prior work and impose the following assumptions.
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Assumption 1 (Sufficiently Scattered Assumption (Li et al.,|2021b)). The clean class posterior P(Y"|
X)=[P(Y =e1|X),...,P(Y = e.| X)]" € [0,1]¢ s said to be sufficiently scattered if there
exists a set H = {X1,...,Xn} such that the matrix H = [P(Y | X = x1),...,PY | X = x,)]
satisfies: (i) @ C cone{H}, where Q = {v € R®|v'1 > v/c — 1||v||2}, and cone{H} denotes
the convex cone generated by the columns of H; (ii) cone{H} ¢ cone{U} for any unitary matrix
U € R¢*¢ that is not a permutation matrix.

Assumption 2 (Nonsingular T). The transition matrix T is nonsingular, i.e., Rank(T) = c.

Assumption [I]ensures that the clean posteriors are sufficiently scattered so that the ground-truth T
can be identified, while Assumption [2] guarantees the invertibility of T.

Let € denote the noise rate. For symmetric label noise, we have T}; = 1 — e and T}; = 5 with

j # 1. In practice, the transition matrix can be estimated by solving the following optimization
problem (Li et al.,|2021b):

~ 1 <~ _ ~
min L(0,T) = = > £(T hy(x:),5i) + A - log det(T), (28)
6,T ni4
where £ is a loss function (typically cross-entropy), he(-) is the output of a neural network parameter-

ized by 0, and the regularization term log det(T') encourages the estimated transition matrix to have
minimal simplex volume. Here A > 0 is a trade-off hyperparameter. By Assumption ] the solution

T converges to the true T given sufficient noisy data (Theorem 1 in (Li et al., [2021b)).

Once the transition matrix T is estimated, the clean class prior 7 = [y, ..., 7] can be obtained by
solving the following system of linear equations:
m =Tum +Toame + - + Tame

o = Thomy + Tooma + -+ - + Teame
: (29)

%c = Tlcﬂ-l + T267T2 + -+ chﬂ-c

where T; = P(f/ = ¢;) is the noisy class prior of the i-th class. The empirical estimate of 7; can be
computed as

R 1 n

== Hy; =e}, Vie . 30
o= Ui =e) Vied) (30)

j=1
Solving this system yields the clean class prior 7, which is then used in subsequent modeling.

D IMPLEMENTATION DETAILS

Our implementation is based on PyTorch 1.12 (Paszke et al.l 2019), and all experiments were
conducted on NVIDIA Tesla A100 GPUs with CUDA 12.4.

Imprecise-label construction. For all class-dependent partial-label datasets, we construct a

1 q+0.2 q q—0.2 --- g+40.2 q q—0.2
q—0.2 1 q+0.2 q q q—0.2 ¢+0.2
. .. . q—0.2 1 q+0.2 ... ¢g—0.2 ¢g+0.2 q
10 x 10 circulant transition matrix , Where
q+.0.2 q q7'0.2 1 q q7A0.2 1

each row maps a true label to a candidate set of labels with varying probabilities, and ¢ is set
to 0.5. For noisy-label datasets with asymmetric noise (40% flip probability), we adopt the
following mappings: Fashion-MNIST: ‘Pullover’— ‘Sneaker’, ‘Dress’— ‘Bag’, ‘Sandal’— ‘Shirt’,
‘Shirt’—‘Sandal’. CIFAR-10: ‘Truck’— ‘Automobile’, ‘Bird’— ‘Airplane’, ‘Deer’— ‘Horse’,
‘Cat’—‘Dog’, ‘Dog’—‘Cat’. ImageNette: ‘Tench’— ‘English springer’, ‘Cassette player’— ‘Garbage
truck’, ‘Chain saw’— ‘Church’, ‘Golf ball’— ‘Parachute’, ‘Parachute’ — ‘Golf ball’.

Model setup. The overall diffusion framework follows EDM (Karras et al.,[2022), and the training
hyperparameters are kept consistent with those reported therein. For all experiments, we adopt the
DDPM-++ network architecture with a U-Net backbone. Specifically, we employ the Adam optimizer
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with a learning rate of 1e—3, parameters (01, 52) = (0.9,0.999), and € = 1le—8. The EMA decay is
set to 0.5. We use a batch size of 128 for Fashion-MNIST, 64 for CIFAR-10, and 16 for ImageNette.
For the diffusion classifier, we set the timestep interval length A to 6.4. All models are trained from
scratch for 200k iterations.

E EXPERIMENTS

E.1 EVALUATION METRICS

We evaluate the trained CDMs using four unconditional metrics, including Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al.| [2016), Density, and Cov-
erage (Naeem et al., [2020), and three conditional metrics, namely CW-FID, CW-Density, CW-
Coverage (Chao et al. 2022). All metrics are computed using the official implementation of
DLSM (Chao et al., [2022). Although these metrics have been introduced in related work (Na
et al.| 2024)), we briefly recap them here for completeness and clarity.

Unconditional metrics. Unconditional metrics evaluate generated samples without reference to class
labels. In our experiments, images are first generated conditionally per class but then pooled without
labels when computing the metrics. This evaluation protocol is consistent with prior studies (Kaneko
et al.,[2019; |Chao et al.,[2022).

* FID measures the distance between real and generated image distributions in the pre-trained
feature space (Szegedy et al., 2016), indicating the fidelity and diversity of generated images.

* IS evaluates whether generated images belong to distinct classes and whether each image is
class-consistent, reflecting the realism and class separability of generated images.

* Density and Coverage are reliable versions of Precision and Recall (Naeem et al.|, [2020),
respectively. Density measures how well generated samples cover real data distribution,
while Coverage assesses how well real samples are represented by generated ones.

Conditional metrics. To measure conditional consistency, we adopt class-wise (CW) variants
of the above metrics, which compute each metric separately within each class and then average
across classes. Notably, CW-FID (also called intra-FID) is widely used in conditional generative
modeling (Miyato & Koyamal [2018}; [Kaneko et al.;[2019), and has been highlighted as a key measure
of conditional distribution quality.

Remark: It should be noted that the Fashion-MNIST dataset is not suitable for evaluation using these
metrics, so we do not perform evaluation on the Fahsion-MNIST dataset.

E.2 FULL RESULTS IN WEAKLY SUPERVISED LEARNING

Building on the experiments presented in the main text, we further provide an extended comparison
with a broader set of methods to ensure a comprehensive evaluation. The details are summarized as

Partial-label learning. We compare against ten representative baselines: PRODEN (Lyv et al.| [2020),
CAVL (Zhang et al.,|2021b), POP (Xu et al.,|2023), CC (Feng et al.,|2020), LWS (Wen et al.,|2021)),
IDGP (Qiao et al., [2023)), PiCO (Wang et al.,[2023)), ABLE (Xia et al.,2022), CRDPLL (Wu et al.,
2022), and DIRK (Wu et al.,|[2024). For a fair comparison, we follow the hyperparameter settings
used in PLENCH (Wang et al., 2025b). The complete results are reported in Table 5]

Semi-supervised learning. We follow the training and evaluation protocols of USB (Wang et al.,
2022c), a widely adopted benchmark for fair and unified SSL comparisons. Our baselines cover a
broad spectrum of recent approaches. First, we include confidence-thresholding methods such as
FixMatch (Sohn et al.,|2020), FlexMatch (Zhang et al., 2021al), FreeMatch (Wang et al., [2022d)),
ReMixMatch (Berthelot et al.,[2019a)), Dash (Xu et al.,|2021) and UDA (Xie et al., [2020). Second,
we consider contrastive-learning based and pseudo-label based methods, including CoMatch (L1
et al., 2021a)), SoftMatch (Chen et al.l[2023)) and SimMatch (Zheng et al.| 2022). Finally, we add
several classical and widely studied SSL approaches, including Pseudo-Labeling (Lee et al.,|2013)),
VAT (Miyato et al.,|2018)) and Mean Teacher (Tarvainen & Valpolal 2017). This diverse collection of
baselines allows us to rigorously examine whether our framework remains competitive against both
state-of-the-art and classical SSL methods under consistent experimental setups.
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Table 5: Classification results on Fashion-MNIST, CIFAR-10, and ImageNette datasets under various
types of partial-label supervision. Bold numbers indicate the best performance.

Fashion-MNIST CIFAR-10 ImageNette

Method
Random Class-50% Random Class-50% Random Class-50%
PRODEN 93.3140.07 93.4440.21 90.0240.22 90.4440.44 84.75+0.13 83.50+0.60
CAVL 93.0940.17 92.6740.25 87.28+0.64 87.16+0.58 41.69+4.12 46.46+7.15
POP 93.59+0.17 93.57+0.19 89.13+0.22 90.19+0.10 84.65+0.55 84.29+0.17
cc 93.17+0.32 92.65+0.29 88.40+0.24 89.12+0.23 81.1140.50 80.7440.68
IDGP 92.26+1.25 93.07+0.16 89.6540.53 90.83+0.34 84.0740.26 82.1840.13
PiCO 93.3240.12 93.3240.33 86.40+0.89 87.51+0.66 82.15+0.23 84.41+0.93
ABLE 93.0240.26 93.2040.16 90.77+£0.33 90.7440.48 71.8142.46 76.53+£1.28
CRDPLL 94.03+0.14 93.80+0.23 92.74+0.26 92.89+0.27 84.311+0.25 88.08+0.34
DIRK 94.11+0.22 93.99+0.24 93.48+0.14 93.22+0.37 87.90+0.11 87.47+0.17
Vanilla 80.20+1.29 66.03+1.43 60.25+0.17 56.34+0.50 56.04+0.61 59.47+0.51
DMISCE 84.24+0.37 78.45+0.46 91.47+0.15 90.52+0.35 84.4910.05 82.34+0.27
DMIS 94.27+0.55 94.20+0.15 94.70+0.49 93.53+0.12 89.31+0.21 88.42+0.43

Table 6: Classification results on Fashion-MNIST, CIFAR-10, and ImageNette datasets under various
types of supplementary-unlabeled supervision. Bold numbers indicate the best performance.

Fashion-MNIST CIFAR-10 ImageNette

Method

Random-1% Random-10% Random-1% Random-10% Random-1% Random-10%

Pseudo-Labeling ~ 83.53+0.46 89.59+0.23 50.1040.95 72.924+0.17 43.00+0.82 68.03+0.32
Mean Teacher 82.34+0.09 89.91+0.15 47.69+027  73.01+£0.78  40.53+156  65.7240.55

VAT 83314061  89.35+0.12  49.64+090  71.07+127  38.63+839  63.93+5.18
UDA 84284041  90.83+034 69204141  80.504+055  50.52+379  72.53+1.17
FixMatch 84324033  90.76+038  67.48+142  80.00+063  50.41+443  71.32+193
Dash 84.73+£0.09  91.16+020  70.1440.69 81504068  57.68+2.19  74.6640.81
CoMatch 85314029  90.5240.12  61.45+146  77.79+053  63.884+078  73.20-046
FlexMatch 84434030  90.69+0.03  70.724+093  81.35+048  61.39+0.70  73.08+0.13
FreeMatch 84304037  90.924+024  70.15+044  80.99+056  60.37+1.11  73.14+1.03
SimMatch 84.694+0.17  91.184+0.13  73.334£1.02 82904043 58124266  76.12+045
SoftMatch 84724023  91.2240.11 73244082  88.66+060  58.5042.31 75754025
Vanilla 78.37+3.72  90.50£1.00  53.49+0.15  85.13+0.12  49.55+099  74.70+0.53
DMISCF 82.92+0.17  91.074+0.18 75404054  89.85+008  62.64+024 71394045
DMIS 85.92+0.13 92974021  76.30+0.17 92474039  68.23+0.19  77.30+0.15

Table 7: Classification results on Fashion-MNIST, CIFAR-10, and ImageNette datasets under various
types of noisy-label supervision. Bold numbers indicate the best performance.

Fashion-MNIST CIFAR-10 ImageNette
Method
Sym-40% Asym-40% Sym-40% Asym-40% Sym-40% Asym-40%
CE 76.1840.26 82.01+0.06 67.2240.26 76.98+0.42 58.4340.77 71.8140.38

Co-learning 90.8540.63 84.10+2.01 84.97+0.53 80.36+£1.09 76.1640.96 75.3740.49
Co-teaching 92.1740.34 92.78+0.25 86.54+0.57 79.38+0.39 66.55+1.00 75.1240.50
Co-teaching+ 91.0540.06 91.6240.20 67.28+1.85 79.4340.47 75.7940.79 75.17+£0.40

SCE 93.624022  88.60+£020  82.824040  81.54+064  77.994£039  74.81+1.04
GCE 93.64+003  87.484000  85.00+£027  77.97+3.69 81184035  72.61+114
Decoupling 02244023 92.104044 8224028  79.89+058 75534060  78.24-021
ELR 03.1340.13  92.824009  85.68+0.13  81.32+031  84.034286  73.51+031
JoCoR 84.05£1.11  89.45+443 77924392 78.684007  67.82+197  T4.674043
Mixup 92214003 92014102 84264064 83214085  76.65+1.62  77.16+0.71
PENCIL 90.85+058  91.7740690 8591026  84.89+149  81.94+126  77.20£1.15
Vanilla 00.11+124 85414096  80.22+40.10  86.314+0.10  55.86+195  53.91+1.07
DMISE 82764057 83394024  84.75+036 84214018 80474056  77.2140.19
DMIS 93.40+0.40 93204030  88.63+£0.12  88.83+033  84.12+0.18  79.30-£0.27

Noisy-label learning. We further benchmark our method against nine widely used approaches:
Coteaching (Han et al.l 2018)), Coteaching+ (Yu et al.,|2019), SCE (Wang et al.} 2019), GCE (Zhang
& Sabuncul 2018), Decoupling (Malach & Shalev-Shwartz, [2017), ELR (Liu et al., |2020), and
JoCoR (Wei et al., 2020). These methods cover a range of strategies, from sample selection and
reweighting to robust loss design, thus providing a diverse and rigorous benchmark.

Across all three weakly supervised scenarios, our method consistently achieves the best performance
compared to existing baselines, reinforcing both its robustness and versatility under different forms
of imprecise supervision.
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E.3 INTEGRATION WITH EXISTING IMPRECISE-LABEL CORRECTORS

Existing weakly supervised learning methods often rely on pseudo-labeling strategies that aim to
correct imprecise labels by assigning refined labels to training samples. From this perspective, our
approach is orthogonal to such methods: while pseudo-labeling seeks to approximate the true labels
as closely as possible, our framework focuses on robustly learning from the remaining label noise. In
practice, pseudo-labeling methods inevitably produce imperfect corrections. While most samples
may be relabeled correctly, a non-negligible portion of instances still receive erroneous pseudo-labels
because no classifier is perfect. As a result, imprecise supervision is effectively transformed into a
noisy-label supervision.

This naturally complements our framework: by combining a pseudo-label corrector with DMIS, one
can first reduce label uncertainty through correction and then leverage the robustness of diffusion
models to learn from the residual noise. To validate this premise, we conduct a case study where a
noisy-label learning method trained on CIFAR-10 with 40% symmetric noise achieves a pseudo-label
accuracy of 80% on the training set. Using this pseudo-labeled dataset as input, our DMIS framework
further improves the classification performance. As illustrated in Figure[6] integrating pseudo-label
correction with DMIS consistently improves the performance across all datasets. Thus, we believe
that our framework addresses the challenge of imprecise labels through the lens of diffusion model,
offering a complementary perspective to conventional noisy-label approaches.
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(a) Diffusion classifier results. (b) Regenerate-classification results.

Figure 6: Test accuracy before and after applying pseudo-label correction with DMIS.

E.4 COMPARISON OF ACCURACY CURVES BETWEEN DMIS AND Vanilla

To better illustrate the difference between the Vanilla method and our proposed DMIS, we plot the test
accuracy curves during training, as shown in Figure[7} Across all settings, the Vanilla model exhibits
an initial rise in accuracy followed by a gradual decline as training progresses, suggesting that it
struggles to maintain stable performance under prolonged training. In contrast, DMIS consistently
sustains high accuracy throughout training, showing its robustness across diverse supervision types.

Specifically, in the noisy-label setting, the decline of Vanilla is especially pronounced, reflecting
its sensitivity to label corruption. In partial-label learning, Vanilla also exhibits instability, whereas
DMIS maintains reliable performance. Even in semi-supervised learning, where labels are clean but
scarce, DMIS achieves higher and more stable accuracy compared to Vanilla, demonstrating that our
framework is not only noise-robust but also effective in leveraging limited supervision.

E.5 VISUALIZATION OF NOISY CONDENSED DATASETS

We visualize the condensed images on CIFAR-10 and Fashion-MNIST in Figure [§| and Figure [0
respectively. It is evident that datasets generated by our method exhibit both higher diversity and
stronger realism compared to other approaches. In particular, for the condensed Fashion-MNIST
images, methods such as DC and DM often produce samples that do not faithfully correspond to
their assigned class, resulting in condensed datasets that still contain noisy labels and thus degrade
performance. By contrast, our proposed DMIS generates class-consistent and visually recognizable
samples across categories, yielding condensed datasets that better preserve label fidelity and semantic
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Figure 7: Test accuracy curves of the Vanilla and DMIS models on CIFAR-10 under different forms
of imprecise supervision, including noisy-label learning (NLL), partial-label learning (PLL), and
semi-supervised learning (SSL).

alignment. These visualizations further support the quantitative results, highlighting the advantage of
generative condensation under noisy supervision.

E.6 ADDITIONAL RESULTS ON DATASET CONDENSATION UNDER DIFFERENT FORMS OF
IMPRECISE SUPERVISION

To illustrate the extreme case of noisy dataset condensation, we report the results when the IPC is set to
1. As shown in Table[8] DMIS consistently achieves the best performance across all datasets and noise
types, even under the extreme case of IPC = 1. Notably, while most existing condensation methods
collapse under severe supervision noise, our method maintains a clear advantage, outperforming the
strongest baselines by a large margin. These results further demonstrate the robustness of DMIS in
distilling informative representations despite highly limited and imprecisely labeled data.

Table 8: Classification results (test accuracy, %) on noisy-label Fashion-MNIST, CIFAR-10, and
ImageNette datasets. ‘TPC’ indicates the number of images per class in the condensed dataset. Bold
numbers indicate the best performance.
Dataset Type  IPC DC DSA DM MTT RDED SRE2L DMIS
Sym-40% 1 15.2140.75 19.5540.58 15.5640.20 10.8641.90 18.0743.33 14334120 33.18+2.15

F-MNIST
Asym-40% 1 20.174029 17.614£089 23914036  7.39+084  13.20+083 13.13+£021  25.7840.70
CIFAR.10 __Sym-0% 1 8.99+159  10.00+£000 14.414£1.03  9.994000  11.20+041 11.06+083  11.81+£1.04
Asym40% 1 11.88+155 10.00£0.00 10.00+0.00  9.96+0.05 13964138 15494034 15.8840.57
ImageNette Sym-40% 1 9.874000  9.874000  9.8740.00  19.17+235 12.98+1.16 11.90+078  19.3240.84
Asym-40% 1 9.874000  9.874000  9.874000  17.36+0.10 12984042 18.55+2.19  21.1340.95

Furthermore, even when samples are imprecisely annotated with candidate labels, our method is still
able to perform effective condensation on partial-label datasets. In contrast, most existing dataset
condensation methods rely on the assumption of having single labels for each instance and therefore
fail under this type of supervision. The only exception lies in decoupled condensation approaches
such as RDED and SRE2L, where a teacher model can still be trained on partial-label data. We
present the corresponding results under partial-label supervision below in Table [0}
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As shown in the table, our method consistently achieves substantial improvements across both
Random and Class-50% candidate set generation strategies, and under all IPC settings. In particular,
on Fashion-MNIST, our approach yields dramatic performance gains, reaching above 87% accuracy
even with partial label supervision, whereas both RDED and SREZ2L fail to exceed 16% under the
same setting. On the more challenging CIFAR-10 benchmark, our method also demonstrates strong
robustness, especially under larger IPCs where the gap over baseline methods becomes increasingly
pronounced (e.g., over 20% absolute improvement at IPC = 100). These results highlight that our
condensation strategy can effectively leverage weak supervision and generate compact yet highly
informative synthetic datasets, even when label noise is introduced by the partial-label scenario.

Table 9: Classification results (test accuracy, %) on partial-label Fashion-MNIST and CIFAR-10
datasets under different IPCs. ‘Random’ and ‘Class-50% denote two candidate set generation
strategies. Bold numbers indicate the best performance.

Dataset | Random \ Class-50%
| IPC | RDED SRe2L Ours | IPC | RDED SRe2L Ours
10.4840.82 9.7241.02 44.06+1.64 1 10.7340.78 10.9340.76 33.99+4-2.48
F-MNIST 13.17+4.66 8.80+0.70 72.02+0.77 10 14.58+1.19 10.8340.35 70.46+0.26
13.06+2.36 10.3040.40 83.98+0.12 50 15.5540.55 11.3340.76 79.67+0.13
100 13.39+2.40 9.344+1.77 87.30+0.31 100 11.90+2.67 11.0540.77 81.4240.25
15.3241.72 20.69+0.88 16.3141.54 1 14.5241.06 15.5540.91 16.61+1.14
CIFAR-10 26.2840.29 19.45+1.12 30.50+0.27 10 10.00+0.00 18.56+0.05 25.00+0.70
34.9640.92 20.5640.71 44.3940.65 50 25.59+1.32 19.3941.09 45.94+41.27
28.88+2.56 19.65+1.09 58.46+0.64 100 25.81+1.64 18.65+1.51 58.06+0.32
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Figure 8: Visualization of condensed CIFAR-10 images generated by DC, DM, SREZ?L, and our
method DMIS.
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Figure 9: Visualization of condensed Fashion-MNIST images generated by DC, DM, SRE2L, and
our method DMIS.

F ADDITIONAL EXPERIMENTS RESULTS

F.1 THE FULL RSULTS OF TABLE 1.

Table 10: Generative results on CIFAR-10 and ImageNette under various settings. ‘uncond’ and
‘cond’ indicate unconditional and conditional metrics. Bold numbers indicate better performance.

Noisy-label supervision Partial-label supervision Suppl-unlabeled supervision
Metric Clean
Sym-40% Asym-40% Random Class-50% Random-1% Random-10%

Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla DMIS Vanilla
FID (4) 3334006 3474001 3234007 3004011 7764025 2264008 11754042 2774009 3164007 312005 293:+£0.01 2894008  2.0540.05
S (1) 956008 9.68:£0.05  9.02+0.12  973£006  9.0940.15  9.8040.04 9624011  9.68+007  10.03£009 10574006 980008  9.83+0.05  10.61-£0.04
Density (1) 101394085 109.75+0.62 100.06+091 109.69+055 10321112 10649048 108.76-£0.75  109.06:£0.52  97.1941.05  108.18£0.66 99.96£0.88 108.874+059 112.590.45
Coverage (1) 81124035 81214028  80.714£041  8130:£032  6845:£0.65 82694025 64904072 81524030 78444045 81004029 81854038 8200026 83274022
CW-FID (L) 2984115 13854045 14704052 1324038  27.18:£0.95  10.65£035 32444122 11564041 16254065 16124055 11844048 11774042 9.8340.35
2| CW-Density (1) 72984082 107.231065 9085075 107.07+058 10204092 105.75-£0.61 10243-£0.88 108.66-£0.55 $9.99+078 100.73+0.68 96294072  107.94+062 111.70+052
S| CW-Coverage (1) 7339045 8011035  79.63£042  79.65:£0.38  6545£0.68 8209032 61454075 81242036 75031052 76841041  §0.80+045 8112039 8391030
- (L) 14114055 1344048 1393052 1391045  79.13£2.15 7262185 91284245  79.24195 23884085 19264072 14324058 1284046 1152042
H (1) 12694015 13214012 12514014 1373011 9.194025 9404018 9274022 9115024 12234016 13724013 12.80£0.05  13.16:£0.12  138140.10
2 (1) 109314095 112524082 111661088 106781092 9533:£125 9983075 94294132  102.58-£0.85 11594115 125684095 105274085 109.234078 117.2310.65
5 (1) 76624042 76811038 7832045  79.81:£035 2144:£085 32482055 16694092 22304065 53531072 55391058 73791048 75555042 80.12:£0.35
- ~FI (L) 80314255 6012185 6226195 5820165 157.76+355 63582215 163455385  67.924225  71.664235 70274210 49224155 4431145 4020125
2| CW-Density (1) 7399085 8112065  9353:£095 9458072 9338098 9583068 9150105 95214075 11590+£1.15 118.69£085 103414092 11567078 12035065
3| CW-Coverage (1) 67.894055 71944045 74184052 7582048  1976:-0.85 24354055 15884092 18931062 51.731075 52154065 72614058 74854052 7848045

F.2 COMPARISON AGAINST OTHER NOISE-ROBUST DIFFUSION METHODS.

We have also shown comparisons against noise-robust diffusion methods (Na et al.| 2024; Dufour
et al.| |2024) that are designed to handle noisy-label data. For image generation task, we compare them
and our DMIS model on CIFAR-10 with 40% symmetric and asymmetric label noise, reporting FID,
IS under the same architecture and training budget. For noisy-label learning task, we compare them
and our DMIS as data generators for downstream classification. We use each model to synthesize
the same number of labeled samples and then train a Wide-ResNet-40-10 classifier on top of these
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Metric Sym-40% \ Asym-40%
FID IS  Accuracy \ FID IS Accuracy
DMIS (Ours) 347 9.80 88.63 310 9.73 88.83

CAD (Dufour et al.,2024) 4.10 9.68 81.75 3.87 9.16 82.33
TDSM (Naet al.},[2 3.85 940 66.40 396 10.12 72.32

Table 11: Results under 40% symmetric and asymmetric noise.

synthetic datasets. Importantly, both two compared methods assume access to additional prior
information, which can give them an advantage in this setting. Despite this, our method still achieves
the best overall performance under the same backbone and training budget. This suggests that our
approach is competitive while relying on strictly weaker assumptions about the available supervision.

F.3 ToOP-k TRUNCATION FOR LARGE LABEL SPACES

When extending to datasets with many classes, a straightforward implementation becomes expensive
because it requires estimating and backpropagating a per-class objective at every step. To reduce this
cost in practice, we restrict gradients to classes that carry non-negligible probability mass.

Concretely, we apply a top-k strategy to both the diffusion posterior and the pseudo-label distribution:
only the k largest entries are retained, while all remaining entries are zero-masked and do not
contribute to the gradient. In this way, the effective complexity scales with the number of active
classes k per example, rather than with the total number of classes.

To assess the impact of this approximation, we conduct an experiment on the Caltech-15 dataset
with 40% symmetric label noise and set k = 10. As shown below, the top-k variant
achieves performance comparable to the full model while reducing computational cost, indicating
that this strategy is a practical mechanism for scaling our method to larger label spaces.

Generation Metric \ Classification Metric

FID IS Density Coverage\ Test accuracy (%)
DMIS (Ours) 4.25 12.39 103.83 96.20 | 78.92

Table 12: Performance of DMIS under Caltech-15 dataset with 40% symmetric noise.

F.4 EXPERIMENTS BEYOND SYNTHETIC CLASS-CONDITIONAL NOISE

We primarily use synthetic noisy labels to obtain a controlled setting that supports our theory, where
both the noise rate and the noise type (e.g., symmetric, class-dependent) can be precisely specified.

Starting from such controlled synthetic-noise regimes is a necessary first step to validate both the
theoretical predictions and the basic empirical behavior of our method. To further demonstrate its
practicality under more realistic supervision, we also evaluate DMIS on real noisy-label and partial-
label benchmarks. Specifically, we report results on the real noisy-label dataset CIFAR-10N
and the real partial-label dataset PLCIFAR-10 (Wang et al.l [2025b)), whose labels are

provided by human annotators.

In addition, we consider instance-dependent label noise on CIFAR-10, following standard instance-
dependent noise protocols in the noisy-label literature. The results below show that DMIS maintains
strong generative quality and competitive classification accuracy under these more complex and
realistic noise conditions.
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Dataset \ FID 1S Test accuracy (%)
CIFARI10-N 322 9.66 93.21
Instance-dependent CIFAR10 | 4.85 9.21 81.32
PLCIFAR10 295 9.82 93.65

Table 13: Performance of DMIS under more complex imprecise supervision datasets.
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