
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OPTIMIZING OPTIMIZERS
FOR FAST GRADIENT-BASED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We lay the theoretical foundation for automating optimizer design in gradient-
based learning. Based on the greedy principle, we formulate the problem of
designing optimizers as maximizing the instantaneous decrease in loss. By
treating an optimizer as a function that translates loss gradient signals into
parameter motions, the problem reduces to a family of convex optimization
problems over the space of optimizers. Solving these problems under various
constraints not only recovers a wide range of popular optimizers as closed-form
solutions, but also produces the optimal hyperparameters of these optimizers with
respect to the problems at hand. This enables a systematic approach to design
optimizers and tune their hyperparameters according to the gradient statistics
collected from training or validation sets. Furthermore, this optimization of
optimization can be performed dynamically during training.

1 INTRODUCTION

Figure 1: Just as optimizers train their
models by feeding them parameter velocities
θ̇, models can also fit the optimizers to the
underlying tasks by feeding gradients g.

We are interested in the problem of designing optimizers
that maximize the utility of gradient-based learning for
a given task. In gradient-based learning, the objective is
to minimize an expected scalar loss E[L(θ)] with respect
to parameters θ ∈ Rd using its (negative) gradient g =
−∇θL ∈ Rd. As learning takes time, all the parameters
θ = θ(t), the loss L = L(θ(t)), and the gradients
g = g(t) are variables of time t, i.e., the training step.
A process of learning manifests as a parameter motion θ̇
driven by the gradient g calculated at each step t.

Physics requires a constitutive law that relates kinematic
motion to the force field that causes it. For gradient-based
learning, optimizers take that role. We can represent an
optimizer as a positive semidefinite operator Q ⪰ 0 that
translates the gradient into the parameter update,

θ̇ = Qg. (1)

By the chain rule, the instantaneous loss drop is then a
quadratic form:

−L̇ = ∇θL⊤ dθ

dt
= g⊤θ̇ = g⊤Qg. (2)

The greedy paradigm turns our original problem of maximizing the utility of learning into another
optimization problem that maximizes the this loss drop with respect to the optimizer Q:

maximize
Q∈Q

E[g⊤Qg] subject to Q ⪰ 0, (P1)

where Q is the design space of allowed optimizers.

Instantaneously, we notice that without any additional constraint, the maximum of the quadratic
form g⊤Qg is unbounded. Problem P1 reveals two design options for the optimizer that bounds the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

maximum: (1) the budget constraint Q ∈ Q, and (2) the data distribution under the expectation E.
Our main focus is on how these two factors determine the optimal optimizer Q⋆.

Placing the optimizer itself as a subject of another optimization is interesting in several ways:

• Optimizers can be designed with respect to the individual problem (task and data) and the
running environment (budget and precision) in a systematic manner.

• Optimizers can be tuned or even be replaced by better ones according to the intermediate probes
from either training or validation sets in the middle of training.

• Solving this meta-optimization problem in closed-form for a wide range of budgets uncovers
the relationship between the optimizers and their underlying principles.

• By reverse engineering commonly used optimizers, we draw the landscape of optimizers that
have driven the success of machine learning (Robbins & Monro, 1951; Kingma & Ba, 2015;
Loshchilov & Hutter, 2019; Gupta et al., 2018; Martens & Grosse, 2015) into a single picture.

2 OPTIMAL STATELESS OPTIMIZERS

Consider the following setup: Let πtr and πval be the training and validation data distributions,
respectively. Then, for each training xtr ∼ πtr and validation sample xval ∼ πval, the gradients are
denoted by gtr = ∇θL(θ, xtr) and gval = ∇θL(θ, xval). We define the moments as:

Σtr = E[gtr g
⊤
tr], C = E[gtr g

⊤
val], Σval =

1
2 (C + C⊤), (3)

where E denotes expectation over the single or joint distributions of the enclosed gradients. Note
that Σtr and Σval are symmetric and positive semidefinite (PSD) matrices of shape d × d. For any
symmetric PSD Q ∈ Sd+ of shape d× d, we define the learning power as:

Ptr(Q) := E[g⊤tr Qgtr] = Tr(QΣtr), Pval(Q) := E[g⊤tr Qgval] = Tr(QΣval). (4)

We call Ptr(Q) the training power and Pval(Q) the validation cross-power. From the chain rule
of equation 2, the learning power is equal to the expected instantaneous loss drop: −Etr[L̇] =

Etr[g
⊤
tr θ̇tr] = Ptr(Q) and −Eval[L̇] = Eval[g

⊤
valθ̇tr] = Pval(Q). Problem P1 is therefore rewritten as:

maximize
Q∈Q

P◦(Q) = Tr(QΣ◦) subject to Q ⪰ 0, (P2)

where ◦ ∈ {tr, val}. This is our main optimization problem.

Solving this without any additional constraint, we end up with arbitrarily large eigenvalues for the
optimizer Q. This corresponds to arbitrarily large learning rates, which we all know are infeasible in
practice. Real problems give us several reasons that makes this “ideal solution” unrealizable: finite
precision of our machines, curvature of the loss landscapes, stochastic nature of subset gradients,
etc. All of them restrict the ability of gradient estimates g to represent the global geometry of the
parameter space. Taking a large step in the parameter space beyond the regions where g remains
explainable leads to unexpected, and usually fatal, behaviors.

In other words, the aforementioned restrictions define the feasible set, or the budget Q ⊆ Sd+, which
induces a solution space of finite optimizers. The following theorem formalizes this:
Theorem 1 (Optimal stateless optimizers under convex constraints). Let the budget set {0} ⊆ Q ⊆
Sd+ be a nonempty, compact, convex set. Define also (1) the indicator δQ(Q) = 0 if Q ∈ Q and
+∞ otherwise, (2) the gauge (Minkowski functional): γQ(Q) = inf{λ > 0 : Q ∈ λQ}, and (3) the
polar set Q◦ = {Σ ∈ Sd : supQ∈Q Tr(QΣ) ≤ 1}. For any symmetric matrix Σ ∈ Sd,

(i) (Existence and sublinearity): The maximum in P ⋆(Σ) := maxQ∈Q Tr(QΣ) is attained. In
addition, P ⋆ is sublinear (convex and positively homogeneous) and finite everywhere.

(ii) (Conjugacy identities): The maximum P ⋆(Σ) is obtained by the identity relationships:

P ⋆ = δ∗Q = γQ◦ and γ∗
Q = δQ◦ , (5)

i.e., the optimal power is equal to the convex conjugate of the indicator and also the gauge of
the polar, while the conjugate of the gauge is equal to the indicator of the polar.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 2 1 0 1 2
x

1

0

1

2

3

4

y

Frobenius Optimizers: ‖Q‖2
F 0.01

Optimal (solid)
Random (dashed)
Start
Global Optimum

1

2

4

8

16

32

64

128

256

0

100

200

300

400

500

600

700

800

Lθiter

(a) Frobenius-type on elliptic loss

3 2 1 0 1 2
x

0

1

2

3

4

5

y

TiltedEllipsoid optimization trajectories
Frobenius
Spectral
Lyapunov
Diagonal
Start
Global Optimum

1

2

4

8

16

32

64

128

0

200

400

600

800

1000

Lθiter

(b) Trajectories on elliptic loss

3 2 1 0 1 2 3
x

1

0

1

2

3

4

5

y

Rosenbrock optimization trajectories
Frobenius
Spectral
Lyapunov
Diagonal
Start
Global Optimum

1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192

0

200

400

600

800

1000

Lθiter

(c) Trajectories on Rosenbrock loss

0 100 200 300 400 500 600 700 800
iter

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

L
θ

Loss Convergence: ‖Q‖2
F 0.01

Optimal (solid)
Random (dashed)

(d) Loss curve of Frobenius-type

0 200 400 600 800 1000
Iterations

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Lo
ss

 (l
og

 s
ca

le
)

TiltedEllipsoid loss convergence

Frobenius
Spectral
Lyapunov
Diagonal

(e) Loss curve on elliptic loss

0 200 400 600 800 1000
Iterations

10 4

10 3

10 2

10 1

100

101

102

103

Lo
ss

 (l
og

 s
ca

le
)

Rosenbrock loss convergence

Frobenius
Spectral
Lyapunov
Diagonal

(f) Loss curve on Rosenbrock loss

Figure 2: Behavior of optimal optimizers under different budget types. (a) Dotted lines show suboptimal
optimizers with random Σ from the equal-power Frobenius budget; the straight line is from the optimal
hyperparameters from our theory, achieving fastest convergence. (b, c) No free lunch theorem: Frobenius
excels in simple quadratic loss, while nonconvex geometry makes spectral and diagonal types better. Each line
is the best result from dense search among all budget-parameters, e.g, B for Frobenius budget, etc.

(iii) (Construction): Any maximizer Q⋆ ∈ argmaxQ∈Q Tr(QΣ) is a subgradient of P ⋆ at Σ:
Q⋆ ∈ ∂ΣP

⋆(Σ). If the maximizer is unique, P ⋆ is differentiable at Σ and Q⋆ = ∇ΣP
⋆(Σ).

(iv) (Order preservation on Sd+): If Σ ⪰ 0, then P ⋆(Σ) ≥ 0. If Σ1 ⪰ Σ2, then P ⋆(Σ1) ≥ P ⋆(Σ2).

(v) (Lipschitz continuity in symmetrized polar gauge): Define ∥·∥symQ◦ := max{γQ◦(·), γQ◦(−·)}.
For any Σ, Σ̂ ∈ Sd, |P ⋆(Σ)− P ⋆(Σ̂)| ≤ ∥Σ− Σ̂∥symQ◦ .

The proof is in Appendix B. Items (i), (ii), and (iii) provide a principled way to construct the optimal
(stateless) optimizer Q⋆ from any given moment Σ and any nicely conditioned budget set Q. Items
(iv) and (v) add robustness guarantee and sensitivity analysis to the optimal power. In practice,
full gradients rarely appears in large settings. Gradients are drifting throughout non-convex loss
landscapes, making true moments hard to obtain. Theorem 1(v) shows that the estimation error in
the optimal power is bounded.

Solving the optimization problem constrained by Q determines the optimal optimizer Q⋆, and
endows the optimizer with different characteristics and algorithmic behaviors. Consider the
following four types of budgets:

• Frobenius ball budget QF(B) = {Q ⪰ 0 : ∥Q∥2F ≤ B} is the simplest constraint that gives an
isotropic Euclidean trust region without prior knowledge about parameter space geometry.

• Spectral budget QS(τ, λ) = {Q ⪰ 0 : Tr(Q) ≤ τ, Q ⪯ λI} is a budget that upper limits the
per-direction spectrum for safety and the trace for total budget simultaneously.

• Data-metric (Lyapunov) budget QL(B) = {Q ⪰ 0 : Tr(Q2Σ) ≤ B} is a budget that uses the
data covariance itself as the metric, leading to a natural Lyapunov-like stability condition.

• Diagonal budget QD(B, c) = {Q = diag(qj) ⪰ 0 :
∑

j cjq
2
j ≤ B} is a budget that restricts to

coordinate-wise optimizers. Most of the commonly used optimizers fall into this category.

Instantiating the construction from Theorem 1 with these budgets, we obtain corresponding closed-
form solutions for the optimal optimizer Q⋆ and the optimal power P ⋆.
Corollary 2 (Closed-form solutions for common budget sets). Let Σ = U diag(σ1 ≥ · · · ≥ σd)U

⊤

be the eigendecomposition. The optimal solutions are:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(i) (Frobenius ball): Q⋆
F =
√
B Σ/∥Σ∥F ,P ⋆

F (Σ) =
√
B ∥Σ∥F .

(ii) (Spectral): Q⋆
S = U diag(q⋆i)U

⊤ where (i) q⋆i = λ for i ≤ k, (ii) q⋆k+1 = τ − kλ, (iii) q⋆i = 0
for i > k + 1, where k = ⌊τ/λ⌋, P ⋆

S (Σ) = λ
∑

i≤k σi + (τ − kλ)σk+1.

(iii) (Data-metric): Q⋆
L = αΠsupp(Σ) where α = (B/

∑
i:σi>0 σi)

1/2, P ⋆
L (Σ) = (B

∑
i σi)

1/2.

(iv) (Diagonal): [Q⋆
D]jj ∝ Σjj/cj , P ⋆

D(Σ) = (B
∑

j Σ
2
jj/cj)

1/2.

Again, the proof is in Appendix B. These analytic solutions reveal how the characteristics of different
types of optimal optimizers Q⋆ are induced by controlling the budget Q. Specifically, we see that:

Frobenius budget ↔ Eveidence-proportional optimizer. Budget QF(B) gives optimizers that
allocate learning power proportionally to data evidence Q⋆ ∝ Σ. We can project this general class
of optimizers into special geometries to calculate for the optimal hyperparameters as in Corollary 5.

Spectral budget ↔ Water-filling optimizer ∼ gradient clipping & LR scheduling. Budget
QS(τ, λ) returns a water-filling optimizer that concentrates the learning power into the largest
available principal components of the data moment Σ up to a per-mode cap λ, sequentially, until
the total budget τ is reached. The spectral bound λ, therefore, acts as a stability margin similar to
gradient clipping tricks. The trace bound τ controls the total budget like learning rate schedules.

Data-metric budget ↔ Equal-power optimizer ⊃ {AdaGrad, natural gradient}. Budget
QL(B) results in an equal-power optimizer that whitens gradient statistics and allocates uniform
power across L-eigendirections. If L is Fisher information matrix, this is natural gradient
descent (Amari, 1998). Generally, this includes full-matrix AdaGrad (Duchi et al., 2011; Agarwal
et al., 2019), K-FAC (Martens & Grosse, 2015), and Shampoo (Gupta et al., 2018).

Diagonal budget ↔ Coordinate-wise optimizer ⊃ {Adam, GD}. Budget QD(B, c) produces
an optimizer that allocates the total budget B coordinate-wise which scales with the evidence Σjj

and inversely with the costs cj . Assuming isotropic moments Σ = σ2I and constant costs c = 1,
this reduces to Q⋆ = ηI with learning rate η = (B/d)1/2. This recovers simple gradient descent.
With variance-based costs cj ∝ (EMA(g2j))

1/2 and momenta mj,t = EMA(gj), this recovers Adam
optimizer (Kingma & Ba, 2015); without the first moment it reduces to diagonal AdaGrad (Duchi
et al., 2011) or RMSProp-style optimizer (Tieleman & Hinton, 2012). Corollary 6 gives the optimal
hyperparameters for Adam from this setup.

The behaviors of different types of optimizers are visualized in Figure 2. Figure 2a shows that
our analytically found optimizer is the fastest among all hyperparameter settings under the same
Frobenius budget. On the other hand, Figure 2b and 2c highlights how optimizers from different
types of budgets can perform better in their specialized domains. This insight helps address the
notorious no free lunch theorem in optimization (Wolpert & Macready, 1997): The catchphrase “no
single algorithm is universally superior” can be updated to “the optimal optimizer Q⋆ is a function
of the budget Q and the distribution of observations Σ,” at least under our greedy optimization
framework. In summary, users choose the budget Q, and the budget defines what is optimal
optimizing methods. Reverse engineering under our framework reveals the hidden principles behind
the design of commonly used optimizers such as Adam (Kingma & Ba, 2015). Nevertheless, wise
readers will notice that an important component is still missing: momentum. The next section
demonstrates how momentum is integrated into our framework through a straightforward extension.

3 OPTIMAL DYNAMIC OPTIMIZERS WITH STATE VARIABLES

Up to this point, we have formulated the problem of finding the optimal stateless optimizer as a
convex optimization problem, and derived the closed-form solutions for the four types of budgets. In
practice, optimizers have memory, often in the form of momentum, in order to stabilize the learning
process from stochastic gradients and non-convex loss landscapes. We now extend our framework
by letting the optimizer Q[n] be a causal dynamical operator: a filter that translates gradient history
g[n] into instantaneous parameter velocity θ̇[n]. In the budget view, this introduces a new degree of
freedom: where in frequency we allocate our finite learning power.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let us highlight the key differences from Section 2. We now work in discrete time n ∈ {0, 1, 2, . . .}
representing training steps. We will use the z-domain as the primary spectral domain to reflect the
iterative nature of practical algorithms. Let g[n] ∈ Rd be the (mini-batch) wide-sense stationary
(WSS) gradient process. A dynamic optimizer is an LTI filter with symmetric matrix impulse
response Q[n] ∈ Rd×d defined by the causal convolution:

θ̇[n] = (Q ∗ g)[n] :=

∞∑
k=0

Q[k] g[n− k], Ψ(z) :=

∞∑
n=0

Q[n] z−n, (6)

where the transfer function is Ψ(z) ∈ Cd×d. Also adopt the Hilbert norm:

∥Q∥2H :=

∞∑
n=0

Tr(Q[n]⊤Q[n]) < ∞, ⟨Q1, Q2⟩H :=

∞∑
n=0

Tr(Q1[n]
⊤Q2[n]). (7)

In this framework, autocorrelation and symmetrized cross-correlation represent the moments:

Rtr[k] := E[gtr[n] gtr[n− k]⊤], C[k] := E[gval[n] gtr[n− k]⊤], Rval[k] :=
1

2
(C[k] + C[k]⊤), (8)

where k ≥ 0. The instantaneous learning power is the inner product (more details in Appendix A):

P◦(Q;n) := E
[
g◦[n]

⊤θ̇[n]
]
= E

[
g◦[n]

⊤
∞∑
k=0

Q[k] gtr[n− k]

]
=

∞∑
k=0

Tr
(
Q[k]⊤R◦[k]

)
= ⟨Q,R◦⟩H.

(9)
Define a nonempty, convex, and weakly compact budget set {0} ⊆ Q ⊂ H, which includes
any norm-bounded, closed, convex subset of H. We also define the indicator δQ(Q) and the
gauge γQ(Q) the same as in Section 2, and the polar set is defined as (Q)◦ := {R ∈ H |
supQ∈Q⟨Q,R⟩H ≤ 1}. Hence, all the notations are consistent with Section 2.

For dynamic optimization, for each ◦ ∈ {tr, val}, problem P2 is lifted to:

maximize
Q∈Q

P◦(Q) = ⟨Q,R◦⟩H subject to Q ⪰ 0, (P3)

Unsurprisingly, we arrive at similar results as in Section 2; only the Frobenius inner product ⟨·, ·⟩F =
Tr(·⊤·) is replaced by the Hilbert space inner product ⟨·, ·⟩H. We have the same conjugacy toolkit
for dynamic optimization.
Theorem 3 (Optimal dynamic optimizers under convex constraints). Given the definitions above,
the followings hold for any nonempty, convex, and weakly compact budget setQ ⊂ H+ with 0 ∈ Q:

(i) (Existence and sublinearity): The maximum P ⋆(R) := maxQ∈Q⟨Q,R⟩H is attained.
Moreover, P ⋆ is sublinear and finite everywhere.

(ii) (Conjugacy identities): P ⋆ = δ∗Q = γQ◦ and γ∗
Q = δQ◦ .

(iii) (Construction): Any maximizer Q⋆ ∈ argmaxQ∈Q⟨Q,R⟩H is a subgradient of P ⋆ at R: Q⋆ ∈
∂RP

⋆(R). If the maximizer is unique, P ⋆ is differentiable at R and∇RP
⋆(R) = Q⋆.

(iv) (Order preservation on H+): If R ∈ H+ (Hermitian PSD a.e.), then P ⋆(R) ≥ 0. Moreover, if
R1 − R2 ∈ H+ \ {0} and ∃Q ∈ Q with ⟨Q,R1 − R2⟩H > 0 (e.g., if Q contains a positive
definite element), then P ⋆(R1) > P ⋆(R2).

(v) (Lipschitz continuity in the symmetrized polar gauge): Define the symmetrized polar gauge
∥u∥symQ◦ := max{γQ◦(u), γQ◦(−u)}. Then ∀R, R̂ ∈ H, |P ⋆(R)− P ⋆(R̂)| ≤ ∥R− R̂∥symQ◦ .

The proof is similar to the stateless case, and is provided in Appendix B. Theorem 3 formalizes
how the optimal dynamic optimizer Q⋆ equalizes the learning power across different frequencies
as a function of the convex budget Q. All the closed-form solutions from Corollary 2 can also
be directly lifted to the dynamic framework, as elaborated in Appendix A. Instead of redundantly
repeating the closed-form solutions, we discuss how they are connected to well-known optimizers.
As we will see in Corollaries 5 and 6, solving Problem P3 using Theorem 3 often produces general
dynamic optimizers with infinite impulse responses (IIR) Q[n], whose implementation require
infinite memory for optimizer states. In practice, we often restrict ourselves to simpler, realizable
family of optimizers, such as ones with EMA-based momenta. The following lemma justifies this
post-projection of optimizers already obtaind from convex budgets.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 4. LetH be a real Hilbert space. Given a nonzero moment R ∈ H, letQ ⊂ H be nonempty,
closed, convex, with 0 ∈ Q. Let C ⊂ H be a cone (closed under positive scaling). The normal cone
of Q ∩ C at Q is NQ∩C(Q) := {M ∈ H : ⟨M,Q′ −Q⟩H ≤ 0 ∀Q′ ∈ Q ∩ C}. Define the solution
sets of the optimization problem and its restriction to C:

Q⋆(R) := argmax
Q∈Q
⟨Q,R⟩H, Q⋆

C(R) := arg max
Q∈Q∩C

⟨Q,R⟩H. (10)

Let ΠC be the Hilbert metric projection onto C. For any Q⋆ ∈ Q⋆(R), the following are equivalent:

(i) (Commutativity) ΠC(Q
⋆) ∈ Q⋆

C(R).

(ii) (Normal-cone alignment) There exists Q⋆
C ∈ Q⋆

C(R) such that {R,Q⋆ −Q⋆
C} ⊂ NQ∩C(Q

⋆
C),

Moreover, if NQ∩C(Q
⋆
C) is a ray {λM : λ ≥ 0}, then commutativity holds if and only if R and

Q⋆ −Q⋆
C are positive multiples of the same direction M .

In other words, if the projected manifold C of desired optimizers is in a sufficiently good shape, e.g.,
using EMA-based momentum, then we can first solve problem P3 for general budgets Q and then
project the solution onto the manifold C to obtain the final optimal solution over C. Now we are
ready to find the optimal hyperparameters for real optimizers in use.
Corollary 5 (Instantaneous optimal SGD+Momentum). Define the budgetQF (B) and the cone C1p
of isotropic 1-pole optimizers:

QF (B) := {Q : ∥Q∥H ≤
√
B}, C1p := {Qη,β [n] = η(1− β)βnI : η ≥ 0, 0 < β < 1}. (11)

Given R[n] ∈ H, define S[n] := Tr(R[n]). Then solving problem P3 under the budgetQF (B)∩C1p
produces SGD+Momentum optimizer as the optimal solution with optimal hyperparameters:

β⋆ = arg max
0<β<1

√
1− β2

∞∑
n=0

S[n]βn, η⋆ =

√
B (1− β⋆ 2)√
d (1− β⋆)

, (12)

where d is the dimension of the parameter space.

The optimal hyperparameters are obtained by first applying Theorem 3 to general family of budgets,
and then projecting the solution into the approximation geometry C1p. By Lemma 4, the optimal
hyperparameters of the projected solution are consistent with the unprojected solution. Corollary 5
shows how SGD+Momentum type optimal optimizer works. The optimal momentum β⋆ first
maximizes the cosine similarity between the 1-pole EMA response (βn)n≥0 and the trace of the
empirical moment (S[n])n≥0; then the learning rate η⋆ scales to saturate the budget.

Corollary 6 does the same to Adam Kingma & Ba (2015). For Adam, the existence of a time-varying
divisor EMA(g2, β2)

−1/2 slightly complicates the derivation by making the optimizer time-varying.
Corollary 6 (Instantaneous optimal Adam). Let moment be a diagonal matrix R[n] = diag(rj [n])
with coordinate-wise sequence rj [n]. Given gradients g[t], maintain the second-moment EMA
vj [t] := β2vj [t − 1] + (1 − β2)gj [t]

2 > 0 with parameter β2 ∈ (0, 1). Fix the current time t

and define the coordinate-wise costs cj := vj [t]
1/2. Consider the diagonal budget

QD(B, c) := {diag(qj) :
∑

j cj
∑

k≥0 |qj [k]|2 ≤ B}, (13)

and the cone C1p, Adam of diagonal 1-pole optimizer with per-coordinate inverse-cost scaling
C1p, Adam := {Qη,β1 [n] = diag (η(1− β1)β

n
1 /cj) : η ≥ 0, 0 < β1 < 1}. (14)

Optimizing for problem P3 underQD(B, c)∩ C1p, Adam with moment R[n] yields an Adam optimizer
with optimal hyperparameters:

(β⋆
1 , β

⋆
2) = arg max

0<β1,β2<1
a(β1, β2)

∞∑
n=0

βn
1 Tt[n;β2], η⋆ =

√
B a(β⋆

1 , β
⋆
2)

1− β⋆
1

, (15)

where Wt(β2) :=
∑

j 1/cj , Tt[n;β2] :=
∑

j rj [n]/cj , and a(β1, β2) :=
√

(1− β2
1)/Wt(β2).

The optimal β⋆
1 maximizes the cosine similarity between the 1-pole EMA response (βn

1)n≥0 and
the cost-compensated diagonal moment (T [n;β2])n≥0. The optimal β⋆

2 determines the diagonal
weights through the EMA of the second-moment. Finally, the learning rate η⋆ scales to saturate the
budget. In summary, Adam is a 1-pole approximation of the dynamic diagonal optimizer defind by
the diagonal budgetQD(B, c) projected onto the 1-pole family C1p, Adam. All the proofs are provided
in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Reverse-engineered optimizers as convex optimization problems. Each optimizer emerges
as the optimal solution to a specific convex optimization problem, with hyperparameters determined
by the underlying budget constraint.

Optimizer Hyperparameters Interpretation

GD η (learning rate) Euclidean trust region: ∥θ̇∥2 ≤ τ yields Q ∝ I

Colored-GD η, precon. P Elliptic trust region: ∥θ̇∥P ≤ τ yields Q ∝ P−1 with P ⋆ from data covariance

Newton/GN η, damping λ Curvature trust region: ∥θ̇∥H ≤ τ yields Q ∝ H−1 with η⋆ = τ
∥g∥

H−1

∥H−1g∥2 and λ⋆

from condition number

NGD η, Fisher est. Fisher/KL trust region: ∥θ̇∥F ≤ τ yields Q ∝ F−1 with η⋆ =
√

B√
Tr(F)∥g∥2

and

F ⋆ from empirical Fisher

K-FAC/Shampoo η, damping, period Structured Kronecker trust region yields block Q =
⊕

(A−1
ℓ ⊗G−1

ℓ) with η⋆ from
factored Fisher metric and damping λ⋆ from eigenvalue gaps

AdaGrad η, ϵ, window Diagonal trust region:
∑

j cj θ̇
2
j ≤ B with cj =

√∑
t′ g

2
j,t′ and η⋆

j =
√
B

|gj |√∑
j g2j /cj

, ϵ⋆ for numerical stability

RMSProp η, β2, ϵ Diagonal trust region with cj =
√
vj , vj = β2vj,t−1 + (1 − β2)g

2
j and η⋆

j =
√
B

|gj |/
√
vj√∑

j g2j /vj
, β⋆

2 from gradient correlation

Adam η, β1, β2, ϵ Dynamic diagonal trust region on momentum mk with costs cj =
√
vj and η⋆ =√

B ∥m/
√

v∥1
∥m/

√
v∥22

, β⋆
1 , β

⋆
2 from lag curves

SGD+Momentum η, β1 1-pole EMA trust region: ∥Q∥H ≤
√
B with Q = η(1 − β1)

∑∞
n=0 β

n
1 I and

η⋆ =

√
B(1−β2

1)

∥g∥2(1−β1)
, β⋆

1 from cosine similarity

AdaFactor η, β1, β2, factorization Factored trust region with ri = β2ri,t−1+(1−β2)∥Gi,:∥2, cj = β2cj,t−1+(1−
β2)∥G:,j∥2 and η⋆ from factored diagonal, β⋆

1 , β
⋆
2 from matrix structure

LayerNorm+Mom η, β1, layer norm Layer-wise normalized trust region: ∥Q∥Hlayer ≤
√
B with η⋆ =√

B(1−β2
1)√∑

ℓ dℓ/∥θℓ∥22(1−β1)
and β⋆

1 from layer-normalized lag

LAMB/LARS η, trust ratio τ Layer-wise trust region: ∥θ̇ℓ∥2 ≤ τℓ∥θℓ∥/∥mℓ∥ with η⋆
ℓ = τℓ

∥θℓ∥
∥mℓ∥

and τ⋆ from
layer-wise analysis

signSGD η (step size) L∞ trust region: ∥θ̇∥∞ ≤ τ yields θ̇ = τ sign(g) with η⋆ = τ

Lion η, β1 L∞ trust region on momentum: ∥θ̇∥∞ ≤ τ with θ̇ = η sign(m), η⋆ = τ and β⋆
1

from sign correlation

Reverse engineering optimizers. The above two corollaries show that SGD with momentum and
Adam (Kingma & Ba, 2015) are the optimal 1-pole approximations of the dynamic equalizers,
establishing these well-known optimizers as special cases of our framework. Similarly, we can
reverse engineer various other optimizers, including SGD with Nesterov momentum (Nesterov,
1983), AdamW (Loshchilov & Hutter, 2019), LAMB (You et al., 2020), K-FAC (Martens & Grosse,
2015), Shampoo (Gupta et al., 2018), and Lion (Chen et al., 2023), into our framework. Due to page
constraints, we defer the details to Appendix C. We have also provided a master table of optimizers
in Appendix D, categorizing many optimizers widely used in practice today.

Automatic hyperparameter tuning. Examining Corollaries 5 and 6, our formulation not only
classifies optimizers according to their underlying budget choices, but also provides a systematic
way to determine optimal hyperparameters. Unsurprisingly, optimal hyperparameters depend on
the data being processed. After warm-up steps that collect data covariance, optimal hyperparameters
can be computed and used throughout training. Moreover, systematic hyperparameter determination
enables automatic tuning during training, which is impossible with manual tuning. The algorithms
for determining hyperparameters is provided in Appendix E.

4 AUTOMATING VALIDATION-AWARE OPTIMIZER TUNING

So far, our theoretical justification for optimizing optimizers did not specify which datasets are in
use. This section addresses a more delicate question of how to systematically exploit validation
sets for optimizer design. It is commonly considered bad practice to use validation sets directly

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

in the optimization loop. Rather, they are typically used to generate subtle clues that indirectly
guide engineers when making decisions about model architecture, optimizers, and associated
hyperparameters. We can regard this manual tuning process as a kind of “human-in-the-loop” system
that fits the optimizer and hyperparameters to the validation set. We can then automate this process
by casting it as the same mathematical optimization problem. For example, our original optimization
problem P3 can be recast in terms of maximizing the instantaneous validation loss drop as

maximize
Q∈Q

− L̇val =
∑

n E[gval[n]
⊤ θ̇tr[n]] = ⟨Q,R×⟩H = P×(Q) s.t. Q ⪰ 0, (P4)

where θ̇tr[n] = (q∗gtr)[n] is the parameter velocity guided solely by the training set and the designed
optimizer Q. This is mathematically equivalent to problem P3 but with the cross-moment R×,
mimicking human inspection of the validation loss drop and engineering the optimizer accordingly.
This approach may or may not conflict with traditional practice, potentially requiring an additional
split beyond the standard training/validation division. We leave this discussion to the readers.
Here, we focus on the theoretical side of validation-aware optimizer design by showing that tuning
optimizers using validation sets maximizes the instantaneous validation loss drop.
Proposition 7 (Validation optimality in power). Given any convex and compact budget Q ⊂ H+,
the validation-aware maximizer Q⋆

× ∈ argmaxQ∈Q⟨Q,R×⟩H gives the maximum instantaneous
validation loss drop among all possible optimizers Q ∈ Q, including training-only optimizers Q ∈
argmaxQ∈Q⟨Q,Rtr⟩H.

We leave the proof to Appendix B. Therefore, validation-aware tuning is the best possible
instantaneous validation loss drop among all possible optimizers Q ∈ Q, including training-only
optimizers Q ∈ argmaxQ∈Q Tr(QΣtr). The next proposition shows how the choice of optimizer
Q not only controls the parameter velocity, but also determines the endpoint of the optimization
process in the local convex region.

To approximate the dynamics in the local convex region in the loss landscape, assume squared loss
and fix parameters θ. In the linearizable region of the network fθ around θ, the function-space
dynamics follow kernel gradient flow with kernel

KQ(x, x
′) := ∇θfθ(x; θ)

⊤ Q∇θfθ(x
′; θ). (16)

Define the budget Q, the validation cross-moment Σ×, and the validation-aware maximizer Q⋆
× ∈

argmaxQ∈Q Tr(QΣ×) the same as in Proposition 7. Then, the following proposition holds:
Proposition 8 (Endpoint selection (function-space view)). With any optimizer Q ∈ Q fixed around
θ, kernel gradient flow converges to the unique minimum-norm interpolant in HKQ

(or to kernel
ridge with decay λ > 0). Consequently, choosing Q = Q⋆

× changes the RKHS toHKQ⋆
×

and selects
the endpoint

f⋆
Q⋆

×
= arg min

f∈HKQ⋆
×

∥f∥2HKQ⋆
×

subject to f(X) = y. (17)

In summary, tuning the optimizer Q using validation sets is the best possible way not only to
maximize the instantaneous validation loss drop, but also to select better convergence endpoints
of the optimization process.

5 SCOPE AND LIMITATIONS

Long-horizon objective from greedy paradigm. In order to simplify the analysis, this work
resorts to the greedy paradigm, primarily focusing on instantaneous progress of learning. As a
trade-off, global optimality guarantee requires further investigation under this greedy paradigm.
Our filter interpretation of dynamic optimizers in Section 3 mitigates the limitations of the greedy
objective by incorporating stateful optimizers holding summaries of the history of gradients. This
also generalizes the optimizers with momentum and other EMA-based smoothing techniques.

Choice of budget. Instead of telling which class of optimizers are optimal for a given task, this
work provides an optimization framework under the user-defined budget set. Our framework can
help engineers by reducing their effort for searching the right hyperparameters; however, it still
requires an intelligent choice of which budget, i.e., which class of optimizers, fits the task.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Renovating existing optimizers. In Theorems 1 and 3, we provide general construction of optimal
optimizers from convex constraints. However, in this work, we focus on the well-established
optimizers, and supplement them with a systematic methodology to find the right hyperparameters
for a given task. Designing a new class of optimizers will be a natural extension of this work.

6 RELATED WORK

First, we would like to highlight the key differences between our “optimizing optimizers” and other
well-established fields with similar tautologies.

Learning to optimize. Learning to optimize (Li & Malik, 2016) aims to adapt the optimizer to
a given task by treating optimizers as learnable parametric models (Andrychowicz et al., 2016).
Various architectures have been explored, including RNNs (Andrychowicz et al., 2016; Wichrowska
et al., 2017; Lv et al., 2017), Transformers (Chen et al., 2022; Moudgil et al., 2023; Jain et al.,
2024), and per-tensor HyperNetworks (Ha et al., 2016; Metz et al., 2022). Their primary focus
is on meta-training these optimizer-networks for stability and adaptability. These works represent
a nontraditional, network-based family of generally nonconvex optimizers, which is not generally
compatible with our framework which is based on convex optimization.

Learning to learn. Rooted in the human-inspired philosophy (Schmidhuber, 1987; Bengio
et al., 1990), meta-learning is another line of work that shares a similar spirit with learning to
optimize (Gharoun et al., 2023). A large proportion of works on meta-learning target few-shot
learning tasks, which prepare the model, not the optimizer, for downstream tasks (Vinyals et al.,
2016; Finn et al., 2017; Yu et al., 2024; Sun et al., 2019). Among them, Meta-SGD (Li et al.,
2017) is noteworthy, as it prepares the optimizer. However, the problem set we address is general
gradient-based learning, which differs from the tasks of concern in meta-learning.

Algorithmic discovery of optimizers. Techniques like symbolic discovery (Chen et al., 2023;
Zheng et al., 2022), non-parametric optimizer search (Wang et al., 2022), and neural optimizer
search (Bello et al., 2017) are also related to our work, as their objective is to discover the optimal
optimizer for a given task. In their framework, symbolic optimizers are obtained by a tree-based
search of a predefined set of optimizers. Ours instead lets the engineer select the broader family
of optimizers, and then provides a mathematical tool to find the optimal solution among them.
Therefore, these works are considered to be orthogonal to ours.

Hyperparameter optimization. Many works have proposed to automatically tune the
hyperparameters governing optimization. Most of them adopt a learning framework to find a good
set of hyperparameters including learning rates (Daniel et al., 2016), their schedules (Xu et al., 2017;
2019), and other optimizer parameters (Shaban et al., 2019). Hypergradient methods (Maclaurin
et al., 2015; Baydin et al., 2017; Grazzi et al., 2020; Moskovitz et al., 2019) are also proposed to
find the optimal hyperparameters. Instead of resorting to learning-based methods, we establish a
theoretical framework through the lens of convex optimization problems (Boyd & Vandenberghe,
2004). By doing so, we can classify well-used optimizers such as SGD with momentum and
Adam (Kingma & Ba, 2015) as special cases of our framework, and provide a systematic way to
determine the optimal hyperparameters for these optimizers.

7 CONCLUSION

We established a firm theoretical grounding for systematically achieving optimal optimizers in a
greedy sense. Our convex optimization framework connects commonly used optimizers to convex
constraint sets, merging those independently developed techniques into a single unified framework.
Our main results, Theorems 1 and 3, and Lemma 4 are general tools that can be extended to arbitrary
budget to invent new families of optimizers for specific uses. Our theory, therefore, does not disprove
the no free lunch theorem; rather, it provides a principled way to leverage this wisdom to flexibly
design and adapt optimizers for our own problems at hand.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All the proofs of the theoretical part of this paper, including every Lemma, Theorem, Proposition,
and Corollary, are provided in Appendix B with detailed derivations, starting from the basic
definitions and assumptions made in the main text. Moreover, omitted theoretical results are
elaborated in Appendix A. Regarding the implementation, Appendix E gives the algorithm to realize
our theoretically justified optimal optimizers.

LLM USAGE STATEMENT

We deeply acknowledge the usefulness of LLMs in revising the manuscript, especially for fixing
vocabulary and grammar-related issues. We also used LLMs to check the correctness and coherence
of the proofs and notations. This greatly helped us in identifying awkward mistakes we had been
making all along.

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In ICML, 2019.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, 1998.

Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. In NIPS, 2016.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural optimizer search with
reinforcement learning. In ICML, 2017.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Technical
report, Université de Montréal, Département d’informatique et de recherche opérationnelle, 1990.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In NeurIPS, 2023.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, Sagi Perel, and Nando
de Freitas. Towards learning universal hyperparameter optimizers with transformers. In NeurIPS,
2022.

Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. Learning step size controllers for robust
neural network training. In AAAI, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hassan Gharoun, Fereshteh Momenifar, Fang Chen, and Amir H. Gandomi. Meta-learning
approaches for few-shot learning: A survey of recent advances. arXiv preprint arXiv:2303.07502,
2023.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In ICML, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In ICML, 2018.

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. arXiv preprint arXiv:1609.09106,
2016.

Deepali Jain, Krzysztof M. Choromanski, Kumar Avinava Dubey, Sumeet Singh, Vikas Sindhwani,
Tingnan Zhang, and Jie Tan. Mnemosyne: Learning to train transformers with transformers. In
NeurIPS, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Ke Li and Jitendra Malik. Learning to Optimize. arXiv preprint arXiv:1606.01885, 2016.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn quickly for
few-shot learning. In NIPS, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In ICML, 2017.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In ICML, 2015.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In ICML, 2015.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-Dickstein. VeLO:
Training versatile learned optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Ted Moskovitz, Rui Wang, Janice Lan, Sanyam Kapoor, Thomas Miconi, Jason Yosinski, and Aditya
Rawal. First-order preconditioning via hypergradient descent. arXiv preprint arXiv:1910.08461,
2019.

Abhinav Moudgil, Boris Knyazev, Guillaume Lajoie, and Eugene Belilovsky. Learning to optimize
with recurrent hierarchical transformers. In ICML Workshop on New Frontiers in Learning,
Control, and Dynamical Systems, 2023.

Yurii E. Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k2). Doklady Akademii Nauk SSSR, 269(3):543–547, 1983. English translation: Soviet
Mathematics Doklady, 27(2):372–376, 1983.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400–407, 1951.

Jürgen Schmidhuber. Evolutionary Principles in Self-Referential Learning, or on Learning How to
Learn: The Meta-Meta-... Hook. PhD thesis, Technische Universität München, 1987.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In AISTATS, 2019.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In CVPR, 2019.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5—rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan Wierstra. Matching networks for one shot
learning. In NIPS, 2016.

Ruochen Wang, Yuanhao Xiong, Minhao Cheng, and Cho-Jui Hsieh. Efficient non-parametric
optimizer search for diverse tasks. In NeurIPS, 2022.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and
generalize. In ICML, 2017.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

Chang Xu, Tao Qin, Gang Wang, and Tie-Yan Liu. Reinforcement learning for learning rate control.
arXiv preprint arXiv:1705.11159, 2017.

Zhen Xu, Andrew M. Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In ICLR, 2020.

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, and
Steven C.H. Hoi. A survey of few-shot learning on graphs: from meta-learning to pre-training
and prompt learning. arXiv preprint arXiv:2402.01440, 2024.

Wenqing Zheng, Tianlong Chen, Ting-Kuei Hu, and Zhangyang Wang. Symbolic learning to
optimize: Towards interpretability and scalability. arXiv preprint arXiv:2203.06578, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MORE MATHEMATICAL RESULTS

This section provides more detailed mathematical foundations of the main text, which was omitted
for brevity. Appendix A.1 shows a detailed derivation of equation 9. This shows that the
instantaneous learning powers of dynamic optimizers are also represented by some inner product
between the optimizer operator and the gradient moment, having the same structure as in the stateless
case. Appendix A.2 draws connection between the results in Section 2 and the results in Section 3,
by showing the corresponding results in the dynamic setting.

A.1 PROOF OF EQUATION 9

Here we provide a detailed derivation of equation 9 that was abbreviated in the main text. We assume
the sequences {gtr[n]} and {gval[n]} are zero-mean, wide-sense stationary (WSS) with finite second
moments. Hence the lag-k moments Rtr[k] = E[gtr[n]gtr[n− k]⊤] and C[k] = E[gval[n]gtr[n− k]⊤]
depend only on k. Then

Ptr(Q) = ⟨Q,Rtr⟩H, Pval(Q) = ⟨Q,Rval⟩H. (18)
We start from the convolution definition of the dynamic optimizer:

θ̇[n] =

∞∑
k=0

Q[k] gtr[n− k]. (19)

Instantaneous training power:
Ptr(Q;n) = E

[
gtr[n]

⊤θ̇[n]
]

(20)

= E
[
gtr[n]

⊤
∞∑
k=0

Q[k] gtr[n− k]
]

(21)

=

∞∑
k=0

E
[
gtr[n]

⊤Q[k] gtr[n− k]
]

(linearity of E) (22)

=

∞∑
k=0

Tr
(
Q[k] E[gtr[n− k] gtr[n]

⊤]
)

(23)

=

∞∑
k=0

Tr
(
Q[k]T E[gtr[n] gtr[n− k]⊤]

)
(trace transpose) (24)

=

∞∑
k=0

Tr
(
Q[k]T Rtr[k]

)
(25)

= ⟨Q,Rtr⟩H. (26)

Instantaneous validation cross-power:
Pval(Q;n) = E

[
gval[n]

⊤θ̇[n]
]

(27)

= E
[
gval[n]

⊤
∞∑
k=0

Q[k] gtr[n− k]
]

(28)

=

∞∑
k=0

E
[
gval[n]

⊤Q[k] gtr[n− k]
]

(29)

=

∞∑
k=0

Tr
(
Q[k] E[gtr[n− k] gval[n]

⊤]
)

(30)

=

∞∑
k=0

Tr
(
Q[k]T E[gval[n] gtr[n− k]⊤]T

)
(31)

=

∞∑
k=0

Tr
(
Q[k]T C[k]T

)
, (32)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where C[k] := E[gval[n] gtr[n−k]⊤]. For the symmetric cross-moment Rval[k] :=
1
2

(
C[k]+C[k]⊤

)
,

when using Hermitian PSD filters with symmetric Q[k], we have

Tr(Q[k]TC[k]T) = Tr(Q[k] 1
2 (C[k] + C[k]⊤)) = Tr(Q[k]TRval[k]), (33)

since for symmetric A, Tr(A 1
2 (B −B⊤)) = 0. Therefore, Pval(Q;n) = ⟨Q,Rval⟩H.

A.2 DYNAMIC LIFT OF SECTION 2

We now lift the key results of Section 2 to the dynamic setting of Section 3. Solving the optimization
problem with constraintQ determines the optimal dynamic optimizer Q⋆, and endows the optimizer
with different characteristics and algorithmic behaviors. Again, consider the following four types of
dynamic budgets:

• Frobenius ball budget QF (B) = {Q : ∥Q∥H ≤
√
B} is the simplest constraint that gives

an isotropic Hilbert space trust region without prior knowledge about temporal correlation
structure.

• Per-frequency spectral budget QS(τ, λ) = {Q : Tr(Q(eiω)) ≤ τ(ω), Q(eiω) ⪯ λ(ω)I} is
a budget that upper limits the per-direction spectrum for safety and the trace for total budget
simultaneously at each frequency.

• Data-metric (Lyapunov) budget QL(B) = {Q :
∑∞

k=0 Tr(Q
∗
kΣQk) ≤ B} is a budget that

uses the lag-covariance sequence itself as the metric, leading to a natural dynamic Lyapunov-
like stability condition.

• Diagonal budget QD(B, c) = {Q(z) = diag(qj(z)) ⪰ 0 :
∑

j cj∥qj∥2H2
≤ B} is a budget

that restricts to diagonal dynamic optimizers with coordinate-wise budgets.

Instantiating the construction from Theorem 3 with these budgets, we obtain corresponding closed-
form solutions for the optimal dynamic optimizer Q⋆ and the optimal power P ∗(R).

Corollary 9 (Closed-form solutions for dynamic budget sets). Let R(eiω) =
U(ω) diag(σi(ω))U(ω)∗ be the eigendecomposition at each frequency. The optimal solutions are:

(i) Frobenius ball: Q∗
F =
√
BR/∥R∥H, P ∗

F (R) =
√
B∥R∥H.

(ii) Per-frequency spectral: Q∗
S(e

iω) = U(ω) diag(q∗i (ω))U(ω)∗ where q∗i (ω) =
min{λ(ω),max{0, µ(ω)− σi(ω)}} and µ(ω) is chosen so that

∑
i q

∗
i (ω) = τ(ω).

(iii) Data-metric: Q∗
L = αΠsupp(R) where α =

√
B/
∑

i:σi>0 σi, P ∗
L(R) =

√
B
∑

i σi.

(iv) Diagonal: [Q∗
D]jj ∝ Rjj/cj , P ∗

D(R) =
√
B
∑

j R
2
jj/cj .

We delay the proof to Appendix B. These analytic solutions reveal how the characteristics of
different types of optimal dynamic optimizers Q⋆ are induced by controlling the budget set Q.

Frobenius budget↔ Proportional dynamic optimizer. BudgetQF (B) produces a proportional
dynamic optimizer that allocates learning power proportional to lag-covariance evidence Q⋆ ∝ R.
It enjoys implementation simplicity but potentially over-concentrates on dominant temporal modes.
Using Lemma 4, we can project this general class of optimizers into special geometries to calculate
for the optimal hyperparameters as in Corollary 5.

Per-frequency spectral budget ↔ Water-filling dynamic optimizer ∼ per-frequency gradient
clipping & power scheduling. Budget QS(τ, λ) produces a water-filling dynamic optimizer that
keeps pushing power into responsive frequency modes until hitting the safety cap λ(ω). The spectral
cap λ(ω) acts as a frequency-dependent safety mechanism similar to gradient clipping, while the
trace constraint τ(ω) controls the per-frequency learning rate similar to adaptive learning rate
scheduling.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Data-metric budget ↔ Equal-power dynamic optimizer ∼ dynamic AdaGrad. Budget
QL(B) produces an equal-power dynamic optimizer that equalizes learning power uniformly across
informative lag-correlation directions, preventing over-concentration while maintaining temporal
efficiency. This produces a natural dynamic preconditioning effect similar to AdaGrad’s inverse
square root scaling, but with uniform power allocation across all informative temporal directions
rather than instantaneous adaptation.

Diagonal budget↔ Coordinate-wise dynamic optimizer∼ Adam. BudgetQD(B, c) produces
a coordinate-wise dynamic optimizer that adapts per-coordinate learning power proportional to the
lag-covariance evidence Rjj and inversely proportional to the costs cj . When cj ∝ v

1/2
t,j (vt,j

being the EMA of g2j at time t), this recovers the core mechanism of Adam, which is elaborated in
Corollary 6 in the main manuscript.

B PROOFS OMITTED FROM THE MAIN TEXT

This section does all the proofs that has been omitted in the main text. The proofs are organized in
the same order as the theorems appear in the main manuscript.

B.1 PROOF OF THEOREM 1

Proof of Theorem 1. We establish each claim in turn.

Existence & sublinearity: Since Q is compact by assumption (a nonempty, compact, convex subset
of Sd+), and (Q,Σ) 7→ Tr(QΣ) is continuous, the maximum is attained by the Weierstrass extreme
value theorem. The optimal power P ⋆(Σ) = supQ∈Q Tr(QΣ) is a supremum of linear functionals
in Σ, hence sublinear (convex and positively homogeneous). Finiteness follows from compactness
of Q.

Conjugacy identities: We establish the three identities in equation 5.

1. Optimal power = conjugate of indicator. By the definition of convex conjugate,

(δQ)
∗(Σ) = sup

Q∈Sd
{⟨Q,Σ⟩ − δQ(Q)} = sup

Q∈Q
⟨Q,Σ⟩ = P ⋆(Σ). (34)

Thus P ⋆ = (δQ)
∗.

2. Optimal power = gauge of polar. By the definition of polar, Σ ∈ Q◦ if and only if
supQ∈Q⟨Q,Σ⟩ ≤ 1, i.e., P ⋆(Σ) ≤ 1. Therefore

γQ◦(Σ) = inf{λ > 0 : Σ ∈ λQ◦} = inf{λ > 0 : P ⋆(Σ) ≤ λ} = P ⋆(Σ). (35)

Thus P ⋆ = γQ◦ .

3. Conjugate of gauge = indicator of polar. We establish (γQ)
∗ = δQ◦ . Consider two cases:

• If Σ ∈ Q◦, then for all Q,

⟨Q,Σ⟩ ≤ γQ(Q) · sup
R∈Q
⟨R,Σ⟩ ≤ γQ(Q), (36)

since supR∈Q⟨R,Σ⟩ ≤ 1 by definition of polar. Hence ⟨Q,Σ⟩ − γQ(Q) ≤ 0 for all Q, with
equality at Q = 0. Taking the supremum gives (γQ)∗(Σ) = 0 = δQ◦(Σ).

• If Σ /∈ Q◦, there exists Q0 ∈ Q with ⟨Q0,Σ⟩ > 1. For any α > 0, we have γQ(αQ0) =
αγQ(Q0) = α (since Q0 ∈ Q so γQ(Q0) = 1), and thus

⟨αQ0,Σ⟩ − γQ(αQ0) = α⟨Q0,Σ⟩ − α = α(⟨Q0,Σ⟩ − 1)→ +∞ (α→∞). (37)

Hence (γQ)
∗(Σ) = +∞ = δQ◦(Σ).

Thus (γQ)∗ = δQ◦ .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Construction by subgradient: Let Q⋆ ∈ argmaxQ∈Q Tr(QΣ). For any M ∈ Sd,

P ⋆(M) = max
Q∈Q

Tr(QM) ≥ Tr(Q⋆M) = Tr(Q⋆Σ)+Tr(Q⋆(M−Σ)) = P ⋆(Σ)+Tr(Q⋆(M−Σ)),
(38)

which is the defining inequality for Q⋆ ∈ ∂P ⋆(Σ). If the maximizer is unique, ∂P ⋆(Σ) = {Q⋆}
and P ⋆ is differentiable at Σ with∇P ⋆(Σ) = Q⋆.

Order preservation: If Σ ⪰ 0, then for any Q ∈ Q ⊆ Sd+, we have Tr(QΣ) ≥ 0. Since 0 ∈ Q, the
maximum over Q ∈ Q is ≥ 0. If Σ1 ⪰ Σ2, then P ⋆(Σ1) ≥ P ⋆(Σ2). Moreover, strict inequality
holds if there exists Q ∈ Q with Tr

(
Q(Σ1 − Σ2)

)
> 0.

Lipschitz continuity in symmetrized polar gauge: We establish the one-sided bounds first. Since
P ⋆ = γQ◦ by the conjugacy identities, we have:

P ⋆(Σ)− P ⋆(Σ̂) = max
Q∈Q
⟨Q,Σ⟩ −max

Q∈Q
⟨Q, Σ̂⟩ (39)

≤ max
Q∈Q
⟨Q,Σ− Σ̂⟩ (40)

= γQ◦(Σ− Σ̂). (41)

Similarly, P ⋆(Σ̂)− P ⋆(Σ) ≤ γQ◦(Σ̂− Σ). Therefore,

|P ⋆(Σ)− P ⋆(Σ̂)| ≤ max{γQ◦(Σ− Σ̂), γQ◦(Σ̂− Σ)} = ∥Σ− Σ̂∥symQ◦ . (42)

This Lipschitz property is crucial for robustness analysis. By using an estimated moment Σ̂ instead
of the true moment Σ, the error in optimal power can be bounded by |P ⋆(Σ) − P ⋆(Σ̂)| ≤ ∥Σ −
Σ̂∥symQ◦ . This provides a principled way to assess estimation sensitivity.

B.2 PROOF OF COROLLARY 2

Proof of Corollary 2. We apply Theorem 1 to each budget set. Let Σ = U diag(σ1 ≥ · · · ≥ σd)U
⊤

be the eigendecomposition of the moment matrix.

(i) Frobenius ball QF(B) = {Q ⪰ 0 : ∥Q∥F ≤
√
B}. The Lagrangian is L(Q,λ) = Tr(QΣ) −

λ(∥Q∥2F −B). Taking the gradient with respect to Q and setting to zero:

∇QL = Σ− 2λQ = 0 ⇒ Q =
Σ

2λ
.

The constraint ∥Q∥F =
√
B gives ∥Σ/(2λ)∥F =

√
B, so 2λ = ∥Σ∥F /

√
B. Hence:

Q⋆
F =
√
B

Σ

∥Σ∥F
, P ⋆

F (Σ) = Tr(Q⋆
FΣ) =

√
B ∥Σ∥F .

(ii) Spectral QS(τ, λ) = {Q ⪰ 0 : Tr(Q) ≤ τ, Q ⪯ λI}. By Neumann’s inequality, the maximizer
has the form Q = U diag(qi)U

⊤ where the eigenvalues qi solve the water-filling problem:

max
qi≥0

∑
i

qiσi s.t.
∑
i

qi ≤ τ, qi ≤ λ.

The KKT conditions yield: (i) q⋆i = λ for i ≤ k, (ii) q⋆k+1 = τ − kλ, (iii) q⋆i = 0 for i > k + 1,
where k = ⌊τ/λ⌋. The optimal power is:

P ⋆
S (Σ) = λ

∑
i≤k

σi + (τ − kλ)σk+1.

(iii) Data-metric QL(B) = {Q ⪰ 0 : Tr(Q2Σ) ≤ B}. The Lagrangian is L(Q,µ) = Tr(QΣ) −
µ(Tr(Q2Σ)−B). The first-order condition gives:

Σ− 2µQΣ = 0 ⇒ Q =
1

2µ
I on supp(Σ).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Using the constraint Tr(Q2Σ) = B and the fact that Q is constant on the support:

α2
∑

i:σi>0

σi = B ⇒ α =

√
B∑

i:σi>0 σi
.

Hence:

Q⋆
L = αΠsupp(Σ), P ⋆

L (Σ) = α
∑
i

σi =

√
B
∑
i

σi.

(iv) Diagonal QD(B, c) = {Q = diag(qj) ⪰ 0 :
∑

j cjq
2
j ≤ B}. The problem decouples

coordinate-wise:
max
qj≥0

∑
j

qjΣjj s.t.
∑
j

cjq
2
j ≤ B.

By Cauchy-Schwarz, the maximizer satisfies q⋆j ∝ Σjj/cj . Normalizing by the constraint:

q⋆j =

√
B∑

k Σ
2
kk/ck

· Σjj

cj
, P ⋆

D(Σ) =

√√√√B
∑
j

Σ2
jj

cj
.

B.3 PROOF OF THEOREM 3

Proof of Theorem 3. We establish each claim in turn.

(i) Existence & sublinearity. Q is weakly compact (Hilbert spaces are reflexive; closed and bounded
⇒ weakly compact). The functional Q 7→ ⟨Q,M⟩H is continuous in the weak topology (linear
functionals are weakly continuous), hence attains its maximum on Q. Sublinearity: P ⋆(M) =
supQ∈Q⟨Q,M⟩H is a supremum of linear maps in M , thus convex and positively homogeneous.
Finiteness follows from compactness of Q.

(ii) Conjugacy identities. By definition of convex conjugate inH,

(δQ)
∗(M) = sup

Q∈H
{⟨Q,M⟩H − δQ(Q)} = sup

Q∈Q
⟨Q,M⟩H = P ⋆(M).

Thus P ⋆ = δ∗Q. By definition of the polar, M ∈ (Q)◦ iff supQ∈Q⟨Q,M⟩H ≤ 1, i.e., P ⋆(M) ≤ 1.
Therefore

γ(Q)◦(M) = inf{λ > 0 : M ∈ λ(Q)◦} = inf{λ > 0 : P ⋆(M) ≤ λ} = P ⋆(M).

Finally, (γQ)∗ = δ(Q)◦ is the standard gauge–polar identity in a locally convex space.

(iii) Construction (subgradient). Let Q⋆ ∈ argmaxQ∈Q⟨Q,M⟩H. For any N ∈ H,

P ⋆(N) = max
Q∈Q
⟨Q,N⟩H ≥ ⟨Q⋆, N⟩H = P ⋆(M) + ⟨Q⋆, N −M⟩H,

so Q⋆ ∈ ∂MP ⋆(M). Uniqueness implies differentiability with gradient Q⋆.

(iv) Order preservation. If M ∈ H+, then for any Q ∈ Q ⊂ H+ we have ⟨Q,M⟩H ≥ 0 (each term
Tr(H⊤

k Mk) ≥ 0). Taking the max over Q yields P ⋆(M) ≥ 0. If M1 −M2 ∈ H+ + \{0}, some
admissible Q gives strict positivity of ⟨Q,M1 −M2⟩H, hence the maximized value is strictly larger
at M1 than M2.

(v) Lipschitz in polar gauge. From (ii), P ⋆ = γ(Q)◦ . Then for any M, M̂ ,

P ⋆(M)− P ⋆(M̂) = max
Q∈Q
⟨Q,M⟩H −max

Q∈Q
⟨Q, M̂⟩H

≤ max
Q∈Q
⟨Q,M − M̂⟩H = ∥M − M̂∥(Q)◦ .

Symmetry gives the absolute value bound.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 PROOF OF LEMMA 4

Proof of Lemma 4. The proof follows from standard convex optimization theory, specifically the
KKT conditions for linear maximization and the characterization of metric projections.

We use two facts:

• (KKT for linear maximization) x⋆ ∈ argmaxy∈C⟨y, M⟩H ⇐⇒ M ∈ NC(x
⋆).

• (Metric projection) For y ∈ H, x⋆ = ΠC(y) ⇐⇒ y − x⋆ ∈ NQ∩C(x
⋆).

(ii) ⇒ (i): Suppose there exists M ∈ Q⋆
C(R) ⊆ Q ∩ C such that {R,Q⋆ −M} ⊂ NQ∩C(M).

From Q⋆−M ∈ NQ∩C(M), the metric projection characterization gives ΠC(Q
⋆) = M . From R ∈

NQ∩C(Q
⋆
C), the KKT condition for linear maximization gives M ∈ argmaxQ∈Q∩C⟨Q, R⟩H =

Q⋆
C(R). Therefore, ΠC(Q

⋆) = M ∈ Q⋆
C(R).

(i) ⇒ (ii): Suppose M := ΠC(Q
⋆) ∈ Q⋆

C(R). By the metric projection characterization, Q⋆ −
M ∈ NQ∩C(M). Since M ∈ Q⋆

C(R) = argmaxQ∈Q∩C⟨Q, R⟩H, the KKT condition for linear
maximization gives R ∈ NQ∩C(M). Thus, {R,Q⋆ −M} ⊂ NQ∩C(M). Let Q⋆

C := M .

For the final statement, if NQ∩C(Q
⋆
C) = {λM : λ ≥ 0} is a ray, then both R and Q⋆ − Q⋆

C
must be non-negative multiples of the same direction M for the normal-cone alignment condition to
hold.

B.5 PROOF OF COROLLARY 5

Proof of Corollary 5. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters
with matrix impulse response {qk}k≥0 and norm ∥Q∥2H =

∑∞
k=0 Tr(q

⊤
k qk).

Step 1 — Norm of the 1-pole equalizer. The impulse response is qk = ηP (1− β)βk. By definition,

∥QSGD+M∥2H =
∑
k≥0

Tr(q⊤k qk) =
∑
k≥0

Tr
(
[ηP (1− β)βk]⊤[ηP (1− β)βk]

)
(43)

= η2(1− β)2
∑
k≥0

β2k Tr(P⊤P) = η2(1− β)2
1

1− β2
Tr(P⊤P). (44)

The budget constraint ∥QSGD+M∥H ≤
√
B imposes

η ≤
√
B

(
Tr(P⊤P)

(1− β)2

1− β2

)−1/2

. (45)

Step 2 — Alignment with the moment operator. The inner product with R is

⟨QSGD+M, R⟩H =
∑
k≥0

Tr(q⊤k Rk) = η(1− β)
∑
k≥0

βk Tr(P⊤Rk) (46)

= η(1− β)
∑
k≥0

βkSk, (47)

where Sk := Tr(P⊤Rk).

Step 3 — Reduce to 1-D search; saturate budget. For fixed β, the inner product is linear in η while
the constraint is quadratic, so the maximizer saturates the budget. The budget-normalized gain is

J(β) :=
⟨QSGD+M, R⟩H
∥QSGD+M∥H

=

√
1− β2√

Tr(P⊤P)

∑
k≥0

βkSk. (48)

Hence β⋆ = argmax0<β<1 J(β) and η⋆ saturates the budget constraint.

B.6 PROOF OF COROLLARY 6

Proof of Corollary 6. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters
with impulse response {Hk}k≥0 and norm ∥Q∥2H =

∑
k Tr(H

⊤
k Hk).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step 1 — Unconstrained diagonal optimizer. With the diagonal budgetQD(B, c), the maximization
maxQ∈QD

⟨Q,R⟩H decouples per coordinate into scalar H2 subproblems:

max
qj :

∑
j cj∥qj∥2

H2
≤B

P∑
j=1

⟨qj , Rjj⟩H2 . (49)

By Cauchy-Schwarz, the optimizer is proportional to Rjj with weights 1/cj , giving the stated q⋆j .

Step 2 — Adam-family restriction (1-pole per coordinate). Fix a fitting window and freeze the
preconditioner D−1/2

t (quasi-LTI approximation). The per-coordinate impulse response is

hj,k = η(D
−1/2
t)jj(1− β1)β

k
1 , k ≥ 0. (50)

Step 3 — Budget norm and alignment. The budget norm evaluates to

∥QAdam∥2H =

P∑
j=1

cj
∑
k≥0

|hj,k|2 = η2
(1− β1)

2

1− β2
1

P∑
j=1

cj(D
−1/2
t)2jj = η2

(1− β1)
2

1− β2
1

W (β2). (51)

The alignment with R is

⟨QAdam, R⟩H = η(1− β1)
∑
k≥0

βk
1

P∑
j=1

(D
−1/2
t)jjRjj,k = η(1− β1)

∑
k≥0

βk
1Tk(β2). (52)

Step 4 — Optimization over hyperparameters. For fixed (β1, β2), the maximizer in η saturates the
budget (linear gain under quadratic constraint). The budget-normalized gain is

J(β1, β2) :=
⟨QAdam, R⟩H
∥QAdam∥H

=

√
1− β2

1√
W (β2)

∑
k≥0

βk
1Tk(β2). (53)

Maximizing over (β1, β2) ∈ (0, 1)2 gives the optimal momentum parameters, and the optimal
learning rate is

η⋆ =
√
B

(
(1− β⋆

1)
2

1− (β⋆
1)

2
W (β⋆

2)

)−1/2

. (54)

B.7 PROOF OF PROPOSITION 7

Proof of Proposition 7. The instantaneous validation slope is Q 7→ Tr(QΣ×). Since this is linear
in Q and Q is compact, the maximum is attained and gives the claimed inequality. If the maximizer
is unique, then any suboptimal Q gives strictly smaller Tr(QΣ×) = −L̇val(Q). This includes
optimizers only tuned to the training set.

B.8 PROOF OF PROPOSITION 8

Proof of Proposition 8. In the linearized regime, we fix parameters θ0 and consider the linearized
network f(x) ≈ f(x; θ0) + ∇θf(x; θ0)

⊤(θ − θ0). For squared loss L(θ) = 1
2∥fθ(X) − y∥2, the

gradient is∇θL =
∑n

i=1(fθ(xi)− yi)∇θfθ(xi).

With optimizer Q, the parameter dynamics are θ̇ = −Q∇θL. In the linearized regime around θ0,
this becomes

θ̇ = −Q
n∑

i=1

(fθ0(xi) +∇θf(xi; θ0)
⊤(θ − θ0)− yi)∇θf(xi; θ0). (55)

Let G ∈ Rn×d be the matrix with rows∇θf(xi; θ0)
⊤. Then the linearized dynamics become

θ̇ = −QG⊤(G(θ − θ0) + (fθ0(X)− y)), (56)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where fθ0(X) = [fθ0(x1), . . . , fθ0(xn)]
⊤.

In function space, let u(x) = ∇θf(x; θ0)
⊤(θ − θ0) represent the change in function values. Then

u(X) = G(θ − θ0) and the dynamics become
d

dt
u(X) = Gθ̇ = −GQG⊤(u(X) + (fθ0(X)− y)). (57)

This is kernel gradient flow in function space with kernel matrix K = GQG⊤, where Kij =
∇θf(xi; θ0)

⊤Q∇θf(xj ; θ0) = KQ(xi, xj).

By Moore–Penrose pseudoinverse, this gradient flow converges to u⋆ = K†y where K† =
(GQG⊤)†, which corresponds to the minimum norm interpolant in the RKHS HKQ

induced by
kernel KQ:

f⋆
Q = arg min

f∈HKQ

∥f∥2HKQ
s.t. f(X) = y. (58)

The choice of Q directly determines the kernel KQ(x, x
′) = ∇θf(x; θ0)

⊤Q∇θf(x
′; θ0) and hence

the RKHSHKQ
. The validation-aware choice Q⋆ ∈ argmaxQ∈Q Tr(QΣ×) emphasizes directions

in parameter space that are aligned with the validation cross-moment Σ×, thereby tilting the induced
RKHS toward functions that perform better on validation data.

B.9 PROOF OF COROLLARY 9

Proof of Corollary 9. We apply Theorem 3 to each dynamic budget set. Let R(eiω) =
U(ω) diag(σ1(ω) ≥ · · · ≥ σd(ω))U(ω)∗ be the eigendecomposition of the moment operator at
each frequency.

(i) Frobenius ball QF (B) = {Q : ∥Q∥H ≤
√
B}. The Lagrangian is L(Q,λ) = ⟨Q,R⟩H −

λ(∥Q∥2H −B). Taking the functional derivative with respect to Q and setting to zero:

δQL = R− 2λQ = 0 ⇒ Q =
R

2λ
.

The constraint ∥Q∥H =
√
B gives ∥R/(2λ)∥H =

√
B, so 2λ = ∥R∥H/

√
B. Hence:

Q⋆
F =
√
B

R

∥R∥H
, P ⋆

F (R) = ⟨Q⋆
F , R⟩H =

√
B ∥R∥H.

(ii) Per-frequency spectral QS(τ, λ) = {Q : Tr(Q(eiω)) ≤ τ(ω), Q(eiω) ⪯ λ(ω)I}.
By the dynamic version of Neumann’s inequality, the maximizer has the form Q(eiω) =
U(ω) diag(qi(ω))U(ω)∗ where the eigenvalues qi(ω) solve the water-filling problem at each
frequency:

max
qi(ω)≥0

∑
i

qi(ω)σi(ω) s.t.
∑
i

qi(ω) ≤ τ(ω), qi(ω) ≤ λ(ω).

The KKT conditions yield: (i) q⋆i (ω) = λ(ω) for i ≤ k(ω), (ii) q⋆k+1(ω) = τ(ω) − k(ω)λ(ω), (iii)
q⋆i (ω) = 0 for i > k(ω) + 1, where k(ω) = ⌊τ(ω)/λ(ω)⌋. The optimal power is:

P ⋆
S(R) =

1

2π

∫ 2π

0

λ(ω) ∑
i≤k(ω)

σi(ω) + (τ(ω)− k(ω)λ(ω))σk(ω)+1(ω)

 dω.

(iii) Data-metric QL(B) = {Q :
∑∞

k=0 Tr(Q
∗
kΣQk) ≤ B}. The Lagrangian is L(Q,µ) =

⟨Q,R⟩H − µ (
∑∞

k=0 Tr(Q
∗
kΣQk)−B). The first-order condition gives:

R− 2µ

∞∑
k=0

ΣQke
−ikω = 0 ⇒ Q =

1

2µ
I on supp(R).

Using the constraint and the fact that Q is constant on the support:

α2
∑

i:σi>0

σi = B ⇒ α =

√
B∑

i:σi>0 σi
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Hence:

Q⋆
L = αΠsupp(R), P ⋆

L(R) = α
∑
i

σi =

√
B
∑
i

σi.

(iv) Diagonal QD(B, c) = {Q(z) = diag(qj(z)) ⪰ 0 :
∑

j cj∥qj∥2H2
≤ B}. The problem

decouples coordinate-wise into scalar H2 subproblems:

max
qj≥0

∑
j

⟨qj , Rjj⟩H2
s.t.

∑
j

cj∥qj∥2H2
≤ B.

By Cauchy-Schwarz in H2, the maximizer satisfies q⋆j ∝ Rjj/cj . Normalizing by the constraint:

q⋆j =

√
B∑

k ∥Rkk∥2H2
/ck
· Rjj

cj
, P ⋆

D(R) =

√√√√B
∑
j

∥Rjj∥2H2

cj
.

C REVERSE ENGINEERING COMMON OPTIMIZERS

So far, we have derived various types of stateless and stateful optimizers under different types of
budgets. In this section, we will do the opposite: we will reverse engineer popular optimizers
and find out under which budget they are secretly optimizing. This not only allows us to find out
hidden design principles of these optimizers, but also have these optimizers registered in a unified
framework, suggesting a systematic way to design new optimizers.

tl;dr:

• GD = Euclidean budget⇒ Q∝I .
• Colored-GD = elliptic budget⇒ Q∝P .
• Newton/GN = curvature budget⇒ Q∝H−1/G−1.
• NGD = Fisher/KL budget⇒ Q∝F−1.
• K-FAC/Shampoo = structured budgets⇒ block/Kronecker Q.
• AdaGrad/RMSProp/Adam = diagonal budgets (on g or mk)⇒ Q diagonal.
• LAMB/LARS = layer-norm budget⇒ layer-wise scalar Q.
• signSGD/Lion = L∞ budget (on g or mk)⇒ normalized/sign steps.

One lens. Every first-order optimizer picks a velocity θ̇ from the current gradient g by solving a
budgeted power allocation:

θ̇ = Qg with Q ∈ Q ⇐⇒ θ̇ = arg max
θ̇∈RP

⟨g, θ̇⟩ s.t. budget(θ̇) ≤ τ (59)

The budget determines the optimizer Q. Below, we list each popular optimizer as a special case of
this formulation, give the induced Q, and state (not prove) the short KKT step that produces it.

C.1 EUCLIDEAN & CURVATURE FAMILIES

Corollary 10 (SGD from Euclidean Frobenius budget). Define the Euclidean Frobenius budget and
the cone of memoryless isotropic optimizers:

QF (B) := {Q : ∥Q∥H ≤
√
B}, Cmemoryless := {Q[n] = ηIδ[n] : η ≥ 0}. (60)

Given current gradient moment R[0] = gg⊤ where g is the instantaneous gradient, solving
problem P3 under the budgetQF (B)∩Cmemoryless produces SGD as the optimal solution with optimal
hyperparameter:

η⋆ =

√
B√

d∥g∥2
, (61)

where d is the dimension of the parameter space.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and FrobeniusH norm ∥Q∥2H =

∑∞
n=0 Tr(Q[n]⊤Q[n]).

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QF (B) = {Q : ∥Q∥H ≤

√
B} is

QC =
√
B

R

∥R∥H
, P ⋆(R) =

√
B ∥R∥H. (62)

Step 2 — Commutativity via smooth convexity. The Frobenius ball QF (B) is smooth and strictly
convex. At any boundary point Q with ∥Q∥H =

√
B, the normal cone is the ray NQF (B)(Q) =

{λQ : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQF (B)∩Cmemoryless(Q
C) ∈ arg max

Q∈QF (B)∩Cmemoryless

⟨Q,R⟩H. (63)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη[n] = ηIδ[n] with η ≥ 0, we compute:

∥Qη∥2H = Tr((ηI)⊤(ηI)) = η2d, (64)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηI)⊤(gg⊤)) = ηTr(gg⊤) = η∥g∥22. (65)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥H =

√
B. This gives:

η⋆ =

√
B√
d
. (66)

However, when we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

d∥g∥2
. (67)

Step 5 — Geometric interpretation. SGD emerges as the memoryless isotropic approximation of the
global Frobenius-constrained equalizer. The optimal learning rate η⋆ balances the budget constraint
with the current gradient magnitude, providing uniform scaling across all parameter dimensions.
By commutativity, this restricted optimum coincides with projecting the global optimum QC onto
Cmemoryless.

Corollary 11 (Colored gradient descent from elliptic trust region budget). Define the elliptic budget
QP (B) and the cone Cmemoryless of memoryless optimizers:

QP (B) := {Q : Tr(Q[0]⊤P−1Q[0]) ≤ B,Q[n] = 0 for n > 0}, (68)
Cmemoryless := {Q[n] = ηIδ[n] : η ≥ 0}. (69)

where P ≻ 0 is a fixed symmetric positive definite matrix. Given current gradient moment R[0] =
gg⊤ where g is the instantaneous gradient, solving problem P3 under the budgetQP (B)∩Cmemoryless
produces colored gradient descent as the optimal solution with optimal hyperparameter:

η⋆ =

√
B√

Tr(P−1)∥g∥2
, (70)

where the optimizer is Q⋆ = η⋆P .

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with
matrix impulse response Q and elliptic P -weighted norm for memoryless filters ∥Q[0]∥2P−1 =

Tr(Q[0]⊤P−1Q[0]).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QP (B) = {Q : Tr(Q[0]⊤P−1Q[0]) ≤ B,Q[n] = 0 for n > 0} is

QC [0] =
√
B

Pgg⊤

∥Pgg⊤∥P−1

, P ⋆(R) =
√
B ∥Pgg⊤∥P−1 . (71)

Step 2 — Commutativity via smooth convexity. The elliptic ball QP (B) is smooth and strictly
convex. At any boundary point Q with ∥Q[0]∥P−1 =

√
B, the normal cone is the ray NQP (B)(Q) =

{λP−1Q[0] : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQP (B)∩Cmemoryless(Q
C) ∈ arg max

Q∈QP (B)∩Cmemoryless

⟨Q,R⟩H. (72)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη[n] = ηPδ[n] with η ≥ 0, we compute:

∥Qη[0]∥2P−1 = Tr((ηP)⊤P−1(ηP)) = η2 Tr(P), (73)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηP)⊤(gg⊤)) = ηTr(Pgg⊤) = ηg⊤Pg. (74)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη[0]∥P−1 =

√
B. This gives:

η⋆ =

√
B√

Tr(P)
. (75)

However, when we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

Tr(P−1)∥g∥2
. (76)

Step 5 — Geometric interpretation. Colored gradient descent emerges as the memoryless
approximation of the global elliptic-constrained equalizer. The optimal learning rate η⋆ balances the
elliptic budget constraint with the current gradient magnitude, providing P -weighted scaling across
parameter dimensions. The optimizer Q⋆ = η⋆P naturally incorporates the geometry encoded in
matrix P . By commutativity, this restricted optimum coincides with projecting the global optimum
QC onto Cmemoryless.

Corollary 12 (Newton’s method from curvature-aware budget). Define the budget QH(B) and the
cone Cmemoryless of memoryless optimizers:

QH(B) := {Q : Tr(Q[0]⊤HQ[0]) ≤ B,Q[n] = 0 for n > 0}, (77)
Cmemoryless := {Qη[n] = ηPδ[n] : η ≥ 0, P ≻ 0}. (78)

where H ≻ 0 is the Hessian matrix. Given current gradient moment R[0] = gg⊤ where g is the
instantaneous gradient, solving problem P3 under the budgetQH(B)∩Cmemoryless produces Newton’s
method as the optimal solution with optimal hyperparameter:

η⋆ =

√
B√

Tr(H−1)∥g∥2
, (79)

where the optimizer is Q⋆ = η⋆H−1.

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with
matrix impulse response Q and elliptic H-weighted norm for memoryless filters ∥Q[0]∥2H =
Tr(Q[0]⊤HQ[0]).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QH(B) = {Q : Tr(Q[0]⊤HQ[0]) ≤ B,Q[n] = 0 for n > 0} is

QC [0] =
√
B

H−1gg⊤

∥H−1gg⊤∥H
, P ⋆(R) =

√
B ∥H−1gg⊤∥H . (80)

Step 2 — Commutativity via smooth convexity. The elliptic ball QH(B) is smooth and strictly
convex. At any boundary point Q with ∥Q[0]∥H =

√
B, the normal cone is the ray NQH(B)(Q) =

{λHQ[0] : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQH(B)∩Cmemoryless(Q
C) ∈ arg max

Q∈QH(B)∩Cmemoryless

⟨Q,R⟩H. (81)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη[n] = ηH−1δ[n] with η ≥ 0, we compute:

∥Qη[0]∥2H = Tr((ηH−1)⊤H(ηH−1)) = η2 Tr(H−1), (82)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηH−1)⊤(gg⊤)) = ηTr(H−1gg⊤) = ηg⊤H−1g. (83)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη[0]∥H =

√
B. This gives:

η⋆ =

√
B√

Tr(H−1)
. (84)

When we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

Tr(H−1)∥g∥2
. (85)

Step 5 — Geometric interpretation. Newton’s method emerges as the memoryless approximation of
the global Hessian-constrained equalizer. The optimal learning rate η⋆ balances the curvature budget
constraint with the current gradient magnitude, providing Hessian-weighted scaling that naturally
incorporates second-order geometry. The optimizer Q⋆ = η⋆H−1 captures the local quadratic
structure of the loss landscape. By commutativity, this restricted optimum coincides with projecting
the global optimum QC onto Cmemoryless.

Corollary 13 (L-BFGS from learned curvature approximation). Define the budget QB(B) and the
cone Cmemoryless of memoryless optimizers:

QB(B) := {Q : Tr(Q[0]⊤BkQ[0]) ≤ B,Q[n] = 0 for n > 0}, (86)

Cmemoryless := {Qη[n] = ηB−1
k δ[n] : η ≥ 0}. (87)

where Bk ≻ 0 is the L-BFGS curvature approximation matrix constructed through secant updates.
Given current gradient moment R[0] = gg⊤ where g is the instantaneous gradient, solving
problem P3 under the budget QB(B) ∩ Cmemoryless produces L-BFGS as the optimal solution with
optimal hyperparameter:

η⋆ =

√
B√

Tr(B−1
k)∥g∥2

, (88)

where the optimizer is Q⋆ = η⋆B−1
k .

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with
matrix impulse response Q and elliptic Bk-weighted norm for memoryless filters ∥Q[0]∥2Bk

=

Tr(Q[0]⊤BkQ[0]).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QB(B) = {Q : Tr(Q[0]⊤BkQ[0]) ≤ B,Q[n] = 0 for n > 0} is

QC [0] =
√
B

B−1
k gg⊤

∥B−1
k gg⊤∥Bk

, P ⋆(R) =
√
B ∥B−1

k gg⊤∥Bk
. (89)

Step 2 — Commutativity via smooth convexity. The elliptic ball QB(B) is smooth and strictly
convex. At any boundary point Q with ∥Q[0]∥Bk

=
√
B, the normal cone is the ray NQB(B)(Q) =

{λBkQ[0] : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQB(B)∩Cmemoryless(Q
C) ∈ arg max

Q∈QB(B)∩Cmemoryless

⟨Q,R⟩H. (90)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη[n] = ηB−1
k δ[n] with η ≥ 0, we compute:

∥Qη[0]∥2Bk
= Tr((ηB−1

k)⊤Bk(ηB
−1
k)) = η2 Tr(B−1

k), (91)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηB−1
k)⊤(gg⊤)) = ηTr(B−1

k gg⊤) = ηg⊤B−1
k g. (92)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη[0]∥Bk

=
√
B. This gives:

η⋆ =

√
B√

Tr(B−1
k)

. (93)

When we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

Tr(B−1
k)∥g∥2

. (94)

Step 5 — Geometric interpretation. L-BFGS emerges as the memoryless approximation of the global
curvature-constrained equalizer, where the curvature matrix Bk is learned through secant updates
rather than computed exactly. The optimal learning rate η⋆ balances the learned curvature budget
constraint with the current gradient magnitude, providing Bk-weighted scaling that incorporates
approximate second-order geometry at reduced computational cost. The optimizer Q⋆ = η⋆B−1

k
captures the accumulated curvature information from the optimization trajectory. By commutativity,
this restricted optimum coincides with projecting the global optimum QC onto Cmemoryless.

C.2 INFORMATION-GEOMETRIC & STRUCTURED OPTIMIZERS

Corollary 14 (Natural Gradient Descent from Fisher information geometry). Define the Fisher
information budget QF (B,F) and the cone Cmemoryless of memoryless optimizers:

QF (B,F) := {Q : Tr(Q⊤FQ) ≤ B}, Cmemoryless := {Qη = ηI : η ≥ 0}. (95)

Given instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0, solving problem P3
under the budgetQF (B,F)∩Cmemoryless produces Natural Gradient Descent as the optimal solution
with optimal hyperparameters:

η⋆ =

√
B√

Tr(F−1)∥g∥2
, Q⋆ = η⋆F−1. (96)

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and Fisher-weighted norm for memoryless filters ∥Q∥2F = Tr(Q⊤FQ).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QF (B,F) = {Q : Tr(Q⊤FQ) ≤ B} is

QC =
√
B

F−1gg⊤

∥F−1gg⊤∥F
, P ⋆(R) =

√
B ∥F−1gg⊤∥F . (97)

Step 2 — Commutativity via smooth convexity. The Fisher ellipsoidQF (B,F) is smooth and strictly
convex. At any boundary point Q with ∥Q∥F =

√
B, the normal cone is the ray NQF (B,F)(Q) =

{λFQ : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQF (B,F)∩Cmemoryless(Q
C) ∈ arg max

Q∈QF (B,F)∩Cmemoryless

⟨Q,R⟩H. (98)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη = ηI with η ≥ 0, we compute:

∥Qη∥2F = Tr((ηI)⊤F (ηI)) = η2 Tr(F), (99)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηI)⊤(gg⊤)) = ηTr(gg⊤) = ηg⊤g = η∥g∥22. (100)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥F =

√
B. This gives:

η⋆ =

√
B√

Tr(F)
. (101)

When we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

Tr(F)∥g∥2
. (102)

Step 5 — Geometric interpretation. Natural Gradient Descent emerges as the memoryless
approximation of the global Fisher-constrained equalizer, where the Fisher information matrix F
captures the intrinsic Riemannian geometry of the statistical model. The optimal learning rate η⋆

balances the Fisher information budget constraint with the current gradient magnitude, providing
F -weighted scaling that incorporates the natural geometry of the parameter space. The optimizer
Q⋆ = η⋆F−1 implements steepest descent in the natural Riemannian metric, where the Fisher
metric measures the intrinsic difficulty of distinguishing nearby parameter values based on the
data distribution. By commutativity, this restricted optimum coincides with projecting the global
optimum QC onto Cmemoryless.

Corollary 15 (K-FAC from block-diagonal Fisher approximation). Define the block-diagonal
Fisher budget Qblock(B, {Fℓ}) and the cone Cmemoryless of memoryless optimizers:

Qblock(B, {Fℓ}) := {Q :
∑
ℓ

∥Qℓ∥2Fℓ
≤ B}, Cmemoryless := {Q[n] = ηIδ[n] : η ≥ 0}. (103)

Given instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0, solving problem P3
under the budgetQblock(B, {Fℓ})∩ Cmemoryless produces K-FAC as the optimal solution with optimal
hyperparameters:

η⋆ =

√
B√∑

ℓ Tr(F
−1
ℓ)∥g∥2

, Q⋆ = η⋆blockdiag(F−1
ℓ). (104)

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and block-diagonal Fisher-weighted norm ∥Q∥2block =

∑
ℓ Tr(Q

⊤
ℓ FℓQℓ).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qblock(B, {Fℓ}) = {Q :

∑
ℓ ∥Qℓ∥2Fℓ

≤ B} is

QC =
√
B

blockdiag(F−1
ℓ)gg⊤

∥blockdiag(F−1
ℓ)gg⊤∥block

, P ⋆(R) =
√
B ∥blockdiag(F−1

ℓ)gg⊤∥block. (105)

Step 2 — Commutativity via smooth convexity. The block-diagonal Fisher ellipsoidQblock(B, {Fℓ})
is smooth and strictly convex. At any boundary point Q with ∥Q∥block =

√
B, the normal cone is

the ray NQblock(B,{Fℓ})(Q) = {λblockdiag(Fℓ)Q : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQblock(B,{Fℓ})∩Cmemoryless(Q
C) ∈ arg max

Q∈Qblock(B,{Fℓ})∩Cmemoryless

⟨Q,R⟩H. (106)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Qη = ηI with η ≥ 0, we compute:

∥Qη∥2block =
∑
ℓ

Tr((ηIℓ)
⊤Fℓ(ηIℓ)) = η2

∑
ℓ

Tr(Fℓ), (107)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr((ηI)⊤(gg⊤)) = ηTr(gg⊤) = η∥g∥22. (108)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥block =

√
B. This gives:

η⋆ =

√
B√∑

ℓ Tr(Fℓ)
. (109)

When we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√∑

ℓ Tr(Fℓ)∥g∥2
. (110)

Step 5 — Geometric interpretation. K-FAC emerges as the memoryless approximation of the global
block-diagonal Fisher-constrained equalizer, where each block Fℓ captures the layer-wise Fisher
information geometry. The optimal learning rate η⋆ balances the block-diagonal Fisher information
budget constraint with the current gradient magnitude, providing layer-wise Fℓ-weighted scaling
that incorporates the natural geometry while maintaining computational tractability through block-
diagonal structure. The optimizer Q⋆ = η⋆blockdiag(F−1

ℓ) implements approximate steepest
descent in the block-diagonal natural Riemannian metric. By commutativity, this restricted optimum
coincides with projecting the global optimum QC onto Cmemoryless.

Corollary 16 (Shampoo from Kronecker-factored preconditioning). Consider weight tensors θ ∈
Rd1×d2×···×dk and define mode-wise second moment matrices Gi ∈ Rdi×di for each mode i. Define
the Kronecker-factored budget constraint:

QKron(B, {Gi}) :=
{
Q : ∥Q∥2Kron ≤ B

}
, (111)

where ∥Q∥2Kron =
∑∞

n=0 Tr
(
Q[n]⊤ (

⊗
i Gi)Q[n]

)
, and the memoryless Kronecker cone:

CKron :=

{
Q[n] = η

(⊗
i

G
−1/2
i

)
δ[n] : η ≥ 0

}
. (112)

Given instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0, solving problem P3
under the budget QKron(B, {Gi}) ∩ CKron produces Shampoo as the optimal solution with optimal
hyperparameters:

η⋆ =

√
B√

Tr
(⊗

i G
−1
i

)
∥g∥2

, Q⋆ = η⋆
⊗
i

G
−1/2
i . (113)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and Kronecker-weighted norm ∥Q∥2Kron =

∑∞
n=0 Tr

(
Q[n]⊤ (

⊗
i Gi)Q[n]

)
.

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget QKron(B, {Gi}) = {Q : ∥Q∥Kron ≤

√
B} is

QC =
√
B

(⊗
i G

−1
i

)
gg⊤∥∥(⊗

i G
−1
i

)
gg⊤

∥∥
Kron

, P ⋆(R) =
√
B

∥∥∥∥∥
(⊗

i

G−1
i

)
gg⊤

∥∥∥∥∥
Kron

. (114)

Step 2 — Commutativity via smooth convexity. The Kronecker-factored ellipsoid QKron(B, {Gi}) is
smooth and strictly convex. At any boundary point Q with ∥Q∥Kron =

√
B, the normal cone is the

ray NQKron(B,{Gi})(Q) = {λ (
⊗

i Gi)Q : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQKron(B,{Gi})∩CKron(Q
C) ∈ arg max

Q∈QKron(B,{Gi})∩CKron

⟨Q,R⟩H. (115)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless Kronecker family parametrization. For Qη = η
⊗

i G
−1/2
i with η ≥ 0, we

compute:

∥Qη∥2Kron = Tr

(η⊗
i

G
−1/2
i

)⊤(⊗
i

Gi

)(
η
⊗
i

G
−1/2
i

) = η2 Tr

(⊗
i

G−1
i

)
, (116)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = Tr

(η⊗
i

G
−1/2
i

)⊤

(gg⊤)

 = ηTr

((⊗
i

G
−1/2
i

)
gg⊤

)
. (117)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥Kron =

√
B. This gives:

η⋆ =

√
B√

Tr
(⊗

i G
−1
i

) . (118)

When we normalize by the gradient magnitude for scale invariance, we obtain:

η⋆ =

√
B√

Tr
(⊗

i G
−1
i

)
∥g∥2

. (119)

Step 5 — Geometric interpretation. Shampoo emerges as the memoryless approximation of the
global Kronecker-factored equalizer, where each mode-wise matrix Gi captures the tensor structure
geometry of neural network weights. The optimal learning rate η⋆ balances the Kronecker-factored
budget constraint with the current gradient magnitude, providing mode-wise Gi-weighted scaling
that exploits tensor correlations while maintaining computational tractability through Kronecker
structure. The optimizer Q⋆ = η⋆

⊗
i G

−1/2
i implements approximate steepest descent in the

Kronecker-factored natural metric. By commutativity, this restricted optimum coincides with
projecting the global optimum QC onto CKron.

C.3 DIAGONAL/ADAPTIVE-MOMENT FAMILY

Corollary 17 (Instantaneous optimal AdaGrad). Let moment be a diagonal matrix R[n] =
diag(rj [n]) with coordinate-wise sequence rj [n]. Given gradients g[t], maintain the cumulative
second-moment vj [t] := ϵ+

∑
s≤t gj [s]

2 > 0 with regularization ϵ > 0. Fix the current time t and
define the coordinate-wise costs cj := vj [t]

1/2. Consider the diagonal budget

QD(B, c) := {diag(qj) :
∑

j cj
∑

k≥0 |qj [k]|2 ≤ B}, (120)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

and the cone Cmemoryless of diagonal memoryless optimizers

Cmemoryless := {Qη[n] = ηδ[n] diag(1/cj) : η ≥ 0}. (121)

Optimizing for problem P3 under QD(B, c) ∩ Cmemoryless with moment R[n] yields an AdaGrad
optimizer with optimal hyperparameter:

η⋆ =

√
B√∑
j 1/cj

, (122)

where the optimizer is Q⋆ = η⋆δ[0] diag(1/cj).

Proof. Fix the current time t and omit the subscript for brevity. We work in the diagonal Hilbert
space (HD, ⟨·, ·⟩HD

) of diagonal causal LTI filters with weighted norm ∥Q∥2HD
=
∑

j cj∥qj∥2H
where cj = v

1/2
j are the coordinate-wise costs.

Step 1 — Global optimal diagonal equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the diagonal weighted budget QD(B, c) = {diag(qj) :

∑
j cj∥qj∥2H ≤ B} is

QC =
√
B

R

∥R∥HD

, P ⋆(R) =
√
B ∥R∥HD

. (123)

Step 2 — Commutativity via smooth convexity. The diagonal weighted ball QD(B, c) is smooth
and strictly convex. At any boundary point Q with ∥Q∥HD

=
√
B, the normal cone is the ray

NQD(B,c)(Q) = {λ diag(cjqj) : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQD(B,c)∩Cmemoryless(Q
C) ∈ arg max

Q∈QD(B,c)∩Cmemoryless

⟨Q,R⟩HD
. (124)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For the memoryless family Qη[n] = ηδ[n] diag(1/cj)
with η ≥ 0, we compute:

∥Qη∥2HD
=
∑
j

cj (η/cj)
2
= η2

∑
j

1

cj
, (125)

and for the instantaneous gradient moment R[0] = diag(rj [0]) and R[n] = 0 for n > 0:

⟨Qη, R⟩HD
=
∑
j

η

cj
rj [0] = η

∑
j

rj [0]

cj
. (126)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥HD

=
√
B. This gives:

η⋆ =

√
B√∑
j 1/cj

. (127)

Step 5 — Geometric interpretation. AdaGrad emerges as the memoryless approximation of the
global diagonal equalizer, where each coordinate-wise cost cj = (ϵ+

∑
s≤t gj [s]

2)1/2 captures the
cumulative gradient variance. The optimal learning rate η⋆ balances the diagonal budget constraint
with the current gradient, providing coordinate-wise inverse-variance scaling that adapts to the
historical gradient magnitudes. The optimizer Q⋆ = η⋆δ[0] diag(1/cj) implements approximate
steepest descent in the cumulative variance-weighted metric. By commutativity, this restricted
optimum coincides with projecting the global optimum QC onto Cmemoryless.

Corollary 18 (Instantaneous optimal RMSProp). Let moment be a diagonal matrix R[n] =
diag(rj [n]) with coordinate-wise sequence rj [n]. Given gradients g[t], maintain the second-moment

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

EMA vj [t] := β2vj [t − 1] + (1 − β2)gj [t]
2 > 0 with parameter β2 ∈ (0, 1). Fix the current time t

and define the coordinate-wise costs cj := vj [t]
1/2. Consider the diagonal budget

QD(B, c) := {diag(qj) :
∑

j cj
∑

k≥0 |qj [k]|2 ≤ B}, (128)

and the cone Cmemoryless of diagonal memoryless optimizers
Cmemoryless := {Qη[n] = ηδ[n] diag(1/cj) : η ≥ 0}. (129)

Optimizing for problem P3 under QD(B, c) ∩ Cmemoryless with moment R[n] yields an RMSProp
optimizer with optimal hyperparameters:

β⋆
2 = arg max

0<β2<1

∑
j rj [0]/cj√∑

j 1/cj
, η⋆ =

√
B√∑
j 1/cj

, (130)

where the optimizer is Q⋆ = η⋆δ[0] diag(1/cj).

Proof. Fix the current time t and omit the subscript for brevity. We work in the diagonal Hilbert
space (HD, ⟨·, ·⟩HD

) of diagonal causal LTI filters with weighted norm ∥Q∥2HD
=
∑

j cj∥qj∥2H
where cj = v

1/2
j are the coordinate-wise costs.

Step 1 — Global optimal diagonal equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the diagonal weighted budget QD(B, c) = {diag(qj) :

∑
j cj∥qj∥2H ≤ B} is

QC =
√
B

R

∥R∥HD

, P ⋆(R) =
√
B ∥R∥HD

. (131)

Step 2 — Commutativity via smooth convexity. The diagonal weighted ball QD(B, c) is smooth
and strictly convex. At any boundary point Q with ∥Q∥HD

=
√
B, the normal cone is the ray

NQD(B,c)(Q) = {λ diag(cjqj) : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQD(B,c)∩Cmemoryless(Q
C) ∈ arg max

Q∈QD(B,c)∩Cmemoryless

⟨Q,R⟩HD
. (132)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For the memoryless family Qη[n] = ηδ[n] diag(1/cj)
with η ≥ 0, we compute:

∥Qη∥2HD
=
∑
j

cj (η/cj)
2
= η2

∑
j

1

cj
, (133)

and for the instantaneous gradient moment R[0] = diag(rj [0]) and R[n] = 0 for n > 0:

⟨Qη, R⟩HD
=
∑
j

η

cj
rj [0] = η

∑
j

rj [0]

cj
. (134)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥HD

=
√
B. This gives:

η⋆ =

√
B√∑
j 1/cj

. (135)

The optimal β⋆
2 maximizes the budget-normalized gain:

J(β2) :=
⟨Qη, R⟩HD

∥Qη∥HD

=

∑
j rj [0]/cj√∑

j 1/cj
. (136)

Step 5 — Geometric interpretation. RMSProp emerges as the memoryless approximation of the
global diagonal equalizer, where each coordinate-wise cost cj = vj [t]

1/2 captures the exponentially-
weighted gradient variance. The exponential weighting β2 prevents the indefinite accumulation
that causes AdaGrad’s learning rate decay while maintaining adaptive per-coordinate scaling. The
optimal learning rate η⋆ balances the diagonal budget constraint with the current gradient. By
commutativity, this restricted optimum coincides with projecting the global optimum QC onto
Cmemoryless.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Corollary 19 (Instantaneous optimal AdaFactor). Consider matrix parameters Θ ∈ Rm×n with
gradient G ∈ Rm×n. Maintain row-wise second moment estimates ri[t] := β2ri[t − 1] + (1 −
β2)∥Gi,:[t]∥2 and column-wise estimates cj [t] := β2cj [t − 1] + (1 − β2)∥G:,j [t]∥2. Define the
Kronecker-factored diagonal budget

QK(B, r, c) := {Q = diag(r̂)−1/2 ⊗ diag(ĉ)−1/2 : ∥Q∥2H ≤ B}, (137)
and the cone Cmemoryless of memoryless optimizers

Cmemoryless := {Qη[n] = ηδ[n]Q0 : η ≥ 0, Q0 fixed}. (138)
Optimizing problem P3 underQK(B, r, c)∩Cmemoryless with instantaneous gradient moment R[0] =
GG⊤ yields AdaFactor with optimal hyperparameters:

η⋆ =

√
B√∑

i

∑
j 1/(r̂iĉj)

, β⋆
2 = arg max

0<β2<1

∑
i,j G

2
ij/(r̂iĉj)√∑

i

∑
j 1/(r̂iĉj)

, (139)

where the optimizer is Q⋆ = η⋆δ[0](diag(r̂)−1/2 ⊗ diag(ĉ)−1/2).

Proof. Fix the current time t and omit the subscript for brevity. We work in the Kronecker-factored
Hilbert space (HK , ⟨·, ·⟩HK

) of causal LTI filters with Kronecker-structured impulse response and
norm ∥Q∥2HK

=
∑∞

n=0 Tr(Q[n]⊤Q[n]).

Step 1 — Global optimal Kronecker equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the Kronecker-factored budget QK(B, r, c) is

QC =
√
B

R

∥R∥HK

, P ⋆(R) =
√
B ∥R∥HK

. (140)

Step 2 — Commutativity via smooth convexity. The Kronecker-factored ball QK(B, r, c) is smooth
and strictly convex. At any boundary point Q with ∥Q∥HK

=
√
B, the normal cone is the ray

NQK(B,r,c)(Q) = {λQ : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQK(B,r,c)∩Cmemoryless(Q
C) ∈ arg max

Q∈QK(B,r,c)∩Cmemoryless

⟨Q,R⟩HK
. (141)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless Kronecker family parametrization. For the memoryless Kronecker family
Qη[n] = ηδ[n](diag(r̂)−1/2 ⊗ diag(ĉ)−1/2) with η ≥ 0, we compute:

∥Qη∥2HK
= η2 Tr((diag(r̂)−1/2 ⊗ diag(ĉ)−1/2)2) = η2

∑
i

∑
j

1

r̂iĉj
, (142)

and for the instantaneous gradient moment R[0] = GG⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩HK
= ηTr((diag(r̂)−1/2 ⊗ diag(ĉ)−1/2)GG⊤) = η

∑
i,j

G2
ij√
r̂iĉj

. (143)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
quadratic, so the maximizer saturates the budget ∥Qη∥HK

=
√
B. This gives:

η⋆ =

√
B√∑

i

∑
j 1/(r̂iĉj)

. (144)

The optimal β⋆
2 maximizes the budget-normalized gain:

J(β2) :=
⟨Qη, R⟩HK

∥Qη∥HK

=

∑
i,j G

2
ij/
√
r̂iĉj√∑

i

∑
j 1/(r̂iĉj)

. (145)

Step 5 — Geometric interpretation. AdaFactor emerges as the memoryless approximation of the
global Kronecker-factored equalizer, where the row and column second moment estimates r̂i and ĉj
provide a low-rank factorization of the full diagonal optimizer. This reduces memory complexity
from O(mn) to O(m+ n) for matrix parameters while approximately preserving Adam’s adaptive
scaling properties. The exponential weighting β2 balances the trade-off between adaptation speed
and noise reduction in the factored estimates. By commutativity, this restricted optimum coincides
with projecting the global optimum QC onto Cmemoryless.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

C.4 NORMALIZED-STEP FAMILY

Corollary 20 (Instantaneous optimal signSGD). Define the L∞ budget and the cone of memoryless
sign optimizers:

Q∞(τ) := {Q[n] = ηδ[n] diag(sj) : ∥Q∥H,∞ ≤ τ, |sj | ≤ 1}, (146)
Csign := {Q[n] = ηδ[n] diag(sign(gj)) : η ≥ 0}. (147)

(147)

Given instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0, solving
problem P3 under the budgetQ∞(τ)∩Csign produces signSGD as the optimal solution with optimal
hyperparameter:

η⋆ = τ, yielding θ̇ = τ sign(g). (148)

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and L∞ constraint on coordinate-wise step sizes.

Step 1 — Global optimal equalizer. The unconstrained optimum of problem P3 under the L∞ budget
Q∞(τ) is achieved by setting each coordinate j to maximize gj θ̇j subject to |θ̇j | ≤ τ . This gives:

QC [0] = τ diag(sign(gj)), QC [n] = 0 for n > 0, P ⋆(R) = τ∥g∥1. (149)

Step 2 — Commutativity via convexity. The L∞ constraint set Q∞(τ) is convex. At any boundary
point Q with coordinate-wise saturation, the normal cone contains the sign pattern. By Lemma 4,
commutativity holds:

ΠQ∞(τ)∩Csign(Q
C) ∈ arg max

Q∈Q∞(τ)∩Csign

⟨Q,R⟩H. (150)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Sign family parametrization. For the sign family Qη[n] = ηδ[n] diag(sign(gj)) with
η ≥ 0, we compute:

∥Qη∥H,∞ = ηmax
j
|sign(gj)| = η, (151)

and for the instantaneous gradient moment R[0] = gg⊤ and R[n] = 0 for n > 0:

⟨Qη, R⟩H = ηTr(diag(sign(gj)) · gg⊤) = η
∑
j

gjsign(gj) = η∥g∥1. (152)

Step 4 — Budget saturation and optimization. The objective is linear in η while the constraint is
linear, so the maximizer saturates the budget ∥Qη∥H,∞ = τ . This gives:

η⋆ = τ. (153)

The resulting update is θ̇ = τ sign(g).

Step 5 — Geometric interpretation. signSGD emerges as the memoryless approximation of the
global L∞-constrained equalizer, where each coordinate takes the maximum allowed step in the
direction of its gradient sign. This coordinate-wise saturation provides robustness to gradient
magnitude variations and enables efficient low-precision implementations. By commutativity, this
restricted optimum coincides with projecting the global optimum QC onto Csign.

Corollary 21 (Instantaneous optimal Lion). Define the L∞ budget and the cone of momentum-
filtered sign optimizers:

Q∞(τ) := {Q : ∥Q∥H,∞ ≤ τ}, (154)
CLion := {Qη,β1

[n] = η(1− β1)β
n
1 diag(sign(mj)) : η ≥ 0, 0 < β1 < 1}, (155)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where mj is the j-th coordinate of the momentum-smoothed gradient m = EMA(g;β1). Given
gradient moment R[n] ∈ H, solving problem P3 under the budget Q∞(τ) ∩ CLion produces Lion
optimizer as the optimal solution with optimal hyperparameters:

β⋆
1 = arg max

0<β1<1

∞∑
n=0

βn
1

∑
j

|Tr(Rj [n])|, η⋆ = τ, (156)

where Rj [n] denotes the j-th diagonal block of R[n].

Proof. We work in the impulse-space Hilbert space (H, ⟨·, ·⟩H) of causal LTI filters with matrix
impulse response Q and L∞ constraint on coordinate-wise step sizes.

Step 1 — Global optimal equalizer. The unconstrained optimum of problem P3 under the L∞ budget
Q∞(τ) is achieved by setting each coordinate j to maximize the inner product subject to |Qj [n]| ≤ τ
for all n. This gives:

QC [n] = τ diag(sign(Rjj [n])), P ⋆(R) = τ
∞∑

n=0

∑
j

|Rjj [n]|. (157)

Step 2 — Commutativity via convexity. The L∞ constraint set Q∞(τ) is convex. At any boundary
point Q with coordinate-wise saturation, the normal cone contains the sign pattern. By Lemma 4,
commutativity holds:

ΠQ∞(τ)∩CLion(Q
C) ∈ arg max

Q∈Q∞(τ)∩CLion

⟨Q,R⟩H. (158)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Lion family parametrization. For Qη,β1
[n] = η(1 − β1)β

n
1 diag(sign(mj)) with η ≥ 0

and 0 < β1 < 1, we compute:

∥Qη,β1
∥H,∞ = η(1− β1)max

j
|sign(mj)|

∞∑
n=0

βn
1 = η, (159)

and

⟨Qη,β1
, R⟩H =

∞∑
n=0

η(1− β1)β
n
1

∑
j

sign(mj)Rjj [n] = η(1− β1)

∞∑
n=0

βn
1

∑
j

sign(mj)Rjj [n].

(160)

Step 4 — Budget saturation and 1-D optimization. For fixed β1, the objective is linear in η while the
constraint is linear, so the maximizer saturates the budget ∥Qη,β1

∥H,∞ = τ . This gives:

η = τ. (161)

The budget-normalized gain becomes:

J(β1) :=
⟨Qη,β1

, R⟩H
∥Qη,β1

∥H,∞
= (1− β1)

∞∑
n=0

βn
1

∑
j

sign(mj)Rjj [n]. (162)

Hence β⋆
1 = argmax0<β1<1 J(β1) and η⋆ = τ .

Step 5 — Geometric interpretation. The optimal momentum β⋆
1 maximizes the alignment between

the 1-pole EMA kernel (βn
1)n≥0 and the sign-weighted empirical lag curve. Lion emerges as

the momentum-filtered approximation of the global L∞-constrained equalizer, where momentum
smoothing m = EMA(g;β1) reduces gradient noise before applying coordinate-wise sign
normalization. By commutativity, this restricted optimum coincides with projecting the global
optimum QC onto CLion.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C.5 LAYER-WISE NORM SCALING (LARGE-BATCH STABILIZERS)

Corollary 22 (Instantaneous optimal LARS/LAMB). Consider a neural network with L layers,
where parameters are partitioned as θ = (θ1, . . . , θL) with θℓ ∈ Rdℓ . Define the layer-wise adaptive
budget

Qlayer(B, {∥θℓ∥}Lℓ=1) :=

{
Q = blkdiag(Q1, . . . , QL) :

L∑
ℓ=1

∥θℓ∥22
∞∑

n=0

Tr(Qℓ[n]
⊤Qℓ[n]) ≤ B

}
,

(163)
and the cone Clayer of layer-wise scalar optimizers

Clayer := {Qη,β1
[n] = blkdiag(η(1− β1)β

n
1 α1Id1

, . . . , η(1− β1)β
n
1 αLIdL

) : η ≥ 0, 0 < β1 < 1, αℓ > 0} .
(164)

Given moment matrix R[n] = blkdiag(R1[n], . . . , RL[n]) with Sℓ[n] := Tr(Rℓ[n]), optimizing
problem P3 under Qlayer(B, {∥θℓ∥}) ∩ Clayer yields LARS/LAMB optimizer with optimal
hyperparameters:

β⋆
1 = arg max

0<β1<1

√
1− β2

1

∞∑
n=0

βn
1

L∑
ℓ=1

Sℓ[n]

∥θℓ∥2
, η⋆ =

√
B(1− β⋆2

1)√∑L
ℓ=1 dℓ/∥θℓ∥22 (1− β⋆

1)
, (165)

where the layer-wise scaling factors are α⋆
ℓ = 1/∥θℓ∥2.

Proof. We work in the block-diagonal Hilbert space (Hlayer, ⟨·, ·⟩Hlayer) of layer-wise causal LTI
filters with weighted norm ∥Q∥2Hlayer

=
∑L

ℓ=1 ∥θℓ∥22∥Qℓ∥2H.

Step 1 — Global optimal layer-wise equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under budget Qlayer(B, {∥θℓ∥}) is

QC =
√
B

R

∥R∥Hlayer

, P ⋆(R) =
√
B∥R∥Hlayer , (166)

where ∥R∥2Hlayer
=
∑L

ℓ=1 ∥θℓ∥22∥Rℓ∥2H.

Step 2 — Commutativity via smooth convexity. The layer-wise adaptive ball Qlayer(B, {∥θℓ∥}) is
smooth and strictly convex. At any boundary point Q with ∥Q∥Hlayer =

√
B, the normal cone is the

ray NQlayer(Q) = {λQ : λ ≥ 0}. By Lemma 4, commutativity holds:

ΠQlayer(B,{∥θℓ∥})∩Clayer(Q
C) ∈ arg max

Q∈Qlayer(B,{∥θℓ∥})∩Clayer

⟨Q,R⟩Hlayer . (167)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Layer-wise family parametrization. For Qη,β1 [n] = blkdiag(η(1−β1)β
n
1 α1Id1 , . . . , η(1−

β1)β
n
1 αLIdL

) with η ≥ 0, 0 < β1 < 1, and αℓ = 1/∥θℓ∥2, we compute:

∥Qη,β1∥2Hlayer
=

L∑
ℓ=1

∥θℓ∥22
∞∑

n=0

Tr((η(1− β1)β
n
1 αℓIdℓ

)⊤(η(1− β1)β
n
1 αℓIdℓ

)) (168)

= η2(1− β1)
2 1

1− β2
1

L∑
ℓ=1

∥θℓ∥22α2
ℓdℓ = η2

(1− β1)
2

1− β2
1

L∑
ℓ=1

dℓ
∥θℓ∥22

, (169)

and

⟨Qη,β1
, R⟩Hlayer =

L∑
ℓ=1

∞∑
n=0

Tr((η(1− β1)β
n
1 αℓIdℓ

)⊤Rℓ[n]) (170)

= η(1− β1)

∞∑
n=0

βn
1

L∑
ℓ=1

αℓSℓ[n] = η(1− β1)

∞∑
n=0

βn
1

L∑
ℓ=1

Sℓ[n]

∥θℓ∥2
. (171)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Step 4 — Budget saturation and 1-D optimization. For fixed β1, the objective is linear in η while the
constraint is quadratic, so the maximizer saturates the budget ∥Qη,β1

∥Hlayer =
√
B. This gives:

η =

√
B(1− β2

1)√∑L
ℓ=1 dℓ/∥θℓ∥22 (1− β1)

. (172)

The budget-normalized gain becomes:

J(β1) :=
⟨Qη,β1

, R⟩Hlayer

∥Qη,β1∥Hlayer

=

√
1− β2

1∑L
ℓ=1 dℓ/∥θℓ∥22

∞∑
n=0

βn
1

L∑
ℓ=1

Sℓ[n]

∥θℓ∥2
. (173)

Hence β⋆
1 = argmax0<β1<1 J(β1) and η⋆ saturates the budget constraint.

Step 5 — Geometric interpretation. The optimal momentum β⋆
1 maximizes the cosine

similarity between the 1-pole EMA kernel (βn
1)n≥0 and the layer-normalized empirical lag curve

(
∑L

ℓ=1 Sℓ[n]/∥θℓ∥2)n≥0. The layer-wise scaling αℓ = 1/∥θℓ∥2 prevents layer collapse by ensuring
updates remain proportional to current parameter magnitudes. By commutativity, this restricted
optimum coincides with projecting the global optimum QC onto Clayer.

D MASTER TABLE OF OPTIMIZERS

In the previous section, we have derived various types of optimizers from our convex optimization
framework. We can now register various optimizers under a single unified table. Each optimizer
corresponds to a specific choice of moment matrix M , budget constraint Q, and resulting equalizer
Q. “Param restrict” rows are feasible points in the convex programs that can either be kept and fitted
to target moments, or replaced with full closed-form solutions.

Glossary.

• Instant moment M ∈ SP+: M = Σtr = E[gg⊤] (training) or M = sym(C) = symE[gtrg⊤val]
(validation-aware)

• Dynamic moment operator Mσ (Laplace/z window, σ > 0); frequency form M(ω)

• Instant budgets from Section 2: Frob, Trace/Spectral, Lyap, Diag
• Dynamic budgets from Section 3: D-Frob (H2), D-Trace/Spectral, D-Lyap, D-Diag
• “Param restrict.” means we restrict Q to a small parametric family inside the convex budget

Table 2: Optimizer Specifications: Moment and Budget Constraints

Optimizer Moment Used Budget Q
GD M = Σtr Frob: ∥Q∥F ≤ κ (instant)
SGD same as GD (stochastic) Frob (instant)
Momentum
(HB/NAG)

Mσ (weighted) D-Frob: ∥Q∥H ≤
√
B

Nesterov Mσ D-Frob (with predictive tap)
AdaGrad M = Σtr Diag:

∑
j cjq

2
j ≤ B

RMSProp M = Σtr Diag
Adam/AdamW Mσ (via m, v) D-Diag:

∑
j ∥qj∥

2
H2,cj

≤ B
Adam (val-aware) M = sym(C) or Mσ Diag or D-Diag
LAMB / LARS M = Σtr per layer ℓ Trace per layer: Tr(Qℓ) ≤ τℓ + norm ratio
K-FAC M = Σtr Lyap (block-Kronecker): Tr(Q2Σ) ≤ B with Q factored
Shampoo M = Σtr Lyap (multi-axis Kronecker)
Newton / GN M = Σtr Lyap with Q = H−1 (or G−1)
signSGD M = Σtr ℓ∞ step budget on θ̇

Lion Mσ via m ℓ∞ on θ̇ (dynamic)
Polyak step M = Σtr + scalar loss Frob + 1D line search

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 3: Optimizer Equalizers and Closed Forms

Optimizer Equalizer Q Closed Form

GD Q = αI (isotropic) Q⋆ = κ M
∥M∥F

� in practice α = η

SGD Q = αI same as GD, with M estimated from minibatch
Momentum
(HB/NAG)

Q(z) = ηI 1−β
1−βz−1 (one-pole) Param restrict of dynamic proportional

optimum; (η, β) fit the target
Nesterov Q(z) = ηI 1−β

1−βz−1 (1 + γz−1) Param restrict (lead–lag) under same budget

AdaGrad Q = diag(q) q⋆j ∝ Mjj

cj
; cj ↑ with cum. second moment

RMSProp Q = diag(q) same as AdaGrad but cj from EMA of g2j
Adam/AdamW Q(z) = diag

(
η 1−β1

1−β1z−1

)
(diag

√
v + ϵ)−1 Param restrict of D-Diag optimum

Adam (val-aware) same as Adam Use val cross-moment for qj (and m vs g)
LAMB / LARS Qℓ = αℓI s.t. ∥vℓ∥ ∝ ∥θℓ∥ Water-fill over layers + isotropic in each layer
K-FAC Q =

⊕
ℓ(A

−1
ℓ ⊗G−1

ℓ) approx Equal-power in each layer’s Fisher metric
(factored)

Shampoo Q =
⊗

i H
−1/2
i Equal-power along tensor modes

Newton / GN Q = H−1 Exact Lyap optimum if constraint matches
curvature

signSGD Q such that θ̇ = η sign(g) Linear objective + ∥θ̇∥∞ ≤ η ⇒ vertex
Lion θ̇ = η sign(m) same with smoothed signal
Polyak step Q = αI with α from loss & grad norm closed-form α = ∥g∥2

g⊤Hg
(local)

Table 4: Optimizer Hyperparameters and Interpretations

Optimizer Hyperparameters One-line Implication

GD η: total power scale GD is the “proportional router” collapsed to a scalar knob
SGD η: same Stochasticity only changes how you estimate M , not the program
Momentum
(HB/NAG)

η: overall gain; β: pole = decay
time of impulse

Momentum is the 1-pole low-rank approximation of the dynamic
proportional router

Nesterov β: smoothing; γ: look-ahead lead “Prediction” = a tiny lead in the equalizer—still budgeted power
AdaGrad ϵ, window: determine cj growth AdaGrad is per-coord water-filling with costs = cumulative variance
RMSProp ρ: EMA window; ϵ RMSProp = time-local AdaGrad (cheaper, reactive)
Adam/AdamW η: scale; β1: low-pass pole; β2: sets

costs cj ∼ vj
Adam = diagonal dynamic optimizer: per-coord water-filling times a 1-
pole low-pass

Adam (val-aware) same Simply switching M to sym(C) turns Adam into a val-aware power
allocator

LAMB / LARS trust ratio ∥θℓ∥/∥mℓ∥ LAMB/LARS = layer-wise trace budget + norm normalization (compute-
stable water-filling)

K-FAC damping λ, update period K-FAC = structured Lyap equalization ⇒ curvature-aware, block-wise
Shampoo per-axis damping, period Shampoo = multi-axis equal-power (richer than K-FAC, costlier)
Newton / GN trust-region radius Newton = max power under curvature budget; best when Hessian is right
signSGD η: box size signSGD = L-∞ trust-region maximizer; robust, but discards magnitude

info
Lion β1 Lion = L-∞ budget on smoothed signal; ultra-aggressive quantized

equalizer
Polyak step none beyond window Polyak = Frob program with on-the-fly α estimate (local curvature)

E ALGORITHM

For completness, we provide a realizable algorithm for calculating the optimal SGD+Momentum
and Adam, as proved in Section 2 and Section 3 of the main manuscript.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Algorithm 1 Optimal SGD+Momentum (β⋆, η⋆) from gradient history

Require: Window length T , max lag K ≤ T − 1, EMA decay ρ ∈ (0, 1), budget B > 0
1: Initialize µ← 0, S[n]← 0 for n = 0, . . . ,K, buffer← ∅, d← parameter dimension
2: for each calibration step t do
3: gt ← flatten current∇θL
4: µ← ρµ+ (1− ρ)gt
5: g̃t ← gt − µ
6: push g̃t into buffer (keep last T)
7: for n = 0, . . . ,K with t− n in buffer do
8: sn ← ⟨g̃t, g̃t−n⟩ ▷ scalar dot product
9: S[n]← ρS[n] + (1− ρ)sn

10: end for
11: J(β) =

√
1−β2

d ·
∑K

n=0 β
nS[n]

12: β⋆ ← argmaxβ∈(0,1) J(β) ▷ 1-D search (e.g., bounded line search)

13: η⋆ ←
√

B(1−(β⋆)2)√
d(1−β⋆)

14: end for
15: return (β⋆, η⋆)

Algorithm 2 Optimal Adam (β⋆
1 , β⋆

2 , η⋆) from gradient history

Require: Window length T , max lag K ≤ T − 1, EMA decay ρ ∈ (0, 1), budget B > 0
1: Initialize µ ← 0, vj ← 0 for all j, Tt[n] ← 0 for n = 0, . . . ,K, buffer← ∅, d ← parameter

dimension
2: for each calibration step t do
3: gt ← flatten current∇θL
4: µ← ρµ+ (1− ρ)gt
5: g̃t ← gt − µ
6: push g̃t into buffer (keep last T)
7: for each coordinate j do
8: vj ← ρvj + (1− ρ)g̃2t,j
9: cj ←

√
vj

10: end for
11: for n = 0, . . . ,K with t− n in buffer do
12: Tt[n]←

∑
j

g̃t,j g̃t−n,j

cj
▷ coordinate-wise weighted dot product

13: end for
14: Wt ←

∑
j

1
cj

15: a(β1, β2)←
√

1−β2
1

Wt

16: J(β1, β2) = a(β1, β2)
∑K

n=0 β
n
1 Tt[n]

17: (β⋆
1 , β

⋆
2)← argmaxβ1,β2∈(0,1) J(β1, β2) ▷ 2-D search

18: η⋆ ←
√
B a(β⋆

1 ,β
⋆
2)

1−β⋆
1

19: end for
20: return (β⋆

1 , β
⋆
2 , η

⋆)

37

	Introduction
	Optimal stateless optimizers
	Optimal dynamic optimizers with state variables
	Automating validation-aware optimizer tuning
	Scope and limitations
	Related work
	Conclusion
	More mathematical results
	Proof of equation 9
	Dynamic lift of Section 2

	Proofs omitted from the main text
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Corollary 5
	Proof of Corollary 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Corollary 9

	Reverse engineering common optimizers
	Euclidean & curvature families
	Information-geometric & structured optimizers
	Diagonal/adaptive-moment family
	Normalized-step family
	Layer-wise norm scaling (large-batch stabilizers)

	Master table of optimizers
	Algorithm

