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ABSTRACT

We lay the theoretical foundation for automating optimizer design in gradient-
based learning. Based on the greedy principle, we formulate the problem of
designing optimizers as maximizing the instantaneous decrease in loss. By
treating an optimizer as a function that translates loss gradient signals into
parameter motions, the problem reduces to a family of convex optimization
problems over the space of optimizers. Solving these problems under various
constraints not only recovers a wide range of popular optimizers as closed-form
solutions, but also produces the optimal hyperparameters of these optimizers with
respect to the problems at hand. This enables a systematic approach to design
optimizers and tune their hyperparameters according to the gradient statistics
collected from training or validation sets. Furthermore, this optimization of
optimization can be performed dynamically during training.

1 INTRODUCTION

We are interested in the problem of designing optimizers minimize Loy
that maximize the utility of gradient-based learning for bR
a given task. In gradient-based learning, the objective is
to minimize an expected scalar loss E[£(6)] with respect
to parameters § € R¢ using its (negative) gradient g =

Velocities

0 =do/dt
—VoL € RY. As learning takes time, all the parameters a6/t
6 = 0(t), the loss L = L(A(t)), and the gradients Model Optimizer
g = g(t) are variables of time ¢, i.e., the training step. 4 Q

A process of learning manifests as a parameter motion 6
driven by the gradient g calculated at each step .

Gradients

Physics requires a constitutive law that relates kinematic
motion to the force field that causes it. For gradient-based

learning, optimizers take that role. We can represent an mexugee - Lo

optimizer as a positive semidefinite operator ) >~ 0 that

translates the gradient into the parameter update, Figure 1: Just as optimizers train their
. models by feeding them parameter velocities
0= Qg. (1) 6, models can also fit the optimizers to the

. . . underlying tasks by feeding gradients g.
By the chain rule, the instantaneous loss drop is then a ving Y g€ g
quadratic form:
. dé .
—L = VLT =4g"0 =¢'Qqg @
The greedy paradigm turns our original problem of maximizing the utility of learning into another
optimization problem that maximizes the this loss drop with respect to the optimizer Q:

maécinglize Elg"Qg] subjectto Q >0, (P1)
c

where Q is the design space of allowed optimizers.

Instantaneously, we notice that without any additional constraint, the maximum of the quadratic
form g ' Q g is unbounded. Problem P1 reveals two design options for the optimizer that bounds the
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maximum: (1) the budget constraint () € Q, and (2) the data distribution under the expectation E.
Our main focus is on how these two factors determine the optimal optimizer Q™.

Placing the optimizer itself as a subject of another optimization is interesting in several ways:

* Optimizers can be designed with respect to the individual problem (task and data) and the
running environment (budget and precision) in a systematic manner.

» Optimizers can be tuned or even be replaced by better ones according to the intermediate probes
from either training or validation sets in the middle of training.

* Solving this meta-optimization problem in closed-form for a wide range of budgets uncovers
the relationship between the optimizers and their underlying principles.

* By reverse engineering commonly used optimizers, we draw the landscape of optimizers that
have driven the success of machine learning (Robbins & Monro, 1951; Kingma & Ba, 2015;
Loshchilov & Hutter, 2019; Gupta et al., 2018; Martens & Grosse, 2015) into a single picture.

2  OPTIMAL STATELESS OPTIMIZERS

Consider the following setup: Let 7, and 7,y be the training and validation data distributions,
respectively. Then, for each training 2 ~ 7, and validation sample zy, ~ 7y, the gradients are
denoted by g, = VoL(0, z) and gya = Vo L(0, zya). We define the moments as:

Y« =Elguge], C=Elgugyl, Zwa=3i(C+CT), 3)

where [E denotes expectation over the single or joint distributions of the enclosed gradients. Note
that X, and X, are symmetric and positive semidefinite (PSD) matrices of shape d x d. For any
symmetric PSD @) € S‘i of shape d x d, we define the learning power as:

Ptr(Q) = E[gt—er gtr] = TI‘(Q Etr); Pval(Q) = E[QJQ gval] = TI“(Q Eval)~ (4)
We call P, (Q) the training power and P,,(Q) the validation cross-power. From the chain rule

of equation 2, the learning power is equal to the expected instantaneous loss drop: -E.[£] =
Eulg, 0] = Pe(Q) and —Ey[L] = By [g;';l@[r] = P,,(Q). Problem P1 is therefore rewritten as:

mag)cinglize P,(Q) = Tr(Q%,) subjectto Q =0, (P2)
€

where o € {tr, val}. This is our main optimization problem.

Solving this without any additional constraint, we end up with arbitrarily large eigenvalues for the
optimizer . This corresponds to arbitrarily large learning rates, which we all know are infeasible in
practice. Real problems give us several reasons that makes this “ideal solution” unrealizable: finite
precision of our machines, curvature of the loss landscapes, stochastic nature of subset gradients,
etc. All of them restrict the ability of gradient estimates g to represent the global geometry of the
parameter space. Taking a large step in the parameter space beyond the regions where g remains
explainable leads to unexpected, and usually fatal, behaviors.

In other words, the aforementioned restrictions define the feasible set, or the budger Q C S% | which
induces a solution space of finite optimizers. The following theorem formalizes this:

Theorem 1 (Optimal stateless optimizers under convex constraints). Let the budget set {0} C Q C
Sff_ be a nonempty, compact, convex set. Define also (1) the indicator 6o(Q) = 0if Q € Q and
+00 otherwise, (2) the gauge (Minkowski functional): vo(Q) = inf{\ > 0: Q € A\Q}, and (3) the
polar set Q° = {¥ € S%: supgeo Tr(QX) < 1}. For any symmetric matrix 3 € s4,

(i) (Existence and sublinearity): The maximum in P*(X) = maxgeo Tr(QX) is attained. In
addition, P* is sublinear (convex and positively homogeneous) and finite everywhere.

(ii) (Conjugacy identities): The maximum P*(X) is obtained by the identity relationships:
P* = 5*9 = Qo and ’Y*Q = (SQO, (5)

i.e., the optimal power is equal to the convex conjugate of the indicator and also the gauge of
the polar, while the conjugate of the gauge is equal to the indicator of the polar.
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Figure 2: Behavior of optimal optimizers under different budget types. (a) Dotted lines show suboptimal
optimizers with random X from the equal-power Frobenius budget; the straight line is from the optimal
hyperparameters from our theory, achieving fastest convergence. (b, c¢) No free lunch theorem: Frobenius
excels in simple quadratic loss, while nonconvex geometry makes spectral and diagonal types better. Each line
is the best result from dense search among all budget-parameters, e.g, B for Frobenius budget, etc.

(iii) (Construction): Any maximizer Q* € argmaxqeo Tr(QX) is a subgradient of P* at ¥:
Q* € Os P*(X). If the maximizer is unique, P* is differentiable at ¥ and Q* = V. P*(X).

(iv) (Order preservation on Si): If¥ = 0, then P*(X) > 0. If X1 = Yo, then P*(31) > P*(3s).

. . . . . . . sym
(v) (Lipschitz continuity in symmetrized polar gauge): Define ||-|'3:

: A > := max{vyge(-), oo (—)}
Forany ¥,% € §% |P*(X) — P*(3)] < ||1= — 2|3

The proof is in Appendix B. Items (i), (ii), and (iii) provide a principled way to construct the optimal
(stateless) optimizer Q* from any given moment 3 and any nicely conditioned budget set Q. Items
(iv) and (v) add robustness guarantee and sensitivity analysis to the optimal power. In practice,
full gradients rarely appears in large settings. Gradients are drifting throughout non-convex loss

landscapes, making true moments hard to obtain. Theorem 1(v) shows that the estimation error in
the optimal power is bounded.

Solving the optimization problem constrained by Q determines the optimal optimizer Q*, and

endows the optimizer with different characteristics and algorithmic behaviors. Consider the
following four types of budgets:

e Frobenius ball budget Qr(B) = {Q = 0 : ||Q||2 < B} is the simplest constraint that gives an
isotropic Euclidean trust region without prior knowledge about parameter space geometry.

o Spectral budget Qs(,\) = {Q = 0: Tr(Q) < 7, @ < AI'} is a budget that upper limits the
per-direction spectrum for safety and the trace for total budget simultaneously.

* Data-metric (Lyapunov) budget Q1 (B) = {Q = 0 : Tr(Q?%) < B} is a budget that uses the
data covariance itself as the metric, leading to a natural Lyapunov-like stability condition.

* Diagonal budget Qp (B, ¢) = {Q = diag(q;) = 0: 3_, ¢;q7 < B} is a budget that restricts to
coordinate-wise optimizers. Most of the commonly used optimizers fall into this category.
Instantiating the construction from Theorem 1 with these budgets, we obtain corresponding closed-
form solutions for the optimal optimizer Q* and the optimal power P*.

Corollary 2 (Closed-form solutions for common budget sets). Let 3 = U diag(oq > -+ - > 04)U T
be the eigendecomposition. The optimal solutions are:
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(i) (Frobenius ball): Qf = VB Y/||2||r, P2 () = VB|Z||r.
(ii) (Spectral): Q§ = U diag(g;)U T where (i) gf = X fori < k, (ii) Qry1 =T — kA (i) gF =0
fori>k+1, wherek = [T/\], P§(X) =AY ;o 00 + (T — kA)ogi1.

(iii) (Data-metric): Qf = a Ilg,pp(s) where o = (B/ ) o)Y? Pr(E) = (BY,; 04) V2

1:0,>0
(iv) (Diagonal): [Q];; o< Xj5/¢c;, P3(E) = (BY; 3, /¢j)'/2.

Again, the proof is in Appendix B. These analytic solutions reveal how the characteristics of different
types of optimal optimizers Q* are induced by controlling the budget Q. Specifically, we see that:

Frobenius budget <> Eveidence-proportional optimizer. Budget Qr(B) gives optimizers that
allocate learning power proportionally to data evidence Q* o X. We can project this general class
of optimizers into special geometries to calculate for the optimal hyperparameters as in Corollary 5.

Spectral budget <~ Water-filling optimizer ~ gradient clipping & LR scheduling. Budget
Qs (7, \) returns a water-filling optimizer that concentrates the learning power into the largest
available principal components of the data moment 3 up to a per-mode cap A, sequentially, until
the total budget 7 is reached. The spectral bound ), therefore, acts as a stability margin similar to
gradient clipping tricks. The trace bound 7 controls the total budget like learning rate schedules.

Data-metric budget <> Equal-power optimizer O {AdaGrad, natural gradient}. Budget
O (B) results in an equal-power optimizer that whitens gradient statistics and allocates uniform
power across L-eigendirections. If L is Fisher information matrix, this is natural gradient
descent (Amari, 1998). Generally, this includes full-matrix AdaGrad (Duchi et al., 2011; Agarwal
et al., 2019), K-FAC (Martens & Grosse, 2015), and Shampoo (Gupta et al., 2018).

Diagonal budget <+ Coordinate-wise optimizer O {Adam, GD}. Budget Op(B, ¢) produces
an optimizer that allocates the total budget B coordinate-wise which scales with the evidence ¥;;
and inversely with the costs ¢;. Assuming isotropic moments > = ¢2] and constant costs ¢ = 1,
this reduces to Q* = nI with learning rate 7 = (B/d)'/2. This recovers simple gradient descent.
With variance-based costs ¢; o (EMA(g?))'/? and momenta m; ; = EMA(g;), this recovers Adam
optimizer (Kingma & Ba, 2015); without the first moment it reduces to diagonal AdaGrad (Duchi
et al., 2011) or RMSProp-style optimizer (Tieleman & Hinton, 2012). Corollary 6 gives the optimal
hyperparameters for Adam from this setup.

The behaviors of different types of optimizers are visualized in Figure 2. Figure 2a shows that
our analytically found optimizer is the fastest among all hyperparameter settings under the same
Frobenius budget. On the other hand, Figure 2b and 2c highlights how optimizers from different
types of budgets can perform better in their specialized domains. This insight helps address the
notorious no free lunch theorem in optimization (Wolpert & Macready, 1997): The catchphrase “no
single algorithm is universally superior” can be updated to “the optimal optimizer Q* is a function
of the budget Q and the distribution of observations 3,” at least under our greedy optimization
framework. In summary, users choose the budget Q, and the budget defines what is optimal
optimizing methods. Reverse engineering under our framework reveals the hidden principles behind
the design of commonly used optimizers such as Adam (Kingma & Ba, 2015). Nevertheless, wise
readers will notice that an important component is still missing: momentum. The next section
demonstrates how momentum is integrated into our framework through a straightforward extension.

3  OPTIMAL DYNAMIC OPTIMIZERS WITH STATE VARIABLES

Up to this point, we have formulated the problem of finding the optimal stateless optimizer as a
convex optimization problem, and derived the closed-form solutions for the four types of budgets. In
practice, optimizers have memory, often in the form of momentum, in order to stabilize the learning
process from stochastic gradients and non-convex loss landscapes. We now extend our framework
by letting the optimizer Q[n] be a causal dynamical operator: a filter that translates gradient history
g[n] into instantaneous parameter velocity 6[n]. In the budget view, this introduces a new degree of
freedom: where in frequency we allocate our finite learning power.
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Let us highlight the key differences from Section 2. We now work in discrete time n € {0, 1,2, ...}
representing training steps. We will use the z-domain as the primary spectral domain to reflect the
iterative nature of practical algorithms. Let g[n] € RY be the (mini-batch) wide-sense stationary
(WSS) gradient process. A dynamic optimizer is an LTI filter with symmetric matrix impulse
response Q[n] € R4*? defined by the causal convolution:

6[n] = (Q*g)ln ZQ U(z) = ) Qln]z"", (6)

where the transfer functi(m isU(z) € CdXd. Also adopt the Hilbert norm:

QI3 = Zﬂ Q) < o0, (Q1,Qa)u ZTYQl Qa[n]). (D)

In this framework, autocorrelatlon and symmetrized cross—correlatlon represent the moments:

1
Rtr[k] = E[gtr[n] gtr[n - k]TL C[k] = ]E[ngl[n] gtr[n - k]—r]v Rle[k] = §(C[k} + C[k]—r)a (8)
where k > 0. The instantaneous learning power is the inner product (more details in Appendix A):
Py(Q:n) == E[go[n] " 0[n]] = ZQ guln — k ZTr o[K]) = (Q, Ro)n

9
Define a nonempty, convex, and weakly compact budget ser {0} C Q C H, which includes
any norm-bounded, closed, convex subset of . We also define the indicator §g(Q) and the
gauge vo(Q) the same as in Section 2, and the polar set is defined as (Q)° = {R € H |
supoeo (@, R)7 < 1}. Hence, all the notations are consistent with Section 2.

For dynamic optimization, for each o € {tr, val}, problem P2 is lifted to:

mag?(inglize Py(Q) = (Q,Rs)n subjectto @ > 0, (P3)
€

Unsurprisingly, we arrive at similar results as in Section 2; only the Frobenius inner product (-, -) p =
Tr(-T-) is replaced by the Hilbert space inner product (-, -)3,. We have the same conjugacy toolkit
for dynamic optimization.

Theorem 3 (Optimal dynamic optimizers under convex constraints). Given the definitions above,
the followings hold for any nonempty, convex, and weakly compact budget set Q C H with0 € Q:

(i) (Existence and sublinearity): The maximum P*(R) = maxgeo(Q,R)y is attained.
Moreover, P* is sublinear and finite everywhere.

(ii) (Conjugacy identities): P* = 65 = vgo and v§ = dge.

(iii) (Construction): Any maximizer Q* € argmaxgeo(Q, R)y is a subgradient of P* at R: Q* €
OrP*(R). If the maximizer is unique, P* is differentiable at R and V R P*(R) = Q*.

(iv) (Order preservation on H.): If R € H (Hermitian PSD a.e.), then P*(R) > 0. Moreover, if
Ry — Ry € Hi \ {0} and 3Q € Q with (Q, R1 — Ra)% > 0 (e.g., if Q contains a positive
definite element), then P*(R;) > P*(R3).

(v) (Lipschitz continuity in the symmetrized polar gauge): Define the symmetrized polar gauge
[ullge" := max{yge (u), ygo (—u)}- (R) — P*(R)| < | R — R|I3:"

The proof is similar to the stateless case, and is provided in Appendix B. Theorem 3 formalizes
how the optimal dynamic optimizer Q* equalizes the learning power across different frequencies
as a function of the convex budget Q. All the closed-form solutions from Corollary 2 can also
be directly lifted to the dynamic framework, as elaborated in Appendix A. Instead of redundantly
repeating the closed-form solutions, we discuss how they are connected to well-known optimizers.
As we will see in Corollaries 5 and 6, solving Problem P3 using Theorem 3 often produces general
dynamic optimizers with infinite impulse responses (IIR) Q[n], whose implementation require
infinite memory for optimizer states. In practice, we often restrict ourselves to simpler, realizable
family of optimizers, such as ones with EMA-based momenta. The following lemma justifies this
post-projection of optimizers already obtaind from convex budgets.
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Lemma 4. Let H be a real Hilbert space. Given a nonzero moment R € H, let @ C H be nonempty,
closed, convex, with 0 € Q. Let C C H be a cone (closed under positive scaling). The normal cone

of QNCat Qis Nonc(Q) ={M € H: (M,Q —Q)x <0VQ' € QNC}. Define the solution
sets of the optimization problem and its restriction to C:

Q*(R) = arg glgg@ R)%, Q¢ (R) = arg Qrggggc@, R)n. (10)

Let Tl¢ be the Hilbert metric projection onto C. For any Q* € Q*(R), the following are equivalent:
(i) (Commutativity) Il (Q*) € Q% (R).
(ii) (Normal-cone alignment) There exists Q5 € QF(R) such that {R,Q* — Q}} C Nonc(Qf),

Moreover, if Nonc(Qp) is a ray {\M : X > 0}, then commutativity holds if and only if R and
Q* — Qf are positive multiples of the same direction M.

In other words, if the projected manifold C of desired optimizers is in a sufficiently good shape, e.g.,
using EMA-based momentum, then we can first solve problem P3 for general budgets Q and then
project the solution onto the manifold C to obtain the final optimal solution over C. Now we are
ready to find the optimal hyperparameters for real optimizers in use.

Corollary 5 (Instantaneous optimal SGD+Momentum). Define the budget Qp(B) and the cone C,
of isotropic 1-pole optimizers:

Qr(B) = {Q: QI < VB}, Cp = {Qusln]=n(1-B)8"T:7>0,0<p <1} (1)
Given R[n] € H, define S[n] .= Tr(R[n]). Then solving problem P3 under the budget Qp(B)NC,
produces SGD+Momentum optimizer as the optimal solution with optimal hyperparameters:

* — > n * B(1_6*2)
3 —argorggglmgs[nW, Uy g (12)

where d is the dimension of the parameter space.

The optimal hyperparameters are obtained by first applying Theorem 3 to general family of budgets,
and then projecting the solution into the approximation geometry C;,. By Lemma 4, the optimal
hyperparameters of the projected solution are consistent with the unprojected solution. Corollary 5
shows how SGD+Momentum type optimal optimizer works. The optimal momentum [* first
maximizes the cosine similarity between the 1-pole EMA response (8"),>0 and the trace of the
empirical moment (S[n]),>o; then the learning rate n* scales to saturate the budget.

Corollary 6 does the same to Adam Kingma & Ba (2015). For Adam, the existence of a time-varying
divisor EMA (g2, B2)~ /2 slightly complicates the derivation by making the optimizer time-varying.
Corollary 6 (Instantaneous optimal Adam). Let moment be a diagonal matrix R[n| = diag(r;[n])
with coordinate-wise sequence r;[n). Given gradients g[t], maintain the second-moment EMA
vi[t] = Bavjlt — 1] + (1 — Ba)g;[t]* > 0 with parameter 32 € (0,1). Fix the current time t

and define the coordinate-wise costs c; = v;|t] 12, Consider the diagonal budget
Op(B,c) = {diag(q;) : X_; ¢j Yop>0 l45lK]I* < B}, (13)
and the cone Cjp,, agam 0f diagonal 1-pole optimizer with per-coordinate inverse-cost scaling
C]p,Adam = {Qn,ﬁl [’I’L] = dla‘g (77(1 - ﬂl) ?/cj) -n Z 070 < Bl < 1} (14)

Optimizing for problem P3 under Qp (B, c) N Cip, adam With moment R[n| yields an Adam optimizer
with optimal hyperparameters:
- VBa(Bt, 53
(B1.65) =arg_ max__a(BuB) S ArTmiBr), ot = YEOOLAD) 5

0<B1,82<1 o 1- 6{
where Wy(B2) =3, 1/cj, Ty[n; Bo] = >_; j[n]/cj, and a(B1, B2) = /(1 — B2)/Wy(Ba2).

The optimal 57 maximizes the cosine similarity between the 1-pole EMA response (57'),>0 and
the cost-compensated diagonal moment (7'[n; 82])n>0. The optimal 53 determines the diagonal
weights through the EMA of the second-moment. Finally, the learning rate n* scales to saturate the
budget. In summary, Adam is a I-pole approximation of the dynamic diagonal optimizer defind by
the diagonal budget Qp (B, ¢) projected onto the 1-pole family Cip adam. All the proofs are provided
in Appendix B.
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Table 1: Reverse-engineered optimizers as convex optimization problems. Each optimizer emerges
as the optimal solution to a specific convex optimization problem, with hyperparameters determined
by the underlying budget constraint.

Optimizer Hyperparameters Interpretation

GD 7 (learning rate) Euclidean trust region: ||]|2 < 7 yields @ oc T

Colored-GD 7, precon. P Elliptic trust region: ||§]|p < 7 yields Q o« P~! with P* from data covariance

Newton/GN 7, damping A Curvature trust region: ||0]|z < 7 yields Q o H~! with n* = 7 Hl‘fIHJ{g’ng and \*
from condition number

NGD 7, Fisher est. Fisher/KL trust region: ||§||r < 7 yields Q oc F~! with n* = ﬁ and

F* from empirical Fisher

K-FAC/Shampoo Structured Kronecker trust region yields block Q@ = @(A4,; ' ® Gy ') with n* from

factored Fisher metric and damping \* from eigenvalue gaps

Diagonal trust region: Z]. C]_@'Jz_ < B with ¢; = \/m and ;] =
VB lg;
V5 93/

Diagonal trust region with ¢; = \/v;, v; = Bavji—1 + (1 — B2)g; and 1}
VB %, B3 from gradient correlation

V5 93/v5

Dynamic diagonal trust region on momentum my, with costs ¢; = ,/v; and n* =

@%, Bt, 85 from lag curves

1, B1 1-pole EMA trust region: [|Q[l# < VB with Q@ = n(1 — 1) > ., 11 and
« _ A/BOU-8})
= Telz(0=81)

Factored trust region with 7; = Bari s—1 4 (1 — B2)[|Gi,: ||, ¢; = Bocji—1+ (1 —
B2)||G-;]|* and n* from factored diagonal, 3}, 85 from matrix structure

Qe < VB wih gf =

and 7 from layer-normalized lag

7, damping, period

AdaGrad 7, €, window

, €* for numerical stability

RMSProp

1, B2, €

Adam 0, B, B2, €

SGD+Momentum

B1 from cosine similarity

AdaFactor 7, B1, B2, factorization

LayerNorm+Mom 1), 31, layer norm Layer-wise normalized trust region:

NE=E
¢ de/1100112(1—B1)

Layer-wise trust region: ||6¢|la < 7¢/|0c]|/||me|| with n} = 7o
layer-wise analysis

101l
[mell

LAMB/LARS 7, trust ratio 7 and 7* from

signSGD 7 (step size) Lo trust region: [|0]|oo < 7 yields 6 = 7 sign(g) with n* = 7

7, f1

Lion Lo trust region on momentum: ||8||oo < 7 with 6 = nsign(m), n* = 7 and H
g 1518 1

from sign correlation

Reverse engineering optimizers. The above two corollaries show that SGD with momentum and
Adam (Kingma & Ba, 2015) are the optimal 1-pole approximations of the dynamic equalizers,
establishing these well-known optimizers as special cases of our framework. Similarly, we can
reverse engineer various other optimizers, including SGD with Nesterov momentum (Nesterov,
1983), AdamW (Loshchilov & Hutter, 2019), LAMB (You et al., 2020), K-FAC (Martens & Grosse,
2015), Shampoo (Gupta et al., 2018), and Lion (Chen et al., 2023), into our framework. Due to page
constraints, we defer the details to Appendix C. We have also provided a master table of optimizers
in Appendix D, categorizing many optimizers widely used in practice today.

Automatic hyperparameter tuning. Examining Corollaries 5 and 6, our formulation not only
classifies optimizers according to their underlying budget choices, but also provides a systematic
way to determine optimal hyperparameters. Unsurprisingly, optimal hyperparameters depend on
the data being processed. After warm-up steps that collect data covariance, optimal hyperparameters
can be computed and used throughout training. Moreover, systematic hyperparameter determination
enables automatic tuning during training, which is impossible with manual tuning. The algorithms
for determining hyperparameters is provided in Appendix E.

4  AUTOMATING VALIDATION-AWARE OPTIMIZER TUNING

So far, our theoretical justification for optimizing optimizers did not specify which datasets are in
use. This section addresses a more delicate question of how to systematically exploit validation
sets for optimizer design. It is commonly considered bad practice to use validation sets directly
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in the optimization loop. Rather, they are typically used to generate subtle clues that indirectly
guide engineers when making decisions about model architecture, optimizers, and associated
hyperparameters. We can regard this manual tuning process as a kind of “human-in-the-loop” system
that fits the optimizer and hyperparameters to the validation set. We can then automate this process
by casting it as the same mathematical optimization problem. For example, our original optimization
problem P3 can be recast in terms of maximizing the instantaneous validation loss drop as

maécierrglize ~ L = Y, Elgualn]T 0s[n]] = (Q,Rx)nu = Px(Q) st Q >0, (P4

where 6 [n] = (q*gy)[n] is the parameter velocity guided solely by the training set and the designed
optimizer ). This is mathematically equivalent to problem P3 but with the cross-moment R,
mimicking human inspection of the validation loss drop and engineering the optimizer accordingly.
This approach may or may not conflict with traditional practice, potentially requiring an additional
split beyond the standard training/validation division. We leave this discussion to the readers.
Here, we focus on the theoretical side of validation-aware optimizer design by showing that tuning
optimizers using validation sets maximizes the instantaneous validation loss drop.

Proposition 7 (Validation optimality in power). Given any convex and compact budget Q C H,
the validation-aware maximizer (% € argmaxgeg(Q, Rx )y gives the maximum instantaneous
validation loss drop among all possible optimizers Q € Q, including training-only optimizers ) €
arg maxqQeo(Q, Ru)n.

We leave the proof to Appendix B. Therefore, validation-aware tuning is the best possible
instantaneous validation loss drop among all possible optimizers () € Q, including training-only
optimizers ) € arg maxgeo Tr(Q Xy). The next proposition shows how the choice of optimizer
@ not only controls the parameter velocity, but also determines the endpoint of the optimization
process in the local convex region.

To approximate the dynamics in the local convex region in the loss landscape, assume squared loss
and fix parameters 6. In the linearizable region of the network fy around 6, the function-space
dynamics follow kernel gradient flow with kernel

Ko(z,2') == Vgfe(2;0)" QVefo(z';0). (16)
Define the budget Q, the validation cross-moment X, and the validation-aware maximizer Q% €
arg maxge o Tr(Q X« ) the same as in Proposition 7. Then, the following proposition holds:

Proposition 8 (Endpoint selection (function-space view)). With any optimizer () € Q fixed around

0, kernel gradient flow converges to the unique minimum-norm interpolant in Hp, (or to kernel

ridge with decay A > 0). Consequently, choosing () = Q% changes the RKHS to Hc . and selects
X

the endpoint

* . 2 .
. = m bject t X) = . 17
faor, argfeﬂg; IIfHHKQ; subjectto  f(X) =y (17)

In summary, tuning the optimizer () using validation sets is the best possible way not only to
maximize the instantaneous validation loss drop, but also to select better convergence endpoints
of the optimization process.

5 SCOPE AND LIMITATIONS

Long-horizon objective from greedy paradigm. In order to simplify the analysis, this work
resorts to the greedy paradigm, primarily focusing on instantaneous progress of learning. As a
trade-off, global optimality guarantee requires further investigation under this greedy paradigm.
Our filter interpretation of dynamic optimizers in Section 3 mitigates the limitations of the greedy
objective by incorporating stateful optimizers holding summaries of the history of gradients. This
also generalizes the optimizers with momentum and other EMA-based smoothing techniques.

Choice of budget. Instead of telling which class of optimizers are optimal for a given task, this
work provides an optimization framework under the user-defined budget set. Our framework can
help engineers by reducing their effort for searching the right hyperparameters; however, it still
requires an intelligent choice of which budget, i.e., which class of optimizers, fits the task.
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Renovating existing optimizers. In Theorems 1 and 3, we provide general construction of optimal
optimizers from convex constraints. However, in this work, we focus on the well-established
optimizers, and supplement them with a systematic methodology to find the right hyperparameters
for a given task. Designing a new class of optimizers will be a natural extension of this work.

6 RELATED WORK

First, we would like to highlight the key differences between our “optimizing optimizers” and other
well-established fields with similar tautologies.

Learning to optimize. Learning to optimize (Li & Malik, 2016) aims to adapt the optimizer to
a given task by treating optimizers as learnable parametric models (Andrychowicz et al., 2016).
Various architectures have been explored, including RNNs (Andrychowicz et al., 2016; Wichrowska
et al., 2017; Lv et al., 2017), Transformers (Chen et al., 2022; Moudgil et al., 2023; Jain et al.,
2024), and per-tensor HyperNetworks (Ha et al., 2016; Metz et al., 2022). Their primary focus
is on meta-training these optimizer-networks for stability and adaptability. These works represent
a nontraditional, network-based family of generally nonconvex optimizers, which is not generally
compatible with our framework which is based on convex optimization.

Learning to learn. Rooted in the human-inspired philosophy (Schmidhuber, 1987; Bengio
et al.,, 1990), meta-learning is another line of work that shares a similar spirit with learning to
optimize (Gharoun et al., 2023). A large proportion of works on meta-learning target few-shot
learning tasks, which prepare the model, not the optimizer, for downstream tasks (Vinyals et al.,
2016; Finn et al., 2017; Yu et al., 2024; Sun et al., 2019). Among them, Meta-SGD (Li et al.,
2017) is noteworthy, as it prepares the optimizer. However, the problem set we address is general
gradient-based learning, which differs from the tasks of concern in meta-learning.

Algorithmic discovery of optimizers. Techniques like symbolic discovery (Chen et al., 2023;
Zheng et al., 2022), non-parametric optimizer search (Wang et al., 2022), and neural optimizer
search (Bello et al., 2017) are also related to our work, as their objective is to discover the optimal
optimizer for a given task. In their framework, symbolic optimizers are obtained by a tree-based
search of a predefined set of optimizers. Ours instead lets the engineer select the broader family
of optimizers, and then provides a mathematical tool to find the optimal solution among them.
Therefore, these works are considered to be orthogonal to ours.

Hyperparameter optimization. Many works have proposed to automatically tune the
hyperparameters governing optimization. Most of them adopt a learning framework to find a good
set of hyperparameters including learning rates (Daniel et al., 2016), their schedules (Xu et al., 2017;
2019), and other optimizer parameters (Shaban et al., 2019). Hypergradient methods (Maclaurin
et al., 2015; Baydin et al., 2017; Grazzi et al., 2020; Moskovitz et al., 2019) are also proposed to
find the optimal hyperparameters. Instead of resorting to learning-based methods, we establish a
theoretical framework through the lens of convex optimization problems (Boyd & Vandenberghe,
2004). By doing so, we can classify well-used optimizers such as SGD with momentum and
Adam (Kingma & Ba, 2015) as special cases of our framework, and provide a systematic way to
determine the optimal hyperparameters for these optimizers.

7 CONCLUSION

We established a firm theoretical grounding for systematically achieving optimal optimizers in a
greedy sense. Our convex optimization framework connects commonly used optimizers to convex
constraint sets, merging those independently developed techniques into a single unified framework.
Our main results, Theorems 1 and 3, and Lemma 4 are general tools that can be extended to arbitrary
budget to invent new families of optimizers for specific uses. Our theory, therefore, does not disprove
the no free lunch theorem; rather, it provides a principled way to leverage this wisdom to flexibly
design and adapt optimizers for our own problems at hand.
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A MORE MATHEMATICAL RESULTS

This section provides more detailed mathematical foundations of the main text, which was omitted
for brevity. Appendix A.l shows a detailed derivation of equation 9. This shows that the
instantaneous learning powers of dynamic optimizers are also represented by some inner product
between the optimizer operator and the gradient moment, having the same structure as in the stateless
case. Appendix A.2 draws connection between the results in Section 2 and the results in Section 3,
by showing the corresponding results in the dynamic setting.

A.1 PROOF OF EQUATION 9

Here we provide a detailed derivation of equation 9 that was abbreviated in the main text. We assume
the sequences { gy [n]} and {gva[n]} are zero-mean, wide-sense statlonary (WSS) with finite second

moments. Hence the lag-k moments R, [k] = E[gy[n]gu[n — k] "] and C[k] = E[gya[n]gu[n — k] 7]
depend only on k. Then
Ptr(Q) = <Q7 Rll‘>7~[7 Pval(Q) = <Q7 Rval>7—t- (18)
We start from the convolution definition of the dynamic optimizer:
= > QK guln — K. (19)
k=0
Instantaneous training power:
Pe(Qin) = E[gu[n] 9'[n]] (20)
= E|guln] ZQ guln — K] @D
= E[gu[n] " Q[K] guln — k]| (linearity of E) (22)
k=0
= T{QIK] Elguln — k] guln] 7]) (23)
k=0
= Z T(Q[k]" Elge[n] gu[n — k] "]) (trace transpose) (24)
k=0
= > To(QIk)" Rulk]) (25)
k=0
=(Q, Ru)n- (26)
Instantaneous validation cross- power'
Val Qy [gval ] (27)
=E [gval n] ™Y Qlk] guln — k]| 28)
k=0
= E[gwaln] QK] guln — K]] (29)
k=0
= Z TI(Q[k] E[gtr[n - k] Gval [n]T]) (30)
k=0
=Y T(Q[K" Elgva[n] guln — k] ") 31)
k=0
= T(Q[K" C[K["), (32)
k=0

13
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where C[k] := E[gya[n] gu«[n— k] "]. For the symmetric cross-moment Ry [k] := % (C[k]+C[k] "),
when using Hermitian PSD filters with symmetric Q[k], we have

Te(Q[K]T CIk]") = Te(QIk] 3(ClK] + C[K] ")) = Te(Q[k]" Rvalk]), (33)

since for symmetric A, Tr(A $(B — B")) = 0. Therefore, Poa(Q; 1) = (Q, Rya) 3.

A.2 DYNAMIC LIFT OF SECTION 2

We now lift the key results of Section 2 to the dynamic setting of Section 3. Solving the optimization
problem with constraint Q determines the optimal dynamic optimizer Q*, and endows the optimizer
with different characteristics and algorithmic behaviors. Again, consider the following four types of
dynamic budgets:

* Frobenius ball budget Qr(B) = {Q : ||Q|lx < v/B} is the simplest constraint that gives
an isotropic Hilbert space trust region without prior knowledge about temporal correlation
structure.

* Per-frequency spectral budget Qs(t,\) = {Q : Tr(Q(e™)) < 7(w),Q(e™) = A(w)I} is
a budget that upper limits the per-direction spectrum for safety and the trace for total budget
simultaneously at each frequency.

* Data-metric (Lyapunov) budget Qr,(B) = {Q : > po, Tr(Q;XQk) < B} is a budget that
uses the lag-covariance sequence itself as the metric, leading to a natural dynamic Lyapunov-
like stability condition.

* Diagonal budget Qp(B,c) = {Q(z) = diag(g;(2)) = 0: >, ¢jllg;ll3, < B} is a budget
that restricts to diagonal dynamic optimizers with coordinate-wise budgets.

Instantiating the construction from Theorem 3 with these budgets, we obtain corresponding closed-
form solutions for the optimal dynamic optimizer Q* and the optimal power P*(R).

Corollary 9 (Closed-form solutions for dynamic budget sets). Let R(e™) =
U(w) diag(o;(w))U(w)* be the eigendecomposition at each frequency. The optimal solutions are:

(i) Frobenius ball: Q% = VBR/| R||3, Pi(R) = VB||R|x.

(ii) Per-frequency spectral:  Q%(e™) = U(w)diag(qf(w))U(w)* where qf(w) =
min{A(w), max{0, u(w) — ;(w)}} and p(w) is chosen so that ", qf (w) = 7(w).

(iii) Data-metric: Q = allypp(r) Where o = m Pi(R) = \/BY., 0.
(iV) Diagonal: [QE]” X Rjj/Cj, PB(R) = BZj RJQ-]-/C]‘.

We delay the proof to Appendix B. These analytic solutions reveal how the characteristics of
different types of optimal dynamic optimizers Q* are induced by controlling the budget set Q.

Frobenius budget « Proportional dynamic optimizer. Budget Qr(B) produces a proportional
dynamic optimizer that allocates learning power proportional to lag-covariance evidence Q* x R.
It enjoys implementation simplicity but potentially over-concentrates on dominant temporal modes.
Using Lemma 4, we can project this general class of optimizers into special geometries to calculate
for the optimal hyperparameters as in Corollary 5.

Per-frequency spectral budget <> Water-filling dynamic optimizer ~ per-frequency gradient
clipping & power scheduling. Budget Og(7, \) produces a water-filling dynamic optimizer that
keeps pushing power into responsive frequency modes until hitting the safety cap A(w). The spectral
cap A(w) acts as a frequency-dependent safety mechanism similar to gradient clipping, while the
trace constraint 7(w) controls the per-frequency learning rate similar to adaptive learning rate
scheduling.
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Data-metric budget <> Equal-power dynamic optimizer ~ dynamic AdaGrad. Budget
Q. (B) produces an equal-power dynamic optimizer that equalizes learning power uniformly across
informative lag-correlation directions, preventing over-concentration while maintaining temporal
efficiency. This produces a natural dynamic preconditioning effect similar to AdaGrad’s inverse
square root scaling, but with uniform power allocation across all informative temporal directions
rather than instantaneous adaptation.

Diagonal budget <> Coordinate-wise dynamic optimizer ~ Adam. Budget O, (B, ¢) produces
a coordinate-wise dynamic optimizer that adapts per-coordinate learning power proportional to the

. . . . 1/2
lag-covariance evidence R;; and inversely proportional to the costs ¢;. When ¢; o< v, ;" (vt;

being the EMA of g? at time t), this recovers the core mechanism of Adam, which is elaborated in
Corollary 6 in the main manuscript.

B PROOFS OMITTED FROM THE MAIN TEXT

This section does all the proofs that has been omitted in the main text. The proofs are organized in
the same order as the theorems appear in the main manuscript.

B.1 PROOF OF THEOREM 1

Proof of Theorem 1. We establish each claim in turn.

Existence & sublinearity: Since Q is compact by assumption (a nonempty, compact, convex subset
of §4), and (Q, ) — Tr(QX) is continuous, the maximum is attained by the Weierstrass extreme
value theorem. The optimal power P*(X) = supge o Tr(QX) is a supremum of linear functionals
in X, hence sublinear (convex and positively homogeneous). Finiteness follows from compactness

of Q.
Conjugacy identities: We establish the three identities in equation 5.

1. Optimal power = conjugate of indicator. By the definition of convex conjugate,

(60)"(2) = sup {{Q, %) — 60(Q)} = sup(Q, %) = P*(%). (34)
Qesd QeQ

Thus P* = ((5Q)*

2. Optimal power = gauge of polar. By the definition of polar, > € Q° if and only if
supQ€Q<Q,E> < 1,ie., P*(X) < 1. Therefore

Yoo (2) = inf{A > 0: £ € AQ°} = inf{\ > 0: P*(X) < A} = P*(%). (35)
Thus P* = vge.
3. Conjugate of gauge = indicator of polar. We establish (yg)* = dgo. Consider two cases:

e If ¥ € Q°, then for all @,

(Q,%) <70(Q) - sup (R, %) < 70(Q), (36)
ReQ

since suprco (R, X) < 1 by definition of polar. Hence (@, %) — vo(Q) < 0 for all @, with
equality at () = 0. Taking the supremum gives (vo)*(X) = 0 = dg- (X).

o If ¥ ¢ Q°, there exists Qg € Q with (Qo,%X) > 1. For any a > 0, we have vg(aQo) =
avo(Qo) = a (since Qo € Q 30 v9(Qp) = 1), and thus

(2Q0, %) —v0(aQo) = (Qo, %) —a = a((Qo,X) —1) = +o0 (e —=00).  (37)
Hence (70)*(X) = +00 = dg- (2).

Thus (yg)* = dge.
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Construction by subgradient: Let Q* € argmaxgeo Tr(QY). For any M € S%,

PH(M) = max Tr(QM) = Tr(Q"M) = Tr(Q"X) +Tr(Q" (M —X)) = P*(2) +Te(Q" (M —X)),
(38)

which is the defining inequality for Q* € OP*(X). If the maximizer is unique, OP*(X) = {Q*}

and P* is differentiable at ¥ with VP*(X) = Q*.

Order preservation: If ¥ = 0, then for any Q € Q C S?, we have Tr(QX) > 0. Since 0 € Q, the

maximum over Q € Qis > 0. If ¥; > X, then P*(X;) > P*(X3). Moreover, strict inequality

holds if there exists Q € Q with Tr(Q(2Z; — $2)) > 0.

Lipschitz continuity in symmetrized polar gauge: We establish the one-sided bounds first. Since

P* = ~40 by the conjugacy identities, we have:

PH(Z) = P*(2) = max(Q, %) — max(Q, %) (39)
< 15125(@7 ¥ -3) (40)
=700 (X — D). (41)

Similarly, P*(3) — P*(£) < g+ (2 — ). Therefore,

|P*(£) = P*(£)] < max{yg: (£ -~ £),70:(£ - D)} = |5 - £ (42)
This Lipschitz property is crucial for robustness analysis. By using an estimated moment S instead
of the true moment X, the error in optimal power can be bounded by |P*(X) — P*(X)| < || —
§J||Sny>n . This provides a principled way to assess estimation sensitivity. O
B.2 PROOF OF COROLLARY 2

Proof of Corollary 2. We apply Theorem 1 to each budget set. Let ¥ = U diag(oy > --- > o4)U "
be the eigendecomposition of the moment matrix.

(i) Frobenius ball Qr(B) = {Q = 0 : ||Q||r < VB}. The Lagrangian is L(Q, \) = Tr(QX) —
A(||Q|% — B). Taking the gradient with respect to () and setting to zero:

¥
VeL=Y-2Q=0 = Q=g

The constraint ||Q||» = VB gives || X/(2\)||r = VB, so 2\ = ||2||/v/B. Hence:

D)
Q= @m, P (2) = Tr(QF%) = VB||Z .

(ii) Spectral Qgs(7,\) = {Q = 0: Tr(Q) < 7, @ < AI'}. By Neumann’s inequality, the maximizer
has the form Q = U diag(q;)U " where the eigenvalues ¢; solve the water-filling problem:

g}gngmi s.t. ZQi <7, ¢ <A\
(] 3

The KKT conditions yield: (i) g; = A fori < k, (i) g5, = 7 — kA, (iii) ¢ = 0fori > k + 1,
where k = |7/A|. The optimal power is:

PE(E) =AY _oi+ (1 — kN)okga.

i<k

(iii) Data-metric Q1 (B) = {Q = 0 : Tr(Q?Y) < B}. The Lagrangian is L(Q, ) = Tr(QX) —
w(Tr(Q?Y) — B). The first-order condition gives:

1
Y-2uQ¥X =0 = Q= ZI on supp(X).
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Using the constraint Tr(Q?Y) = B and the fact that () is constant on the support:

B
012 E g; = B = o = —_ .
i:0:>0 Ei:ai>0 0

Qf = allypps), R(E)=a) o= |BY o

(iv) Diagonal Qp(B,c) = {Q = diag(q;) = 0 : }°;¢;¢; < B}. The problem decouples
coordinate-wise:

Hence:

max qjj; S.t chq?SB.
42073 j

By Cauchy-Schwarz, the maximizer satisfies ¢; o< ¥;;/c;. Normalizing by the constraint:
B i
! \ YT/ ¢ P

B.3 PROOF OF THEOREM 3

Proof of Theorem 3. We establish each claim in turn.

(i) Existence & sublinearity. Q is weakly compact (Hilbert spaces are reflexive; closed and bounded
= weakly compact). The functional Q — (Q, M)y is continuous in the weak topology (linear
functionals are weakly continuous), hence attains its maximum on Q. Sublinearity: P*(M) =
suerQ<Q, M)y, is a supremum of linear maps in M, thus convex and positively homogeneous.
Finiteness follows from compactness of Q.

(ii) Conjugacy identities. By definition of convex conjugate in 7,

(00)" (M) = sup {(Q, M)y —d0(Q)} = sup (@, M)y = P*(M).
QeH QEQ

Thus P* = 5. By definition of the polar, M € (Q)° iff supQEQ<Q, M)y < 1,ie., P*(M) < 1.
Therefore

Y@y (M) =inf{A >0: M € X\(Q)°} =inf{\ >0: P*(M) < \} = P*(M).
Finally, (yg)* = 0(g)e is the standard gauge—polar identity in a locally convex space.
(iii) Construction (subgradient). Let Q* € argmaxgeo(Q, M)y. Forany N € H,
PAN) = max(Q, N}y = (@7, N)y = P*(M) +{Q", N — M)y,

s0 Q* € Oy P*(M). Uniqueness implies differentiability with gradient Q*.

(iv) Order preservation. If M € H_, then for any Q € Q C H. we have (Q, M) > 0 (each term
Tr(H, M) > 0). Taking the max over @ yields P*(M) > 0. If My — My € H + \{0}, some
admissible () gives strict positivity of (@), M7 — Mas)4, hence the maximized value is strictly larger
at M than M.

(v) Lipschitz in polar gauge. From (ii), P* = v(g). Then for any M, M,
P*(M) — P*(M) = Mgy — M
(M) — P*(M) = max(Q, M)y — max(Q, M)y

< M - M = M - M o.
< 8125@’ o= | o)

Symmetry gives the absolute value bound. O
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B.4 PROOF OF LEMMA 4
Proof of Lemma 4. The proof follows from standard convex optimization theory, specifically the
KKT conditions for linear maximization and the characterization of metric projections.
We use two facts:
* (KKT for linear maximization) x* € argmaxyec(y, M)y <= M € N¢(z*).
* (Metric projection) Fory € H, x* =Tl¢(y) < y— a* € Ngnc(z*).

(ii) = (i): Suppose there exists M € Qf(R) € QN C such that {R,Q* — M} C Nonc(M).
From Q* — M € Ngn¢ (M), the metric projection characterization gives Il (Q*) = M. From R €
Nonc(Qp), the KKT condition for linear maximization gives M € argmaxgeonc(Q@, R)yn =
Q% (R). Therefore, I¢ (Q*) = M € Qj(R).

(i) = (ii): Suppose M = II¢(Q*) € Qf(R). By the metric projection characterization, Q* —
M € Ngnc(M). Since M € Qf(R) = argmaxgeonc(Q, R)#, the KKT condition for linear
maximization gives R € Non¢(M). Thus, {R,Q* — M} C Ngnc(M). Let Q5 .= M

For the final statement, if Nonc(Qf) = {AM : XA > 0} is a ray, then both R and Q* — Q}
must be non-negative multiples of the same direction M for the normal-cone alignment condition to
hold. O

B.5 PROOF OF COROLLARY 5

Proof of Corollary 5. We work in the impulse-space Hilbert space (H, (-, -)3;) of causal LTI filters
with matrix impulse response {gj }x>0 and norm ||Q|3, = "2, Tr(q) i)

Step 1 — Norm of the 1-pole equalizer. The impulse response is g, = nP(1 — 3)3%. By definition,

1Qseoemlle =Y Tr(gax) = > Tr (P (1= B)B*]" [nP(1 — B)B*]) (43)
k>0 k>0
== B A TPTP) = (1= B o TPTP).

k>0

The budget constraint ||Qsgpsm||z < v/ B imposes

Tp) 4 - B2\
n< VB (Tr(P »i=D ) | (45)
Step 2 — Alignment with the moment operator. The inner product with R is
(Qsapart, R)3e = > Tr(qf Ri) =n(1—B) > B* Te(P' Ry) (46)
k>0 k>0
=n(1-p)>_ B*Sk, (47)
k>0

where Sy, := Tr(PT Ry,).

Step 3 — Reduce to 1-D search; saturate budget. For fixed (3, the inner product is linear in 77 while
the constraint is quadratic, so the maximizer saturates the budget. The budget-normalized gain is

J(8) = (@sopem; Ry /1 - S B8y, 48)

[Qscpsmlle Tr(PTP)

k>0

Hence f* = arg maxo<g<1 J () and n* saturates the budget constraint. O

B.6 PROOF OF COROLLARY 6

Proof of Corollary 6. We work in the impulse-space Hilbert space (H, (-, )% ) of causal LTI filters
with impulse response { Hy, }x>0 and norm ||Q||%, = 3", Tr(H,| Hy).
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Step 1 — Unconstrained diagonal optimizer. With the diagonal budget Qp (B, ¢), the maximization
maxgeo,, (@, R)z decouples per coordinate into scalar Hy subproblems:

P
max Z(qj, RiiVH,- (49)

qJ':Z cjlla; HH2<B _

By Cauchy-Schwarz, the optimizer is proportional to R;; with weights 1/c;, giving the stated q;-

Step 2 — Adam-family restriction (1-pole per coordinate). Fix a fitting window and freeze the
preconditioner D, 1/2 (quasi-LTT approximation). The per-coordinate impulse response is

hiw =n(D; 201 - BB, k>0 (50)

Step 3 — Budget norm and alignment. The budget norm evaluates to

e . 1—B,)?
||QAdamH’H —ZCJZ‘}LJ k|2 BZLQ)ZCJ(Dt 1/2)?j :n2(1ﬂ12)W(62) (5])
j=1 k>0 1 =1 1

The alignment with R is

P
(Qadam> B2 = (1= 1) Y BYD (D V%)j5Ri50 =n(1 = B1) > BiTh(B2).  (52)
k>0

j=1 k>0

Step 4 — Optimization over hyperparameters. For fixed (51, 82), the maximizer in 7 saturates the
budget (linear gain under quadratic constraint). The budget-normalized gain is

<QAdam, R>
) 53
(61 ﬁ?) ||QAdam||’H /7ﬁ2 kgoﬁl ( )

Maximizing over (31,32) € (0,1)? gives the optimal momentum parameters, and the optimal

learning rate is
( ﬂ*)Q -1/2
VB (Fgen) oY

O

B.7 PROOF OF PROPOSITION 7

Proof of Proposition 7. The instantaneous validation slope is @ — Tr(QX ). Since this is linear
in @ and @ is compact, the maximum is attained and gives the claimed inequality. If the maximizer
is unique, then any suboptimal @ gives strictly smaller Tr(QX ) = —ﬁval(Q). This includes
optimizers only tuned to the training set. O

B.8 PROOF OF PROPOSITION 8

Proof of Proposition 8. In the linearized regime, we fix parameters 6y and consider the linearized
network f(z) ~ f(x;600) + Vo f(x;60) " (6 — 09). For squared loss £(6) = 3| fo(X) — yl|?, the

gradientis VoL = 37" (fo(x:) — yi) Vo fo(x:).

With optimizer (), the parameter dynamics are 6 = —QVyL. In the linearized regime around 6,
this becomes

6=—=Q> (fo,(w:) + Vo (x::00) (6 — b0) — i) Vo f (i3 o). (55)

=1

Let G € R™*? be the matrix with rows Vg f(z;;600)". Then the linearized dynamics become

0= —QGT(G(0 — bo) + (fa,(X) = v)), (56)
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where f90 (X) = [fao(xl)v B f90 (ﬁn)]—r
In function space, let u(x) = Vo f(x;600)" (6 — 0y) represent the change in function values. Then
u(X) = G(6 — 6p) and the dynamics become
d .
SUX) = GO = —GQG T (u(X) + (fo,(X) = v)). (57)

This is kernel gradient flow in function space with kernel matrix K = GQG', where K;; =
Vof(xi;00) T QVo f(x;j:00) = Kq(ai, ;).

By Moore-Penrose pseudoinverse, this gradient flow converges to u* = KTy where Kt =
(GQGT)T, which corresponds to the minimum norm interpolant in the RKHS H,, induced by
kernel Kq:

fo=wrg min Il st f(X)=y. (58)

The choice of @Q directly determines the kernel K¢ (x,z") = Vo f(2;600) T QVaf(2';60) and hence
the RKHS H ¢, . The validation-aware choice Q* € arg maxgecg Tr(Q ¥« ) emphasizes directions
in parameter space that are aligned with the validation cross-moment X ., thereby tilting the induced
RKHS toward functions that perform better on validation data. O

B.9 PROOF OF COROLLARY 9

Proof of Corollary 9. We apply Theorem 3 to each dynamic budget set. Let R(e™) =
U(w)diag(o1(w) > -+ > 04(w))U(w)* be the eigendecomposition of the moment operator at
each frequency.

(i) Frobenius ball Qr(B) = {Q : ||Q|lx < vB}. The Lagrangian is L(Q,)\) = (Q, R)x —
A(||Q||3, — B). Taking the functional derivative with respect to () and setting to zero:
R
dboL=R—-2)\Q =0 =_—.
2 @ = 9=y
The constraint ||Q|| = v/B gives || R/(2\)||3 = V'B, so 2\ = || R||%/v/B. Hence:

Qy=VB Pi(R) = (QF, R)3 = VB ||R||n.

1Rl

(ii) Per-frequency spectral Qgs(m,\) = {Q : Tr(Q(e™)) < 7(w),Q(e™) = Mw)I}.
By the dynamic version of Neumann’s inequality, the maximizer has the form Q(e™) =
U(w) diag(¢;(w))U(w)* where the eigenvalues g;(w) solve the water-filling problem at each
frequency:

max gi(w)oi(w) s.t. Zqi(w) < 7(Ww), gi(w) < A(w).

i (w)>0
i (w)>0 =

The KKT conditions yield: (i) ;' (w) = A(w) fori < k(w), (i) g5, (w) = T(w) — k(w)A(w), (ii)
qf (w) = 0fori > k(w) + 1, where k(w) = |7(w)/A(w)|. The optimal power is:

Pi(R) = - / " W) 0i() + (T(w) — E(@)AW)) Tk (@) | dw.
2 Jo i<k(w)

(iii) Data-metric Qr,(B) = {Q : Y po o Tr(Q;XQk) < B}. The Lagrangian is L(Q,u) =
(Q,R)n — (X5 Tr(Q;XQx) — B). The first-order condition gives:

(o)
| 1
R—2u) SQpe ™ =0 = Q= ﬂl on supp(R).
k=0

Using the constraint and the fact that ) is constant on the support:

B
a? E 0;=B = a=,/—=———.
i:0;>0 2500
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Hence:

Q7 = allyppr), PE(R)ZQZ%: BZJ,».
i \/ i

(iv) Diagonal Qp(B,c) = {Q(z) = diag(g;(z)) = 0 : >, ¢jllg;ll3, < B}. The problem
decouples coordinate-wise into scalar Hs subproblems:

2
max Yy Byg)m, st D el < B
J J

By Cauchy-Schwarz in Hy, the maximizer satisfies g7 oc 12;;/c;. Normalizing by the constraint:
B Rjj 135117
q’f: —.737 P*(R): B 2
! ZkHRkkH%{Z/Ck Gy b EJ: Cj

C REVERSE ENGINEERING COMMON OPTIMIZERS

So far, we have derived various types of stateless and stateful optimizers under different types of
budgets. In this section, we will do the opposite: we will reverse engineer popular optimizers
and find out under which budget they are secretly optimizing. This not only allows us to find out
hidden design principles of these optimizers, but also have these optimizers registered in a unified
framework, suggesting a systematic way to design new optimizers.

tl;dr:

* GD = Euclidean budget = Qo< I.

¢ Colored-GD = elliptic budget = Q x P.

s Newton/GN = curvature budget = Qoc H~1/G~L.

* NGD = Fisher/KL budget = Qo< F 1.

K-FAC/Shampoo = structured budgets = block/Kronecker Q).
AdaGrad/RMSProp/Adam = diagonal budgets (on g or my) = () diagonal.
LAMB/LARS = layer-norm budget = layer-wise scalar Q.

* s5ignSGD/Lion = L, budget (on g or my) = normalized/sign steps.

L]

One lens. Every first-order optimizer picks a velocity 0 from the current gradient g by solving a
budgeted power allocation:

0 = Qg with Qe Q <« f=arg max (g,é‘) s.t. budget(é) <T (59)
HeRrRP

The budget determines the optimizer ). Below, we list each popular optimizer as a special case of
this formulation, give the induced (), and state (not prove) the short KKT step that produces it.

C.1 EUCLIDEAN & CURVATURE FAMILIES

Corollary 10 (SGD from Euclidean Frobenius budget). Define the Euclidean Frobenius budget and
the cone of memoryless isotropic optimizers:

QF(B) = {Q : ||Q||H < \/E}y Cmemoryless = {Q[n] = 77]6[”] n > O} (60)

Given current gradient moment R[0] = gg' where g is the instantaneous gradient, solving
problem P3 under the budget Q g (B)NCuemoryiess produces SGD as the optimal solution with optimal

hyperparameter:
\ VB

n = 7=
Vgl

where d is the dimension of the parameter space.

(61)
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Proof. We work in the impulse-space Hilbert space (H, (-,-)#) of causal LTI filters with matrix
impulse response ) and Frobenius H norm [|Q||3, = Yoo, Tr(Q[n] T Q[n)).

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qr(B) = {Q : ||Q|lx < VB} is

R
Q° = @m, P*(R) = VB|R|n. (62)

Step 2 — Commutativity via smooth convexity. The Frobenius ball Qr(B) is smooth and strictly
convex. At any boundary point Q with ||Q||3 = v/B, the normal cone is the ray No,.(3)(Q) =
{AQ : A > 0}. By Lemma 4, commutativity holds:

I 9 e JR)y. 63
Q1 (B)Conemamies (@) € A1 ocor (rg)am%mmm(Q )H (63)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Q,[n] = nId[n] with n > 0, we compute:

1Qul3, = Te((nd) " (nI)) = 1, (64)
and for the instantaneous gradient moment R[0] = gg ' and R[n] = 0 for n > 0:
(Qus Ryw =Tr((nI) " (99")) = n'Tr(gg") = nllg3. (65)

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget ||Q,||% = v B. This gives:

B

= VB (66)
Vd

However, when we normalize by the gradient magnitude for scale invariance, we obtain:

n* = VB
Vd|\gll2

(67)

Step 5 — Geometric interpretation. SGD emerges as the memoryless isotropic approximation of the
global Frobenius-constrained equalizer. The optimal learning rate n* balances the budget constraint
with the current gradient magnitude, providing uniform scaling across all parameter dimensions.
By commutativity, this restricted optimum coincides with projecting the global optimum Q¢ onto
Cmemory less - O

Corollary 11 (Colored gradient descent from elliptic trust region budget). Define the elliptic budget
Qp(B) and the cone Cyemoryiess Of memoryless optimizers:

Qr(B) = {Q: T(Q[0)" PT'QIO]) < B,Q[n] = 0forn >0}, (68)
Cmemorylesx = {Q[TL] = 77]5[”] 'n Z 0} (69)
where P = 0 is a fixed symmetric positive definite matrix. Given current gradient moment R[0] =

gg " where g is the instantaneous gradient, solving problem P3 under the budget Qp(B) NConemoryless
produces colored gradient descent as the optimal solution with optimal hyperparameter:

._ VB
T @ Dlgls

(70)
where the optimizer is Q* = n* P.

Proof. We work in the impulse-space Hilbert space (H,(-,-)3) of causal LTI filters with
matrix impulse response ) and elliptic P-weighted norm for memoryless filters [|Q[0]]|%_, =

Te(Q[0]" P~Q[0]).
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Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qp(B) = {Q : Tr(Q[0] T P~1Q[0]) < B,Q[n] = 0 forn > 0} is

QC[O]:@LQT P*(R)=VB|Pgg" | p (71)
[Pgg™ |l p—1’ P

Step 2 — Commutativity via smooth convexity. The elliptic ball Qp(B) is smooth and strictly
convex. At any boundary point Q with ||Q[0]|| -1 = /B, the normal cone is the ray No,.p)(Q) =
{AP~1Q[0] : A > 0}. By Lemma 4, commutativity holds:

I ) ear max Ry 72
O (B)Coemoryess (@) 8 e QP(B)mcmemy]ess@ )1 (72)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Q,[n] = nPd[n] with n > 0, we compute:
1Qy[0]13-1 = Te((nP) " P~ (nP)) = 1° Tx(P), (73)

and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:

(Qu: R)3 = Tr((nP) " (gg")) =nTr(Pgg") =ng' Pg. (74)

Step 4 — Budget saturation and optimization. The objective is linear in 77 while the constraint is
quadratic, so the maximizer saturates the budget ||Q,[0]|| p-1 = v/ B. This gives:

B
N = _YB_ (75)

VTr(P)

However, when we normalize by the gradient magnitude for scale invariance, we obtain:

N VB
e AT (76)
VIr(P~1)lgll2
Step 5 — Geometric interpretation. Colored gradient descent emerges as the memoryless

approximation of the global elliptic-constrained equalizer. The optimal learning rate n* balances the
elliptic budget constraint with the current gradient magnitude, providing P-weighted scaling across
parameter dimensions. The optimizer Q* = »n* P naturally incorporates the geometry encoded in
matrix P. By commutativity, this restricted optimum coincides with projecting the global optimum
QC onto Cmemowless- O

Corollary 12 (Newton’s method from curvature-aware budget). Define the budget Qp (B) and the
cone Cemoryiess 0f memoryless optimizers:

Qn(B) = {Q: Tr(Q[0]"HQ[0]) < B,Q[n] = 0 forn > 0}, (77)
Cmemoryless = {Qn[n} = 77P5[n} 'n > 0’ P~ 0} (78)
where H = 0 is the Hessian matrix. Given current gradient moment R[0] = gg' where g is the

instantaneous gradient, solving problem P3 under the budget Q (B) NCrnemoryless produces Newton’s
method as the optimal solution with optimal hyperparameter:

n o= __VB__
VTIr(H-1)|gll2’

where the optimizer is Q* = n*H 1.

(79)

Proof. We work in the impulse-space Hilbert space (#,(-,-)%) of causal LTI filters with
matrix impulse response ) and elliptic H-weighted norm for memoryless filters || Q[0]]|%, =

Te(Q[0]" HQ[0]).
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Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qi (B) = {Q : Tr(Q[0] T HQ[0]) < B,Q[n] = 0 forn > 0} is

c H 'gg" . T
Q [Olzﬁm, P*(R) =VBI||H 99" ||u. (80)

Step 2 — Commutativity via smooth convexity. The elliptic ball Qg (B) is smooth and strictly
convex. At any boundary point Q with ||Q[0]||z = /B, the normal cone is the ray No,(3(Q) =
{AHQI0] : A > 0}. By Lemma 4, commutativity holds:

II i ) ear max Ry 81
it (B)Coenores (@) € 8T8 mmas c.m,,,,lw@ ) (81)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Q,[n] = nH~'§[n] with n > 0, we compute:
1Qu[0]I7 = Te((nH ™) "H(nH ")) = 0 Te(H ™), (82)
and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:

(Qu,R)y3 =Tr((nH ") (gg")) =nTe(H 'gg") =ng"H 'g. (83)

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget ||Q,[0]||z = v B. This gives:

B
nt = L_ (84)
Tr(H-1)

When we normalize by the gradient magnitude for scale invariance, we obtain:

._ VB
A E gl

Step 5 — Geometric interpretation. Newton’s method emerges as the memoryless approximation of
the global Hessian-constrained equalizer. The optimal learning rate n* balances the curvature budget
constraint with the current gradient magnitude, providing Hessian-weighted scaling that naturally
incorporates second-order geometry. The optimizer Q* = n*H ! captures the local quadratic
structure of the loss landscape. By commutativity, this restricted optimum coincides with projecting
the global optimum Q€ onto Cumemoryless- O

(85)

Corollary 13 (L-BFGS from learned curvature approximation). Define the budget Qp(B) and the
cone Cemoryiess 0f memoryless optimizers:

Qp(B) = {Q: Te(Q[0]" BrQ0]) < B,Q[n] = 0forn > 0}, (86)

Cmemoryless = {Qn[n} = an_lé[n] 'n Z 0} (87)

where By, 0 is the L-BFGS curvature approximation matrix constructed through secant updates.
Given current gradient moment R[0] = gg' where g is the instantaneous gradient, solving

problem P3 under the budget Qp(B) N Cuemoryiess Produces L-BFGS as the optimal solution with
optimal hyperparameter:

*

oo VB
I (B Y llgll2

(88)

where the optimizer is Q* = n* B, L

Proof. We work in the impulse-space Hilbert space (H,(-,-)%) of causal LTI filters with
matrix impulse response ) and elliptic Bg-weighted norm for memoryless filters HQ[O]HQBk =

Tr(Q[0] " BrQl0)).
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Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qp(B) = {Q : Tr(Q[0]" BxQ[0]) < B,Q[n] = 0 for n > 0} is
Qo) = VB A9

- ma P*(R) = \/EHBIZIQQTHB;C- (89)
k k

Step 2 — Commutativity via smooth convexity. The elliptic ball Qp(B) is smooth and strictly
convex. At any boundary point @ with [|Q[0]|| 5, = VB, the normal cone is the ray No, (p)(Q) =
{ABQI0] : A > 0}. By Lemma 4, commutativity holds:

II % ear max , R)w. 90
Q5 (B)NCrenoyiess (@) € AIE co, Cmemyle“@ YH (90)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For Q,[n] = anflé [n] with n > 0, we compute:

1940115, = Te((nB; ") " Bu(nB; 1) = n* Te(B; ), ©On
and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:
(Qu, R)w = Te((nB 1) (997) = n'Te(By g9 ") = ng" By 'g. (92)

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget ||Q,[0]|| g, = v B. This gives:

B
o YB (93)

Tr(B ')

When we normalize by the gradient magnitude for scale invariance, we obtain:

n*= VB
VB gl

Step 5 — Geometric interpretation. L-BFGS emerges as the memoryless approximation of the global
curvature-constrained equalizer, where the curvature matrix By, is learned through secant updates
rather than computed exactly. The optimal learning rate 1* balances the learned curvature budget
constraint with the current gradient magnitude, providing Bj-weighted scaling that incorporates
approximate second-order geometry at reduced computational cost. The optimizer Q* = n*B, !
captures the accumulated curvature information from the optimization trajectory. By commutativity,
this restricted optimum coincides with projecting the global optimum QC onto Cemoryless- O]

(94)

C.2 INFORMATION-GEOMETRIC & STRUCTURED OPTIMIZERS

Corollary 14 (Natural Gradient Descent from Fisher information geometry). Define the Fisher
information budget Qr (B, F') and the cone Cyemoryiess Of memoryless optimizers:

QF(B, F) = {Q : TY(QTFQ) < B}y Cmemoryless = {Qn =nl:n> O} (95)

Given instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0, solving problem P3
under the budget Qr (B, F)N Cinemoryiess produces Natural Gradient Descent as the optimal solution
with optimal hyperparameters:

Nt = __YB__
VTIr(F1)|gll2’

Proof. We work in the impulse-space Hilbert space (H, (-,)3;) of causal LTI filters with matrix
impulse response () and Fisher-weighted norm for memoryless filters | Q% = Tr(Q ' FQ).

Q*=nF" (96)
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Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qr (B, F) = {Q : Tr(QT FQ) < B} is

c Flgg" . T
Q :\/Ema P(R):\/E”F 99 ||F- o7

Step 2 — Commutativity via smooth convexity. The Fisher ellipsoid Q (B, F') is smooth and strictly
convex. At any boundary point @ with ||Q||r = v/B, the normal cone is the ray No (5 r)(Q) =
{AFQ : A > 0}. By Lemma 4, commutativity holds:

II Y ear max , RYyy. 98
Q1 (B,F)Conemonyies (@) € AIE eon( X Cmmm(Q o (98)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For ), = nl with n > 0, we compute:

1Qy 17 = Tx((nD) T F(nI)) = * Ta(F), (99)
and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:
(Quy )3 = Te((nI) " (99")) = n'Tr(gg") =ng" g =nllgll3. (100)

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget ||Q,||r = v/ B. This gives:

VB
e — 101
n ) (101)

When we normalize by the gradient magnitude for scale invariance, we obtain:

g VB
VT (F)llgllz

Step 5 — Geometric interpretation. Natural Gradient Descent emerges as the memoryless
approximation of the global Fisher-constrained equalizer, where the Fisher information matrix F
captures the intrinsic Riemannian geometry of the statistical model. The optimal learning rate n*
balances the Fisher information budget constraint with the current gradient magnitude, providing
F-weighted scaling that incorporates the natural geometry of the parameter space. The optimizer
Q* = n*F~! implements steepest descent in the natural Riemannian metric, where the Fisher
metric measures the intrinsic difficulty of distinguishing nearby parameter values based on the
data distribution. By commutativity, this restricted optimum coincides with projecting the global
optimum Q¢ onto Crnemoryless-

(102)

Corollary 15 (K-FAC from block-diagonal Fisher approximation). Define the block-diagonal
Fisher budget Qo (B, {Fe¢}) and the cone Cpemoryiess 0f memoryless optimizers:

Quiock (B, {Fi}) = {Q: Y _11Qel}, < B}, Cuemontess = {Q[n] =nId[n] : > 0}. (103)
14

Given instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0, solving problem P3
under the budget Qpiock (B, {Fr}) N Cremoryless Produces K-FAC as the optimal solution with optimal
hyperparameters:

. VB

= , Q* = n*blockdiag(F, ). (104)
Z@ Tr(Fe_l)HgH2

Ui

Proof. We work in the impulse-space Hilbert space (H, (-,)3;) of causal LTI filters with matrix
impulse response () and block-diagonal Fisher-weighted norm [|Q||2o = >, Tr(Q] Fr Qo).
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Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget leock(Ba {Fg}) = {Q : ZZ ”QEH%‘[; < B} is

0° — blockdiag(F, ')gg "
||[blockdiag(F; ") gg ™ [lbtock

P*(R) = VB|blockdiag(F, ")gg " lbiock-  (105)

Step 2 — Commutativity via smooth convexity. The block-diagonal Fisher ellipsoid Qpjock (B, {F¢})

is smooth and strictly convex. At any boundary point Q with ||Q||biock = /B, the normal cone is
the ray No, . (B,{F.})(Q) = {Ablockdiag(F;)Q : A > 0}. By Lemma 4, commutativity holds:

T10, (B {Fe})MConomonies (@) € a8 (Q,R)n. (106)

max
QG leock(B ) { F1/, })mcmemoryls,ss
Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless family parametrization. For ), = nl with > 0, we compute:

Qoo = D>, Tr((nle) T Fe(ne)) = n* Y Tr(Fy), (107)
0 4

and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:
(Qu Ry ="Te((nI) " (997)) = nTx(g9") = nllgll3. (108)

Step 4 — Budget saturation and optimization. The objective is linear in 1 while the constraint is
quadratic, so the maximizer saturates the budget || Qy, |lblock = V' B. This gives:

S (109)

220 Tr(F)

When we normalize by the gradient magnitude for scale invariance, we obtain:

. VB
S gl

Step 5 — Geometric interpretation. K-FAC emerges as the memoryless approximation of the global
block-diagonal Fisher-constrained equalizer, where each block F captures the layer-wise Fisher
information geometry. The optimal learning rate n* balances the block-diagonal Fisher information
budget constraint with the current gradient magnitude, providing layer-wise Fy-weighted scaling
that incorporates the natural geometry while maintaining computational tractability through block-
diagonal structure. The optimizer @* = n*blockdiag(F, ") implements approximate steepest
descent in the block-diagonal natural Riemannian metric. By commutativity, this restricted optimum
coincides with projecting the global optimum Q¢ onto Cinemoryless- O]

(110)

Corollary 16 (Shampoo from Kronecker-factored preconditioning). Consider weight tensors 6 €
R xd2xxdk g d define mode-wise second moment matrices G; € R%*% for each mode i. Define
the Kronecker-factored budget constraint:

Qun(BG:Y) = {Q: QI < B} anm

where ||Q||2,0n = Yoo Tr (Q[n] T (), Gi) Q[n]), and the memoryless Kronecker cone:

Ciron = {Q[n] =1 <® G;W) 8[n] :n > 0} . (112)

Given instantaneous gradient moment R|0] = gg' and R[n] = 0 for n > 0, solving problem P3
under the budget Qk.,n(B,{G;}) N Cxron produces Shampoo as the optimal solution with optimal
hyperparameters:

B _
77* — \/771 7 Q* — 77* ®Gl 1/2. (113)
Tr (®; Gi ) llgll: i
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Proof. We work in the impulse-space Hilbert space (H, (-,-)#) of causal LTI filters with matrix
impulse response ) and Kronecker-weighted norm [|Q||,., = > ne Tr (Q[n] T (Q),; Gi) Q[n]).

Step 1 — Global optimal equalizer. By Cauchy-Schwarz, the unconstrained optimum of problem P3
under budget Qxron(B,{G:}) = {Q : ||Qllkron < VB} is

0° = V5 \B:C )9 P*(R) = VB (114)

H (®1 G;l) ggTHKron’

OB

Step 2 — Commutativity via smooth convexity. The Kronecker-factored ellipsoid Qkron(B, {G;}) is

smooth and strictly convex. At any boundary point Q with ||Q||kron = V/B, the normal cone is the
ray No,..(B,{c:1)(Q) = {A (Q),; Gi) Q@ : A > 0}. By Lemma 4, commutativity holds:

Kron

I _ ) ear max ,R)y. 115
Okeon(B,{G})NCitrn (@) gQEQK“)“(B’{GJ)QCKM<Q o (115)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless Kronecker family parametrization. For Q,, = n @), Gi_l/2 with n > 0, we
compute:

.
1QnlRron = Tr <n®G;”Q> <®Gi> (n@G[m) —nzTr<®Gﬁ>7 (116)

and for the instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0:

.
(Qns Ryy = Tr (77®G,-_1/2> (99") | =nTr <<® G;W) ggT> : (117)

%

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget || @, ||kron = V' B. This gives:
VB
A e — (118)
—1
Tr (®, G, )

When we normalize by the gradient magnitude for scale invariance, we obtain:

nt = Vb (119)

T (®, G ) lglls

Step 5 — Geometric interpretation. Shampoo emerges as the memoryless approximation of the
global Kronecker-factored equalizer, where each mode-wise matrix G; captures the tensor structure
geometry of neural network weights. The optimal learning rate n* balances the Kronecker-factored
budget constraint with the current gradient magnitude, providing mode-wise G;-weighted scaling
that exploits tensor correlations while maintaining computational tractability through Kronecker

structure. The optimizer Q* = 7n* ), G, 1/2 implements approximate steepest descent in the
Kronecker-factored natural metric. By commutativity, this restricted optimum coincides with
projecting the global optimum Q¢ onto Ciyon. O

C.3 DIAGONAL/ADAPTIVE-MOMENT FAMILY

Corollary 17 (Instantaneous optimal AdaGrad). Ler moment be a diagonal matrix R[n] =
diag(r;[n]) with coordinate-wise sequence r;[n|. Given gradients g[t], maintain the cumulative
second-moment v;[t] =€+ Y., gj[s|> > 0 with regularization € > 0. Fix the current time t and
define the coordinate-wise costs c; = v;[t]'/?

Qp(B,c) = {diag(q;) : 22 ¢j X0 la;[k]1* < B}, (120)

. Consider the diagonal budget
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and the cone Cpemoryiess of diagonal memoryless optimizers
Cmemmyless = {Q’r} [n] = 776[”} dlag(l/cj) 2 0} (121)

Optimizing for problem P3 under Qp(B,c) N Cuemoryiess With moment R[n| yields an AdaGrad
optimizer with optimal hyperparameter:

n* = L (122)

\/Zj 1/Cj’

where the optimizer is Q* = 1n*0[0] diag(1/c;).

Proof. Fix the current time ¢ and omit the subscript for brevity. We work in the diagonal Hilbert
space (Hp, (-, -)nu,,) of diagonal causal LTI filters with weighted norm [|Qll3,,, = >, ¢;llg;l13%

1/2 . .
where cj = vj/ are the coordinate-wise costs.

Step 1 — Global optimal diagonal equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the diagonal weighted budget Qp (B, ¢) = {diag(q;) : >_, ¢;llg; |3, < B}is

R

Q°=VB 1
1R3¢,

P*(R) = VB/||R||3,- (123)

Step 2 — Commutativity via smooth convexity. The diagonal weighted ball Qp (B, ¢) is smooth

and strictly convex. At any boundary point Q with ||Q||3,, = /B, the normal cone is the ray
No,(B,e)(Q) = {\diag(c;jq;) : A > 0}. By Lemma 4, commutativity holds:

I . ) ear max R, 124
QD(B: )mcmemory]ess (Q ) gQEQD(B,C)ﬁCmemoryless<Q >HD ( )

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3— Memoryless family parametrization. For the memoryless family Q,,[n] = nd[n] diag(1/c;)
with n > 0, we compute:

1
1Qull3es =D i (nfes)* =n? Y —. (125)
- G
j J
and for the instantaneous gradient moment R[0] = diag(r;[0]) and R[n] = 0 for n > 0:
U ;0]
@Ry =3 om0l =) == (126)

i J

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget || Q|| , = v B. This gives:

n* = L (127)

\/Zj 1/Cj.

Step 5 — Geometric interpretation. AdaGrad emerges as the memoryless approximation of the
global diagonal equalizer, where each coordinate-wise cost ¢; = (e + > ., g [s]2)!/2 captures the
cumulative gradient variance. The optimal learning rate n* balances the diagonal budget constraint
with the current gradient, providing coordinate-wise inverse-variance scaling that adapts to the
historical gradient magnitudes. The optimizer Q* = 7n*J[0] diag(1/c;) implements approximate
steepest descent in the cumulative variance-weighted metric. By commutativity, this restricted
optimum coincides with projecting the global optimum QC onto Cremoryless- O]

Corollary 18 (Instantancous optimal RMSProp). Ler moment be a diagonal matrix R[n] =
diag(r;[n]) with coordinate-wise sequence r;[n]. Given gradients g[t|, maintain the second-moment
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EMA v;[t] = Bov;[t — 1] + (1 — B2)g;[t]* > 0 with parameter 32 € (0,1). Fix the current time t
and define the coordinate-wise costs ¢j = v; [t]'/2. Consider the diagonal budget

Qp(B,e) = {diag(a) : ¥, ¢; Cymolas K < B, (128)
and the cone Cyemoryless Of diagonal memoryless optimizers
Cinemoryiess = {Qy[n] = nd[n] diag(1/c;) : n > 0}. (129)

Optimizing for problem P3 under Qp(B,c) N Cuemoryiess With moment R[n] yields an RMSProp
optimizer with optimal hyperparameters:

>_;73[0]/¢; . VB

B3 =arg max —L -7 == (130)

0<B><1 m ! m’

where the optimizer is Q* = n*6[0] diag(1/c;).

Proof. Fix the current time ¢ and omit the subscript for brevity. We work in the diagonal Hilbert
space (Hp, (,-)3,) of diagonal causal LTI filters with weighted norm [|Q||3,, = > cjlla;ll3,

1/2

where ¢; = v;"" are the coordinate-wise costs.

Step 1 — Global optimal diagonal equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the diagonal weighted budget Qp (B, ¢) = {diag(g;) : >_; cillg;il3, < B} is

R
Q° = \/EW, P*(R) = VB||R||3, (131)

Step 2 — Commutativity via smooth convexity. The diagonal weighted ball Qp (B, ¢) is smooth

and strictly convex. At any boundary point Q with ||Q||3,, = /B, the normal cone is the ray
No,(B,e)(Q) = {Ndiag(c;jq;) : A > 0}. By Lemma 4, commutativity holds:

5o ) 132
QE QD (B,¢)NCrmemoryless <Q >HD ( )

Therefore, we can equivalently solve the restricted optimization problem directly.

HQD (B7C) r-]Cmemory]ess (QC) € arg

Step 3 — Memoryless family parametrization. For the memoryless family Q,,[n| = ndé[n] diag(1/c;)
with n > 0, we compute:

1
1Qule, =D e (n/e)* =n? ) —. (133)
j j
and for the instantaneous gradient moment R[0] = diag(r;[0]) and R[n| = 0 for n > 0:
N 0= r510]
(Qny R)ou = j &7l = nzjj o (134)

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget || Q) ||, = v/ B. This gives:

= _VYB_ (135)

\/Zj 1/Cj.

The optimal 85 maximizes the budget-normalized gain:

J6w) i QP _ Z 0/ 136

1Qn 7 [, 1/e '

Step 5 — Geometric interpretation. RMSProp emerges as the memoryless approximation of the
global diagonal equalizer, where each coordinate-wise cost ¢; = v, t] 1/2 captures the exponentially-
weighted gradient variance. The exponential weighting 32 prevents the indefinite accumulation
that causes AdaGrad’s learning rate decay while maintaining adaptive per-coordinate scaling. The
optimal learning rate n* balances the diagonal budget constraint with the current gradient. By
commutativity, this restricted optimum coincides with projecting the global optimum Q¢ onto

Cmemoryless . ]

30



Under review as a conference paper at ICLR 2026

Corollary 19 (Instantaneous optimal AdaFactor). Consider matrix parameters © € R™*"™ with
gradient G € R™*™. Maintain row-wise second moment estimates r;[t] = Bar;[t — 1] + (1 —
B2) |G- [t]||? and column-wise estimates c;[t] = Pacj[t — 1] + (1 — B2)||G. ;[t]]|*. Define the
Kronecker-factored diagonal budget

Qx(B,r,c) = {Q = diag(r)""/* ® diag(¢) /* - |Q|I%, < B}, (137)
and the cone Cpemoryless 0f memoryless optimizers
Cmemoryless = {Qn[n] = 775[”}620 iz 0, QO ﬁxed}~ (138)

Optimizing problem P3 under Qg (B, 7, ¢) N Cemoryless With instantaneous gradient moment R[0] =
GG yields AdaFactor with optimal hyperparameters:

* \/E Zz] Gzzj/(?i/c\j)

n* = B3 = arg max ; (139)

S 1) 085t S S 1/ (i)

where the optimizer is Q* = 1*6[0](diag(7) ~/? @ diag(c)~'/2).

Proof. Fix the current time ¢ and omit the subscript for brevity. We work in the Kronecker-factored
Hilbert space (Hr, (-, )21, ) of causal LTI filters with Kronecker-structured impulse response and

norm Q|3 = >y TH{QIn] Q).

Step 1 — Global optimal Kronecker equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under the Kronecker-factored budget Q (B, r, ¢) is

R
QY = \/Ema P*(R) = \/EHRHHK' (140)

Step 2 — Commutativity via smooth convexity. The Kronecker-factored ball Qx (B, r, ¢) is smooth

and strictly convex. At any boundary point Q with ||Q||3, = VB, the normal cone is the ray
No,(Byre)(Q) = {AQ : X > 0}. By Lemma 4, commutativity holds:
II . e JR)a,. 141
Qe (B Cnenis (@) €278 e (Q Ry (141)
Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Memoryless Kronecker family parametrization. For the memoryless Kronecker family
Qn[n] = non)(diag(r)~1/? @ diag(¢)~'/2) with > 0, we compute:

1
2 _ 2 (Y —1/2 o qio N —1/2\2) 2
|QulBe, = " Tr((ding(®) ™/ @ diag(@) /%)) = n* 33" = (142)
i
and for the instantaneous gradient moment R[0] = GG'T and R[n] = 0 for n > 0:
G2,
(Qns R)3,e = n'Tr((diag(F) /2 @ diag(e)"/*)GGT) =n > —L. (143)
— \/TiC;
i,j v

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
quadratic, so the maximizer saturates the budget || Q|| = v B. This gives:

. (144)

\/ 2o 2o 1/(Ticy)

The optimal /33 maximizes the budget-normalized gain:

e N
J(8y) 1= (D Phrse - 2oy Gl VI (145)

(@l /5,5, 1/F52)

Step 5 — Geometric interpretation. AdaFactor emerges as the memoryless approximation of the
global Kronecker-factored equalizer, where the row and column second moment estimates 7; and ¢;
provide a low-rank factorization of the full diagonal optimizer. This reduces memory complexity
from O(mn) to O(m + n) for matrix parameters while approximately preserving Adam’s adaptive
scaling properties. The exponential weighting (3o balances the trade-off between adaptation speed
and noise reduction in the factored estimates. By commutativity, this restricted optimum coincides
with projecting the global optimum Q¢ onto Cinemoryless- O
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C.4 NORMALIZED-STEP FAMILY

Corollary 20 (Instantaneous optimal signSGD). Define the L°° budget and the cone of memoryless
sign optimizers:

Qo (1) = {Q[n] = nd[n] diag(s;) : |Qlln,c <7, 55| <1}, (146)
Cyn = {Qln] = ndln] diag(sign(g;)) : > 0}. (147)

(147)
Given instantaneous gradient moment R[0] = gg' and R[n] = 0 for n > 0, solving

problem P3 under the budget Q. (7) N Ciign produces signSGD as the optimal solution with optimal

hyperparameter:

N =7, yielding 6 = 7sign(g). (148)
Proof. We work in the impulse-space Hilbert space (H, (-,)3) of causal LTI filters with matrix
impulse response () and L constraint on coordinate-wise step sizes.

Step 1 — Global optimal equalizer. The unconstrained optimum of problem P3 under the L>° budget

Qoo (7) is achieved by setting each coordinate j to maximize g, éj subject to \9j| < 7. This gives:

Q0] = 7 diag(sign(g;)), Q%[n] = 0forn >0, P*(R) = 7lgl|1- (149)

Step 2 — Commutativity via convexity. The L constraint set Q. (7) is convex. At any boundary
point () with coordinate-wise saturation, the normal cone contains the sign pattern. By Lemma 4,
commutativity holds:

x  {Q,R)xu. (150)

1I PAC ) ear ma
2 (i (O7) gQEro(T)ﬂCsagn
Therefore, we can equivalently solve the restricted optimization problem directly.
Step 3 — Sign family parametrization. For the sign family Q,[n] = nd[n] diag(sign(g;)) with
n > 0, we compute:

1Qnll#,00 = nm;imlsign(gj)l =1, (151)

and for the instantaneous gradient moment R[0] = gg " and R[n] = 0 for n > 0:

(Qn> R)3 =1 Tr(diag(sign(g;)) - 99 ) =nY _ gjsign(g;) = nllgll1- (152)
i

Step 4 — Budget saturation and optimization. The objective is linear in 7 while the constraint is
linear, so the maximizer saturates the budget ||Q,||7,00 = 7. This gives:

0= (153)
The resulting update is 6 = 7 sign(g).

Step 5 — Geometric interpretation. signSGD emerges as the memoryless approximation of the
global L°°-constrained equalizer, where each coordinate takes the maximum allowed step in the
direction of its gradient sign. This coordinate-wise saturation provides robustness to gradient
magnitude variations and enables efficient low-precision implementations. By commutativity, this
restricted optimum coincides with projecting the global optimum Q¢ onto Csign-

Corollary 21 (Instantaneous optimal Lion). Define the L> budget and the cone of momentum-
filtered sign optimizers:

Quo(7) = {Q: |Qll1t,00 < 7}, (154)
Clion = {Qnp,[n] = n(1 — B1)B7 diag(sign(m;)) : n > 0,0 < By < 1}, (155)
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where my; is the j-th coordinate of the momentum-smoothed gradient m = EMA(g; 51). Given
gradient moment R[n] € H, solving problem P3 under the budget Qo (7) N Cripn produces Lion
optimizer as the optimal solution with optimal hyperparameters:

0<p1<

Bi = arg max Y B |Te(Rjln))l, 0" =, (156)
n=0 7
where R;[n] denotes the j-th diagonal block of R[n)].

Proof. We work in the impulse-space Hilbert space (H, (-, -)3) of causal LTI filters with matrix
impulse response () and L constraint on coordinate-wise step sizes.

Step 1 — Global optimal equalizer. The unconstrained optimum of problem P3 under the L>° budget
Qoo () is achieved by setting each coordinate j to maximize the inner product subject to |Q;[n]| < T
for all n. This gives:

Qn] = 7 diag(sign(Ry[n])), P (R) =7 > |Rylnll- (157)

n=0 j

Step 2 — Commutativity via convexity. The L constraint set Q.. (7) is convex. At any boundary
point ) with coordinate-wise saturation, the normal cone contains the sign pattern. By Lemma 4,
commutativity holds:

o (e (QF) € R 158
Qoo (1)NCL (@) € arg oc Qor:lg?ncm@ e (158)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Lion family parametrization. For Qy 3, [n] = n(1 — B1)p7 diag(sign(m;)) with n > 0
and 0 < 51 < 1, we compute:

10, llp.00 = n(1 = Br) maux|sign(my)| 3 B = n, (159)
n=0
and
(@Qnps Ry =Y _n(1=B1)BT Y sign(my)Ry[n] =n(1—B1) Y Br Y sign(my)Ry;[n].
n=0 j n=0 J
(160)

Step 4 — Budget saturation and 1-D optimization. For fixed (1, the objective is linear in 7 while the
constraint is linear, so the maximizer saturates the budget ||Q,, g, ||#,00 = 7. This gives:

n=r. (161)
The budget-normalized gain becomes:
R " n N
J(B1) := W =(1-7p1) Z[)’l Z&gn(mj)Rjj [n]. (162)
P I17,00 n=0 J

Hence 7 = argmaxo<g, <1 J(51) and n* = 7.

Step 5 — Geometric interpretation. The optimal momentum 37 maximizes the alignment between
the 1-pole EMA kernel (57),>0 and the sign-weighted empirical lag curve. Lion emerges as
the momentum-filtered approximation of the global L°°-constrained equalizer, where momentum

smoothing m = EMA(g; 1) reduces gradient noise before applying coordinate-wise sign
normalization. By commutativity, this restricted optimum coincides with projecting the global
optimum Q¢ onto Cjp. O
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C.5 LAYER-WISE NORM SCALING (LARGE-BATCH STABILIZERS)

Corollary 22 (Instantaneous optimal LARS/LAMB). Consider a neural network with L layers,
where parameters are partitioned as 0 = (01, ...,0r) with 8, € R%. Define the layer-wise adaptive
budget

L ]
Quayer(B, {[16ell} 1) = {Q = blkdiag(Q1,. .., Q1) : Y _ |05 Y Tr(Qe[n] " Q[n]) < B} :
=1 n=0

(163)
and the cone Ciuye, of layer-wise scalar optimizers

Clayer = {Qn,p,[n] = blkdiag(n(1l — 51)Brcala,,...,n(1 —p1)Brarls,):n>0,0< fy <1,a0 > 0}.
(164)

Given moment matrix R[n] = blkdiag(R1[n],..., Rp[n]) with S¢[n] = Tr(R¢[n]), optimizing

problem P3 under Qjayer(B,{||0¢||}) N Ciayer yields LARS/LAMB optimizer with optimal

hyperparameters:

B =52
By =arg max \/1—5 Zﬁ Z ; (165)
1 == ” S R (= )

where the layer-wise scaling factors are o = 1/||60,]|2.

Proof. We work in the block-diagonal Hilbert space (Hiayer, (-» *)#4,,,) Of layer-wise causal LTI
filters with weighted norm ||QH§{layer = 25:1 1011311Qe13,-

Step 1 — Global optimal layer-wise equalizer. By Cauchy-Schwarz, the unconstrained optimum of
problem P3 under budget Qjayer(B, {]|0¢]|}) is

R
Q° =VBypr—.  P'(R) = VB| Rl (166)
layer

L
where [|RII3,, = 37,1y 1031 Rell3,-

Step 2 — Commutativity via smooth convexity. The layer-wise adaptive ball Quayer(B, {||6]}) is
smooth and strictly convex. At any boundary point Q with ||Q||3,,,.. = /B, the normal cone is the
ray No,...(Q) = {A\Q : A > 0}. By Lemma 4, commutativity holds:

I Y ear max Ry 167
QB0 NG (@) € arg e (@ R (167)

Therefore, we can equivalently solve the restricted optimization problem directly.

Step 3 — Layer-wise family parametrization. For Q),, 3, [n] = blkdiag(n(1—p51)8f 11y, ..., n(1—
B1)Barly, ) withn > 0,0 < 81 < 1, and ap = 1/]|0¢]|2, we compute:

1Qu.5 174, = Z 10113 Z Te((n(1 — B1)Braela,) " (n(1 — B1) B el )) (168)

(=8 }E:HHeH%a?de j{j (169)
B /31 ||0 ||
and
(@1 B) Mg ZZ% (1 - B1)Baels,) " Reln]) (170)
¢{=1n=0

n(1—pr) folZwse — B) 2512”9 Lo 4™
n=0 =1 n=0
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Step 4 — Budget saturation and 1-D optimization. For fixed (31, the objective is linear in n while the
constraint is quadratic, so the maximizer saturates the budget ||Qy,, ||#,,.. = V B. This gives:

B(1-p7)

S deza - sy

The budget-normalized gain becomes:

<Q77 B1s R>Hla er
J = . = = 173
B =0l Zz1dg/||04|\2nz% anm (17

Hence 7 = arg maxo<gs, <1 J(51) and n* saturates the budget constraint.

(172)

Step 5 — Geometric interpretation. ~ The optimal momentum /] maximizes the cosine
similarity between the 1-pole EMA kernel (/7). >0 and the layer-normalized empirical lag curve

(ZeL:1 Se[n]/110¢ll2)n>0. The layer-wise scaling ccy = 1/]|0¢||2 prevents layer collapse by ensuring
updates remain proportional to current parameter magnitudes. By commutativity, this restricted
optimum coincides with projecting the global optimum Q¢ onto Clayer- O

D MASTER TABLE OF OPTIMIZERS

In the previous section, we have derived various types of optimizers from our convex optimization
framework. We can now register various optimizers under a single unified table. Each optimizer
corresponds to a specific choice of moment matrix M, budget constraint Q, and resulting equalizer
Q. “Param restrict” rows are feasible points in the convex programs that can either be kept and fitted
to target moments, or replaced with full closed-form solutions.

Glossary.

* Instant moment M € S¥: M = X, = E[gg '] (training) or M = sym(C) = symE[gi,g,y)]
(validation-aware)

* Dynamic moment operator M, (Laplace/z window, o > 0); frequency form M (w)

¢ Instant budgets from Section 2: Frob, Trace/Spectral, Lyap, Diag

* Dynamic budgets from Section 3: D-Frob (H;), D-Trace/Spectral, D-Lyap, D-Diag

¢ “Param restrict.” means we restrict () to a small parametric family inside the convex budget

Table 2: Optimizer Specifications: Moment and Budget Constraints

Optimizer Moment Used Budget O

GD M=% Frob: ||Q||r < & (instant)

SGD same as GD (stochastic) Frob (instant)

Momentum M, (weighted) D-Frob: |Q|lx < VB

(HB/NAG)

Nesterov My D-Frob (with predictive tap)

AdaGrad M =Xy, Diag: >, cjq; < B

RMSProp M =¥ Diag

Adam/AdamW M, (viam,v) D-Diag: 3. [|g;l|%,.., < B

Adam (val-aware) M = sym(C) or M, Diag or D-Diag

LAMB /LARS M = X per layer £ Trace per layer: Tr(Q,) < 7¢ + norm ratio
K-FAC M =3 Lyap (block-Kronecker): Tr(Q*Y) < B with Q factored
Shampoo M =Y Lyap (multi-axis Kronecker)

Newton / GN M=% Lyap with Q = H™ ! (or G71)

signSGD M = 3, {~o step budget on 6

Lion M, viam lso ON 6 (dynamic)

Polyak step M = X, + scalar loss Frob + 1D line search
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Table 3: Optimizer Equalizers and Closed Forms

Optimizer Equalizer @ Closed Form
GD Q@ = ol (isotropic) Q= n% — in practice « = 7
SGD Q=al same as GD, with M estimated from minibatch
Momentum Q(z) =nl 1715’;,1 (one-pole) Param restrict of dynamic proportional
(HB/NAG) optimum; (7, 3) fit the target
Nesterov Q(z) =nl 1_1;;571 (14271 Paran}v[restrict (lead—lag) under same budget
AdaGrad Q = diag(q) q; x T“ ¢; 1 with cum. second moment
RMSProp Q = diag(q) same as AdaGrad but c; from EMA of g?
Adam/AdamW Q(z) = diag (n%) (diagy/v +€)~'  Param restrict of D-Diag optimum
Adam (val-aware)  same as Adam Use val cross-moment for g; (and m vs g)
LAMB /LARS Qe = ayl s.t. |lug]| o |6 Water-fill over layers + isotropic in each layer
K-FAC Q= @Z(Agl ® G;l) approx Equal-power in each layer’s Fisher metric
(factored)
Shampoo Q=Q,H 1/2 Equal-power along tensor modes
Newton / GN Q=H"' Exact Lyap optimum if constraint matches
curvature
signSGD Q such that 0 = 7 sign(g) Linear objective + ||0||cc < 1= vertex
Lion 0 = nsign(m) same with smoothed signal
2
Polyak step @ = o with « from loss & grad norm closed-form o = % (local)
Table 4: Optimizer Hyperparameters and Interpretations
Optimizer Hyperparameters One-line Implication
GD 7: total power scale GD is the “proportional router” collapsed to a scalar knob
SGD 7: same Stochasticity only changes how you estimate M/, not the program
Momentum n: overall gain; 5: pole = decay Momentum is the 1-pole low-rank approximation of the dynamic
(HB/NAG) time of impulse proportional router
Nesterov 3 smoothing; v: look-ahead lead “Prediction” = a tiny lead in the equalizer—still budgeted power
AdaGrad €, window: determine c; growth AdaGrad is per-coord water-filling with costs = cumulative variance
RMSProp p: EMA window; € RMSProp = time-local AdaGrad (cheaper, reactive)
Adam/AdamW n: scale; 31: low-pass pole; 32: sets  Adam = diagonal dynamic optimizer: per-coord water-filling times a 1-

Adam (val-aware)
LAMB /LARS
K-FAC

Shampoo

Newton / GN
signSGD

Lion

Polyak step

Costs ¢j ~ vj
same

trust ratio [|0¢]|/||mel|
damping A\, update period
per-axis damping, period
trust-region radius

7: box size

B

none beyond window

pole low-pass

Simply switching M to sym(C) turns Adam into a val-aware power
allocator

LAMB/LARS = layer-wise trace budget + norm normalization (compute-
stable water-filling)

K-FAC = structured Lyap equalization = curvature-aware, block-wise
Shampoo = multi-axis equal-power (richer than K-FAC, costlier)

Newton = max power under curvature budget; best when Hessian is right
signSGD = L-0o trust-region maximizer; robust, but discards magnitude
info

Lion = L-co budget on smoothed signal; ultra-aggressive quantized
equalizer

Polyak = Frob program with on-the-fly o estimate (local curvature)

E ALGORITHM

For completness, we provide a realizable algorithm for calculating the optimal SGD+Momentum
and Adam, as proved in Section 2 and Section 3 of the main manuscript.
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Algorithm 1 Optimal SGD+Momentum (3*, n*) from gradient history
Require: Window length T', max lag K < T — 1, EMA decay p € (0,1), budget B > 0

1: Initialize p < 0, S[n] <~ 0forn =0,..., K, buffer < (), d < parameter dimension

2: for each calibration step ¢ do

3: g+ < flatten current Vo L

4 peppt(1-pge

5: Gt < Gt — [

6: push g, into buffer (keep last T")

7: forn =0,..., K with ¢ — n in buffer do

8: Sn (Gt Gt—n) > scalar dot product
9: Sn] < pSn]+ (1 — p)s,

10: end for
11: J(B) = \/ 1,;32 'Zf:o B"S[n]

12: B* < argmaxge(o,1) J(8) > 1-D search (e.g., bounded line search)
. * B(1-(8*)?)

13: n < SVai—pn)

14: end for

15: return (5*,n*)

Algorithm 2 Optimal Adam (57, 33, n*) from gradient history

Require: Window length 7', max lag K < T — 1, EMA decay p € (0,1), budget B > 0
1: Initialize p < 0, v; < 0 for all j, Ty[n] < 0 forn = 0,..., K, buffer < (), d <+ parameter
dimension
2: for each calibration step ¢ do
3 g < flatten current Vo L
4 pepp+(1-pge
5: Gt < Gt — [
6.
7
8

push g, into buffer (keep last T")
for each coordinate j do
v+ po; + (1~ )G,

9: Cj(—\/QTj

10: end for

11: forn =0,..., K with t — n in buffer do

12: Ti[n] < 3>, g”i% > coordinate-wise weighted dot product
13: end for

14 Wi+, %

15: a(ﬁl,ﬁg) 4/ 1;[//312

16 J(Br,B) = a(Br, B2) Yon g BF T[]
17: (BT, B3) < argmaxg, g,e(0,1) J (81, B2) > 2-D search
18: ,',]* <_ \/EG(BIBQ)

1-5;
19: end for
20: return (3%, 35, n*%)
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