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Abstract

Action recognition from egocentric videos remains challenging due to issues like partial
visibility of the user and abrupt camera movements. To address these challenges, we
propose a multimodal approach combining vision data from egocentric videos with motion
data from head-mounted sensors to recognize everyday office activities like typing on a
keyboard, reading a document, or drinking from a mug. To evaluate our approach, we
used a dataset of egocentric videos and sensor readings from 17 subjects performing these
activities. Our multimodal model fuses image features extracted from videos using deep
convolutional networks with motion features from eye gaze, hand tracking, and head pose
sensors. The fused representation is used to train a classifier that distinguishes between 14
activities. Our approach achieves an F1 score of 84.36%, outperforming unimodal – vision-
only and sensor-only – baselines by up to 33 percentage points. The results demonstrate
that body tracking technology can partly compensate for the limitations of egocentric
videos, enabling more accurate activity recognition performance by 1 – 2 percentage points.
The inclusion of eye gaze data enhances the classification accuracy for actions that entail
precise eye movements, such as reading and using a phone.

Keywords: Multimodal Learning, Action Recognition, Deep Learning, Egocentric Videos,
Eye Gaze, Hand Tracking, Head Pose, Fusion Strategy

1. Introduction

Egocentric action recognition (EAR) refers to the process of classifying human actions from
an egocentric point of view, i.e., the person wearing the camera carries out the action Núñez-
Marcos et al. (2022). EAR is a fundamental feature in robotics or AR systems to enable
downstream applications, such as contextual recommendations or reminders. By analyzing
the user’s past data, the egocentric device can extract their preferences and offer personal
recommendations for taking breaks, the type of work activity to perform, the type of snack
to eat, and more.

Vision data from an egocentric point of view can be very dynamic and often unpre-
dictable, presenting a higher level of complexity when compared to standard action recog-
nition from fixed cameras Plizzari et al. (2023). The limited field of view of wearable devices
poses a challenge for activity recognition since users are largely out of frame, resulting in
partial observability of their body, often limited to hand motion. Moreover, sharp move-
ments in the videos are caused by the natural head motion of the user, possibly producing
fast changes in the image and motion blur issues Singh et al. (2016). To address these
challenges, we propose using complementary sensor cues to compensate for the limitations
of the visual modality. This paper focuses on leveraging hand tracking, head pose, and eye
gaze data in addition to videos to infer actions in an office setting. Modern wearable devices
with integrated sensors enable estimating these data by tracking the user’s motion.
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To this goal, we propose a multimodal learning approach for egocentric action recogni-
tion that utilizes information from not only videos but also motion data. To fuse the two
data streams, we propose using a decision-level fusion strategy with element-wise multi-
plication, which outperforms layer-level fusion strategies by 7 percentage points. We also
studied the specific contribution of gaze tracking on the final results and found that eye gaze
data increases the classification performance of actions involving fine-grained eye movements
such as reading and using a phone). To evaluate our approach, we use a dataset collected
from 17 participants while performing 14 different actions at an office desk.

2. Related Work

Traditional action recognition uses third-person views from static or handheld cameras.
Egocentric action recognition (EAR) has gained significant research interest in recent years,
thanks to the proliferation of affordable wearables, which has enabled the collection of
large behavioral datasets for analysis. Advances in wearable technology allow continuous
and unobtrusive data gathering, enabling real-time action recognition. The emergence of
egocentric wearables represents a paradigm shift in action recognition, transitioning the
perspective from third- to first-person views Plizzari et al. (2023). Several solutions have
been proposed to tackle the challenge of egocentric action recognition. Such approaches
can be classified into object-based, motion-based, and hybrid methods Núñez-Marcos et al.
(2022); Bandini and Zariffa (2020).

Object-based methods often rely on the prior estimation of user and object positions,
and a further processing step aimed at classifying a user’s action based on these. Objects
are often classified as active, directly and currently used or manipulated by the user, and
inactive, present in the scene but irrelevant to the current action Nguyen et al. (2016).
For example, Liu et al. (2020) proposes a method based on a hand segmentation system
to improve object localization, stressing the contribution of hand motion in active object
detection. In another, case a primary region is identified based on the detection of the
user’s body, and secondary scenes are populated by localizing objects around it Gkioxari
et al. (2015) Active and passive objects can also be detected depending on their appearance,
based on the assumption that an object being used will look different from a passive one
Pirsiavash and Ramanan (2012); Matsuo et al. (2014).

Motion-based methods traditionally rely on eye-, hand-, and body-tracking. While
eye motion can be used in combination with object detection to create a Region Of Inter-
est (ROI) Fathi et al. (2011, 2012), it can also be directly linked to a specific action for
classification Yu and Ballard (2002). In the same way, hand motion can be used for action
recognition as a standalone feature, without exploiting info from object detection Bambach
et al. (2015). Cai et al. (2018) and Garcia-Hernando et al. (2018) aim at identifying ac-
tions based on hand-object interaction from hand tracking, and study the efficiency of a
set of different hand features for this task. Another feature commonly utilized in EAR,
ego-motion, refers to the motion generated by the user’s head motion while looking at the
scene from a first-person view. Ego-motion has been explored in this context both alone Ki-
tani et al. (2011) and in combination with eye tracking Ogaki et al. (2012). Several studies
have combined visual features with motion or gaze features for egocentric action recog-
nition Spriggs et al. (2009); Shiga et al. (2014); Singh et al. (2016). For example, Shiga
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et al. (2014) recognized six daily actions (watching, writing, reading, typing, chatting, walk-
ing) using egocentric images and gaze motion. They trained separate SVM classifiers for
each modality and fused the probability outputs to obtain the final prediction. Similarly,
Singh et al. (2016) combined visual and motion features for first-person action recognition.
Nguyen et al. (2016) reviewed methods for the recognition of activities in daily life using
egocentric vision. Bandini and Zariffa (2020) reviewed approaches that analyzed the hands
in egocentric vision.

Hybrid methods tend to combine object-based and motion-based features to improve
the accuracy of action recognition. A popular architecture, in this context, is the two-stream
architecture Simonyan and Zisserman (2014). In this case, vision and motion features are
embedded into the same space by feeding twin neural networks with RGB and Optic Flow
(OF) data. It has been shown that feeding OF info into an estimator is more effective than
expecting the neural network to figure it out itself. On top of the two-stream info, more
channels can be added to improve estimation such as depth Tang et al. (2018) or object
features Furnari and Farinella (2019). These works demonstrate that multimodal fusion of
visual and non-visual sensor data can improve egocentric action recognition over unimodal
approaches. The additional modalities help compensate for the limitations of egocentric
videos by providing complementary information about the user’s actions.

Previously, the work in Szegedy et al. (2014) has taken up the task of egocentric activity
recognition in an office setting. Activities and actions represent different semantic levels
as discussed by Nguyen et al. (2016). Indeed, ’actions’ are atomic and do not last over
longer periods of time (seconds to minutes). Further, in our work, actions only involve hand-
object interactions, while most datasets contain activities where no objects are involved. For
instance, Bock et al. (2023) introduced the WEAR dataset, which contains egocentric vision
and inertial-based human activity recognition. WEAR contains data from 18 participants
performing 18 different workout activities at 10 outdoor locations. Tadesse et al. (2021)
introduce the BON dataset, which has been collected in an office setting, similar to ours.
The dataset includes activities such as, e.g., walking, chatting that do not require object
interactions. We build upon this work and use a dataset that includes hand-object actions.

3. Methods

In this section, we provide a detailed overview of the dataset used to assess the efficacy of
our multimodal methodology. We further show the steps undertaken for data cleaning and
preprocessing, and the different machine learning techniques experimented on during the
study.

3.1. Dataset and Benchmark Tasks

To evaluate our approach, we used a dataset collected from 17 participants (3 females and
14 males). During the data collection, participants sat at an office desk, wore the Magic
Leap 2 device1, and performed 14 actions. The Magic Leap 2 device is an AR device that
collects egocentric videos and motion data. Egocentric videos refer to video recordings
from the front-facing grayscale camera. Motion data, on the other hand, consists of 3D

1. https://www.magicleap.com/magic-leap-2
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hand(s) keypoints from the egocentric camera, eye gaze target point in 3D space, and
quaternion representation for the head pose. The videos were collected at 30fps and they
include recordings of the desk, the objects on it, and the hands, if available in the view.
The tracking data was collected at a sampling frequency of 60fps. Participants performed
14 actions: doing nothing, typing on keyboard, using mouse, using laptop, using phone,
drinking from mug, drinking from glass, holding bottle, eating snack, eating yogurt, eating
fruit, reading, taking notes, and using tablet. They performed each action for 30 seconds and
were asked to act as naturally as possible. The experimenter kept track of the timestamp
and type of action being performed. We defined a multiclass classification task with the
goal of determining the type of action performed by the subject using the video recordings,
hand keypoints, eye gaze, and head pose data.

Figure 1: Example of the data collection setup during the using mouse action (left) and
the device used to collect the data (right).

Before deciding to use this dataset, we first explored existing multimodal datasets in the
literature for egocentric action recognition. Table 1 shows an overview of similar datasets.
The dataset used in this work is the only one with both egocentric video recordings, as well
as eye gaze, hand pose, and head pose, which allows us to evaluate our multimodal learning
approach and investigate the impact of eye gaze in egocentric action recognition.

3.2. Data Preprocessing

Hand-tracking data. The hand tracking data consists of 22 keypoints for each hand,
which refer to 4 joint keypoints for each finger (in total 20 keypoints), 1 keypoint for the
hand wrist, and 1 keypoint for the hand center. Each keypoint is a 3D coordinate. For both
hands, we have in total 44 key points or 132 features. The hand center position is computed
as the mean of other keypoints. The 3D hand keypoints are represented with respect to
the headset’s coordinate frame, and each user has a different hand size. For these reasons,
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Dataset Modality Classes Subjects Setting

BON
Tadesse et al. (2021)

RGB videos 21 25 Office

H2O
Kwon et al. (2021)

Object Mesh
Pose
3D point cloud

36 6 Kitchen

FHPA
Garcia-Hernando et al. (2018)

RGB-D videos
Hand pose
Object pose

45 6
Kitchen
Office
Social

HOI4D
Liu et al. (2022)

RGB-D videos 800 4 Indoor

ARCTIC
Fan et al. (2023)

RGB-D videos
Hand mesh
Object mesh

11 10 Indoor

Our dataset

Grayscale videos
Eye gaze
Hand pose
Head pose

14 17 Office

Table 1: Overview of the egocentric datasets with hands and objects involved in
the field of view. The dataset we use in this work has a higher number of
modalities and has been collected from a larger number of participants.

we normalized the 3D keypoints across different subjects and experiments, to make them
invariant to translation, rotation, and scale. Here we explain the three normalization steps:

• Translation invariance – We first center the head-relative hand keypoints with respect
to the hand wrist, and set it to be the space’s origin.

• Rotation invariance – We then rotate each hand such that: the vector connecting
the hand wrist and the middle finger metacarpal joint aligns with the global vertical
axis, and the vector connecting the index finger metacarpal joint and the little finger
metacarpal joint aligns with the global horizontal axis.

• Scale invariance – Finally, we normalize the bone lengths with respect to the length
of the vector connecting the hand wrist and middle finger metacarpal joint.

Video streams. We remove the data frames where none of the user’s hands were present
in the field of view using the hand tracking data to mark the presence of hands in the frame.

3.3. Data Synchronization

Data collection involving multiple modalities is often a challenging task. This is first because
the acquisition of multiple sources of data needs to be managed simultaneously. Then the
data from each input source must be consistent with other sources. To collect the data for
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hand, eye gaze, and head pose tracking, we used the internal APIs of Magic Leap. Given
that the sampling frequency for egocentric videos and motion data was not the same and the
startup times for each module responsible for collecting each modality type were different,
the collected data were misaligned. To resolve this issue we synchronize the data sources
such that - for each image frame, we have a corresponding frame for the motion data at
the same time instant. Since the motion data collection runs at double the frequency of
the camera capture, a naive strategy would be to resample frames from the motion data
such that we drop every second frame. However, due to startup time discrepancies, we
will still have issues. Hence, for each frame in the image data, we pick the most recently
collected frame of the motion data, i.e. temporally closest and earlier than the camera
frame timestamp.

3.4. Data Augmentation

To increase the robustness and generalization of our approach to new, unseen data, we apply
data augmentation techniques on the image frames used for training. Given an image x, two
corresponding views x1, and x2 are created by applying the random transformation t ∈ T ,
where T includes random rotation and random flip transformations. We applied random
rotation, between −30◦ to 30◦, perpendicular to the image plane, as it aligns with the
possible amount of head tilt users have while wearing the glasses. We performed random
flip augmentation around the vertical axis to make the learning process invariant to the
user’s handedness.

4. Experiments

In this section, we present our multimodal approach for egocentric action recognition using
videos, eye gaze, head pose, and hand tracking data.

4.1. Unimodal Classification: Inception-v3 network

To process vision data, we use the Inception-v3 network proposed by Szegedy et al. (2014)
network because it has been shown to be more efficient and accurate than similar archi-
tectures. Figure 2 presents an overview of the Inception-v3 architecture. Inception-v3 was
trained on ImageNet dataset Deng et al. (2009), which contains 1000 classes of commonly
used objects. To learn the features more specific to our scenario, we re-train the Inception-
v3 network to fine-tune it to our dataset: we modify the number of output neurons in the
last layer to 14, as the number of classes in our dataset.

4.2. Unimodal Classification: KeypointNet

To investigate the performance of motion data for action recognition, we employed a 3
layer fully-connected neural network (FCNN) model. Figure 3 shows the architecture of the
model, which we refer to as KeypointNet. The network takes as input a 139-dimensional
tensor when the three groups of data, eye gaze, hand tracking and head pose, are used.
This tensor consists of 3D points for 44 keypoints of two hands, 3D point of convergence
for eye gaze vectors and a 4 dimensions of the head pose quaternions. The raw data are
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Figure 2: Inception-v3: Architecture adapted from Chang et al. (2019).

processed with a batch normalization layer and with a dropout rate of 0.8. The KeypointNet
consists of three layers, each with 512, 256 and 128 neurons, respectively. These layers learn
representation from raw motion data. For each layer, we use ReLU activation function. The
output of KeypointNet is provided by a softmax layer. We train the model on the 14 classes
of actions, which we define as a multiclass classification task.

Figure 3: Overview of the architecture of KeypointNet, which takes as input eye gaze data
only or in combination with 3D hand keypoints and head pose.

4.3. Multimodal Classification: MixNet

To fuse the two modalities, we first discard the classifiers KeypointNet and Inception-v3
network and combine the two separate pre-trained modality-specific modules. We then opti-
mize a single loss over the entire merged network end-to-end. Figure 4 presents an overview
of the MixNet model architecture proposed in this work. To obtain a final classification
from the two unimodal networks, we investigate two possible types of fusion strategies:
Layer-Level Fusion and Decision-Level Fusion described as follows.
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Figure 4: Architecture of MixNet that takes as input the vision (e.g., grayscale images)
and motion data (e.g., hand tracking, eye gaze, and head pose). First, we pre-
train the modality-specific encoders and classifiers independently. The classifier’s
output were then either concatenated or element-wise multiplied. The combined
representations are then passed as input to a fully connected neural network.

Layer-Level Fusion. By design, the Inception-v3 based classifier has an output of 2048-
dimensional tensor, before it is fed to the fully connected output layer. Similarly, Key-
pointNet has a penultimate layer of size 128. In this experiment, we treat these tensors as
the learned features by each unimodal model. Given that the latent space dimensions of
the two networks are different, we downsample the 2048-dimensional feature to 128 via a
trainable linear layer of neurons to keep the dimensions the same.

Decision-Level Fusion. Each unimodal classifier generated a 14-dimensional tensor with
probabilities of the sample belonging to one of the 14 classes. We considered each output
tensor as the learned feature and passed it forward for fusion. Since the probabilities for
each unimodal model were in the same range (e.g., [0, 1]), we did not perform further pro-
cessing on these values. To obtain a final decision, we investigated two possible approaches:
concatenation and multiplication. The first group of experiments refers to the combination
of probabilities obtained from each unimodal by simple concatenation. This technique has
been used in prior literature, showing promising results Kwon et al. (2018); Jiang et al.
(2020); Verma et al. (2018). Multiplication refers to the combination of probabilities ob-
tained from unimodal networks by element-wise multiplication. We model KeypointNet as
a multilabel, multiclass classifier because a particular body tracking configuration could be
similar for multiple actions.

4.4. Evaluation

Procedure. To evaluate the performance of the multiclass classification approach, we ran-
domly split the dataset into 90% for training and 10% for test sets using the participant
identifier. We report the final results on the test set. Out of 17 subjects, we use the data
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from 15 subjects for training the models, and the remaining data from 2 subjects for test-
ing. We report the weighted F1-score, which refers to the average F1-score weighted by
the number of instances for each class. We compare the performance of our approach with
models using only one modality to test the advantages of using a multimodal approach for
egocentric action recognition. With this baseline, we also investigated the impact of eye
gaze and other data types for action recognition.

5. Results

In this section, we report the results of the multimodal classification approach and compare
it to the unimodal approaches. We then investigate the impact of layer-level and decision-
level fusion strategies on the final classification accuracy. We also discuss the impact of eye
gaze features on egocentric action recognition.

5.1. Multimodal Learning Improves Egocentric Action Recognition

Table 2 shows the F1-score for the multimodal and unimodal networks investigated in this
work. From the table, we observe that the results of both multimodal and unimodal net-
works are significantly higher than a random guess baseline. The model that uses eye
gaze, hand tracking, and head pose features in input (KeypointNet) achieves an F1 score
of 50.03%, and the one that uses vision data in input (ImageNet) achieves an F1 score of
82.83%. The highest F1 scores are obtained using the MixNet model proposed in this paper,
which takes as input both data streams. In particular, the MixNet recognizes activities with
an F1 score of 84.36%, which is ∼ 2% higher than the ImageNet and 33 percentage points
higher than the KeypointNet. These results imply that the combination of information
carried by the two input modalities are able to explain to a deeper extent a user’s action.
The results of KeypointNet using motion data alone are the lowest. We believe this low
performance is due to highly similar data points that can have different labels. For instance,
head pose and eye tracking might be very similar when typing on a keyboard or using a
mouse. However, this data still contributes to the MixNet to achieve the highest perfor-
mance. Figure 5 shows a few examples of the correctly predicted activities (e.g., drink glass,
use mouse, type keyboard, use tablet) by MixNet in the input2.

Method Model F1-score

Unimodal KeypointNet 50.03
ImageNet 82.83

Multimodal MixNet (Ours) 84.36

Random Guess - 7.14

Table 2: Comparison of performance of the multimodal and unimodal approaches.

2. Note to the reviewers, we added a demo of the performance of our approach in this link.
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Figure 5: Example of activities classified correctly by MixNet.

5.2. Decision-Level Fusion Outperforms Layer-Level Fusion for Egocentric
Action Recognition

We explore the impact of fusion level and fusion method on the overall task of egocentric
action recognition. Table 3 presents the F1-score of MixNet using decision-level and layer-
level fusion strategies for egocentric action recognition, described in Section 4.3. From the
table, we observe that the highest F1 scores are obtained using the MixNet model that
combines vision and motion data using the decision-level fusion strategy. The results us-
ing a decision-level fusion strategy are higher by 7 percentage points in comparison to a
layer-level strategy. In particular, the F1 score of MixNet with decision-level fusion and con-
catenation of last layer outputs is 83.56%, and with decision-level fusion and element-wise
multiplication of the last layer output is 84.36%. In contrast, the F1 scores of MixNet with
layer-level fusion are 76.2% and 77.13% using concatenation or multiplication, respectively.
Note that the combination of decision-level fusion and element-wise multiplication achieves
the highest result so far. While the comparison between results obtained using different
fusion methods is consistent for both fusion-level strategies, they differ by one percentage
point.

Fusion Level Fusion Method F1-score

Layer-Level Concatenation 76.2
Layer-Level Multiplication 77.13

Decision-Level Concatenation 83.56
Decision-Level Multiplication 84.36

Table 3: Comparison of the performance for MixNet using different fusion strategies.

5.3. Eye Gaze Features Improve Egocentric Action Recognition

We then investigate the impact of eye gaze features on egocentric action recognition. Table
4 presents the average F1-score of the KeypointNet and MixNet using eye gaze features as
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Model F1-score (without Gaze) F1-score (with Gaze)

KeypointNet 48.5 50.03
MixNet 83.33 84.36

Table 4: Comparison of the performance of KeypointNet and MixNet using eye gaze target
as an input feature

.

Figure 6: F1-score of the MixNet model
without eye gaze as input and
LOSO validation procedure.

Figure 7: F1-score for MixNet model with
eye gaze as input and LOSO
evaluation procedure.

input or not. In general, the eye gaze features increase the performance of KeypointNet
and MixNet by 1-2 percentage points. Figures 6 and 7 present the confusion matrix of
MixNet model with or without eye gaze features as input. We observe that overall the
classification performance for the majority of activities remains similar hinting at the low
impact of eye gaze data for such activities (e.g., do nothing, eat yoghurt). However, the
MixNet increases the classification performance for the read action by 4 percentage points
and use phone activities by 6 percentage points. We believe the contribution of eye gaze
features for recognizing these activities is crucial as both these activities require the user’s
attention and fine-grained, frequent eye movements.

6. Conclusions

In this work, we introduced MixNet, a multimodal deep neural network that incorporates
motion representations – derived from eye gaze, hand tracking, and head pose – and image
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representations – derived from egocentric video recording – data for action recognition. We
evaluated our approach on a dataset collected from 17 participants in an office setting while
they performed 14 actions – doing nothing, typing on keyboard, using mouse, using laptop,
using phone, drinking from mug, drinking from glass, holding bottle, eating snack, eating
yogurt, eating fruit, reading, taking notes, and using tablet – commonly performed while
working. Our results show that image-based approaches can benefit from data for egocentric
action recognition. Indeed, the multimodal model (MixNet) outperforms the tracking-based
unimodal model (KeypointNet) by 33 percentage points, and the model that takes image
data only (Inception-v3) by up to 2 percentage points. Further, the decision-level fusion
strategy performs better than the layer-level strategy, hinting at the need to employ such
strategies in similar benchmarks in the future. Lastly, we find that eye gaze features increase
the performance of activities that require fine-grained eye movements, such as reading and
using the phone, but not for other activities.

Ethics. MixNet is built upon a dataset that contains video recordings and motion data
of 17 subjects. Participants of the study were informed about the type of data collected
before volunteering to be part of the study. They signed an informed consent agreeing to
participate in the experiment and to share their data for research purposes. The dataset
does not contain any personally identifiable information. The video recordings captured
only participants’ hands.

Limitations and Future work. An important limitation of our work is that we evaluate
our approach in a controlled setting, thus neglecting the potential data quality degradation
by users’ free movements (e.g., looking away from the desk). However, we asked the users
to perform the actions as naturally as possible. In addition, our method excludes frames
without any hands in the field of view, enabling us to pause the inference process during such
occurrences. Further, the scope of actions we investigated might not be comprehensive. We
believe that adding a larger and more diverse set of actions would not only further increase
the capabilities of MixNet, but also cover actions performed less frequently in such scenarios.
While the accuracy of MixNet was the highest, the current version of the model keeps the
unimodal classifiers frozen. Experimenting with the number of trainable parameters is an
interesting direction for future work. Alternatively, models such as EfficentNet Tan and Le
(2020) andMobileNet v2 Sandler et al. (2019), with fewer learnable parameters, hence, lower
inference time can be explored. For the motion data-based classification, there are potential
branches to continue the work. Firstly, the feature engineering can be redesigned to narrow
down to the most statistically significant feature set for the classification task. Secondly,
classifier MLP architecture can be reconsidered to include self-attention Sudhakaran and
Lanz (2018) among different sources of data (hand tracking, eye gaze, and head pose).
The multimodal classification task is a contemporary research challenge and hence crucial
aspects such as data ingestion, feature engineering, model selection, and evaluation methods
are subject to experiments and modifications. While we experimented with two different
strategies for feature extraction and fusion, various methods such as self-attention, cross-
modal fusion, and classifier ensemble can be explored as well. The MixNet model can be
extended for additional modalities such as ambient sound and user speech to increase the
performance for specific activities such as eating a fruit and drinking from a bottle.
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Implications. In this paper, we show that using a multimodal approach it is possible
to recognize with high accuracy activities commonly performed in an office scenario from
egocentric video recordings, eye gaze, hand tracking, and head pose data. Our model could
be integrated into head-mounted devices for AR/VR applications in an office setting or other
systems aiming to promote knowledge workers’ productivity and well-being. For instance,
when the model detects an action where the user interacts with an object (e.g., laptop,
keyboard, phone, mug), the same object would appear in a VR setting. Another example
application of the model would be to provide the user a suggestion to take a break might be
generated when the model recognizes that the user has been reading for several consecutive
windows Kimani et al. (2019).
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