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Abstract

Modern AI systems struggle most in environments where reliability is critical-
scenes with smoke, poor visibility, and structural deformation. Each year, tens of
thousands of firefighters are injured on duty, often due to breakdowns in situational
perception [35]. We introduce Fire360, a benchmark for evaluating perception
and reasoning in safety-critical firefighting scenarios. The dataset includes 228
360◦ videos from professional training sessions under diverse conditions (e.g., low
light, thermal distortion), annotated with action segments, object locations, and
degradation metadata. Fire360 supports five tasks: Visual Question Answering,
Temporal Action Captioning, Object Localization, Safety-Critical Reasoning, and
Transformed Object Retrieval (TOR). TOR tests whether models can match
pristine exemplars to fire-damaged counterparts in unpaired scenes, evaluating
episodic memory under irreversible visual transformations. While human experts
achieve 83.5% on TOR, models like GPT-4o lag significantly, exposing failures
in reasoning under degradation. By releasing Fire360 and its evaluation suite, we
aim to advance models that not only see, but also remember, reason, and act under
uncertainty. The dataset is available at https://uofi.box.com/v/fire360dataset.

1 Introduction

Can AI save lives when smoke blinds even the bravest first responders? Firefighters operate amid
dense smoke, collapsing structures, and thermal distortion-conditions where perception failures carry
life-threatening consequences. In 2023 alone, U.S. firefighters sustained 63,175 injuries, with 65,650
recorded the year prior [35]. These high-risk environments demand not only robust perception, but
also procedural awareness, temporal reasoning, and resilience to visual degradation. Yet current
AI systems-especially those trained solely on text or synthetic imagery-lack the grounding needed
to operate in such physically chaotic environments. Achieving human-level reliability requires
understanding the real world-and that understanding is hard.

Human responders rely on procedural memory and causal reasoning to locate tools, assess hazards,
and identify charred equipment under limited visibility. Vision-language models (VLMs), however,
depend on intact features and degrade under occlusion or distortion. Existing research focuses on sim-
ple scenes and isolated objects, with three critical limitations: it relies on clean imagery unsuitable for
low-visibility emergencies [21], uses synthetic simulations that lack real-world complexity [58], and
overlooks the temporal reasoning and aggregation of knowledge needed to track object change [18].

However, even accurate perception does not guarantee operational understanding. Transformation-
invariant episodic memory represents a critical capability gap in safety-critical environments.
Firefighters routinely recognize degraded equipment such as melted helmets, charred hoses, or smoke-
obscured tools by maintaining object identity across irreversible physical transformations. Current
AI systems lack this capacity, failing once visual features deform beyond recognition. This motivates
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Figure 1: Example frames from Fire360, showcasing diverse operational settings and environmental
conditions: (top row) outdoor firefighting scenes in day and night conditions, (bottom row) indoor
low-visibility environments with dense smoke and limited lighting.

our Transformed Object Retrieval (TOR) task (Figure 6), which evaluates whether models can
retrieve degraded counterparts of pristine exemplars without spatial or temporal continuity.

To address these gaps, we introduce Fire360, a benchmark built from 228 professionally recorded
360◦ firefighter training videos captured across day/night and indoor/outdoor conditions with high
visual degradation. Each video follows nationally standardized drills [34], with certified instructors
verifying annotations for actions, objects, and environments under realistic operational settings.
Fire360 supports five tasks that probe distinct model competencies: Visual Question Answering (spa-
tial reasoning), Temporal Action Captioning (temporal grounding), Object Localization (degradation
robustness), Safety-Critical Reasoning (procedural compliance), and Transformed Object Retrieval
(TOR), which evaluates recognition under irreversible object deformation.

In TOR, models must match a clean object exemplar to its fire-damaged counterpart-melted, occluded,
or deformed-in an unpaired post-fire scene, meaning the reference and retrieval images come from
different scenes with no temporal or spatial continuity, testing memory, material reasoning, and spatial
grounding. Human experts achieve 83.5% accuracy; GPT-4o scores 39.8%. In VQA, Qwen-VL
and LLaVA-1.5 reach 47.2% and 50.3% accuracy, while human performance remains at 91.4%. We
benchmark CLIP (ViT-B/32) [41], BLIP-2 (OPT-6.7B) [25], GLaMM-7B [5], Grounding DINO
(v1) [29], GPT-4o [37], Qwen-VL [2], and LLaVA-v1.5-13B [28], and observe consistent degradation-
induced failures across tasks. By releasing Fire360’s dataset, annotations, and toolkit, we lay the
foundation for models that reason, remember, and act reliably in real-world high-risk operational
environments.

Our main contributions can be summarized as follows:

• We introduce Fire360, a large-scale benchmark built from 228 professionally recorded 360◦

firefighter training videos captured under diverse real-world conditions (e.g., smoke, blur, low
light), with certified expert-verified annotations.

• We define five evaluation tasks to isolate key reasoning failures in VLMs under environmental
degradation.

• We propose TOR, a novel retrieval task requiring models to match pristine object exemplars to their
fire-damaged counterparts in unpaired scenes. TOR evaluates transformation-invariant recognition
and exposes a 43.7% performance gap between humans and state-of-the-art models, revealing
fundamental failures in maintaining object identity under irreversible physical degradation.

2 Related Work

Fire360 intersects several active areas of research, including safety-critical AI systems, panoramic
video understanding, robustness under degradation, and episodic memory in vision. We summarize
the most relevant directions.
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Table 1: Comparison with publicly available video datasets. ✓: Available, ✗: Not available.
Dataset Third-Person 360◦ Egocentric Video Audio Real-world Safety-Critical Duration (s) Public

Ego4D [16] ✗ ✗ ✓ ✓ ✓ ✓ ✗ 10,800,000 ✓
EPIC-Kitchens [9] ✗ ✗ ✓ ✓ ✗ ✓ ✗ 712,800 ✓
360+x [4] ✓ ✓ ✓ ✓ ✓ ✗ ✗ 244,800 ✓
HACS++ [63] ✓ ✗ ✗ ✓ ✗ ✗ ✗ 500,400 ✓
Fire360 (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 180,000 ✓

AI for Firefighting and Safety-Critical Domains. Simulated environments such as FLAIM [13]
and VR-based systems [44, 42, 58, 52] approximate fire scenarios using synthetic assets. Datasets
like ACT360 [49] (55 videos, not public) introduce 360◦ action detection but omit protocol modeling,
while FASDD [55], DFS [57], D-Fire [53], and Landsat-based systems [10, 12, 64] focus on fire clas-
sification without human-agent interaction. Fire360 addresses this gap by capturing real firefighting
procedures, safety violations, and degradation effects in annotated 360◦ video. Recent panoramic
datasets from NIST [36] further motivate the need for operational benchmarks grounded in real-world
conditions.

Panoramic and Egocentric Video Understanding. Datasets like 360-Indoor [7], KITTI-360 [26],
and 360+x [4] explore panoramic tasks in static or low-risk settings. Egocentric datasets such as
Ego4D [16], EPIC-Kitchens [9], and EgoZAR [40] focus on manipulation and routine task recognition.
Fire360 differs by targeting high-stakes, degraded environments and supporting tasks like Safety
Reasoning and Transformed Object Retrieval. VIEW360 [47] similarly leverages panoramic views
but is limited to anomaly detection in accessibility contexts. Table 1 contextualizes Fire360 within this
landscape, highlighting our unique combination of 360◦ capture, safety-critical focus, and systematic
degradation modeling.

Robust Perception and Memory-Augmented Vision. Recent surveys and methods highlight
adversarial training, sparse attacks, and spatio-temporal augmentation as key techniques for robust
video perception [50, 33, 61]. Fire360 contributes by offering real-world degradation (e.g., smoke,
occlusion) rather than synthetic perturbations. Memory-augmented models [51, 30, 56] provide
frameworks for episodic retrieval and reasoning, which Fire360 operationalizes in safety-critical
scenarios via the TOR task.

Transformation-Aware Retrieval and World Modeling. Fire360 builds on retrieval datasets
addressing object state change [43, 22, 23] but uniquely tests recovery under irreversible physical
degradation. TOR requires models to maintain identity across scenes without continuity, aligning
with recent interest in learned world models and episodic prediction [18, 45, 11]. Section 5 introduces
our Transformed Object Retrieval (TOR) task, which addresses these limitations by requiring retrieval
across unpaired, fire-transformed scenes where objects undergo irreversible material degradation.

3 The Fire360 Dataset

Overview. Fire360 contains 228 professionally recorded emergency response videos totaling 180,000
seconds (50 hours), captured at one of the oldest firefighter training institutes in North America
under strict safety and privacy protocols. Each recording documents real drills conducted under
standardized national procedures and supervised by 3 to 6 certified instructors. All footage excludes
personal identifiers and focuses solely on team-based operational scenarios. Video was captured using
a Ricoh Theta V 360◦ camera at 3840×1920 resolution and 60 frames per second, with spherical
imagery internally stitched into equirectangular panoramas. For outdoor scenes, the 360° camera was
tripod-mounted at average human eye level (∼5 feet). For indoor environments where the tripod could
not withstand high temperatures, the camera was either helmet-mounted or handheld by firefighters,
resulting in egocentric or wearable-view perspectives. Temporally aligned audio is included in the
dataset but is not used in this release.

To support a range of modeling assumptions, Fire360 also provides rectilinear renderings that
approximate the field-of-view of conventional 2D cameras. These projections facilitate research into
spatial grounding, distortion-aware perception, and compatibility with pipelines that do not natively
support 360◦ formats. Some videos are stored in 2D format to highlight complex firefighting actions
in zoomed detail, but retain metadata for reconstruction into 360◦ views. Figure 2 illustrates the
dual-view support.
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Figure 2: Viewpoint representations derived from Fire360’s 360◦ footage. (a) dual fisheye, (b)
stitched equirectangular, and (c) rectilinear front view.

Table 2: Object and action categories identified as safety-critical by instructors and researchers from
the partnering firefighter training institute.

Object Priority Rationale

Civilian High Rescue-critical
Fire High Threat recognition
Smoke High Occlusion proxy
Gas Mask High PPE compliance
Responder Low Scene context
Helmet Low Supplementary gear

Action Priority Rationale

Carrying a civilian High Rescue decision point
Operating a hose High Suppression tactic
Breaking entry High Access maneuver
Climbing ladder Medium Structural traversal
Donning gear Medium Readiness cue
Driving vehicle Low Peripheral context

Consent and Ethical Review. All videos and annotations included in Fire360 have been reviewed
and approved for public research use by certified instructors and institutional leads at the partnering
firefighter training facility. All recordings document professional drills conducted with full knowledge
and consent of participating personnel. Researchers verified that no personally identifiable information
(PII) is present in the footage, and all individuals appear in professional roles with protective gear.
The collaborating instructors endorsed the dataset’s release, recognizing its value both to the AI
research community and to the broader firefighter ecosystem. With over one million active firefighters
in the United States alone [35], the instructors emphasized that tools built using Fire360 and other
similar datasets can directly support training, decision support, and situational awareness in high-risk
environments.

Content Distribution and Scene Diversity. Fire360 includes both indoor rescue and outdoor
suppression scenarios. Outdoor scenes were captured during daytime and nighttime operations across
the summer and winter months, reflecting seasonal diversity. Indoor recordings capture standardized
procedures such as search, access, and civilian recovery in enclosed and low-visibility conditions.
The dataset comprises 43.9% indoor and 56.1% outdoor scenes, with a balanced distribution across
63 day, 65 night, and 100 mixed-light recordings. Annotated content emphasizes team coordination,
degraded equipment handling, and compliance with protective protocols (Figure 3).

Annotation Priorities and Tooling. The dataset design prioritizes eight core actions selected through
structured interviews with 12 certified instructors, who prioritize 24 candidate procedures based
on operational importance. While the final set of actions is limited in number, each represents a
high-risk scenario requiring expert intervention. Table 2 summarizes the safety-critical object and
action classes included. Annotations are created by the dataset author using a custom browser-based
interface designed to support robust labeling under degraded conditions such as motion blur, smoke,
and occlusion. The tool allows frame-by-frame inspection, temporal segmentation, spatial bounding
box drawing, and material state tagging. It also includes functionality for adding contextual labels
such as visibility status or object condition. Although the initial release focuses on eight validated
actions and six objects, the interface supports extensibility: users can define and annotate custom
classes based on their research needs.

Annotation Schema and Split Strategy. Each video in Fire360 is annotated with temporal action
segments (348 instances across 8 categories), spatial bounding boxes (average of 5.7 objects per
video), and environmental tags (e.g., smoke [graded 1–5], heat distortion, lighting, multi-agent
interaction). Labels, initially annotated by the dataset creator, are verified by two certified fire safety
researchers. Inter-annotator agreement yields κ = 0.87 for actions and κ = 0.91 for objects, with
κ = 0.85 in high-smoke scenes. Ambiguities, often in occluded or high-degradation clips, are
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Figure 3: Fire360 content distribution. (a) Scene categories showing indoor/outdoor ratio, (b) Action
categories with instance counts and percentages.

resolved via multi-frame inspection and protocol-driven adjudication. A 15% subset, balanced across
indoor/outdoor and degradation levels, is re-annotated by external fire instructors, achieving 93.7%
confirmation. The dataset splits into 60% training (137 videos), 20% validation (45 videos), and 20%
test (46 videos), stratified by scene type, lighting, and procedural diversity, with the test set enriched
for high-degradation examples to evaluate robustness.

Complexity and Benchmark Context. Fire360 reflects the complexity of real-world emergency
response scenarios. The action distribution follows a long-tailed pattern (Gini coefficient = 0.42,
indicating moderate instance imbalance), with the three most frequent actions accounting for 62.3% of
labeled instances. Smoke density follows a bimodal distribution, while lighting conditions are evenly
divided across daytime, nighttime, and mixed-light scenes. Compared to datasets like Ego4D [16]
and EPIC-Kitchens [9], Fire360 focuses on environmental degradation, team-based coordination, and
protocol adherence under stress. In contrast to 360+x [4], which lacks explicit safety and degradation
annotations, Fire360 integrates task-aligned object and action labels tailored for evaluating safety-
critical perception and reasoning.

Cross-Domain Generalization. Although Fire360 is recorded at a single firefighter training institute,
it adheres to nationally standardized emergency procedures, making it broadly representative of
real-world operational contexts. The dataset includes recordings from both winter and summer
sessions and spans a range of lighting conditions. These variations support model generalization
across different environments. Preliminary cross-domain experiments (Section 4) show promising
transferability to unseen responder videos, though full generalization remains an open direction.
Future dataset extensions will include international recordings to address institutional and geographic
diversity.

4 Benchmark Tasks and Evaluation

Fire360 benchmarks evaluate robust AI perception and episodic memory, critical for safety-critical
environments where models must maintain world-state awareness under degradation. The five tasks-
VQA (spatial grounding), Temporal Action Captioning (temporal understanding), Object Localization
(degradation robustness), Safety-Critical Reasoning (procedural knowledge), and TOR (episodic
memory and material resilience)-collectively probe complementary capabilities, isolating distinct
failure modes in chaotic scenes. Each task is scored using domain-specific metrics and compared
against expert human performance. We evaluate all models in a zero-shot or prompted setting using
either publicly accessible APIs or open-source checkpoints, without fine-tuning on Fire360. This
setup reflects real-world deployment where generalization to unseen, degraded inputs is essential. We
evaluate 17 models spanning instruction-tuned, open-vocabulary, temporal, and safety-specialized
architectures, including GPT-4o, BLIP-2, CoLLM, and Claude-3 Sonnet (see Table 3 and 4). These
open-source models show moderate accuracy on spatial and procedural queries under rectilinear
projections, trailing GPT-4o but outperforming weaker captioning baselines such as BLIP-2. We
include additional prompt examples, decoding settings, and evaluation templates in Appendix A.1.

A Benchmark Tasks

1. 360◦ Visual Question Answering (VQA). This task measures spatial reasoning across the full
panoramic field-of-view in degraded scenes. Given an equirectangular or normal rectilinear frame,
models must answer expert-authored questions on object presence, responder behavior, and protocol
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adherence. The benchmark includes 100 questions, evenly split between multiple-choice and free-text
formats, spanning visibility, spatial layout, and procedural context. For instance, models are asked,
“Is the exit door visible through the smoke?” or “Are responders maintaining a two-point contact
on the ladder?” and must reply with grounded responses like “No, the door is occluded by dense
smoke” or “Yes, both hands are on the rails.” Some queries require compound reasoning, such as
identifying a partially occluded civilian behind a collapsed beam. GPT-4o achieves 53.8% overall
accuracy, but performs poorly under heavy smoke or low light, with accuracy falling below 10%
in the most degraded regions. For instance, it frequently fails on domain-specific prompts such as
“Is there a victim behind the collapsed beam?”. Figure 5 shows stratified performance compared to
human experts, who maintain over 80% accuracy in all conditions and reach 91.4% overall. Across
all cells, the average human-model gap is 57.2% (std dev = 10.9). Performance improves to 62.4%
when GPT-4o receives rectilinear input, indicating high sensitivity to panoramic distortion (Figure 4).
Qwen-VL, LLaVA-1.5, and BLIP-2 follow similar trends, rising from 47.2%, 50.3%, and 42.7% to
55.6%, 58.9%, and 48.2%, respectively.

2. Temporal Action Captioning. This task tests the ability to generate grounded descriptions of
firefighter behavior under degraded visibility. Given a 10–20 second video clip, models such as
GLaMM and BLIP-2 must output natural language captions. Reference annotations include actions
such as “breaking the window to enter a burning room” or “dragging a victim down a smoke-filled
hallway.” For example, a model is shown a clip where a firefighter crouches and swings a tool against
a window. The expected output is “Responder breaks glass to access burning room.” Another case
involves two responders crawling under smoke-models should describe this as “Responders crawl
in single file to search for victims.” In scenes showing PPE adjustment, the caption “Responder
secures gas mask in low-visibility conditions” is expected. While GLaMM produces fluent outputs,
it often confuses visually similar but procedurally distinct actions. We use BLEU-4 to evaluate
caption quality, consistent with standard video captioning benchmarks, although we acknowledge its
limitations for domain-specific language. Human agreement reaches 0.85, while GLaMM achieves
0.341.

3. Object Localization under Distortion. This task evaluates object detection robustness under
occlusion and thermal blur in 360◦ imagery. Models must localize gear such as SCBA tanks, helmets,
and hoses, regardless of lighting or degradation. Localization is evaluated using the mean Intersection
over Union (IoU) between the highest-confidence predicted box (top-1) and expert-verified ground
truth. Detections are category-agnostic, with each frame containing one target object to be localized.
Grounding DINO performs well under clean conditions (IoU = 68.2%), but degrades significantly
in low-visibility scenes (IoU = 22.9%), averaging 38.4% overall. As shown in Figure 4, projecting
the scene into a rectilinear format improves detection accuracy by mitigating geometric distortion,
yielding an IoU of 47.1%.

4. Safety-Critical Reasoning. In this task, models must identify violations of standard safety
procedures. Given a static frame or video segment and a prompt, the model outputs a label starting
with “safe” or “unsafe,” followed by a justification. For example, a model is prompted with “Assess
the responder’s ladder use.” The expected output is “Unsafe: The responder lacks a second point of
contact.” In another case, the prompt “Evaluate protective gear compliance in the fire zone” expects
“Unsafe: The responder’s gas mask is not sealed.” A third prompt, “Check hose operation technique,”
yields “Safe: The nozzle is aimed at the firebase.” Evaluation is conducted via checklist comparison
validated by certified instructors. GPT-4o achieves 28.9% checklist accuracy, compared to 94.6%
for human experts. Qwen-VL slightly outperforms GPT-4o on this task, achieving 32.5% checklist
accuracy in zero-shot prompting. Its structured language output appears better aligned with safety
violation prompts.

5. Transformed Object Retrieval (TOR). This task tests whether models can match a pristine object
to its fire-damaged version in an unpaired 360◦ scene-i.e., a separate, non-contiguous frame where
no temporal or spatial alignment is available. Full details appear in Section 5.

B Extended Model Evaluation Across Architectural Families

To validate that Fire360 captures architectural limitations rather than model-specific failures, we
extend our evaluation to ten additional models spanning diverse paradigms: instruction-tuned
vision-language models (InstructBLIP [8], Kosmos-2.5 [31]), temporally specialized captioning
systems (SwinBERT [27], ProgressCaptioner [59]), open-vocabulary detectors (OWLv2 [32], YOLO-
World [6]), safety-focused classifiers (Claude-3 Sonnet [1], Llama-Guard-3-8B [15]), and advanced
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Table 3: Performance of evaluated models across benchmark tasks using 360◦ equirectangular frames.
Human expert scores are shown for comparison. Results highlight degradation-aware gaps in visual
reasoning, localization, and procedural understanding.

Model Model Score Human Score Metric

Task: Visual Question Answering (VQA)

GPT-4o 53.8% 91.4% Top-1 Accuracy
Qwen-VL 47.2% 91.4% Top-1 Accuracy
LLaVA-v1.5-13B 50.3% 91.4% Top-1 Accuracy
BLIP-2 (OPT-6.7B) 42.7% 91.4% Top-1 Accuracy

Task: Temporal Action Captioning

GLaMM-7B 0.341 0.85 BLEU-4

Task: Object Localization under Distortion

Grounding DINO 38.4% 85.2% Mean IoU

Task: Safety-Critical Reasoning

GPT-4o (Prompted) 28.9% 94.6% Checklist Accuracy
Qwen-VL 32.5% 94.6% Checklist Accuracy

Task: Transformed Object Retrieval (TOR)

GPT-4o 39.8% 83.5% Retrieval Accuracy
CLIP (ViT-B/32) 32.5% 83.5% Retrieval Accuracy
BLIP-2 (OPT-6.7B) 35.1% 83.5% Retrieval Accuracy

Figure 4: Effect of input representation on both VQA accuracy (left) and object localization per-
formance (right). Rectilinear projections consistently outperform equirectangular views across all
models and tasks by mitigating panoramic distortion and improving robustness under degradation.

retrieval architectures designed for compositional matching (CoLLM [62], MCoT-RE [39]). All
models are evaluated in a zero-shot setting using identical task prompts, 360◦ equirectangular inputs,
and standardized metrics, as described in Section A.

Cross-Architectural Analysis. Despite architectural diversity, all models exhibit failure patterns
aligned with those in the core benchmark. Instruction-tuned VLMs show minimal VQA improve-
ment (<2%), temporal captioners underperform human BLEU-4 by approximately 60%, and open-
vocabulary detectors match closed-vocabulary baselines under occlusion. Safety-specialized models
fail to generalize procedural priors visually, and retrieval architectures perform comparably to CLIP
on TOR (<36% accuracy), offering no compositional gains. Overall, the mean human–model gap
remains 54.3% (std = 8.7), indicating that Fire360 surfaces systemic brittleness across model classes.
These results highlight persistent limitations: fragile low-level representations, missing material
priors, poor panoramic grounding, and insufficient procedural modeling. Together, they underscore
Fire360’s role as a diagnostic benchmark for degradation-aware and transformation-resilient vision
systems. Detailed breakdowns of lightweight adaptation strategies, including few-shot prompting and
material-aware object queries, are provided in Appendix A.
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Figure 5: Degradation-aware accuracy comparison on the VQA task using equirectangular 360◦

frames. Left: GPT-4o performance. Center: human expert performance. Right: performance gap
across varying smoke and lighting levels.

Table 4: Extended model evaluation across architectural families. Best-performing model per task
is highlighted. Persistent human–model gaps (>45%) across all categories confirm that Fire360
surfaces failure modes independent of architecture class.

Model Score Human Metric

Task: Visual Question Answering (VQA)

InstructBLIP 48.6% 91.4% Top-1 Accuracy
Kosmos-2.5 47.5% 91.4% Top-1 Accuracy

Task: Temporal Action Captioning

SwinBERT 0.315 0.85 BLEU-4
ProgressCaptioner 0.288 0.85 BLEU-4

Task: Object Localization

OWLv2 39.8% 85.2% Mean IoU
YOLO-World 36.5% 85.2% Mean IoU

Task: Safety-Critical Reasoning

Claude-3 Sonnet 33.0% 94.6% Checklist Accuracy
Llama-Guard-3-8B 27.4% 94.6% Checklist Accuracy

Task: Transformed Object Retrieval (TOR)

CoLLM 35.7% 83.5% Retrieval Accuracy
MCoT-RE 33.5% 83.5% Retrieval Accuracy

C Empirical Findings and Analysis

General Trends. Models demonstrate moderate performance on general perception tasks in clean
scenes. GPT-4o responds accurately to simple spatial queries, Grounding DINO localizes clearly
visible equipment, and GLaMM produces syntactically fluent captions when visibility is high.
Qwen-VL and LLaVA-1.5 handle rectilinear VQA reasonably well, while BLIP-2 serves as a lower-
performing baseline across tasks.

Limitations Under Degradation. Performance degrades sharply under smoke, low light, or distortion.
In VQA, GPT-4o accuracy falls below 10%, with captions becoming generic or hallucinated. Safety
reasoning fails to detect nuanced violations (Qwen-VL slightly outperforms GPT-4o due to its
structured output, but both struggle to align procedural steps under occlusion), and object detection
IoU drops to 22.9%. These failures stem from four key limitations: (1) Overreliance on surface
features-CLIP-style embeddings collapse when texture is lost [14]. (2) Lack of priors for material
change-models do not anticipate charring or deformation. (3) Poor spatial grounding in panoramic
space-most models are trained on rectilinear imagery and struggle with equirectangular distortion. (4)
Limited procedural knowledge-models cannot track sequential actions or violations under occlusion.
Grounding DINO and GPT-4o both suffer in low-visibility scenes due to these gaps.
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Figure 6: Illustration of the Transformed Object Retrieval (TOR) task. Given a pristine reference
object, the model must retrieve its fire-damaged counterpart from an unpaired 360° scene with
no temporal or spatial continuity, testing transformation-invariant recognition under irreversible
degradation.

Implications. Such brittleness is unacceptable in emergency response. Fire360 exposes failure modes
not captured in standard benchmarks and provides tools to develop models that simulate physical
causality, reason under uncertainty, and maintain identity through transformation.

D Toolkit and Evaluation Suite

To support reproducibility and structured evaluation, we release a benchmark toolkit comprising: (1)
stratified test splits for degradation-aware analysis, (2) evaluation scripts for all benchmark tasks,
(3) statistical templates including bootstrapped confidence intervals, (4) curated prompt sets and
checklists for VQA, Safety Reasoning, and TOR. The toolkit includes reference implementations
for all evaluated models, along with preprocessing pipelines for both equirectangular and rectilinear
formats. Object localization is evaluated exclusively using Grounding DINO; vision-language
models such as Qwen-VL, LLaVA-1.5, and BLIP-2 are excluded from this task due to a lack of
native detection capabilities. At present, the toolkit supports the five core tasks described above
and is structured for extensibility. Prompt files, model invocation templates, and result formatting
utilities will be included in the dataset release package. Evaluating the full test set and preprocessing
benchmark inputs requires ∼4 GPU-hours on A40s or 2.5 on A100s. The dataset (∼400GB raw) and
toolkit are compatible with open-source models.

5 Retrieval under Structural Deformation: TOR Benchmark

Can AI recall a firefighter’s gear when fire warps it beyond recognition? This is the challenge
posed by the Transformed Object Retrieval (TOR) task in Fire360. In firefighting scenarios, re-
sponders routinely recognize tools like melted helmets or soot-covered masks via episodic memory:
matching degraded instances to intact representations [17]. Existing benchmarks [48, 22, 20] assume
spatial or temporal continuity. TOR breaks this assumption, requiring retrieval across unpaired,
transformed scenes-i.e., scenes with no before-after relationship, shared context, or alignment-using
only a clean exemplar.

Task Formulation. Given a pristine reference image, the model must retrieve its transformed
counterpart from a degraded 360◦ frame in a different scene. No scene is paired, and objects may
be melted, occluded, or buried in debris. Success is defined as predicting a region with Intersection-
over-Union (IoU) > 0.5 with respect to ground truth; we use top-1 accuracy over candidate boxes
generated by Grounding DINO, matching the highest-similarity region to the reference exemplar.
This corresponds to the Retrieval Accuracy metric reported in Table 3. While TOR is instantiated on
360◦ imagery, the formulation applies to 2D or 3D scenes where objects undergo irreversible visual
change (see Figure 6).

Evaluation Protocol. Grounding DINO (threshold 0.4) proposes 36.2 candidate regions per frame.
Each candidate odeg and reference oref is encoded using a vision-language model f(·) (CLIP [3],
BLIP-2 [25], or GPT-4o via OpenAI API, May 2025), with cosine similarity guiding retrieval:

Sim(oref, odeg) =
f(oref) · f(odeg)

∥f(oref)∥∥f(odeg)∥
. (1)
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The benchmark evaluates 154 retrieval targets (bounding boxes of degraded objects) across 87 360◦
frames, each sampled as a keyframe from a distinct Fire360 video. Each target corresponds to
one of 50 pristine exemplars spanning 20 firefighter-relevant categories (e.g., helmets, SCBA tanks,
hoses). Annotations align with the Fire360 dataset (Section 3): labels are created using a browser-
based interface for degraded conditions, and verified by certified fire safety experts following NFPA
standards. Agreement reached 92.3% of targets (IoU ≥ 0.5, κ = 0.91), with adjudication by external
instructors on a 15% validation subset.

Empirical Findings. GPT-4o achieves 39.8% top-1 accuracy-well below human agreement (83.5%).
CLIP and BLIP-2 underperform due to weaker deformation handling. Errors often involve distractors-
e.g., pipes being mistaken for melted helmets (30% of failures), or charred hoses misidentified as
background debris. Appendix E details model-wise performance and quantifies distractor failures.
Fire360’s panoramic frames exhibit 70% higher spatial distortion near poles (due to equirectangular
stretching) compared to rectilinear datasets [46], increasing retrieval difficulty.

Failure Modes and Future Directions. Analysis reveals three high-impact directions for TOR: (1)
train deformation-invariant embeddings by simulating object degradation and applying contrastive
pretraining (e.g., DINOv2 [38]); (2) apply instruction-tuned conditioning to teach models how to
disambiguate material degradation states like soot versus melting (e.g., InstructBLIP [8]); and (3)
develop vision-language agents that sequentially retrieve regions via multimodal planning and context
reasoning [60, 19]. Each direction is testable using Fire360’s benchmark and annotation layers.

Broader Impact. TOR advances memory-augmented retrieval beyond firefighting. In medical
imaging, it aligns with tracking deformed tissues across noisy MRI scans-potentially reducing
misdiagnosis by 20% [24]. Similar reasoning applies to disaster response, where responders must
locate safety-critical equipment in damaged infrastructure; post-fire insurance workflows, where
burnt items must be identified for claims; and personal recovery, where individuals seek to retrieve
valuable belongings from fire-damaged homes. In manufacturing, TOR-style retrieval aids in tracing
visually altered components across fault stages [54]. In each case, robust retrieval requires inference
over surface-level similarity.

6 Limitations and Future Directions

Fire360 is collected at a single firefighter training institute following national standards, but may limit
generalization to varied real-world deployments (e.g., only 43.9% of scenes are indoor), highlighting
the need for broader geographic and procedural coverage. Human agreement benchmarks may
underestimate true performance ceilings in ambiguous cases (e.g., 15% misaligned 360◦ boxes due
to projection distortion), motivating expert panel calibration. While our evaluations are zero-shot
and prompted, future fine-tuning may risk overfitting to noise patterns (e.g., smoke) and requires
significant compute (e.g., 2.5 A100-GPU hours for 154 TOR targets). Risk is treated uniformly
across classes; future extensions may incorporate risk-weighted evaluation that penalizes failures on
safety-critical actions more heavily. Fire360 currently lacks temporal modeling in TOR; extending to
multi-frame tracking could improve robustness under severe distortion and occlusion.

7 Conclusion

Fire360 introduces the first benchmark for evaluating AI perception and reasoning under safety-
critical visual degradation. Spanning 228 professionally recorded firefighter training videos, it
includes 360◦ footage with structured annotations for actions, objects, and environmental factors-
verified by domain experts (κ = 0.87-0.91) and stratified by degradation severity. Our evaluations
reveal sharp model failures under compound stress-up to a 52.3% performance drop-compared to
3-5% degradation in human accuracy. The Transformed Object Retrieval (TOR) task surfaces a
core limitation: current models cannot recover object identity under structural deformation, with
GPT-4o trailing human performance by over 43 percentage points. By releasing the Fire360 dataset,
annotation toolkit, and benchmark suite, we provide a foundation for robust AI systems that perceive
causally, remember episodically, and reason through uncertainty. We invite the community to develop
models that recall degraded objects, infer through occlusion, and localize what no longer looks
intact-because in safety-critical settings, failure isn’t theoretical, it’s operational.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the dataset release,
evaluation tasks, and novel Transformed Object Retrieval benchmark. Claims are supported
by empirical results in Section 4 and Section 5 and limitations are clearly stated (Section 6).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 6 provides detailed discussion of Fire360’s scope, generalization
limitations, human calibration challenges, compute requirements, and task-specific gaps like
temporal reasoning in TOR.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: This paper introduces a dataset and benchmark suite. It does not present new
theoretical results or formal proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper describes full model setup, evaluation metrics, and benchmark
configuration in Appendix A.1 (model usage) and Appendix C (evaluation pipeline, region
proposals, and scoring). All models benchmarked use open checkpoints or public APIs
(e.g., GPT-4o, CLIP, BLIP-2). While the full end-to-end code and evaluation scripts are
currently in the process of being prepared for release, they will be accessible via the project
page before the main conference. In the meantime, sufficient detail is provided in the
supplemental material to support replication of the experimental pipeline.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The Fire360 dataset is available at the following Box-hosted
link (due to storage limits on platforms like Harvard Dataverse or Kaggle):
[https://uofi.box.com/v/fire360dataset]. This includes all video files and ac-
companying documentation. Appendix C outlines the toolkit structure, and Appendix D
describes the web-based annotation tool, which will also be open-sourced to support custom
annotation workflows. The preprocessing and evaluation scripts, as well as the web-based
annotation tool, are currently being finalized and will be made available via the project page.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix A.1 detail the models, prompt settings, evaluation
metrics, data splits, and runtime setup for each benchmark task.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: Confidence intervals are reported for the TOR task (Section 5), and Appendix B
outlines how errors and distractor categories were quantified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section D details the compute setup for evaluating all benchmark tasks,
including that full test set evaluation and preprocessing require approximately 2.5 A100 GPU-
hours for TOR and 4 GPU-hours on A40s. Section 6 further contextualizes these compute
demands as a potential barrier to accessibility. The total dataset size is approximately 400
GB across 228 videos.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All data collection was conducted with institutional review and full participant
consent under standardized firefighter training protocols (see Section 3
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 5 describes the broader impact of the Transformed Object Retrieval
(TOR) task and the Fire360 dataset. TOR addresses a crucial gap in current AI benchmarks:
the ability to match objects across irreversible deformation, enabling new applications in
post-disaster recovery (e.g., identifying damaged gear), insurance workflows, and medical
imaging (e.g., tracking deformed lesions). In manufacturing, it supports retrieval of altered
components under wear or stress.
Fire360 is also the first benchmark to use professionally recorded 360◦ videos from real-
world emergency training environments, enabling AI systems to learn from panoramic,
immersive, and highly degraded views-scenarios that more accurately reflect high-risk
deployment settings than traditional 2D datasets. By emphasizing memory, material infer-
ence, and robustness under uncertainty, Fire360 promotes the development of AI systems
grounded in physical reality. The dataset contains no personal identifiers and poses minimal
misuse risk.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Fire360 poses minimal risk of misuse. All videos were professionally recorded
during certified firefighter training sessions and reviewed for public release. No personally
identifiable information (PII) is present, and participants appear only in professional roles
with protective gear. All recordings were approved by institutional leads at the partnering
fire training facility. Section 3 provides more details about the dataset. No generative models
or sensitive content are involved, and no part of the dataset enables synthetic data creation
or surveillance-related misuse.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All pretrained models used in this paper, including GPT-4o (via OpenAI API),
BLIP-2 (OPT-6.7B), CLIP (ViT-B/32), LLaVA-v1.5-13B, and Qwen-VL, are cited with
their respective versions and sources. Each model was used in accordance with its license
or public API terms. Attribution to the original creators is provided in the main paper, and
model checkpoints were accessed from official or publicly maintained repositories (e.g.,
Hugging Face, OpenAI, Salesforce LAVIS).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes. The Fire360 dataset introduced in this paper is described in detail
in Section 3, including its content, collection process, annotation schema, and ethical
considerations. Proper documentation accompanies the dataset, including file structure,
label formats, licensing, and usage instructions to support reproducibility and downstream
research.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing was involved. All annotations were created by the dataset
author and verified by certified fire safety researchers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Data collection was approved by the partnering firefighter training institute,
with all participants providing informed consent. All footage was collected in accordance
with local guidelines of the training institute. No Personally Identifiable Information (PII)
was recorded.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: GPT-4o and LLaVA are used as benchmarked models (see Section 4. However,
no LLMs were used to generate or filter data or annotations.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Model Evaluation and Adaptation Protocols

This appendix outlines our experimental setup and evaluation pipeline, including task-specific metrics,
model configurations, and runtime details. All experiments reflect deployment-style constraints,
relying on zero-shot or prompted inference under heavy degradation. We also evaluate lightweight
adaptation strategies, such as few-shot prompting and material-aware prompting, to examine whether
in-context guidance improves model robustness in long-tailed or compositional failure modes.

A.1 Model Setup and Evaluation Protocols

This subsection delineates the experimental framework for the Fire360 benchmark, providing suf-
ficient detail to ensure replicability. Full end-to-end code and evaluation scripts are released upon
acceptance. All evaluations operate in a zero-shot or prompted setting, with no fine-tuning on the
Fire360 dataset. This setup reflects real-world deployment conditions where models must generalize
to unseen, degraded inputs. API-based models, such as GPT-4o (May 2025 snapshot), generate
outputs using temperature = 0.7 and top-p = 0.95, selected to balance response diversity and semantic
coherence.

Model Configurations. We evaluate both proprietary and open-source vision-language architectures
to capture a broad range of design and training strategies. GPT-4o is accessed via the OpenAI
API and is selected for its strong multimodal reasoning capabilities, with task-specific prompts
detailed in Appendix E. LLaVA-v1.5-13B, based on the Vicuna-13B backbone and loaded from
the llava-hf/llava-v1.5-13b checkpoint, is included for its robust visual grounding. BLIP-2
(OPT-6.7B) is implemented via Salesforce LAVIS and supports VQA, captioning, and TOR tasks.
Qwen-VL-Chat (7B) is evaluated using its default checkpoint for safety-critical and multi-hop
spatial queries. CLIP (ViT-B/32) serves as a retrieval baseline for TOR and processes inputs at
224×224 resolution. Grounding DINO (v1) generates an average of 36.2 proposals per frame at
a 0.4 confidence threshold, refined using non-maximum suppression (NMS) with an IoU threshold
of ≥ 0.3. Lastly, GLaMM-7B is used for Temporal Captioning, selected for its sequence modeling
capabilities, and evaluated via BLEU-4.

Evaluation Metrics. Each task uses degradation-sensitive metrics aligned with real-world fire
response needs. TOR is evaluated using top-1 accuracy at an IoU threshold of ≥ 0.5. VQA uses
exact match accuracy to assess binary or categorical responses. Temporal Captioning is evaluated
with BLEU-4 to measure linguistic overlap with human-written captions, and Safety Reasoning is
assessed using binary checklist accuracy to verify procedural compliance.

Data Splits. The dataset splits into 60% training (137 videos), 20% validation (45 videos), and 20%
test (46 videos), stratified by degradation level, lighting, and procedural variation.

Runtime Setup. All experiments run on NVIDIA A100 GPUs with 40GB memory. TOR inference
across 154 targets takes approximately 2.5 GPU hours with a batch size of 16. CLIP-based retrieval
completes in 45 minutes. Preprocessing uses OpenCV to convert equirectangular frames to rectilinear
views with a 90◦ field of view (FOV).

A.2 Few-Shot Adaptation Experiments

To probe whether minimal supervision can improve model robustness under degradation, we evaluate
few-shot prompting using 3-5 contextualized exemplars per class. This setting reflects lightweight
adaptation scenarios feasible in real-world deployments, without requiring large-scale fine-tuning.
Prompts are prepended with diverse exemplars drawn from the training set and structured to emphasize
procedural semantics and degraded attributes (e.g., “charred ladder,” “melted helmet”).

Task-Level Gains. As shown in Table 5, limited adaptation yields measurable improvements across
tasks. Accuracy increases by +2.3% to +4.6% on VQA, Safety Reasoning, and TOR, suggesting that
in-context learning helps mitigate degradation-induced failures.

Per-Class Breakdown. Table 6 shows the most pronounced improvements occur for rare, safety-
critical actions such as Ladder Climb and Civilian Carry, with gains exceeding 10%. Frequent classes
show smaller improvements of 3-4%, indicating that recognition bottlenecks in the long tail are
partially addressable through exemplar conditioning.
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Table 5: Task-Level Few-Shot Gains (GPT-4o)
Task Metric Zero-Shot Few-Shot ∆

VQA (Rare Actions) Accuracy 34.1% 38.7% +4.6
Safety-Critical Reasoning Accuracy 28.9% 32.6% +3.7
Transformed Obj. Retrieval Accuracy 39.8% 42.1% +2.3

Table 6: Per-Class Few-Shot Gains (GPT-4o)
Action Zero-Shot Few-Shot ∆

Rare Actions
Ladder Climb 28.3% 39.7% +11.4
Civilian Carry 31.2% 42.8% +11.6
Window Break 35.8% 46.1% +10.3

Frequent Actions
Hose Operation 61.4% 65.2% +3.8
Door Breach 58.9% 62.1% +3.2

Interpretation. While overall gains remain modest at the task level, the persistent gap of over 40%
compared to human accuracy reflects fundamental architectural limitations, particularly in handling
occlusion, distortion, and structural transformation. These results arise from in-context learning
rather than parameter updates, suggesting that such limitations persist even when models are exposed
to domain-relevant examples. Fire360 thus supports both zero-shot benchmarking and diagnostic
evaluation of lightweight adaptation strategies.

A.3 Material-Aware Prompting for Transformed Object Retrieval

To evaluate whether compositional priors improve robustness under irreversible degradation, we
tested material-aware prompts that explicitly encode likely object compositions (e.g., “burnt plastic
helmet,” “metal ladder”). Although Fire360 does not include formal material annotations, object
categories exhibit high internal consistency; for example, ladders are metallic in all scenes, and
helmets are plastic or composite.

Retrieval Performance. Table 7 shows that material-enhanced prompts improve retrieval accuracy
by 4-6% across models. GPT-4o benefits most (+5.9%), followed by CLIP and BLIP-2. These gains
are consistent across objects with regular transformation patterns such as melting or charring.

Table 7: Material-Enhanced TOR Retrieval Results
Model Standard Prompt +Material Priors ∆

GPT-4o 39.8% 45.7% +5.9
CLIP (ViT-B/32) 32.5% 37.6% +5.1
BLIP-2 (OPT-6.7B) 35.1% 39.3% +4.2
Human Upper Bound — 83.5% —

Limitations and Future Work. Despite measurable improvement, the gap to human accuracy
remains substantial. Material knowledge improves surface-level grounding but is insufficient for
restoring identity under severe occlusion, spatial displacement, or compound transformations. We
plan to extend Fire360 with explicit material annotations and release a labeled subset to support
systematic benchmarking of compositional robustness. These directions are discussed in Section 6.

B Stratified Performance and Statistical Analysis

Fire360’s equirectangular panoramas exhibit non-uniform spatial distortion, especially near the top
and bottom edges, due to the spherical-to-rectangular projection inherent in 360◦ video. Quantitative
analysis shows distortion increases by approximately 70% in polar regions relative to equatorial
zones [46], degrading object localization and retrieval accuracy near image boundaries. Figure 7
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Figure 7: Illustration of distortion severity in Fire360 equirectangular projections. Green regions
exhibit minimal distortion, preserving the geometric structure, while red regions show significant
stretching at vertical extremes, degrading localization, and retrieval accuracy.

visualizes this effect: green areas show minimal distortion, while red regions suffer from stretching
artifacts that contribute to retrieval failures.

We analyze failure modes in the Transformed Object Retrieval (TOR) task across n = 154 annotated
targets. Table 8 summarizes top-1 accuracy and the dominant error source for each model. GPT-4o
most frequently fails on distractors such as pipes and ladders misclassified as helmets. CLIP is most
sensitive to occlusion (e.g., smoke-obscured gloves), and BLIP-2 often confuses objects of similar
shape but different material (e.g., plastic vs. metal).

To assess robustness, we compute 95% bootstrap confidence intervals over 1,000 resamples. Table 9
reports intervals for each model. GPT-4o achieves the highest mean but exhibits wider variance,
likely due to sensitivity to spatial artifacts. BLIP-2 and CLIP have narrower intervals, but lower
overall performance, especially under heavy degradation.

We also observe a strong correlation between spatial reasoning and retrieval. In high-degradation
scenes, VQA accuracy drops to 9.8%, and correlates with TOR error rates (Pearson r = 0.72),
suggesting that both tasks share vulnerabilities in visual grounding under uncertainty.

C Toolkit Structure

The Fire360 benchmark toolkit has been developed to facilitate reproducible evaluation across the
five tasks outlined in Subsection A.1, ensuring consistency and accessibility for researchers. The
toolkit encompasses preprocessing utilities, evaluation scripts, and standardized input-output formats,
and will be publicly released upon acceptance to support further development and benchmarking.

Preprocessing Utilities. Preprocessing is conducted using OpenCV, which converts equirectangular
panoramas into rectilinear projections with a 90◦ field of view (FOV). This projection mitigates
distortion in peripheral regions, as discussed in Subsection B, thereby enhancing model performance
in spatial tasks. Frame resizing is tailored to model-specific requirements: CLIP processes inputs
at 224×224 resolution, while GPT-4o utilizes 512×512 inputs to leverage higher-resolution visual
features.

Evaluation Suite. The evaluation suite comprises task-specific scorers designed to handle degraded
inputs characteristic of fire scenes. For Visual Question Answering (VQA), exact match accuracy
is computed to assess response correctness. Transformed Object Retrieval (TOR) employs top-1
accuracy with an IoU threshold of ≥ 0.5, consistent with the metric defined in Subsection A.1.
Temporal Captioning is evaluated using BLEU-4 to measure linguistic agreement, and Safety-Critical
Reasoning uses binary checklist comparison against domain-verified procedural outputs. Each script
supports independent execution on individual frames or video clips, with batch-mode evaluation
capabilities for the test split to streamline large-scale assessments.

Input-Output Formats. Inputs are structured in JSON format, encapsulating file paths,
model prompts, and configuration parameters. For example, a typical JSON input might
include {"frame_path": "path/to/frame.png", "prompt": "Identify the helmet",
"config": {"model": "GPT-4o"}}. Outputs are stored in CSV files, containing predicted
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Table 8: Model performance and error attribution for TOR (IoU ≥ 0.5, n = 154). The dominant
error per model is listed alongside its global prevalence.

Model Top-1 Accuracy Dominant Error Type Error Prevalence

GPT-4o 39.8% Visual distractors (pipes, ladders) 30%
BLIP-2 35.1% Material confusion (plastic vs. metal) 20%
CLIP 32.5% Occlusion (smoke, debris) 25%

Table 9: 95% confidence intervals for TOR retrieval accuracy (IoU ≥ 0.5, n = 154).
Model Lower Bound Upper Bound

GPT-4o 37.6% 42.2%
BLIP-2 32.8% 37.4%
CLIP 30.3% 34.9%

labels, evaluation metrics, and confidence scores, facilitating downstream analysis and comparison
across models.

Compute and Storage Requirements: Full evaluation on the test split requires approximately 4
GPU hours on NVIDIA A40s or 2.5 GPU hours on A100s, reflecting efficient resource utilization.
The dataset, comprising raw video files and annotations, occupies approximately 400GB of storage,
necessitating adequate infrastructure for large-scale experimentation.

D Annotation Tool and Schema

We present a browser-based annotation interface developed to facilitate structured labeling of degraded
360◦ firefighter footage, supporting both equirectangular and rectilinear projections to align with the
Fire360 benchmark’s evaluation tasks, including Transformed Object Retrieval (TOR) and Visual
Question Answering (VQA). The interface enables frame-level annotations for actions, objects, and
scene conditions, incorporating transformation tracking and environmental metadata to generate
comprehensive ground truth data. Figures 8 and 9 depict the interface, with Figure 8 illustrating the
layout for selecting annotation types and defining object-level metadata, and Figure 9 showcasing
detailed forms for action-level, environmental, and temporal sequence annotations. The tool will be
made publicly available upon acceptance to promote extensibility and support custom annotation
workflows.

Temporal Action Annotations. Each action annotation comprises timestamps, category from the
Fire360 taxonomy, annotator confidence score, and optional actor and environmental condition
metadata to support tasks such as Temporal Captioning.

{
"action_id": "action_042",
"start_timestamp": "00:01:45.0",
"end_timestamp": "00:01:50.5",
"category": "window_break",
"confidence_score": 0.92,
"actors": ["responder_01"],
"environmental_conditions": {

"smoke_level": 3,
"temperature_zone": "high",
"visibility_rating": "medium"

}
}

Spatial Object Annotations. Each object instance is annotated with bounding box coordinates, class,
material composition, visibility status, and damage state to facilitate TOR and object recognition
tasks.

{
"object_id": "helmet_023",
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Figure 8: Annotation interface layout for Fire360. (a) A dropdown menu enables the selection of
annotation types: action, object, temporal sequence, or environmental context. (b) An example
of object-level annotation on a video frame, featuring bounding box input, object class selection,
material composition, spatial reference, and functional attributes.

Figure 9: Annotation form components for Fire360. (a) Action-level annotation form includes
temporal boundaries, bounding boxes, and environmental conditions. (b) Environmental context form
captures persistent features, smoke and heat intensity, structural hazards, and water-affected areas.
(c) Temporal sequence form supports timeline tracking of object transformations and visibility gaps
across video segments.

"timestamp": "00:01:35.2",
"bbox": [420, 260, 75, 80],
"class": "helmet",
"material_composition": ["plastic", "metal"],
"visibility": "heavily_occluded",
"state": "transformed"

}

Transformation Tracking. Annotations for transformed objects include pre- and post-disaster
instance tracking, capturing severity, displacement, and residual visual cues to enhance TOR accuracy
under degradation.

{
"object_id": "hose_015",
"timestamp": "00:02:12.8",
"bbox": [300, 180, 50, 60],
"pre_disaster_id": "hose_015_pre",
"post_disaster_id": "hose_015_post",
"transformation": {
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"type": "heat_damage",
"severity": "extreme",
"displacement": {"dx": 50, "dy": 20},
"remaining_features": "charred rubber, partial nozzle visible",
"difficulty_rating": 5

}
}

Environmental Context. Scene-level annotations encompass structural layout, temperature gradients,
and occlusion conditions to support VQA and Safety-Critical Reasoning tasks.

{
"frame_id": "frame_001352",
"timestamp": "00:02:12.8",
"room_layout": "hallway",
"smoke_density": 5,
"temperature_zones": [

{"area": "left_wall", "temp": "high"},
{"area": "ceiling", "temp": "extreme"}

],
"structural_hazards": ["collapsed_ceiling"],
"visibility_rating": "low"

}

Combined Scene Annotation. The schema supports composite annotations that integrate Temporal
Action, Spatial Object, Transformation Tracking, and Environmental Context layers into a unified
entry for a single frame or video segment, providing a holistic representation for multi-task evaluation.

{
"scene_id": "engine_bay_day_001",
"timestamp": "00:02:12.8",
"action_annotation": {

"action_id": "action_043",
"category": "operating_hose",
"start_timestamp": "00:02:10.0",
"end_timestamp": "00:02:20.0",
"environmental_conditions": {

"environment": "outdoor_daylight",
"lighting": "bright"

},
"bbox": [430, 220, 110, 140],
"notes": "Nozzle pointed at smoke source"

},
"object_annotation": {

"object_id": "hose_015",
"class": "hose",
"state": "charred",
"material_composition": ["rubber", "metal"],
"visibility": "heavily_occluded",
"visual_attributes": ["flexible", "darkened"],
"functional_purpose": "water_delivery",
"spatial_reference": "lower left quadrant",
"bbox": [300, 180, 50, 60]

},
"environmental_context": {

"smoke_level": 5,
"temperature_zones": [

{"area": "back_wall", "temp": "extreme", "notes": "Flame zone"}
],
"structural_hazards": [

{
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Table 10: Sample prompt-response pairs used in Fire360 evaluation.
Task Prompt Expected Output

TOR Given the pristine helmet,
find the degraded region.
Rule out pipes.

Degraded helmet, 60% soot.

Safety Reasoning Is the PPE intact? Unsafe: Mask unsealed.
VQA Is three-point contact

maintained?
Yes, one hand, both feet on
rungs.

"location": "ceiling beam",
"timestamp": "00:02:05.0",
"type": "collapse"

}
],
"water_application_areas": "right quadrant soaked",
"persistent_features": ["brick_wall", "metal_post"]

}
}

E Qualitative TOR Examples and Prompt Templates

This subsection presents qualitative examples to elucidate typical model behaviors and failure modes
within the Transformed Object Retrieval (TOR) task, complementing the quantitative analysis in
Subsection B. Table 8 provides an overview of model-level top-1 accuracy and dominant error types,
as derived from the zero-shot evaluation framework outlined in Subsection A.1. GPT-4o achieves
the highest accuracy (39.8%) but exhibits sensitivity to distractor regions, such as pipes resembling
helmets, due to contextual ambiguities in degraded scenes. BLIP-2 underperforms in cases of material
ambiguity (e.g., plastic versus metal), while CLIP struggles with occlusion errors, particularly from
smoke, reflecting its limited contextual reasoning capacity.

To enhance replicability and structured evaluation across the Fire360 benchmark tasks, this subsec-
tion provides representative prompt templates and their expected outputs, tailored to guide model
performance in object retrieval, safety reasoning, and spatial understanding under degraded condi-
tions. Table 10 summarizes these pairs for TOR, Safety Reasoning, and Visual Question Answering
(VQA), with plans to extend coverage to Temporal Captioning and Safety-Critical Reasoning in
future releases.

F Technical Considerations and Task Justification

This subsection elaborates on the technical underpinnings of the Fire360 benchmark’s data processing
pipeline and justifies the selected evaluation tasks, complementing the preprocessing details in
Subsection C and the failure mode analysis in Subsection B.

360◦ Processing Details. Raw videos are recorded in equirectangular format and processed using
OpenCV-based tools to generate rectilinear projections with a 90◦ field of view (FOV), as detailed in
Subsection C. This approach reduces distortion near polar regions while preserving the spatial layout
and real-world degradation artifacts such as smoke, blur, and lens glare. Learning-based distortion
correction methods are deliberately avoided to maintain the fidelity of these visual degradations,
ensuring that models are evaluated under conditions reflective of the zero-shot deployment scenarios
outlined in Subsection A.1.

Task Motivation and Relevance. Each benchmark task is directly informed by real-world firefighter
protocols, and validated through consultation with domain experts to ensure practical relevance.
Visual Question Answering (VQA) focuses on spatial awareness, such as recognizing Personal
Protective Equipment (PPE) compliance or identifying safety hazards, aligning with its exact match
accuracy metric (Subsection A.1). Temporal Captioning, evaluated via BLEU-4, supports incident
summarization, a critical component of post-incident reporting and training debriefings. Safety
Reasoning, assessed through binary checklist matches, mirrors procedural checklists used in live
operations, where misclassification of safety violations can have severe consequences.
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Domain-Specific Failure Insights. Model failures observed in the benchmark are not uniformly
distributed, reflecting real-world firefighting challenges. Occlusion from smoke and debris, visual
similarity between degraded and intact objects (e.g., pipes versus melted helmets), and material
misclassification (e.g., rubber versus metal) are predominant error sources, consistent with the error
distribution in Subsection B. These failure modes highlight the operational edge cases where visibility
is compromised, and time-sensitive decisions must rely on partial visual cues. By capturing such
scenarios, the Fire360 benchmark facilitates targeted analysis of model limitations, underscoring the
need for improved robustness to occlusion and distortion, as noted in Subsection B.
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Ethics and Broader Impact

Motivation and Societal Relevance. Fire360 advances research in robust visual reasoning, episodic
memory, and safety-critical perception for real-world deployment. The dataset captures annotated
360◦ video from certified firefighter training sessions under conditions such as dense smoke, thermal
distortion, and low light. These scenarios reflect operational stressors encountered during actual
emergencies. We expect Fire360 to support applications in firefighter safety, disaster response
simulation, insurance workflows, and virtual readiness programs-particularly amid rising wildfire
incidents linked to climate change.

Privacy, Consent, and Oversight. All footage is collected with institutional approval from a
U.S.-based firefighter training institute. Recordings occur during scheduled drills, with no staged
emergencies or civilians. All personnel appear in professional roles with protective gear and provide
informed consent. The dataset includes no personally identifiable information (PII). Principal
investigators and institutional leads review all material prior to public release.

Labor Transparency and Representation. Annotations are created and verified by the dataset
authors and certified fire research instructors. No crowd-sourced or external labor is used. Al-
though Fire360 reflects procedures at a single facility, it includes a diverse range of environments-
indoor/outdoor, day/night, multi-agent coordination, and degraded visibility-to mitigate procedural or
demographic bias. Future extensions prioritize the inclusion of diverse institutional and international
scenarios.

Misuse Prevention and License Terms. Fire360 is released under a research-only MIT license
with added restrictions that prohibit use in surveillance, enforcement, behavioral profiling, or non-
consensual monitoring contexts. The dataset contains no real emergencies or post-disaster scenes.
All use must align with the dataset’s safety-focused intent. We explicitly discourage downstream use
that infringes upon civil rights or applies the dataset outside professional emergency settings.

Environmental Considerations. Footage is captured during existing firefighter drills, so no additional
emissions or environmental impact is incurred. While TOR evaluation requires moderate compute
(e.g., ∼2.5 A100-GPU hours), we believe the cost is justified by Fire360’s potential to reduce physical
training load and improve readiness through simulation.

Reproducibility and Community Transparency. We release the dataset, annotation toolkit, and
benchmark suite publicly under a version-controlled, research-only license. Videos are hosted via
Box (a secure, institution-approved file-sharing platform) due to size constraints, with documentation,
metadata (Croissant schema), and contact instructions provided. All materials include sample
annotations and README files to support transparency and reproducibility.
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