
CROSS-JEM: Accurate and Efficient Cross-encoders for Short-text
Ranking Tasks

Anonymous ACL submission

Abstract

Ranking a set of items based on their relevance001
to a given query is a core problem in search002
and recommendation. Transformer-based rank-003
ing models are the state-of-the-art approaches004
for such tasks, but they score each query-item005
independently, ignoring the joint context of006
other relevant items. This leads to sub-optimal007
ranking accuracy and high computational costs.008
We propose Cross-encoders with Joint Efficient009
Modeling (CROSS-JEM), a novel ranking ap-010
proach that enables transformer-based mod-011
els to jointly score multiple items for a query,012
maximizing parameter utilization. CROSS-013
JEM leverages (a) redundancies and token over-014
laps to jointly score multiple items (short-text015
phrases in search and recommendations), and016
(b) a novel training objective that models rank-017
ing probabilities. CROSS-JEM achieves state-018
of-the-art accuracy on publicly available rank-019
ing benchmarks with over 4x-lower ranking020
latency compared to the baselines.021

1 Introduction022

We consider the problem of ranking that arises in023

search and recommendation pipelines, wherein the024

goal is to rank a set of items based on their rele-025

vance to a given query. Our work is in the context026

of two-stage retrieve-then-rank pipelines in mod-027

ern recommendation systems consisting of retrieval028

and ranking stages (Liu et al., 2017; Zhao et al.,029

2024; Lin et al., 2021; Fan et al., 2022). In this030

work, we focus on the ranking of short-text items,031

given a black-box retriever, which appear in a myr-032

iad of recommendation systems applications. In033

designing the ranking model, two key axes are the034

model architecture, and the choice of the loss func-035

tion. The key performance metrics for such sys-036

tems are accuracy and inference latency. Existing037

state-of-the-art ranking approaches use encoders038

with attention layers to encode query-item pairs and039

classifiers to score them (Nogueira and Cho, 2020;040

Nogueira et al., 2019; Zhou et al., 2023). Recent 041

works have proposed using sequence-to-sequence 042

models with encoder-decoder or decoder-only ar- 043

chitectures (Nogueira et al., 2020; Zhuang et al., 044

2023; Zhang et al., 2024). However, all of these 045

models are pointwise, scoring query-item pairs in 046

isolation, ignoring the list context, and producing 047

scores that may neither reflect the optimal order nor 048

be calibrated for sorting (Qin et al., 2024a). Point- 049

wise transformer models are also computationally 050

expensive and impractical for real-time ranking. 051

Another line of research is along listwise loss 052

functions (Gao et al., 2021; Zhuang et al., 2023; 053

Cao et al., 2007), and aims to improve ranking 054

accuracy by optimizing training objective for the 055

whole list of items, not just query-item pairs. Yet, 056

architecturally, they score items independently, ig- 057

noring inter-item dependencies and query context. 058

Some recent works use pre-trained LLMs for list- 059

wise ranking (Sun et al., 2023; Pradeep et al., 2023; 060

Qin et al., 2024b; Zhang et al., 2024). However, 061

these models have a huge parameter count (running 062

into a few billions), limiting their scalability and 063

efficiency. In this work, we bridge this gap by 064

proposing a ranking model that works at the list 065

level, explicitly models inter-item interactions, 066

and achieves superior latency-accuracy tradeoff, 067

making it deployable in real-time scenarios. 068

2 Method 069

CROSS-JEM learns to rank items for a query by 070

exploiting two insights: a) listwise modeling cap- 071

tures item-item interactions better than pointwise 072

methods; b) items in the candidate set have a high 073

token overlap. Hence, given query q and item set 074

Kq, the core idea is to form the union set of to- 075

kens TUq of all items in Kq. CROSS-JEM uses a 076

transformer based encoder to map a sequence of to- 077

kens to a sequence of token level contextual embed- 078

dings. Existing state-of-the-art approaches model 079
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Table 1: All baselines and our method, CROSS-JEM are fine-tuned on the corresponding datasets, except for the
large pre-trained models (indicated with asterisk (*)), which are used as is without any further fine-tuning.

Method Parameters SODQ MS MARCO-Titles

MAP@5 MAP@10 MRR@5 MRR@10

Sparse Models BM25 – 32.80 39.26 23.71 24.57

Early-interaction monoBERT (Nogueira and Cho, 2020) 66M 46.79 48.04 30.89 32.47

Late-interaction ColBERT (Khattab and Zaharia, 2020) 109M 36.10 37.68 30.25 32.00

Dual Encoders
DPR (Karpukhin et al., 2020) 66M 47.32 48.48 28.78 30.87

ANCE (Xiong et al., 2021) 66M 48.31 49.41 28.48 30.53
INSTRUCTOR* (Su et al., 2023) 335M 49.47 50.81 28.84 30.55

Seq2Seq RankT5-6L 74M 49.50 50.75 30.73 32.52
RankT5-base* (Zhuang et al., 2023) 223M 45.66 49.47 27.87 29.75

Ranking LLMs RankingGPT-7B* (Zhang et al., 2024) 7B 47.64 50.62 28.66 30.47

Ours CROSS-JEM-6L 66M 52.40 53.05 33.82 35.45

ranking in a pointwise approach. Thus, contex-080

tual embeddings are obtained for each query-item081

pair individually, leading to N encoder passes for082

the N items in Kq and a high computational cost.083

CROSS-JEM embeds all unique tokens in item set084

Kq in single encoder pass by inferring over the085

combined set of query tokens Tq and the union of086

all item tokens, TUq . Since the number of tokens087

in the item union set is significantly smaller than088

the sum of the number of tokens in Kq, CROSS-089

JEM enables highly efficient computation of con-090

textual embeddings. Next, a pooled representation091

for each pair (q,kj) is computed as the mean of the092

contextual embeddings of tokens in Tq combined093

with the intersection of TUq and Tkj
. A linear094

classifier w ∈ Rd computes the relevance score095

associated with each pair (q,kj). The pooled rep-096

resentations for all kj ∈ Kq are batched together097

(eqk ∈ RN×d) allowing for the computation of all098

logits [fq]j = ⟨w, eqkj ⟩ in a single shot.099

CROSS-JEM is trained with a novel listwise objec-100

tive proposed in this work, called Ranking Prob-101

ability Loss (RPL), that models the joint ranking102

probabilities of items rather than their pointwise103

relevance. Different from existing listwise losses104

such as ListNet (Cao et al., 2007), RPL factors in105

the availability of all logits [fqi ]. Given the scores106

fqi and the ground-truth yi for a query qi, and an107

item kj , RPL penalizes ranking kj above any item108

kk with higher ground-truth score. Formally, RPL109

(LRPL) is:110

|Qtr|∑
i=1

N∑
j=1

( ∑
k∈Lj

[yi]k

)
log

(
SM

( ∑
k∈Lj

[fqi ]k

))
, (1)111

where SM denotes the SoftMax operator and Lj is112

defined as Lj = {k ∈ {1, N} : [yi]k < [yi]j}.113

3 Experiments 114

Experimental Setup: We use Stack Overflow 115

Duplicate Questions (Liu et al., 2018) (SODQ) 116

and a short-text version of MS MARCO (Dai and 117

Callan, 2020), where we only keep webpage titles 118

(MS MARCO-Titles) to align it with short-text 119

ranking applications. We use the mean average pre- 120

cision (MAP) and mean reciprocal rank (MRR) for 121

evaluation. MAP is a generalization of MRR when 122

there are multiple positive items per query, i.e., on 123

MS MARCO, MAP@K = MRR@K, ∀K. 124

Results: Table 1 shows that CROSS-JEM outper- 125

forms cross-encoders and dual encoders by up to 126

3%, and sparse models (such as BM25) by 20% 127

in terms of accuracy, demonstrating the effective- 128

ness of its listwise ranking. We also report that 129

CROSS-JEM, which uses a 6-layer BERT as the 130

base encoder, has the same number of parameters 131

as monoBERT, but can support over 4× lower la- 132

tency than monoBERT (9.8 ms vs 41.3 ms) for 133

scoring 700 items per query on A100 GPUs. 134

4 Conclusions and Future Scope 135

CROSS-JEM is the first joint ranking approach that 136

can effectively model listwise ranking in both the 137

model architecture and training objective with real- 138

time latency constraints. Overcoming the limita- 139

tions of pointwise approaches, it establishes a new 140

state-of-the-art with significantly lower computa- 141

tional costs on publicly available ranking bench- 142

marks. The scope of this work is on ranking short 143

texts, a common requirement in both industrial 144

sponsored search applications and academic bench- 145

marks. CROSS-JEM opens up new directions for 146

designing accurate ranking architectures and algo- 147

rithms, accounting for task-specific constraints. 148
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