
Towards Understanding Gradient Dynamics
of the Sliced-Wasserstein Distance via Critical Point Analysis

Christophe Vauthier 1 Anna Korba 2 Quentin Mérigot 1

Abstract
In this paper, we investigate the properties of
the Sliced Wasserstein Distance (SW) when em-
ployed as an objective functional. The SW metric
has gained significant interest in the optimal trans-
port and machine learning literature, due to its
ability to capture intricate geometric properties of
probability distributions while remaining compu-
tationally tractable, making it a valuable tool for
various applications, including generative mod-
eling and domain adaptation. Our study aims to
provide a rigorous analysis of the critical points
arising from the optimization of the SW objective.
By computing explicit perturbations, we establish
that stable critical points of SW cannot concen-
trate on segments. This stability analysis is crucial
for understanding the behaviour of optimization
algorithms for models trained using the SW objec-
tive. Furthermore, we investigate the properties of
the SW objective, shedding light on the existence
and convergence behavior of critical points. We
illustrate our theoretical results through numerical
experiments.

1. Introduction
An important problem in statistical learning is to approxi-
mate an intractable target probability measure ρ on Rd with
a probability measure supported on a finite set of points.
Such problems arise in various contexts, such as sampling
from Bayesian posterior distributions (Blei et al., 2017;
Wibisono, 2018), generative modeling (Bond-Taylor et al.,
2021) and training neural networks (Chizat & Bach, 2018;
Mei et al., 2018). Recently, a popular framework to address
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such tasks has been to consider gradient flows, i.e., optimiza-
tion dynamics on the space of probability measures, to min-
imize an objective functional of the form F(µ) := D(µ|ρ),
where D is a discrepancy (e.g. a distance, or a divergence)
between measures. In practice, these can be simulated by
considering an initial distribution that is a discrete mea-
sure uniformly supported on a set of particles. The parti-
cle positions then evolve according to a system of ODEs
Ẋ = −∇F (X), which corresponds to the gradient flow of
a functional F : (Rd)N → R, where d is the dimension of
the space and N the number of particles. Then, a practical
scheme is derived by discretizing in time this flow, e.g. with
gradient descent. Reversely, gradient descent on particles
can be seen as a discretized flow described by this system
of ODEs.

Many divergences or distances can be considered as the dis-
crepancyD, each offering different tradeoffs between attrac-
tive geometrical properties and computational burden of the
associated training dynamics. Generally the objective func-
tion is chosen so that the dynamic is tractable given the avail-
able information on ρ. When the density of ρ is known up to
a normalization constant, as often the case in Bayesian infer-
ence, standard choices include the Kullback-Leibler diver-
gence (Salim et al., 2020), Kernel Stein Discrepancy (Fisher
et al., 2021; Korba et al., 2021) or (eventually weighted)
Fisher Divergences (Cai et al., 2024a;b). On the other hand,
when samples of the target distribution are available, Integral
Probability Metrics (IPM) or Optimal Transport distances
are preferred, since they are well-defined for discrete mea-
sures. For instance in generative modeling, while original
Generative Adversarial Networks are known to optimize a
Jensen-Shannon divergence to the distribution of the sam-
ples (Goodfellow et al., 2020) and can be understood via the
perspective of Wasserstein flows (Yi et al., 2023), a wide
range of these metrics have been used for the training of
GAN variants, e.g. Wasserstein-1 (Arjovsky et al., 2017),
Sinkhorn divergences (Genevay et al., 2018), Maximum
Mean Discrepancies (Li et al., 2017) or novel metrics in-
terpolating between IPM and f-divergences (Birrell et al.,
2022). Alternatively, recent work directly tackled gener-
ative modeling tasks through simulating Wasserstein gra-
dient flows of such discrepancies, e.g. Sliced-Wasserstein
distances (Liutkus et al., 2019; Dai & Seljak, 2021; Du
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et al., 2023), Energy distances (Hertrich et al., 2024), or
f-divergences (Fan et al., 2022; Choi et al., 2024). For all
these methods, the choice of the discrepancy objective is
crucial for their empirical success1.

For instance, Wasserstein distances themselves appear to
be suitable objectives, in the sense that they preserve the
geometry of probability distributions, e.g. when comput-
ing barycenters (Rabin et al., 2012). However, for discrete
measures, such distances are known to suffer from a large
computational cost and poor statistical efficiency (Peyré
et al., 2019). To alleviate this issue, several alternatives
to the Wasserstein distance were proposed. Among these,
the Sliced-Wasserstein distance (SW) (Bonneel et al., 2015)
is a computationally attractive proxy. It involves averages
of Wasserstein distances in dimension 1 (each of which
can be computed in closed-form) with respect to an infinite
number of directions. It has gained popularity in machine
learning applications, such as computing barycenters of dis-
tributions (Bonneel et al., 2015), variational inference (Yi &
Liu, 2023) or recently generative modeling (Kolouri et al.,
2018; Liutkus et al., 2019; Dai & Seljak, 2021; Du et al.,
2023). While its statistical and computational properties
have been studied extensively in the literature (Nadjahi et al.,
2020; Manole et al., 2022; Nietert et al., 2022), the behavior
of its optimization dynamics remain largely unknown. In
this paper, we consider the objective functional F to be a
SW distance to a fixed measure ρ. We consider a gradient
descent scheme on particles, as well as its continuous time
and space counterpart, as an optimization scheme pushing
particles from a source µ to approximate the target ρ. As
this latter optimization problem is non-convex, it is natural
to study the critical points that may be encountered during
minimization. Our main objective is not only to understand
the discretized problem, but also its continuous time and
space analog, which motivates us to propose a notion of crit-
ical point for the continuous functional F that is compatible
with the critical points for the discretized problem.

We note at this point that there exists many natural notions
of critical points for a functional G defined on the space
of probability measures over Rd. A measure µ is called a
critical point of G if for any curve (µt)t∈[0,1] in the space of
measures such that µ0 = µ belonging to a certain family of
allowed perturbations, one has

d

dt
G(µt)

∣∣∣∣
t=0+

= 0. (1)

Our aim at this point is not to discuss the differentiability as-
sumptions on G, and we will therefore remain at an informal
level. Depending on the set of allowed perturbations, we
will recover several distinct and arguably interesting notions

1Note though that GANs use a parametric setting, that is, we
optimize θ → D(µθ, ρ) where θ is a parameter vector for a neural
network.

of critical points:

• We will call µ an Eulerian critical point if it satisfies (1)
for all perturbations of µ of the form µt = (1−t)µ+tν
for ν ∈ P2(Rd). This coincides with the standard
notion of critical point on the “flat” space P2(Rd) (i.e.,
not equipped with W2).

• We will call µ a Wasserstein critical point if it satisfies
(1) for all W2-geodesics emanating from µ. If µ is a
probability density, we know from Brenier’s theorem
that geodesics are all curves of the form µt = ((1 −
t) Id+tT )#µ with T the gradient of a convex function.

• Finally, we will call µ a Lagrangian critical point if it
satisfies (1) for all curves of the form µt = (Id+tξ)#µ
for any vector field ξ ∈ L2(µ,Rd)2.

We now discuss the case where G = Gρ := 1
2 W

2
2(·, ρ) is the

squared Wasserstein distance to a probability density ρ to fix
ideas. First, we note that the only Eulerian critical point of
this functional is ρ, a non-obvious fact, which follows from
strong convexity of this Gρ (Santambrogio, 2015, Proposi-
tion 7.19). However, such critical points are not meaningful
when considering continuous time limits of gradient descent
schemes (the ODE dynamics obeyed by the particles), as
we do in this paper. Second, if µ ̸= ρ and if (µt)t∈[0,1]

is the W2-geodesic between µ and ρ, one can verify that
Gρ(µt) ≤ Gρ(µ)− ct for some c > 0, thus implying that µ
is not critical. Therefore, the only Wasserstein critical point
of Gρ is, again, µ = ρ. In this case, every Wasserstein criti-
cal point is therefore also a Lagrangian critical point. The
converse holds when µ is absolutely continuous, because
one can take ξ = T − Id, but not in general. As explained
in (Mérigot et al., 2021) and studied in detail in (Sarrazin,
2022, Chapter 4), the functional Gρ admits many Lagrangian
critical points. First and foremost, any local or global min-
imizer of X = (x1, . . . , xN ) ∈ (Rd)N 7→ Gρ( 1

N

∑
i δxi

)
induces a Lagrangian critical point µX = 1

N

∑
i δxi

(show-
ing the practical relevance of this notion), but moreover
any W2-limit of Lagrangian critical points are Lagrangian
critical (with the caveat that the definition of Lagrangian
critical points in (Sarrazin, 2022) is restricted to compactly
supported measures and continuous perturbations ξ). This
notion of critical point translates a difficulty that comes from
the discretization, but that persists in the continuous limit.

Contributions and outline. Regarding the theoretical
guarantees of optimization schemes applied to SW, a natu-
ral question is the following: given a sequence of discrete
measures (µN ) supported on N atoms, and constructed us-
ing a first-order algorithm applied on a SW objective, can
we expect this sequence to converge to the target measure

2L2(µ,Rd) =
{
f : Rd → Rd,

∫
∥f(x)∥2dµ(x) < ∞

}
.
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ρ as N → ∞? This question is difficult because of the
non-convexity of the discretized SW objective. However,
we could hope that the non-convexity becomes milder as
N → +∞, in the spirit of (Chizat & Bach, 2018; Mérigot
et al., 2021).

Our paper is a first step towards answering this question and
is organized as follows. In Section 2, we introduce the neces-
sary background on optimal transport and Sliced-Wassertein
distances. In Section 3, we discuss properties of gradient
descent of the functional F over discrete measures and of its
critical points, showing in particular that trajectories of gra-
dient descent avoid the non-differentiability locus of F . In
Section 4, we give an explicit characterization of Lagrangian
critical points of the SW objective F = 1

2 SW
2
2(·, ρ), and

we prove that our notion of critical points passes to weak
limits under mild assumptions. This implies that the limit
of discrete critical points (e.g., obtained numerically), is a
Lagrangian critical point. In Section 5 we construct explicit
examples of Lagrangian critical points of F supported on
lower-dimensional subsets of Rd. This shows in particular
that there exists “bad” Lagrangian critical points points of
the SW objective which are distinct from the target ρ. A
natural question is then whether these “bad” Lagrangian
critical points can actually occur as the limit of discrete
measures obtained by an optimization algorithm. Since we
expect that gradient descent will converge to stable criti-
cal points (Panageas et al., 2019), it is tempting to rule out
these bad critical points by showing that they are unsta-
ble. We establish in Section 5 in dimension d = 2 that any
Lagrangian critical point that contains a segment must be
unstable. Since our proof relies on delicate explicit compu-
tations, the extension to lower dimensional critical points in
higher dimension is left as future work. Finally Section 6
presents illustrations of our theoretical results on numerical
experiments.

2. Background
Measures and optimal transport We first give some
background on optimal transport distances. We denote
P(Rd) the set of probability measures on Rd and Pp(Rd)
the set of probability measures with finite pth moment
(p ≥ 1). The d-dimensional Lebesgue and k-dimensional
Hausdorff measures are denoted respectively by Ld andHk.
In our setting, a probability density ρ on Rd is a probabil-
ity measure which is absolutely continuous with respect to
the Lebesgue measure; for simplicity we will often use the
same notation for ρ and its density. Given a measurable
map T from Rd to itself and µ ∈ P(Rd), T#µ denotes the
pushforward measure of µ by T . The Wasserstein distance
of order p between any probability measures µ, ν in Pp(Rd)

is defined as

W
p
p(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥pdπ(x, y), (2)

where ∥ · ∥ denotes the Euclidean norm, and Π(µ, ν) is the
set of probability measures on Rd × Rd with marginals µ
and ν.

1D optimal transport Consider probability measures
µ, ν ∈ Pp(R), and let F−1

µ and F−1
ν be their quantile func-

tions, i.e. F−1
µ (t) = inf{s ∈ R | Fµ(s) ≥ t} where Fµ is

the cumulative distribution function (cdf). By (Rachev &
Rüschendorf, 1998, Theorem 3.1.2.(a)), the 1D Wasserstein
distance is the Lp distance between the quantile functions,

W
p
p(µ, ν) =

∫ 1

0

|F−1
µ (t)− F−1

ν (t)|pdt. (3)

If X = (x1, . . . , xN ) ⊆ RN is a finite set in R, µX =
1
N

∑
i δxi is the associated empirical measure, and σX is a

permutation such that i 7→ xσX(i) is non-decreasing (sim-
ilarly, we define Y, µY , σY ), Equation (3) becomes more
explicit:

W
p
p(µX , µY ) =

1

N

N∑
i=1

|xσX(i) − yσY (i)|p, (4)

showing the complexity of 1D optimal transport is the same
as sorting, i.e. O(N logN). However, in dimension higher
than one, there is no explicit expression for Wp

p(µ, ν) and
despite the progress made in the last decade, the compu-
tational cost remains superlinear in the number of atoms
(Peyré et al., 2019).

Sliced-Wasserstein distance The Sliced-Wasserstein
(SW) distance (Rabin et al., 2012) defines an alternative
metric by leveraging the computational efficiency of Wp

p for
univariate distributions. For θ ∈ Sd, Pθ : Rd → R denotes
the linear form x 7→ ⟨θ|x⟩. Then, the SW distance of order
p between µ, ν ∈ Pp(Rd) is

SWp
p(µ, ν) =

∫
Sd−1

W
p
p(Pθ#µ, Pθ#ν)dθ, (5)

where Sd−1 is the (d− 1)-dimensional unit sphere and dθ
is the uniform distribution on Sd−1. Since Pθ♯µ, Pθ♯ν are
univariate distributions, the Wasserstein distances in (5) are
conveniently computed using (3). The sliced-Wasserstein
distance SWp is always smaller than the original Wasser-
stein distance (Bonnotte, 2013, Proposition 5.1.3), and is
even bi-Hölder equivalent to this distance on the subset
P(B(0, R)) ⊆ Pp(Rd). The computational and statistical
aspects of sliced-Wasserstein distances are by now well
studied, we refer to (Nadjahi et al., 2020) and references
therein.
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3. Discrete Sliced-Wasserstein distance
dynamics

Before investigating the convergence of the gradient flow
of the Sliced-Wasserstein distance to its critical points and
the characterization of the latter, we first study in this sec-
tion the optimization of the Sliced-Wasserstein distance in
practice, where the optimized (source) measure is discrete.
Our first subsection studies the differentiability properties
of the Sliced-Wasserstein objective when the first argument
is a discrete measure, while the second provides a descent
lemma for this objective. Finally, we show quantitatively
that for a suitable stepsize, gradient descent does not col-
lapse particles and is thus well-defined for all times.

Differentiability of the SW functional. We consider a
target probability density ρ ∈ Pp(Rd), and we define the
function

F : X = (X1, ..., XN ) ∈ (Rd)N 7→ 1

p
SWp

p(µX , ρ), (6)

where µX = 1
N

∑N
i=1 δXi is the uniform empirical measure

associated to the set of points X . As ρ has finite p-moment,
F (X) < +∞ for every point cloud X . As seen in Sec-
tion 2, the SW distance involves sorting the projections of
X over directions. However, the sorting operation, seen
as a function of RN to RN , is piecewise linear and non-
differentiable when two of the coordinates agree. We may
therefore expect our functional F to be non-differentiable
at any point cloud X which belongs to the generalized diag-
onal ∆N := {(X1, ..., XN ) ∈ (Rd)N | ∃i ̸= j,Xi = Xj}.
The next proposition shows differentiability of F on the
complement of this generalized diagonal.

As usual, we denote SN the group of permutations of
{1, ..., N}. We will use the notation Vθ,i for the i-th Power
cell associated to Pθ#ρ, i.e.

Vθ,i = F−1
Pθ#ρ

([
i

N
,
i+ 1

N

])
. (7)

Moreover, given a point cloud X = (X1, . . . , XN ) ∈
(Rd)N , we denote σX,θ ∈ SN a permutation such that
the map i ∈ {1, . . . , N} 7→ ⟨XσX,θ(i)|θ⟩ is non-decreasing.

Proposition 3.1. If p ≥ 2, then F is differentiable at any
point cloud X = (X1, . . . , XN ) ∈ (Rd)N which does not
belong to the generalized diagonal ∆N . The gradient of
F is continuous on (Rd)N \∆N , and its component with
respect to the i-th vector Xi is then

∇XiF (X) =

∫
Sd−1

∫
V
θ,σ

−1
X,θ

(i)

sgn(⟨Xi|θ⟩ − x)

× |⟨Xi|θ⟩ − x|p−1θdPθ#ρ(x)dθ, (8)

In the particular case where p = 2, this expression can
be further simplified by introducing the barycenters of the
Power cells Vθ,i, i.e. bθ,i = N

∫
Vθ,i

xdPθ#ρ(x):

∇Xi
F (X) =

1

N

(
1

d
Xi −

∫
Sd−1

bθ,σ−1
X,θ(i)

θdθ

)
. (9)

The proof of Proposition 3.1 is deferred to Appendix B.1.
This proposition is valid in the semi-discrete setting, where
the source measure is finitely supported and ρ has a density,
while similar results in the literature tackle different settings,
e.g. fully-discrete (Tanguy et al., 2024a) or where both
measures are densities (Manole et al., 2022).

Descent lemma. While our previous result provides a gen-
eral formula for gradients of SW distances of order p ≥ 2,
we focus on the particular case p = 2 where the compu-
tations are the most simple. We then have the following
”descent lemma”, which gives guarantees that a gradient
step decreases the loss, for the gradient descent on F ,

Proposition 3.2. For every X ∈ (Rd)N \ ∆N and every
λ > 0, denoting Y := X − λ∇F (X), we have

F (Y )− F (X) ≤ −λ
(
1− λ

2Nd

)
∥∇F (X)∥2 (10)

The proof of Proposition 3.2 is provided in Appendix B.2
and relies on the semiconcavity of F . This proposition
implies that if X is not a critical point of F and if the step-
size λ belongs to (0, 2Nd), one gradient descent step from
X strictly decreases the value of F . In particular, the r.h.s.
of the inequality (10) is minimal for a step-size λ = Nd,
and we may expect the convergence speed of the gradient
descent to be the fastest for step-sizes around this value.
Considering the expression of ∇F (X) given by (9), one
iteration of the gradient descent with such a step writes:

Xk+1
i ← Xk

i −Nd∇iF (X
k) = d

∫
Sd−1

bθ,σ−1

Xk,θ
(i)θdθ.

(11)
Interestingly, choosing a step ofNd for the SW2

2 objective is
reminiscent of the results obtained by (Mérigot et al., 2021).
They study a variant of Lloyd’s algorithm, which optimizes
X 7→W2

2(µX , ρ) by assigning to Xk+1 the barycenters of
the Power cells (also referred to as Laguerre cells) associated
to Xk, and which was proven, under certain conditions, to
approximate ρ closely after a single step (see Theorem 3
and Corollary 4 in (Mérigot et al., 2021)).

Another consequence of Proposition 3.2 is that the sum
of squared gradients of F at Xk is bounded. Indeed, for
λ = Nd, we have

∥∇F (Xk)∥2 ≤ 2

Nd
(F (Xk)− F (Xk+1)), (12)
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which implies that any converging subsequence of (Xk)
converges to a critical point X∗ of the energy. The conver-
gence of the whole sequence (Xk) to a critical point is open
in general. It can be proven if one assumes that that the
energy level F−1(F (X∗)) only contains a finite number of
critical points, as in (Bourne et al., 2020, Appendix), but
this hypothesis cannot be checked in practice. (Portales
et al., 2024) proves convergence of the whole sequence of
iterates of Lloyd-type algorithms in several settings, but they
acknowledge that their techniques do not extend to the case
of F = 1

2 SW
2
2(·, ρ) when ρ is a probability density.

Well-behavedness of gradient descent In the gradient
descent scheme described above, it is a priori possible that
the iterates will get close to the generalized diagonal ∆N .
This is a problem, as F is only known to be differentiable
on (Rd)N \∆N . The following property ensures that, if the
densities of the projections of ρ are bounded, the iterates
will remain away from ∆N .

Proposition 3.3. Let X ∈ (Rd)N \ ∆N and λ > 0, and
define Y := X − λ∇F (X). Then, if λ ∈ (0, Nd), we have
Y /∈ ∆N .
Furthermore, if there exists β > 0 which bounds from above
the density of Pθ#ρ for every θ ∈ Sd−1, then there exists
C = C(d) such that for every i ̸= j, if ∥Xi −Xj∥ < dC

Nβ ,
then ∥Yi−Yj∥ > ∥Xi−Xj∥. In particular, ifX is a critical
point of F , then

min
i ̸=j
∥Xi −Xj∥ ≥

dC

Nβ
(13)

The proof of Proposition 3.3 is provided in Appendix B.3.
Interestingly, the proof strategy we use also implies that
the continuous flow Ẋ = −∇F (X) is defined for all times
when initialized from a point cloud X(0) not in ∆N , as
discussed in the same appendix.
Remark 3.4. Note that Proposition 3.1, Proposition 3.2,
and the first part of Proposition 3.3 actually admit straight-
forward extensions, with the same statements, to the case
where ρ is only assumed to have no atoms (note that this
includes for instance densities supported on a lower dimen-
sional manifold of Rd (which are not absolutely continuous
w.r.t. Lebesgue in Rd but are without atoms). Indeed, it
turns out that for such ρ, for almost every θ ∈ Sd−1, its
projection Pθ#ρ has no atoms, and we can thus define the
Power cells Vθ,i and the barycenters bθ,i, which requires
minimal changes in the proof. For further discussion, we
refer to Appendix B.4, which also examines extensions of
these results to more general target measures ρ ∈ P2(Rd).

4. Characterization of critical points
The goal of this this section is to derive a rigorous charac-
terization of Lagrangian critical points of the SW objective

F = 1
2 SW

2
2(·, ρ). Unlike in the previous section, where

we worked in the semi-discrete setting (i.e. with µ dis-
crete and ρ a density), our framework will hold for general
µ, ρ ∈ P2(Rd).

4.1. Barycentric characterization

As in the introduction, we first define Lagrangian critical
points using derivatives of F along perturbations of the
measure.

Definition 4.1. A measure µ ∈ P2(Rd) is a Lagrangian
critical point for SW2

2(·, ρ) if for every ξ ∈ L2(µ,Rd),

d

dt
SW2

2((Id+tξ)#µ, ρ)

∣∣∣∣
t=0+

= 0. (14)

The right derivative is always well-defined, since a convex
function always has left and right directional derivatives, as
will be justified in Proposition 4.7(a).

As Definition 4.1 is difficult to verify in practice, we will
now define a second notion of Lagrangian criticality, which
we will prove to be equivalent to the first under mild as-
sumptions on µ, and which will be very similar in spirit to
the concept of Lagrangian critical measures for the standard
Wasserstein distance developed in (Sarrazin, 2022).

We assume that µ ∈ P2(Rd) is fixed, and for every direction
θ, we denote γθ the unique 1D optimal transport plan be-
tween µθ = Pθ#µ and ρθ = Pθ#ρ. We finally consider the
barycentric projection γ̄θ of this transport plan (Ambrosio
et al., 2005, Definition 5.4.2), which we can define using
conditional expectations:

γ̄θ : R→ R, u 7→ E(U,V )∼γθ
[V |U = u]. (15)

We are now ready to state our second definition of La-
grangian critical points.

Definition 4.2. A measure µ ∈ P2(Rd) is a barycentric
Lagrangian critical point for SW2

2(·, ρ) if vµ = 0 µ-a.e.,
where vµ is the vector field defined by

vµ : x 7→ 1

d
x−

∫
Sd−1

γ̄θ(⟨x|θ⟩)θdθ. (16)

Note that this integral is well-defined by the selection result
(Villani, 2008, Corollary 5.22).
Remark 4.3. This notion of barycentric Lagrangian critical
point appears in (Li & Moosmueller, 2025) (although it is
not explicitly named), where it plays a role in the study of the
convergence of stochastic iterative approximation schemes
for the Sliced-Wasserstein distance. Indeed, Assumption
(A3) therein rewrites in our framework as “η is a barycentric
Lagrangian critical point for SW2

2(·, µ)” (see also (Li &
Moosmueller, 2025, Remark 8)).
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Our two notions of Lagrangian critical points are compatible
with the notion of critical points of the discretized problem
defined in the previous section, as stated in the following
Proposition.

Proposition 4.4. Assume that ρ is a probability density
and let X ∈ (Rd)N \∆N . Then ∇F (X) = 0 if and only
if µX is a Lagrangian critical point for SW2

2(·, ρ) if and
only if µX is a barycentric Lagrangian critical point for
SW2

2(·, ρ).

The proof of Proposition 4.4 is deferred to Appendix B.5.
A natural (non trivial) follow-up question is then whether
the limit of a sequence of discrete critical points µN =
1
N

∑N
i=1 δXi (e.g. obtained numerically) is also a critical

point (as defined either in Definition 4.1 or in Definition 4.2).
The following theorem provides an answer to this question.

Theorem 4.5 (Limits of critical points are critical). Assume
that ρ is without atoms and supported on a compact Ω ⊆
Rd. If a sequence (µN )N≥1 of barycentric Lagrangian
critical points for SW2

2(·, ρ) converges weakly to an atomles
measure µ, then µ is barycentric Lagrangian critical for
SW2

2(·, ρ).

The proof of Theorem 4.5 can be found in Appendix B.8.
Crucially, it relies on the study of the intricate relationship
between the two definitions of Langrangian critical points
we have defined. This study is detailed in the next section.

4.2. Technical tools for Theorem 4.5

We have already shown in Proposition 4.4 that the two no-
tions of critical points agree for discrete measures. Here,
we discuss why Definition 4.2 is also natural in a more gen-
eral setting, such as those of Wasserstein gradient flows,
i.e., curves (µt)t>0 of steepest descent with respect to the
Wasserstein-2 (W2) metric of the objective F . Indeed, by
(Bonnotte, 2013, Section 5.7.1), when ρ is absolutely con-
tinuous, the absolutely continuous stationary points µ of the
gradient flow dynamics of F are characterized by∫

Sd−1

φ′
θ(⟨x|θ⟩)θdθ = 0, µ− a.e. x ∈ Rd (17)

where φθ is the Kantorovitch potential from µθ to ρθ for the
cost c(s, t) = 1

2 (s − t)
2. But since we have φ′

θ = Id−Tθ
where Tθ is the unique optimal transport map from µθ to
ρθ (Santambrogio, 2015, Section 1.3.1), and γ̄θ = Tθ (as
γθ = (Id, Tθ)#µθ), we see that (17) rewrites as vµ = 0
µ-ae, and thus an absolutely continuous measure µ is a
stationary point of the Wasserstein gradient flow of F iff
it is a barycentric Lagrangian critical point. Furthermore,
(Bonnotte, 2013, Lemma 5.7.2) immediately rewrites as the
following result:

Proposition 4.6. (Bonnotte) If µ, ρ ∈ P(B(0, R)) are ab-
solutely continuous and both have a strictly positive density

on B(0, R), then µ = ρ if and only if µ is barycentric
Lagrangian critical for SW2

2(·, ρ)

Now, we will see that Definition 4.1 and 4.2 coincide if
µ, ρ are compactly supported and without atoms. For µ ∈
P(Rd), we denote ∥ · ∥L2(µ) and ⟨·, ·⟩L2(µ) the norm and
the inner product on L2(µ,Rd).

Proposition 4.7. Let µ ∈ P2(Rd), then :

(a) The function Fµ : L2(µ,Rd) 7→ R defined as follows
is convex:

Fµ : ξ 7→ 1

d
∥ξ∥2L2(µ) − SW2

2((Id+ξ)#µ, ρ) (18)

(b) The vector field vµ belongs to L2(µ,Rd). Furthermore,
−2vµ belongs to the subdifferential of Fµ at 0, that is,
for every ξ ∈ L2(µ,Rd),

Fµ(0)− 2⟨vµ|ξ⟩L2(µ) ≤ Fµ(ξ) (19)

(c) If µ and ρ have compact support and are without atoms,
then for every vector field ξ ∈ L2(µ,Rd), the function
φ(t) = SW2

2((Id+tξ)#µ, ρ) is differentiable at t = 0,
with

φ′(0) = 2⟨vµ|ξ⟩L2(µ) (20)

Corollary 4.8. If µ is a Lagrangian critical point for
SW2

2(·, ρ), then it is also a barycentric Lagrangian critical
point for SW2

2(·, ρ). If furthermore µ and ρ have compact
support and are without atoms, then the converse statement
is also true.

The proof of Proposition 4.7 and Corollary 4.8 can be
found in Appendix B.6 and Appendix B.7 respectively. Our
Proposition 4.7(c) extends the result (Bonnotte, 2013, 5.1.7.
Proposition) on the differentiability of SW. In particular,
Bonnotte’s results holds under the strong assumption that
µ, ρ are absolutely continuous, whereas Proposition 4.7(c)
makes the much milder assumption that they are without
atoms.3

5. Lower-dimensional critical points: existence
and instability

5.1. Leveraging symmetry to find critical points

Now that we have characterized Lagrangian critical points,
it is natural to ask ourselves whether there can exist La-
grangian critical measures µ different than the target distri-
bution ρ. An effective approach to construct such critical
points is to look for measures that are supported on a sym-
metry axis of a well-chosen measure ρ. Our next result
provides several examples.

3For instance, distributions on lower dimensional manifolds do
not have a density with respect to the Lebesgue measure but can
be without atoms.

6



Towards Understanding Gradient Dynamics of the Sliced-Wasserstein Distance

Proposition 5.1. The following are barycentric Lagrangian
critical points :

(a) In dimension d = 2, the measure µ = π
8H

1
|[− 4

π , 4
π ]

is a
barycentric Lagrangian critical point for the measure ρ
with density ρ(x) = 1

2π
1√

1−|x|2
1B(0,1)(x), which we

will hereafter call the (two-dimensional) sliced-uniform
measure.

(b) In dimension d > 1, the measure µ defined by µ :=
(Id, 0d−1)#µ0 with µ0 = N (0, α2

d) is a barycen-
tric Lagrangian critical point for the standard Gaus-
sian ρ = N (0, Id), where αd is defined by αd =
d
∫
Sd−1 |⟨θ|e1⟩|dθ and (e1, ..., ed) is the canonical ba-

sis of Rd.

We refer to ρ in Proposition 5.1(a) as the sliced-uniform
measure, as for every θ ∈ Sd−1, its projection Pθ#ρ is the
normalized restriction of the Lebesgue measure to [−1, 1].
Proposition 5.1(a) provides an example of target measure
ρ on a disk in d = 2 that is symmetric with respect to any
line, and which admits in this case a critical point supported
on a segment, hence of strictly lower dimension. Proposi-
tion 5.1(b) provides a similar result for isotropic Gaussians.
The proof of Proposition 5.1 is deferred to Appendix B.9.

We now discuss informally why we expect to find critical
points of this type. Assume that there exists a subspace
H of Rd such that the target ρ is symmetric with respect
to H , i.e. SH#ρ = ρ where SH is the reflection at H .
Then, if spt(µ) ⊆ H , then for every θ ∈ Sd−1, we have
ρSH(θ) = ρθ and µSH(θ) = µθ, thus Tθ = TSH(θ). Thus,
for every x ∈ spt(µ) ⊆ H , we have by straightforward
computations 4:

vµ(x) =
x

d
−

∫
Sd−1

Tθ(⟨θ|x⟩)PH(θ)dθ ∈ H, (21)

where PH is the projection on H . This means that the
iterates of the gradient descent µ ← (Id−γvµ)#µ will
remain supported on H . Therefore, taking the limit of the
trajectory (for an infinite number of iterations) should be a
critical point of F , still supported on H .

5.2. Some explicit unstable critical points

Previously, we highlighted critical points that are supported
on a subset of Rd, for a target distribution that is full-
dimensional. This is problematic because our gradient al-
gorithm may be stuck at these critical points, which are
typically at a high level in the energy landscape. We now
investigate their stability, as gradient descent is unlikely to
get stuck at unstable critical points, with the aim of showing
that such points do not appear in practice.

4vµ(x) =
x
d
−
∫ Tθ(⟨θ|x⟩)θ+TSH (θ)(⟨SH (θ)|x⟩)SH (θ)

2
dθ = x

d
−∫

Tθ(⟨θ|x⟩) θ+SH (θ)
2

dθ as x ∈ H .

We will focus on a particular case of unstable behavior. We
will restrict ourselves to the case d = 2, and we will show
that when the target measure ρ is absolutely continuous,
measures µ that contain a part supported on a segment are
not stable for SW2

2 when perturbed in a certain way.

Proposition 5.2. Let ρ ∈ P2(R2) be an absolutely continu-
ous measure, such that the densities of its projections ρθ are
uniformly bounded from above by b > 0. Let µ ∈ P2(R2)
be any measure such that there exists a segment S ⊆ R2 and
a > 0 such that aH1

|S ≤ µ. Then, if µt is the perturbation

µt :=
1

2
(τ−tn⃗#µ+ τtn⃗#µ) (22)

where τa⃗ is the translation by a⃗ ∈ R2 and n⃗ ∈ S1 is orthogo-
nal to S, then the perturbation µt is unstable for SW2

2(·, ρ):
that is, for any C > 0, there exists a neighborhood (−ε, ε)
of t = 0 in which

SW2
2(µ

t, ρ) ≤ SW2
2(µ, ρ)− Ct2. (23)

The proof of Proposition 5.2 is deferred to Appendix B.10.
Our Proposition 5.2 proves that critical points as described
therein, are highly unstable. Indeed, we do not have a Taylor
expansion SW2

2(µ
t, ρ) = SW2

2(µ, ρ) + at + 1
2bt

2 + o(t2)

with a = 0 and b < 0. Instead, the inequality SW2
2(µ

t, ρ) ≤
SW2

2(µ, ρ) − Ct2 is true for any C > 0 provided that t is
close enough to 0. In particular, this implies that SW2

2(µ
t, ρ)

is not twice differentiable at t = 0. Hence, while the SW
flow may exhibit critical points that are not global minimiz-
ers, they may be unstable in general. Our result proves this
in the case where the target contains a segment.

On the other hand, the perturbation µt used in Proposition
5.2 is not of the form (Id+tξ)#µ, and thus does not fit in
our previously defined framework of Lagrangian critical
points. However, this result suggests that by taking a L2

vector field ξ which alternates rapidly between n⃗ and −n⃗
on the segment S, then SW2

2((Id+tξ)#µ, ρ) will also have
a local maximum at t = 0 (see for example the numerical
experiments in Figure 1 below).

Note that the proof of Proposition 5.2 makes heavy use
of the properties of the segment, among which that the
existence of a relatively simple closed form of the quantile
functions of the projections are available. In general, it
is difficult to describe how the quantile functions of the
projections behave when considering general measures and
perturbations.

6. Experiments
This section presents the results of our experiments, de-
signed to examine the extent to which the theoretical find-

7
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Figure 1. Instability of measures containing an horizontal segment. On the top line are plotted the value SW2
2(µ

t, ρ) for different measures
µ, ρ and perturbations ξ. On the bottom line are depictions of the different µ (black points), ρ (approximated by the blue points) and ξ
(red arrows). Columns (a) and (b): µ is a point cloud of N = 100 points uniformly distributed on the segment [−4/π, 4/π]× {0}, ξ
alternates between e2 and −e2, and ρ is the normal (a) and sliced-uniform distribution (see Proposition 5.1) (b). Column (c): Same µ
and ξ, and this time ρ is the uniform measure on the shell C(0, 1, 2). Column (d) : ρ is again the shell, and µ is a point cloud with a
”dumbbell-like” shape, whose central segment is perturbed similarly as in (a),(b),(c).

ings from the previous sections hold in practice5.

In the experiments, F (X) is approximated by taking the av-
erage of 1D Wasserstein distances over L = 100 directions,
and by approximating ρ with a point cloud Y containing
M = 10000 points.

Instability of critical points. First, we considered a point
cloud X = (X1, ..., XN ) with Xi = − 4

π + 8
π

i−1
N−1 , with

N = 100, that approximates the measure µ = π
8H

1
|[− 4

π , 4
π ]

that was studied in Section 5. We considered a perturba-
tion ξ that alternates between e2 and −e2 and we plotted
t 7→ F (X + tξ) = SW2

2(µ
t
X , ρ) in Figure 1 for different

choices of ρ. We see that the numerical results are consistent
with our theoretical findings: indeed, we have a local maxi-
mum for all three considered target measures. Furthermore,
when X is a point cloud with a more complex shape but
which includes an horizontal segment, we still observe an
instability by perturbing the segment and leaving the other
points of the point cloud unchanged. Moreover, while the
perturbation considered in Proposition 5.2 is not induced by
a vector field ξ, those in these experiments are, and they do

5Code available at https://github.com/cvauthier/
Critical-Points-of-Sliced-Wasserstein

exhibit an instability. This suggests that, if we approximate
the perturbation in Proposition 5.2 closely enough with a
vector field that alternates between n⃗ and −n⃗, we could ob-
tain a unstable perturbation of the form (Id+tξ)#µ, which
would fit in our framework of Lagrangian critical points.

Gradient descent. We also investigated the convergence
speed of the gradient descent for SW2

2 for different choices
of step-sizes, as shown in Figure 2. We observe that choos-
ing step-sizes close to λ = dN (here d = 2), as justified
in Section 3 does indeed yield a important decrease of the
loss at the first few iterations, while lower step-sizes result
in slower convergence of the descent, and step-sizes larger
than 2dN (the threshold above which Proposition 3.2 stops
applying) result in divergence of the descent.

7. Conclusion
In this work, we have studied critical points of SW objec-
tives with respect to a probability measure ρ, by leveraging
the notion of Lagrangian critical points in the space of mea-
sures. We provided a detailed analysis of the critical points
of a flow associated with a non-convex objective distance,
in contrast with most of the literature that primarily deals

8
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Figure 2. Gradient descent of SW2
2. On a point cloud of N = 1000 points for different choices of step-size and ρ. Left : convergence

speed of gradient descent, where ρ is the normal distribution, for different step-sizes (given in multiples of N in the legend). Center left :
Initial point cloud (in green), sampled uniformly in [−1, 1]2, and final point cloud (in red) after 200 iterations with step-size λ = 2N .
Center right and right : same as respectively the left and center left images, but with ρ the sliced-uniform measure (see Proposition 5.1).

with convex ones or that uses functional inequalities.

One limitation of our study is that, while we have defined
our framework of Lagrangian critical points for all measures
µ, ν ∈ P2(Rd), most of our results require the target ρ to
be without atoms (in Section 3, ρ is assumed to be a density,
but, as pointed out in Remark 3.4, most of its results can be
extended to ρ without atoms). This can limit the applica-
bility of our results to machine learning applications where
one often has to work with discrete targets ρ. However, our
assumptions are sufficient to allow us to tackle many types
of singular measures which arise in machine learning and
generative modeling, such as densities supported on a lower
dimensional manifold of Rd (which are not absolutely con-
tinuous but are without atoms). Furthermore, the fact that
our numerical experiments, in which the target measures
were discretized, exhibit the behaviors of convergence and
instability that our theoretical analysis highlighted, suggests
that our results should still be relevant in the cases where
the target measure is approximated by a discrete measure.
Another limitation is that our main instability result, Propo-
sition 5.2, only holds in dimension d = 2 and involves a
perturbation which is technically outside our framework of
Lagrangian critical points. Generalizing this result to higher
dimensions or exhibiting more general unstable Lagrangian
critical points could be an avenue for future work.

Finally, many important open questions about critical points
of SW remain. First, is it possible to prove that any Wasser-
stein or Lagrangian critical point µ of F = 1

2 SW
2
2(·, ρ)

which is absolutely continuous must be equal to ρ ? The-
orem 4.1 in (Cozzi & Santambrogio, 2024) gives a (very)
partial answer to this question: it implies in particular that
if ρ is a standard Gaussian and if µ has finite entropy, then
µ = ρ. Second, can we get a better understanding of stable
critical points? There exists finitely supported stable critical

points (e.g. the global minimizers of the discretized energy)
and we have shown in Proposition 5.2 that stable critical
points cannot contain a segment. More generally, one could
hope to show that any stable critical point µ of F which
is atomless must be equal to ρ. Third, we note that there
exists other proxies of the Wasserstein-p distances based
on 1-dimensional projections, such as Max-sliced Wasser-
stein (Deshpande et al., 2019), SW distances with respect
to other probability measures on the unit sphere (Nguyen &
Ho, 2024; Rowland et al., 2019; Mahey et al., 2024). Ex-
tending our study to these variants of SW is the topic of
future research.
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A. Some useful results
A.1. Projections of measures without atoms

In this subsection, we prove an useful lemma on measures without atoms. If µ is a measure on Rd, we say that µ is with
atomless projections, which we abbreviate WAP, if its projection µθ is without atoms for almost every θ ∈ Sd−1. It is
straightforward that if µ is WAP, then it is without atoms. It turns out that for finite measures, the converse is also true :
Proposition A.1. Let µ be a finite measure on Rd, then µ is atomless if and only if it is WAP.

Proof. We have already seen that if µ has atoms, then it can’t be WAP.
Now, for every k ∈ {0, . . . , d− 1}, let AGk(Rd) be the k-th affine Grassmannian of Rd, that is the set of affine subspaces
of Rd of dimension k, and for every k ∈ {0, . . . , d− 1} and measure µ on Rd, we note

Ak,µ = {V ∈ AGk(Rd) | µ(V ) > 0} (24)

(in particular, A0,µ is the set of atoms of µ). Let µ be a fixed finite measure on Rd without atoms. We construct by
induction a sequence of finite measures µ0 = µ, µ1, . . . , µd−1 such that for every k, AGk,µk

= ∅, and if k > 0, then
µk is WAP ⇒ µk−1 is WAP. Our first term µ0 = µ satisfies by assumption A0,µ0 = ∅. Now assume that we have built
µ0, . . . , µk−1.
If V1, . . . , Vl ∈ Ak,µk−1

are distinct, then

µk−1(V1 ∪ . . . ∪ Vl) =
l∑

i=1

µk−1(Vi) (25)

as the intersection of any subset of these has null µk−1-measure since Ak−1,µk−1
= ∅. In particular, the family

(µk−1(V ))V ∈Ak,µk−1
is summable, with sum ≤ 1, and Ak,µk−1

is at most countable. Define

µk := µk−1 − µk−1|
⋃

Ak,µk−1
(26)

Then, by construction, Ak,µk
= ∅. Now, let θ ∈ Sd−1 be such that (µk−1)θ has an atom : there exists u ∈ R such

that (µk−1)θ({u}) > 0. Assume that (µk)θ({u}) = 0, then this implies that there exists V ∈ Ak,µk−1
such that

(µk−1|V )θ({u}) > 0, that is µk−1(V ∩ P−1
θ (u)) > 0. Since Ak−1,µk−1

= ∅, this implies that V ∩ P−1
θ (u) is an affine

subspace of dimension k, that is V ⊆ P−1
θ (u), and θ ∈ V ⊥. This argument thus proves

{θ ∈ Sd−1 | (µk−1)θ has an atom} ⊆ {θ ∈ Sd−1 | (µk)θ has an atom} ∪ {θ ∈ Sd−1 | ∃V ∈ Ak,µk−1
, θ ∈ V ⊥} (27)

Since the second set in the RHS is of null measure (as an at most countable union of sets of null measure), this inclusion
implies that if µk is WAP, then µk−1 is also WAP. This finishes our induction.
Now, we have built our sequence µ0, . . . , µd−1. But Ad−1,µd−1

= ∅ implies that µd−1 is WAP (and that in fact (µd−1)θ is
without atoms for every θ). Thus, all the measures of the sequence are WAP, and in particular µ0 = µ is WAP.

A.2. Disintegration of measures

We state here the so-called disintegration theorem, which we will need in the proofs of our results. Let X , Y be two
separable metric spaces. We say that a family (µx)x∈X of probability measures on P(Y ) is a Borel family of measures if
for every Borel set B ⊂ Y , the map x ∈ X 7→ µx(B) is Borel measurable. We say that a separable metric space X is a
Radon space if for every µ ∈ P(X), every ε > 0 and every Borel set B ⊆ X , there exists a compact set Kε ⊆ X such that
Kε ⊆ B and µ(B \Kε) ≤ ε. In particular, it is known that Polish spaces (i.e. complete metric separable spaces) are Radon
spaces (see (Ambrosio et al., 2005, Section 5.1)), so Rd is a Radon space.
Theorem A.2. Let X , Y be two Radon separable metric spaces, µ ∈ P(X) and π : X 7→ Y be a measurable map. Let
ν := π#µ ∈ P(Y ). Then there exists a Borel family of measures (µy)y∈Y ⊆ P(X), which is ν-a.e. uniquely defined, such
that

µy(X \ π−1(y)) = 0 for ν-a.e. y ∈ Y (28)

and, for every measurable map f : X 7→ [0,∞],∫
X

f(x)dµ(x) =

∫
Y

∫
π−1(y)

f(x)dµy(x)dν(y) (29)
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The statement of this theorem is taken from (Ambrosio et al., 2005, Theorem 5.3.1). In the case where X is of the form
X = Z × Y and π is the projection on the second coordinate, we may identify each π−1(y) with Z, and the theorem
reformulates as : there exists a Borel family of measures (µy)y∈Y ⊆ P(Z), which is ν-a.e. uniquely defined, such that for
every measurable map f : Z × Y 7→ [0,∞],

∫
Z×Y

f(z, y)dµ(z, y) =
∫
Y

∫
Z
f(z, y)dµy(z)dν(y).

B. Proofs
B.1. Proof of Proposition 3.1

First, consider a probability density ρ ∈ Pp(R), with cumulative distribution function Fρ : R 7→ [0; 1]. Let µX =
1
N

∑N
i=1 δxi

the uniform empirical measure associated to X = (x1, ..., xN ) ∈ RN . For every i ∈ {1, ..., N}, we define
Vi = F−1

ρ ([ i−1
N ; i

N ]) the i-th Power cell associated to ρ. Then the properties of one-dimensional optimal transport imply
that, for every X = (x1, ..., xN ) ∈ RN with xσ(1) ≤ ... ≤ xσ(N), σ ∈ SN , we have

G(X) :=
1

p
W

p
p(µX , ρ) =

1

p

N∑
i=1

∫
Vi

|xσ(i) − x|pdρ(x) =
1

p

N∑
i=1

∫
Vσ−1(i)

|xi − x|pdρ(x). (30)

We can then easily see that when p > 1, G is C1 on the complement of the generalized diagonal ∆N = {(x1, ..., xN ) ∈
RN | ∃i ̸= j, xi = xj}, and its partial derivatives are given by

∂iG(x1, ..., xN ) =

∫
Vσ−1(i)

sgn(xi − x)|xi − x|p−1dρ(x), (31)

where σ ∈ SN is such that xσ(1) < ... < xσ(N). In the particular case where p = 2, the partial derivatives take the simpler
form

∂iG(x1, ..., xN ) =

∫
Vσ−1(i)

(xi − x)dρ(x) =
1

N
(xi − bσ−1(i)) (32)

with bi = N
∫
Vi
xdρ(x) the barycenter of the i-th Power cell Vi.

With these considerations on one-dimensional measures in mind, we can now move on to prove Proposition 3.1. For this, we
will need the following lemma.

Lemma B.1. If p ≥ 2, ρ ∈ Pp(R) is a probability density and X = (x1, ..., xN ) ∈ ∆N with xσ(1) < ... < xσ(N),
σ ∈ SN , and H = (h1, ..., hN ) ∈ RN is a perturbation such that X +H has the same ordering σ as X , then writing
R1G(X,H) = G(X +H)−G(X)− ⟨∇G(X)|H⟩ we have

|R1G(X,H)| ≤ 2p−2(p− 1)

N∑
i=1

|hi|p + |hi|2
∫
|xi − x|p−2dρ(x) (33)

(this is a finite quantity since ρ has finite order p moments).

Proof. Consider the function f(x) = |x|p. Since p ≥ 2, we see that f is C2 and that f ′(x) = px|x|p−2, f”(x) =
p(p− 1)|x|p−2. As a consequence, applying Taylor’s theorem, for every x, h ∈ R,

f(x+ h)− f(x)− f ′(x)h =

∫ x+h

x

f”(t)(x− t)dt (34)

|f(x+ h)− f(x)− f ′(x)h| ≤
∫ x+h

x

|f”(t)(x− t)|dt (35)

≤
∫ x+h

x

p(p− 1)max(|x|, |x+ h|)p−2|h|dt (36)

≤ p(p− 1)|h|2(|x|+ |h|)p−2 (37)

≤ 2p−2p(p− 1)|h|2(|x|p−2 + |h|p−2) (38)

≤ 2p−2p(p− 1)(|h|p + |h|2|x|p−2) (39)
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Therefore, since X +H and X have the same ordering σ,

R1G(X,H) =
1

p

N∑
i=1

∫
Vσ−1(i)

(|xi + hi − x|p − |xi − x|p − p sgn(xi − x)|xi − x|p−1)dρ(x) (40)

|R1G(X,H)| ≤ 1

p

N∑
i=1

∫
Vσ−1(i)

2p−2p(p− 1)(|hi|p + |hi|2|xi − x|p−2)dρ(x) (41)

≤ 2p−2(p− 1)

N∑
i=1

∫
Vσ−1(i)

|hi|p + |hi|2|xi − x|p−2dρ(x) (42)

≤ 2p−2(p− 1)

N∑
i=1

|hi|p + |hi|2
∫
|xi − x|p−2dρ(x) (43)

Now we can prove Proposition 3.1.

Proof (Proposition 3.1). First, let’s introduce the following definitions : for every ϵ > 0 let

Θϵ := {θ ∈ Sd−1 | ∃i ̸= j, |⟨Xi −Xj |θ⟩| ≤ ϵ} (44)

and for every θ ∈ Sd−1 define the function Gθ : X ∈ RN 7→ 1
pW

p
p(µX , Pθ#ρ) For every point cloud X ∈ (Rd)N and

every θ ∈ Sd−1, let σθ,X ∈ SN be a (not necessarily unique) permutation such that ⟨Xσθ,X(1)|θ⟩ ≤ ... ≤ ⟨Xσθ,X(N)|θ⟩,
and let

∇̃Xi
F (X) :=

∫
Sd−1

∫
V
θ,σ

−1
θ,X

(i)

sgn(⟨Xi|θ⟩ − x)|⟨Xi|θ⟩ − x|p−1θdPθ#ρ(x)dθ (45)

We want to prove that if X /∈ ∆N , F is differentiable at X and ∇F (X) = ∇̃F (X).

Let ϵ > 0 be fixed. We see that if ∥H∥ ≤ ϵ, then for every θ /∈ Θ2ϵ, σθ,X+H = σθ,X . Furthermore we know that there
exists C0 = C0(X) > 0 such that

USd−1(Θϵ) ≤ C0ϵ (46)

where USd−1 is the uniform distribution (i.e. the normalized volume measure) on Sd−1. We now consider a perturbation H
such that ∥H∥ ≤ ϵ/2. We have

F (X +H)− F (X)− ⟨∇̃F (X)|H⟩ = A(H) +B(H) + C(H) (47)

with

A(H) =

∫
Θc

ϵ

(Gθ(Pθ(X +H))−Gθ(Pθ(X))− ⟨Pθ(H)|∇Gθ(Pθ(X))⟩)dθ (48)

B(H) =

∫
Θϵ

(Gθ(Pθ(X +H))−Gθ(Pθ(X)))dθ (49)

C(H) = −
∫
Θϵ

⟨Pθ(H)|∇Gθ(Pθ(X))⟩dθ (50)

When θ ∈ Θc
ϵ, we have σθ,X+H = σθ,X and we can apply lemma B.1 to Gθ to obtain that

|Gθ(Pθ(X +H))−Gθ(Pθ(X))− ⟨Pθ(H)|∇Gθ(Pθ(X))⟩| ≤ C∥H∥2 (51)

with a constant C that is uniform on θ and depends only on X , ρ, ϵ and p (indeed, the moments of Pθ#ρ are bounded by
those of ρ). Therefore we deduce that

A(H) = o(∥H∥) (52)
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Now, notice that

|∂iGθ(Pθ(X))| ≤
∫
V
θ,σ

−1
θ,X

(i)

|⟨Xi|θ⟩ − x|p−1dPθ#ρ(x) (53)

so

N∑
i=1

|∂iGθ(Pθ(X))| ≤
N∑
i=1

∫
V
θ,σ

−1
θ,X

(i)

|⟨Xi|θ⟩ − x|p−1dPθ#ρ(x) = Wp−1
p−1(µPθ(X), Pθ#ρ) ≤Wp−1

p−1(µX , ρ) (54)

therefore we deduce that
|C(H)| ≤ C0ϵ∥H∥Wp−1

p−1(µX , ρ) (55)

Finally, for a generic θ, using the mean value inequality on f(x) = xp with f ′(x) = pxp−1, and using the shorthand
notations Wp(X) =Wp(µPθ(X), Pθ#ρ), we have

|Gθ(Pθ(X +H))−Gθ(Pθ(X))| = |Wp(X +H)p −Wp(X)p| (56)
≤ |Wp(X +H)−Wp(X)| sup

[Wp(X),Wp(X+H)]

|f ′| (57)

≤ p|Wp(X +H)−Wp(X)|max(Wp(X),Wp(X +H))p−1 (58)

Now, by the triangle inequality, we have

|Wp(X +H)−Wp(X)| ≤Wp(Pθ#µX+H , Pθ#µX) ≤Wp(µX+H , µX) ≤ ∥H∥ (59)

And similarly Wp(X) ≤Wp(µX , ρ) and

Wp(X +H) ≤Wp(X) +Wp(Pθ#µX+H , Pθ#µX) ≤Wp(X) + ∥H∥ ≤Wp(µX , ρ) + ϵ (60)

Therefore, we have
|Gθ(Pθ(X +H))−Gθ(Pθ(X))| ≤ C∥H∥ (61)

with a constant C which is uniform in θ and depends only on p, ϵ and W(µX , ρ). Therefore

|B(H)| ≤ C0Cϵ∥H∥ (62)

Thus, we have proven that
F (X +H)− F (X)− ⟨∇̃F (X)|H⟩ = o(∥H∥) (63)

which shows that ∇F (X) = ∇̃F (X). To show the continuity of ∇F , let Xk ∈ (Rd)N be a sequence converging to X ,
with Xk, X /∈ ∆N . Recall that for every i ∈ {1, . . . , N}, we have

∇XiF (X
k) =

∫
Sd−1

∫
V
θ,σ

−1

θ,Xk
(i)

sgn(⟨Xk
i |θ⟩ − x)|⟨Xk

i |θ⟩ − x|p−1θdPθ#ρ(x)dθ (64)

Let θ ∈ Sd−1 be such that ⟨Xi|θ⟩ ̸= ⟨Xj |θ⟩ for every i ̸= j, then there exists k0 such that for every k ≥ k0, σθ,Xk = σθ,X .
In particular, this implies that for every i, σ−1

θ,Xk(i) = σ−1
θ,X(i), and thus∫

V
θ,σ

−1

θ,Xk
(i)

sgn(⟨Xk
i |θ⟩ − x)|⟨Xk

i |θ⟩ − x|p−1θdPθ#ρ(x) =

∫
V
θ,σ

−1
θ,X

(i)

sgn(⟨Xk
i |θ⟩ − x)|⟨Xk

i |θ⟩ − x|p−1θdPθ#ρ(x)

(65)

−−−−→
k→∞

∫
V
θ,σ

−1
θ,X

(i)

sgn(⟨Xi|θ⟩ − x)|⟨Xi|θ⟩ − x|p−1θdPθ#ρ(x)

(66)
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where the limit is obtained by dominated convergence, using the fact that the sequence Xk is bounded and that Pθ#ρ has
finite moments of order p− 1. Moreover, since for every k and i, we have

∣∣∣∣∣∣∣
∫
V
θ,σ

−1

θ,Xk
(i)

sgn(⟨Xk
i |θ⟩ − x)|⟨Xk

i |θ⟩ − x|p−1θdPθ#ρ(x)

∣∣∣∣∣∣∣ ≤
∫
|⟨Xk

i |θ⟩ − x|p−1dPθ#ρ(x) (67)

≤ 2p−1(|⟨Xk
i |θ⟩|p−1 +

∫
|x|p−1dPθ#ρ(x)) (68)

≤ 2p−1(|Xk
i |p−1 +

∫
|x|p−1dρ(x)) (69)

and since the sequence Xk is bounded and ρ has finite moments of order p− 1, this implies by dominated convergence that
limk→∞∇XiF (X

k) = ∇XiF (X) for every i. This proves the continuity of∇F . Finally, in the case p = 2, the expression
of ∇Xi

F simplifies as

∇XiF (X) =

∫
Sd−1

∫
V
θ,σ

−1
θ,X

(i)

sgn(⟨Xi|θ⟩ − x)|⟨Xi|θ⟩ − x|θdPθ#ρ(x)dθ (70)

=

∫
Sd−1

∫
V
θ,σ

−1
θ,X

(i)

(⟨Xi|θ⟩ − x)θdPθ#ρ(x)dθ (71)

=

∫
Sd−1

1

N
⟨Xi|θ⟩θdθ −

∫
Sd−1

∫
V
θ,σ

−1
θ,X

(i)

xdPθ#ρ(x)θdθ (72)

=
1

N

(
1

d
Xi −

∫
Sd−1

bθ,σ−1
θ,X(i)θdθ

)
(73)

where we used the definition of the bθ,i in the last line.

As a side note, remark that F is actually twice differentiable almost everywhere, as a consequence of the following
semi-concavity property for F :

Proposition B.2. F is 1
Nd -semiconcave (i.e. F − 1

2Nd∥ · ∥
2 is concave).

Proof. Indeed, F (X)− 1
2Nd∥X∥

2 =
∫
Sd−1

1
2 W

2
2(µPθ(X), Pθ#ρ)− 1

2N ∥Pθ(X)∥2dθ for every X ∈ Rd×N , and we use the
fact that the projection Pθ is linear and that Y ∈ RN 7→ 1

2 W
2
2(µY , Pθ#ρ) is 1

N -semiconcave (see for example Proposition
1, (Mérigot et al., 2021))

B.2. Proof of Proposition 3.2

To prove the descent lemma Proposition 3.2, we first need to prove that F is smooth.

Proposition B.3. For every X,Y ∈ (Rd)N \∆N , we have

F (Y ) ≤ F (X) + ⟨∇F (X)|Y −X⟩+ 1

2Nd
∥X − Y ∥2 (74)

Proof. First, let θ ∈ Sd−1 be fixed, such that ⟨Xi|θ⟩ ≠ ⟨Xj |θ⟩ for every i ̸= j. Then, since the map which sends Vθ,i to
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⟨YσX,θ(i)|θ⟩ is a (not necessarily optimal) transport map from ρθ to µPθ(Y ), we have

W
2
2(µPθ(Y ), ρθ) ≤

N∑
i=1

∫
V
θ,σ

−1
X,θ

(i)

|⟨Yi|θ⟩ − x|2dρθ(x) (75)

≤
N∑
i=1

∫
V
θ,σ

−1
X,θ

(i)

|⟨Yi|θ⟩ − ⟨Xi|θ⟩+ ⟨Xi|θ⟩ − x|2dρθ(x) (76)

≤ 1

N

N∑
i=1

⟨Yi −Xi|θ⟩2 +
N∑
i=1

∫
V
θ,σ

−1
X,θ

(i)

2⟨Yi −Xi|θ⟩(⟨Xi|θ⟩ − x)dρθ(x) +W
2
2(µPθ(X), ρθ) (77)

≤ 1

N

N∑
i=1

⟨Yi −Xi|θ⟩2 +
N∑
i=1

2

N
⟨Yi −Xi|θ⟩(⟨Xi|θ⟩ − bθ,σ−1

X,θ(i)
) +W

2
2(µPθ(X), ρθ) (78)

Integrating over the sphere we have

SW2
2(µY , ρ) ≤

1

N

N∑
i=1

∫
Sd−1

⟨Yi −Xi|θ⟩2dθ +
2

N

N∑
i=1

∫
Sd−1

⟨Yi −Xi|θ⟩(⟨Xi|θ⟩ − bθ,σ−1
X,θ(i)

)dθ + SW2
2(µX , ρ) (79)

≤ 1

Nd

N∑
i=1

∥Yi −Xi∥2 +
N∑
i=1

〈
Yi −Xi |

2

N

∫
Sd−1

(⟨Xi|θ⟩ − bθ,σ−1
X,θ(i)

)θdθ

〉
+ SW2

2(µX , ρ) (80)

In the RHS of the last inequality, we recognize the expression of the gradient of F which we recall is ∇Xi
F =

1
N

∫
Sd−1(⟨Xi|θ⟩ − bθ,σ−1

X,θ(i)
)θdθ. Therefore, substituting it gives the intended result

F (Y ) ≤ 1

2Nd
∥X − Y ∥2 + ⟨Y −X|∇F (X)⟩+ F (X). (81)

Now, we can prove Proposition 3.2. Equation (10) is obtained directly from Equation (74) by taking Y := X − λ∇F (X).

B.3. Proof of Proposition 3.3

We will first need to prove the following lemmas :

Lemma B.4. Let ρ ∈ P([a, b]) be an absolutely continuous probability measure, with density (which we will also denote ρ)
bounded from above by β > 0. Then the barycenter x0 =

∫ b

a
xdρ(x) of ρ satisfies |x0 − a|, |x0 − b| ≥ 1

2β .

Proof. Since ρ ≤ β, integrating ρ on [a, b], we note that 1
β ≤ b− a. Let ρ0 ∈ P([a, b]) be the probability with density β on

[a, a+ 1/β] and 0 on [a+ 1/β, b]. Its cumulative distribution function is thus

Fρ0
(x) =

{
β(x− a) if x ∈ [a, a+ 1/β]

1 if x ≥ a+ 1
β

(82)

and, since ρ ≤ β, we have Fρ ≤ Fρ0
on [a, b]. Thus, the quantile functions of ρ, ρ0 satisfy F−1

ρ ≥ F−1
ρ0

(this follows
directly from their definition), and we have

x0 − a =

∫ b

a

(x− a)dρ(x) =
∫ 1

0

(F−1
ρ (x)− a)dx (83)

≥
∫ 1

0

(F−1
ρ0

(x)− a)dx =

∫ b

a

(x− a)dρ0(x) =
∫ a+ 1

β

a

β(x− a)dx =
1

2β
(84)

where we used the fact that µ = F−1
µ#L1

[0,1] for any probability measure µ on the real line (see (Santambrogio, 2015,
Proposition 2.2)). Similarly, we can show that b− x0 ≥ 1

2β .
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Lemma B.5. For every X ∈ (Rd)N \∆N , we have for every i ̸= j,

N⟨∇XiF (X)−∇XjF (X)|Xi −Xj⟩ ≤
1

d
∥Xi −Xj∥2 (85)

If we further assume that there exists β > 0 bounding from above the density of ρθ for every θ ∈ Sd−1, then there exists
C = C(d) such that for every i ̸= j,

N⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ ≤
1

d
∥Xi −Xj∥2 −

C

Nβ
∥Xi −Xj∥ (86)

Proof. Using the notations of Proposition 3.1 and Equation (9), we have

N⟨∇XiF (X)−∇XjF (X)|Xi −Xj⟩ =
1

d
∥Xi −Xj∥2 −

∫
Sd−1

(bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

)⟨θ|Xi −Xj⟩dθ (87)

By symmetry, we have in fact

N⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ =
1

d
∥Xi −Xj∥2 − 2

∫
{⟨θ|Xi−Xj⟩>0}

(bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

)⟨θ|Xi −Xj⟩dθ (88)

Indeed, for every θ ∈ Sd−1, we can check that we have σ−1
X,−θ(k) = N + 1 − σ−1

X,θ(k) and b−θ,k = bθ,N+1−k for
every k = 1, . . . , N . However, if θ ∈ Sd−1 is such that ⟨θ|Xi − Xj⟩ > 0, then we have σ−1

X,θ(i) > σ−1
X,θ(j), and thus

bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

≥ 0. Therefore the integrand in the right-hand side of (88) is nonnegative, and we deduce from this

N⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ ≤
1

d
∥Xi −Xj∥2 (89)

This proves (85). Now, if we assume that there exists β > 0 such that ρθ ≤ β for every θ ∈ Sd−1, then we have

bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

≥ 1

Nβ
(90)

Indeed, for every k = 1, . . . , N , the distance separating the barycenter bθ,k from the boundary of its corresponding Power
cell Vθ,k is at least 1

2βN , which we see by applying Lemma B.4 to the probability measure Nρθ|Vθ,k
. In particular, since

⟨θ|Xi −Xj⟩ is also positive, we have

⟨θ|Xi −Xj⟩(bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

) ≥ 1

Nβ
⟨θ|Xi −Xj⟩ (91)

Injecting this into Equation (88), we obtain the inequality

N⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ ≤
1

d
∥Xi −Xj∥2 − 2

∫
{⟨θ|Xi−Xj⟩>0}

1

Nβ
⟨θ|Xi −Xj⟩dθ (92)

≤ 1

d
∥Xi −Xj∥2 −

2

Nβ
∥Xi −Xj∥

∫
{⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (93)

≤ 1

d
∥Xi −Xj∥2 −

C

Nβ
∥Xi −Xj∥ (94)

where θ0 :=
Xi−Xj

∥Xi−Xj∥ , and whereC := 2
∫
{⟨θ|θ0⟩>0

⟨θ|θ0⟩dθ > 0. Note that, by symmetry, C does not depend on θ0 ∈ Sd−1

and depends only on d. This proves (86).

We can now prove the proposition.
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Proof (Proposition 3.3). If i ̸= j, then we have

⟨Yi − Yj |Xi −Xj⟩ = ⟨Xi −Xj − λ(∇Xi
F (X)−∇Xj

F (X))|Xi −Xj⟩ (95)

= ∥Xi −Xj∥2 − λ⟨∇XiF (X)−∇XjF (X)|Xi −Xj⟩ (96)

≥ ∥Xi −Xj∥2 −
λ

N

(
1

d
∥Xi −Xj∥2

)
=

(
1− λ

Nd

)
∥Xi −Xj∥2 (97)

where we used (85) from Lemma B.5 to obtain the last line. In particular, if λ ∈ (0, Nd), then ⟨Yi − Yj |Xi −Xj⟩ > 0 and
thus Yi ̸= Yj , for every i ̸= j. Therefore, Y /∈ ∆N . This proves the first part of the proposition.
Now, assuming that there exists β > 0 such that the density of ρθ is bounded from above by β for every θ ∈ Sd−1, we then
have for every i ̸= j,

∥Yi − Yj∥2 = ∥(Xi −Xj)− λ(∇Xi
F (X)−∇Xj

F (X))∥2 (98)

= ∥Xi −Xj∥2 − 2λ⟨∇XiF (X)−∇XjF (X)|Xi −Xj⟩+ λ2∥∇XiF (X)−∇XjF (X)∥2 (99)

≥ ∥Xi −Xj∥2 − 2λ⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ (100)

≥ ∥Xi −Xj∥2 − 2
λ

N

(
1

d
∥Xi −Xj∥2 −

C

Nβ
∥Xi −Xj∥

)
(101)

where we used (86) from Lemma B.5 in the last line. Thus, we have proved

∥Yi − Yj∥2 ≥ ∥Xi −Xj∥2 + 2
λ

N
∥Xi −Xj∥

(
C

Nβ
− 1

d
∥Xi −Xj∥

)
(102)

Now :

• If ∥Xi −Xj∥ ≤ dC
Nβ , we have directly ∥Yi − Yj∥ > ∥Xi −Xj∥ from Equation (102).

• If X is a critical point, we have∇F (X) = 0 and thus Y = X . Therefore, Equation (102) yields

0 ≥ 2
λ

N
∥Xi −Xj∥

(
C

Nβ
− 1

d
∥Xi −Xj∥

)
(103)

which implies
1

d
∥Xi −Xj∥ ≥

C

Nβ
(104)

As a side note, observe that if we consider the continuous time gradient flow{
X(t = 0) = X0 with X0 ∈ (Rd)N \∆N

Ẋ(t) = −∇F (X(t)) for t > 0
(105)

then Lemma B.5 implies that for every t > 0 at which the flow is well-defined, for every i ̸= j,

d

dt

1

2
∥Xi −Xj∥2 = −⟨∇Xi

F (X)−∇Xj
F (X)|Xi −Xj⟩ (106)

≥ − 1

Nd
∥Xi −Xj∥2 +

C

N2β
∥Xi −Xj∥ (107)

≥ ∥Xi −Xj∥
N

(
C

Nβ
− 1

d
∥Xi −Xj∥

)
(108)

where we used (86) to obtain the second line, and, in particular,

d

dt
∥Xi −Xj∥2 > 0 (109)

whenever ∥Xi −Xj∥ ≤ dC
Nβ . This implies that :
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• If ∥Xi −Xj∥ ≥ dC
Nβ at t = 0, then this inequality must stay true at every t > 0.

• If ∥Xi −Xj∥ ≤ dC
Nβ at t = 0, then ∥Xi −Xj∥ increases until it is greater or equal than dC

Nβ , and does not become
lower than this threshold afterwards.

Thus, we see that the continuous time gradient flow is also well-behaved, in that it will tend to stay far away from the
generalized diagonal ∆N .

B.4. Extensions of the results of Section 3

If, instead of assuming that ρ is absolutely continuous with respect to the Lebesgue measure, we simply assume that ρ is
without atoms, then, by Proposition A.1, the projection ρθ is without atoms for every θ ∈ Sd−1 \Nρ where Nρ ⊆ Sd−1

is some set of directions of measure zero. In particular, for every θ /∈ Nρ, the cumulative distribution function Fρθ
is

continuous, and we can define the Power cells Vθ,i := F−1
ρθ

([
i−1
N , i

N

])
and the barycenters bθ,i := N

∫
Vθ,i

xdρθ(x) for
every i ∈ {1, . . . , N}. Then Proposition 3.1, Proposition 3.2 and the first part of Proposition 3.3 extend to ρ, with the exact
same statement. Indeed, their proofs as stated in Appendix B.1, Appendix B.2 and Appendix B.3 work exactly the same
(with the difference that we only consider directions θ that are not in Nρ).

In fact, we can find extensions of Proposition 3.1 and Proposition 3.2 when we only assume that ρ ∈ P2(Rd). The difficulty
is that, since the projections ρθ can no longer be assumed to be without atoms, we can’t characterize the optimal transport
between ρθ and Pθ#µX in terms of Power cells. For this, we first recall the following well-known results on optimal
transport in 1D :

Theorem B.6. Let µ, ν ∈ P2(R), then the so-called monotone transport plan between µ and ν, given by γmon :=
(F−1

µ , F−1
ν )#L1

|[0,1], is the unique optimal transport plan between µ and ν for any cost of the form c(x, y) = h(x− y) with
h : R 7→ [0,∞) strictly convex. Furthermore, γmon is the unique transport plan γ ∈ Π(µ, ν) which satisfies

∀(x, y), (x′, y′) ∈ spt(γ), x < x′ ⇒ y ≤ y′ (110)

We refer to (Santambrogio, 2015, Chapter 2) for the detailed statement and proof of these results. In the special case where
one of the two mesures is a point cloud, we then have the following lemma :

Lemma B.7. Let ρ ∈ P2(R) and N > 0. Then there exists an unique family of probability measures ρ1, . . . , ρN ∈ P2(R)
such that :

• ρ = 1
N

∑N
i=1 ρi

• For every i < j, xi ∈ spt(ρi) and xj ∈ spt(ρj), we have xi ≤ xj

• For every X = (x1, . . . , xN ) ∈ RN with x1 < . . . < xN , the unique optimal transport plan between µX and ρ (for
any cost of the form c(x, y) = h(x− y) with h : R 7→ [0,∞) strictly convex) is given by

γ =
1

N

N∑
i=1

δxi
⊗ ρi (111)

Proof. First, we fix a point cloud X = (x1, . . . , xn) ∈ RN such that x1 < . . . < xN , and we let γX be the unique
optimal transport plan between µX and ρ. By the disintegration theorem Theorem A.2, there exists an unique family
ρX,1, . . . , ρX,N ∈ P2(R) such that γX = 1

N

∑N
i=1 δxi

⊗ ρX,i. In particular, we have ρ = π2#γX = 1
N

∑N
i=1 ρX,i.

Furthermore, if i < j, yi ∈ spt(ρX,i) and yj ∈ spt(ρX,j), then we have (xi, yi), (xj , yj) ∈ spt(γX). and Theorem B.6
directly implies that yi ≤ yj . Now, all that is left to do is to show that the family (ρX,i)i does not actually depend on X .
This is the case since, if X ′ = (x′1, . . . , x

′
N ) ∈ RN is another point cloud with x′1 < . . . < x′N , we see that the transport

plan γ = 1
N

∑N
i=1 δx′

i
⊗ ρX,i also satisfies (110), so that γ = γX′ by Theorem B.6. But then we must have ρX,i = ρX′,i

for every i by unicity of the family (ρX′,i)i. This finishes the proof.

Remark B.8. In the case where ρ ∈ P2(R) has no atoms, it is not difficult to see that ρi = Nρ|Vi
where Vi is the i-th Power

cell Vi := F−1
ρ ([(i− 1)/N, i/N ]).
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Then, fixing ρ ∈ P2(Rd), for every θ ∈ Sd−1, we denote ρθ,1, . . . , ρθ,N ∈ P2(R) the measures given by applying
Lemma B.7 to ρθ, and we define bθ,i :=

∫
xdρθ,i(x) the corresponding barycenters (by Remark B.8, if ρ is without atoms,

this is indeed the barycenter of ρθ on the Power cell Vθ,i, and there is no conflict of notation). We then have the following
extensions of Proposition 3.1, Proposition 3.2 and Proposition 3.3 :

Proposition B.9. If p ≥ 2, then F : X ∈ (Rd)N 7→ 1
p SW

p
p(µX , ρ) is differentiable at any point cloud X =

(X1, . . . , XN ) ∈ (Rd)N which does not belong to the generalized diagonal ∆N . The gradient of F is continuous on
(Rd)N \∆N and the expression of its component with respect to the i-th vector Xi is then

∇XiF (X) =
1

N

∫
Sd−1

∫
sgn(⟨Xi|θ⟩ − x)|⟨Xi|θ⟩ − x|p−1θdρθ,σ−1

X,θ(i)
(x)dθ, (112)

In the particular case where p = 2, this expression can be further simplified :

∇Xi
F (X) =

1

N

(
1

d
Xi −

∫
Sd−1

bθ,σ−1
X,θ(i)

θdθ

)
(113)

Still in the case p = 2, for every X ∈ (Rd)N \∆N and every λ > 0, denoting Y := X − λ∇F (X), we have

F (Y )− F (X) ≤ −λ
(
1− λ

2Nd

)
∥∇F (X)∥2 (114)

and, provided λ ∈ (0, Nd), we have Y /∈ ∆N .

Proof. The optimal transport plan between Pθ#µX and ρθ is given by

γθ =
1

N

N∑
i=1

δ⟨Xi|θ⟩ ⊗ ρθ,σ−1
X,θ(i)

(115)

We then prove that F is differentiable at X with the given expression, and that∇F is continuous, the same way as in the
proof of Proposition 3.1 (in Appendix B.1), where we replace every integration on a Power cell (of the form

∫
Vθ,i

. . . dρθ(x))
by an integration on ρθ,i (of the form 1

N

∫
. . . dρθ,i(x)).

Similarly, we prove the upper bound on F (Y )− F (X) the same way as in the proof of Proposition 3.2 (in Appendix B.2),
by noting that a (not necessarily optimal) transport plan between Pθ#µY and ρθ is given by

γ̃θ =
1

N

N∑
i=1

δ⟨Yi|θ⟩ ⊗ ρθ,σ−1
X,θ(i)

(116)

Finally, if λ ∈ (0, Nd), we prove that Y /∈ ∆N the same way as in the proof of Proposition 3.3 (in Appendix B.3), as we
will still have N⟨∇XiF (X)−∇XjF (X)|Xi −Xj⟩ ≤ 1

d∥Xi −Xj∥2 by the same reasoning.

Furthermore, for a fixed N > 0, provided ρ ∈ P2(Rd) satisfies a technical assumptions on its barycenters bθ,i, then we have
the following extension of Proposition 3.3 :

Proposition B.10. Assume that there exists m > 0 and Θ ⊆ Sd−1 with USd−1(Θ) > 0, such that for every θ ∈ Θ and
i ∈ {1, . . . , N − 1}, bθ,i+1 − bθ,i ≥ m. Then there exists some constant C = C(Θ) > 0 such that for every X ∈ (Rd)N

and λ > 0, setting Y := X−λ∇F (X), for every i ̸= j, if ∥Xi−Xj∥ < dCm, then ∥Yi−Yj∥ > ∥Xi−Xj∥. In particular,
if X is a critical point of F , then

min
i̸=j
∥Xi −Xj∥ ≥ dCm (117)

Proof. By the same argument as in the proof of Proposition 3.3 in Appendix B.3, we have

∥Yi − Yj∥2 ≥ ∥Xi −Xj∥2 − 2λ⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ (118)

with

N⟨∇Xi
F (X)−∇Xj

F (X)|Xi −Xj⟩ =
1

d
∥Xi −Xj∥2 − 2

∫
{⟨θ|θ0⟩>0}

(bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

)⟨θ|Xi −Xj⟩dθ (119)
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and θ0 :=
Xi−Xj

∥Xi−Xj∥ . Indeed, we can again check that we have σ−1
X,−θ(k) = N + 1− σ−1

X,θ(k) and b−θ,k = bθ,N+1−k for
every k = 1, . . . , N . In particular, we may assume that Θ = −Θ. Now, if θ ∈ Sd−1 is such that ⟨θ|θ0⟩ ≥ 0, we again
have (bθ,σ−1

X,θ(i)
− bθ,σ−1

X,θ(j)
)⟨θ|Xi −Xj⟩ > 0, and if furthermore θ ∈ Θ, we have (bθ,σ−1

X,θ(i)
− bθ,σ−1

X,θ(j)
)⟨θ|Xi −Xj⟩ ≥

m⟨θ|Xi −Xj⟩, so that∫
{⟨θ|θ0⟩>0}

(bθ,σ−1
X,θ(i)

− bθ,σ−1
X,θ(j)

)⟨θ|Xi −Xj⟩dθ ≥
∫
Θ∩{⟨θ|θ0⟩>0}

m⟨θ|Xi −Xj⟩dθ (120)

≥ m∥Xi −Xj∥
∫
Θ∩{⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (121)

Now, let α ∈ (0, 1] be the unique value such that

USd−1({α > ⟨θ|θ0⟩ > 0}) = USd−1(Θ ∩ {⟨θ|θ0⟩ > 0}) = 1

2
USd−1(Θ) (122)

(by symmetry, α does not depend on θ0, and only depends on USd−1(Θ)). Then, we have∫
Θ∩{⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ =
∫
Θ∩{⟨θ|θ0⟩≥α}

⟨θ|θ0⟩dθ +
∫
Θ∩{α>⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (123)

≥ αUSd−1(Θ ∩ {⟨θ|θ0⟩ ≥ α}) +
∫
Θ∩{α>⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (124)

≥ αUSd−1(Θc ∩ {α > ⟨θ|θ0⟩ > 0}) +
∫
Θ∩{α>⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (125)

≥
∫
{α>⟨θ|θ0⟩>0}

⟨θ|θ0⟩dθ (126)

where the third line is obtained by noticing that (122) implies that USd−1(Θ∩ {⟨θ|θ0⟩ ≥ α}) = USd−1(Θc ∩ {α > ⟨θ|θ0⟩ >
0}). Thus, denoting C = C(Θ) := 2

∫
{α>⟨θ|θ0⟩>0}⟨θ|θ0⟩dθ, we have, combining (118), (119), (121) and (126),

∥Yi − Yj∥2 ≥ ∥Xi −Xj∥2 −
2λ

N

(
1

d
∥Xi −Xj∥2 − Cm∥Xi −Xj∥

)
(127)

from which we deduce ∥Yi − Yj∥ > ∥Xi −Xj∥ if ∥Xi −Xj∥ < Cmd. In particular, if X is a critical point of F , then
∇F (X) = 0 and Y = X , so we must have ∥Xi −Xj∥ ≥ Cmd.

Remark B.11. In particular, if there exists β > 0 and Θ ⊆ Sd−1 with USd−1(Θ) > 0 such that for every θ ∈ Θ, ρθ is
absolutely continuous with a density bounded from above by β, then, by the same reasoning as in the proof of Proposition 3.3
in Appendix B.3, for every θ ∈ Θ and i = 1, . . . , N − 1, we have bθ,i+1 − bθ,i ≥ 1

Nβ . Thus ρ satisfies the assumption of
Proposition B.10 for every N > 0 with Θ and m := 1

βN . Therefore, we only need to have an upper bound on the densities
of the ρθ for a non negligible set of directions θ (instead of all of them) for the gradient descent to be well-behaved (i.e. to
guarantee that the iterates do not get too close to the generalized diagonal and are repelled by it).

B.5. Proof of Proposition 4.4

First, it will be helpful to introduce the following family of transport plans between the projected measures : for a given
θ ∈ Sd−1, we use Theorem A.2 to disintegrate µ and ρ with respect to Pθ to get families of probabilities (µθ,u)u∈R and
(ρθ,v)v∈R such that spt(µθ,u) ⊆ P−1

θ (u), spt(ρθ,v) ⊆ P−1
θ (s) and for every test function φ ∈ C0(Ω),

∫
φ(x)dµ(x) =∫ ∫

φ(x)dµθ,u(x)dµθ(u) and
∫
φ(y)dρ(y) =

∫ ∫
φ(y)dρθ,v(y)dρθ(v). We then define γ̂θ as the probability measure

whose integral over a test function φ(x, y) ∈ C0(Ω× Ω) is

∫
φ(x, y)dγ̂θ(x, y) =

∫ ∫ ∫
φ(x, y)dµθ,u(x)dρθ,v(y)dγθ(u, v). (128)

We can see then that γ̂θ is a transport plan (not necessarily optimal) between µ and ν and that (Pθ, Pθ)#γ̂θ = γθ (in
other words, γ̂θ is optimal for the cost function (x, y) 7→ ⟨y − x|θ⟩2). We also disintegrate γθ with respect to the first
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variable, giving a family of probabilities (γθ,u)u∈R such that for every test function φ ∈ C0(R× R),
∫
φ(u, v)dγθ(u, v) =∫ ∫

φ(u, v)dγθ,u(v)dµθ(u). Notice that these give an alternative definition of γ̄θ : indeed γ̄θ(u) =
∫
vdγθ,u(v).

We can now proceed to the proof of Proposition 4.4.

Proof (Proposition 4.4). First, if ξ ∈ L2(µX ,Rd), then, defining H ∈ (Rd)N by Hi := ξ(Xi) for every i = 1, . . . , N , we
have for every t > 0 (small enough so that X + tH /∈ ∆N ),

F (X + tH) =
1

2
SW2

2(µX+tH , ρ) =
1

2
SW2

2((Id+tξ)#µX , ρ) (129)

from which we deduce, by taking the right derivative at t = 0,

⟨∇F (X)|H⟩ = d

dt
SW2

2((Id+tξ)#µ, ρ)

∣∣∣∣
t=0+

(130)

In particular, we immediately see from Definition 4.1 that∇F (X) = 0 if and only if µX is a Lagrangian critical point.

Second, the condition vµX
= 0 µX -a.e. from Definition 4.2 writes as

1

d
Xi −

∫
Sd−1

γ̄θ(⟨Xi|θ⟩)θdθ = 0, i ∈ {1, . . . , N} (131)

Fix θ ∈ Sd−1 such that the ⟨X1|θ⟩, . . . , ⟨XN |θ⟩ are distinct. Using the notations from Appendix B.4, we know that
γθ = 1

N

∑N
i=1 δ⟨Xi|θ⟩ ⊗ ρθ,σ−1

X,θ(i)
where ρθ,1, . . . , ρθ,N is the family given by applying Lemma B.7 to ρθ. In particular, we

deduce that for every i, γθ,⟨Xi|θ⟩ = ρθ,σ−1
X,θ(i)

, and thus

γ̄θ(⟨Xi|θ⟩) =
∫
R
vdγθ,⟨θ|Xi⟩(v) =

∫
vdρθ,σ−1

X,θ(i)
(v) = bθ,σ−1

X,θ(i)
(132)

and, using (113), (131) rewrites as
N∇XiF (X) = 0, i ∈ {1, . . . , N} (133)

Thus, ∇F (X) = 0 iff µX is a barycentric Lagrangian critical point.

Remark B.12. Notice that this proof works in fact for general ρ ∈ P2(Rd) (with the expression of gradient ∇F given in
Proposition B.9).

B.6. Proof of Proposition 4.7

First, we prove Proposition 4.7(a). Let ξ0, ξ1 ∈ L2(µ,Rd), we denote St = Id+(1− t)ξ0 + tξ1 and µt = St
#µ. For any

fixed t ∈ [0, 1], γ := ((Pθ, Pθ) ◦ (S0, S1))#µ is a transport plan between µ0
θ and µ1

θ such that

µt
θ = ((1− t)π1 + tπ2)#γ. (134)

where πi is the projection on the i-th coordinate. Furthermore, by Proposition 7.3.1 of (Ambrosio et al., 2005), there exists a
plan η ∈ P(R×R×R) such that (π1, π2)#η = γ and ((1− t)π1+ tπ2, π3)#η is an optimal transport plan between µt

θ and
ρθ. Then, according to Theorem 7.3.2 of (Ambrosio et al., 2005), asserting the semi-concavity of the squared Wasserstein
distance, we have

W
2
2(µ

t
θ, ρθ) ≥ (1− t)W2

2(µ
0
θ, ρθ) + tW

2
2(µ

0
θ, ρθ)− t(1− t)W2

η(µ
0
θ, µ

1
θ), (135)

where Wη is defined in (7.3.2) of (Ambrosio et al., 2005) by

W 2
η (((1− t)πi + tπj)#η, πk#η) :=

∫
R×R×R

|(1− t)xi + txj − xk|2dη(xi, xj , xk) (136)
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for every i, j, k ∈ {1, 2, 3} and t ∈ [0, 1]. In this case, we have

W
2
η(µ

0
θ, µ

1
θ) =

∫
R3

(x1 − x2)2dη(x1, x2, x3) =
∫
R2

(x− y)2dγ(x, y) (137)

=

∫
R2

⟨x− y|θ⟩2d(S0, S1)#µ(x, y) =

∫
⟨ξ0(x)− ξ1(x)|θ⟩2dµ(x) (138)

(we take i = 0, j = 2, k = 1 and t = 0 in (136)). Integrating the inequality (135) over θ ∈ Sd−1, we get

SW2
2(µ

t, ρ) ≥ (1− t) SW2
2(µ

0, ρ) + tSW2
2(µ

1, ρ)− t(1− t)
∫ ∫

Sd−1

⟨ξ1(x)− ξ0(x)|θ⟩2dθdµ(x) (139)

≥ (1− t) SW2
2(µ

0, ρ) + tSW2
2(µ

1, ρ)− 1

d
t(1− t)∥ξ1 − ξ0∥2L2(µ) (140)

This rewrites as
Fµ((1− t)ξ0 + tξ1) ≤ (1− t)Fµ(ξ0) + tFµ(ξ1) (141)

which proves the convexity of Fµ.

Now, we prove Proposition 4.7(b). First, we show that vµ ∈ L2(µ,Rd). This is the case because Id ∈ L2(µ,Rd) as
µ ∈ P2(Rd), and∫

Rd

∣∣∣∣∫
Sd−1

γ̄θ(⟨x|θ⟩)θdθ
∣∣∣∣2 dθdµ(x) ≤ ∫

Rd

∫
Sd−1

γ̄2θ (⟨x|θ⟩)dθdµ(x) (142)

≤
∫
Rd

∫
Sd−1

∫
R
v2dγθ,⟨x|θ⟩(v)dθdµ(x) (143)

≤
∫
Sd−1

∫
Rd

∫
R
v2dγθ,⟨x|θ⟩(v)dµ(x)dθ (144)

≤
∫
Sd−1

∫
R

∫
R
v2dγθ,u(v)dµθ(u)dθ (145)

≤
∫
Sd−1

∫
R2

v2dγθ(u, v)dθ (146)

≤
∫
Sd−1

∫
R
v2dρθ(v)dθ (147)

≤
∫
Sd−1

∫
Rd

⟨y|θ⟩2dρ(y)dθ = 1

d

∫
Rd

∥y∥2dρ(y) <∞ (148)

where we used Jensen’s inequality in the first lines, and ρ ∈ P2(Rd). This proves that vµ is in L2(µ,Rd).

Fix now ξ ∈ L2(µ,Rd). Denote Sξ = Id+ξ and µξ = Sξ#µ, then for every θ ∈ Sd−1, the plan γ̂ξθ := (Sξ, Id)#γ̂θ is a
transport plan between µξ and ρ, such that (Pθ, Pθ)#γ̂

ξ
θ ∈ Π(µξ

θ, ρθ) is not necessarily optimal. Then, we have

W
2
2(µ

ξ
θ, ρθ) ≤

∫
(Rd)2
⟨x− y|θ⟩2dγ̂ξθ(x, y)

≤
∫
(Rd)2
⟨Sξ(x)− y|θ⟩2dγ̂θ(x, y)

≤
∫
(Rd)2
⟨x+ ξ(x)− y|θ⟩2dγ̂θ(x, y)

≤
∫
(Rd)2
⟨x− y|θ⟩2dγ̂θ(x, y) + 2

∫
(Rd)2
⟨x− y|θ⟩⟨θ|ξ(x)⟩dγ̂θ(x, y) +

∫
(Rd)2
⟨ξ(x)|θ⟩2dγ̂θ(x, y)

≤W
2
2(µθ, ρθ) + 2

∫
(Rd)2
⟨x− y|θ⟩⟨θ|ξ(x)⟩dγ̂θ(x, y) +

∫
Rd

⟨ξ(x)|θ⟩2dµ(x) (149)
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The second term in the right hand side of the last inequality is∫
(Rd)2
⟨x− y|θ⟩⟨θ|ξ(x)⟩dγ̂θ(x, y) =

∫
(u− v)

∫
⟨θ|ξ(x)⟩dµθ,u(x)dγθ(u, v)

=

∫ ∫ ∫
(u− v)⟨θ|ξ(x)⟩dµθ,u(x)dγθ,u(v)dµθ(u)

=

∫ ∫ ∫
(u− v)⟨θ|ξ(x)⟩dγθ,u(v)dµθ,u(x)dµθ(u)

=

∫
Rd

⟨θ|ξ(x)⟩
∫

(⟨x|θ⟩ − v)dγθ,⟨x|θ⟩(v)dµ(x)

=

∫
Rd

⟨θ|ξ(x)⟩(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))dµ(x) (150)

Therefore, integrating (149) using (150), we get

SW2
2(µ

ξ, ρ) ≤ SW2
2(µ, ρ) + 2

∫
Sd−1

∫
Rd

(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))⟨θ|ξ(x)⟩dµ(x)dθ +
1

d
∥ξ∥2L2(µ) (151)

but since ∫
Sd−1

∫
Rd

(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))⟨θ|ξ(x)⟩dµ(x)dθ =
∫
Rd

⟨ξ(x)|
∫
Sd−1

(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))θdθ⟩dµ(x) (152)

=

∫
Rd

⟨ξ(x)|1
d
x−

∫
Sd−1

γ̄θ(⟨x|θ⟩)θdθ⟩dµ(x) (153)

= ⟨ξ|vµ⟩L2(µ) (154)

equation (151) rewrites as

SW2
2(µ

ξ, ρ) ≤ SW2
2(µ, ρ) + 2⟨vµ|ξ⟩L2(µ) +

1

d
∥ξ∥2L2(µ) (155)

that is
Fµ(0)− 2⟨vµ|ξ⟩L2(µ) ≤ Fµ(ξ) (156)

and this finishes proving Proposition 4.7(b).

Finally, we prove Proposition 4.7(c). Assume that µ, ρ are supported in some compact set Ω ⊆ Rd and are without atoms.
Let ξ ∈ L2(µ,R) be fixed and define φ(t) := SW2

2(µ
t, ρ) where µt = (Id+tξ)#µ. Equation (155) applied to the vector

field tξ gives

φ(t) ≤ φ(0) + 2t⟨vµ|ξ⟩L2(µ) +
1

d
t2∥ξ∥2L2(µ) (157)

Therefore, we immediately have the inequalities

lim sup
t 7→0+

1

t
(φ(t)− φ(0)) ≤ 2⟨ξ|vµ⟩L2(µ) (158)

lim inf
t7→0−

1

t
(φ(t)− φ(0)) ≥ 2⟨ξ|vµ⟩L2(µ) (159)

Let’s derive the other inequalities : let (φθ, ψθ) be a pair of c-concave Kantorovich potentials for (µθ, ρθ) (for the cost
c(u, v) = 1

2 (u− v)
2). For every t > 0, we then have

1

t
(W2

2(µ
t
θ, ρθ)−W2

2(µθ, ρθ)) ≥
2

t

∫
R2

φθ(u)(dµ
t
θ(u)− dµθ(u)) (160)

≥ 2

t

(∫
Rd

φθ(⟨x+ tξ(x)|θ⟩)− φθ(⟨x|θ⟩)dµ(x)
)

(161)
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(the factor 2 comes from the factor 1
2 in the cost c). By c-concavity, φθ is Lipschitz on Pθ(Ω) (it has the same modulus

of continuity as c - note that we use here the fact that µ and ρ have compact support). Thus, t 7→ 1
t (φθ(⟨x+ tξ(x)|θ⟩)−

φθ(⟨x|θ⟩)) is bounded from below by−L|⟨ξ(x)|θ⟩|, which is integrable as ξ ∈ L2(µ,Rd), where L is the Lipschitz constant
of φθ, which depends only on diam(Ω). Since for the cost c, c-concavity means that 1

2 | · |
2 − φθ is convex and lsc (see

(Santambrogio, 2015, Proposition 1.21)), φθ has at every point right and left derivatives φ+
θ and φ−

θ , therefore, applying
Fatou’s lemma and integrating on Sd−1,

lim inf
t7→0+

1

t
(W2

2(µ
t
θ, ρθ)−W2

2(µθ, ρθ)) ≥ 2

∫
Sd−1

∫
Rd

φ
sgn(⟨ξ(x)|θ⟩)
θ (⟨x|θ⟩)⟨ξ(x)|θ⟩dµ(x)dθ (162)

However, since µ is without atoms, by Proposition A.1, for almost every θ ∈ Sd−1, µθ is without atoms, and for µθ-almost
every u, φθ is differentiable at u with φ′

θ(u) = φ+
θ (u) = φ−

θ (u)
6. Furthermore, we have φ′

θ(u) = (u− Tθ(u)), where Tθ
is the optimal transport map from µθ to ρθ, and γ̄θ = Tθ (as γθ = (Id, Tθ)#µθ), and therefore∫

Rd

φ′
θ(⟨x|θ⟩)⟨ξ(x)|θ⟩dµ(x)) =

∫
Rd

(⟨x|θ⟩ − Tθ(⟨x|θ⟩))⟨ξ(x)|θ⟩dµ(x) (163)

=

∫
Rd

(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))⟨ξ(x)|θ⟩dµ(x) (164)

so
lim inf
t7→0+

1

t
(W2

2(µ
t
θ, ρθ)−W2

2(µθ, ρθ)) ≥ 2

∫
Sd−1

∫
Rd

(⟨x|θ⟩ − γ̄θ(⟨x|θ⟩))⟨ξ(x)|θ⟩dµ(x)dθ (165)

Integrating this latter inequality, we obtain

lim inf
t 7→0+

1

t
(φ(t)− φ(0)) ≥ 2⟨ξ|vµ⟩L2(µ) (166)

Using a similar argument, we show that

lim sup
t7→0−

1

t
(φ(t)− φ(0)) ≤ 2⟨ξ|vµ⟩L2(µ) (167)

This proves that φ is differentiable at t = 0, with

φ′(0) = 2⟨µ|ξ⟩L2(µ) (168)

This finishes the proof.

B.7. Proof of Corollary 4.8

First, if µ is a Lagrangian critical point for SW2
2(·, ρ), then for every ξ ∈ L2(µ,Rd), it satisfies (14) :

d

dt
SW2

2((Id+tξ)#µ, ρ)

∣∣∣∣
t=0+

= 0 (169)

But applying Proposition 4.7(b) to the vector field tξ, we have for every t > 0

SW2
2((Id+tξ)#µ, ρ) ≤ SW2

2(µ, ρ) + 2t⟨vµ|ξ⟩L2(µ) +
1

d
t2∥ξ∥2L2(µ) (170)

Combined with the previous equation, this yields

0 =
d

dt
SW2

2((Id+tξ)#µ, ρ)

∣∣∣∣
t=0+

≤ 2⟨vµ|ξ⟩L2(µ) (171)

Therefore, we have ⟨vµ|ξ⟩L2(µ) ≥ 0 for every ξ ∈ L2(µ,Rd), and this implies vµ = 0 in L2(µ,Rd). Thus, µ is a
barycentric Lagrangian critical point.

6Since x2

2
− φθ is convex, it is differentiable almost everywhere, with a nondecreasing differential. Furthermore its set of nondifferen-

tiability is at most countable, so it has zero µθ-measure as µθ is without atoms.
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Now, assume that µ, ρ are compactly supported and without atoms. Then, by proposition 4.7(c), for every ξ ∈ L2(µ,Rd),
we have

d

dt
SW2

2((Id+tξ)#µ, ρ)

∣∣∣∣
t=0+

= 2⟨vµ|ξ⟩L2(µ) (172)

Therefore µ satisfies Definition 4.1 if and only if ⟨vµ|ξ⟩L2(µ) = 0 for every ξ ∈ L2(µ,Rd), which is equivalent to vµ = 0
µ-a.e. Thus µ is Lagrangian critical if and only if it is barycentric Lagrangian critical.

B.8. Proof of Theorem 4.5

First, up to extending Ω, we may assume that the µn, µ are supported in Ω. Indeed, if R > 0 is such that Ω ⊆ B(0, R), then
if x ∈ spt(µn) is such that vµn

(x) = 0, we have

0 = vµn
(x) =

1

d
x−

∫
Sd−1

γ̄n,θ(⟨x|θ⟩)θdθ (173)

where for every θ ∈ Sd−1, γn,θ is the optimal transport plan between µn,θ and ρθ, so that

|x| ≤ d
∣∣∣∣∫

Sd−1

γ̄θ(⟨x|θ⟩)θdθ
∣∣∣∣ ≤ d∫

Sd−1

|γ̄θ(⟨x|θ⟩)|dθ ≤ dR (174)

Since vµn
= 0 µn-almost everywhere, this implies that µn is supported in Ω′ = B(0, dR), and so is µ.

Now consider ξ : Ω 7→ Rd a continuous vector field. For every n and t ∈ R, applying Proposition 4.7(b) to tξ, we have

SW2
2((Id+tξ)#µn, ρ) ≤ SW2

2(µn, ρ) + 2t⟨vµn
|ξ⟩L2(µn) +

1

d
t2∥ξ∥2L2(µn)

(175)

≤ SW2
2(µn, ρ) +

1

d
t2∥ξ∥2L2(µn)

(176)

since vµn
= 0. Letting n→∞, we thus find

SW2
2((Id+tξ)#µ, ρ) ≤ SW2

2(µ, ρ) +
1

d
t2∥ξ∥2L2(µ) (177)

(Recall that SW2 ≤W2 and that on compact spaces, weak convergence coincide with convergence in the W2 topology).
But since µ is by assumption without atoms, by Proposition 4.7(c), t 7→ SW2

2((Id+tξ)#µ, ρ) is differentiable at 0 with
derivative 2⟨vµ|ξ⟩L2(µ), so this inequality implies ⟨vµ|ξ⟩L2(µ) = 0. Since this holds for every continuous vector field
ξ : Ω 7→ Rd, by a density argument we conclude that vµ = 0 in L2(µ,Rd), and µ is indeed a barycentric Lagrangian critical
point for SW2

2(·, ρ). This finishes the proof.

B.9. Proof of Proposition 5.1

First, let µ = π
8H|[− 4

π , 4
π ] and let ρ be the sliced-uniform measure, of which we recall the definition below.

Definition B.13. The probability measure ρ ∈ P(R2) supported on the unit open ball B(0, 1) of the plane with the density
f(x) = 1

2π
1√

1−|x|2
is such that in every direction θ ∈ Sd−1, its projection Pθ#ρ is the normalized restriction of the

Lebesgue measure to [−1; 1]. We’ll call ρ the (two-dimensional) sliced-uniform measure on [−1; 1].

As explained in Definition B.13, each projection Pθ#ρ is the normalized restriction of the Lebesgue measure to [−1, 1].
Indeed, the density of Pe1#ρ at x ∈ [−1; 1] is given by

Pe1#ρ(x) =
1

2π

∫ √
1−x2

−
√
1−x2

1√
1− x2 − y2

dy =
1

2π

∫ 1

−1

1√
1− t2

dt =
1

2π

∫ π
2

−π
2

dθ =
1

2
(178)

with the changes of variables y =
√
1− x2t, t = sin θ. By symmetry, the same result holds for all θ.

Then, identifying S1 ≃ (−π, π] ≃ [0, 2π), we have for every direction θ, ρθ = 1
2L

1
[−1,1], and when θ ̸= ±π

2 , we have
µθ = π

8|cθ|L
1

[− 4|cθ|
π ,

4|cθ|
π ]

, with the notation cθ = cos(θ) and sθ = sin(θ) (in the vertical direction, µ±π
2
= δ0). The optimal
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transport map from µθ to ρθ is then Tθ(x) = π
4|cθ|x. If x = (x1, 0) = x1e1 ∈ spt(µ) = [−1, 1] × {0}, where (e1, e2) is

the canonical basis of R2, we have (noting θ⃗ = (cθ, sθ)
T , with the vector notation to differentiate with the scalar angle θ),

d

∫ π

−π

Tθ(⟨x|θ⃗⟩)θ⃗
dθ

2π
= 2

∫ π

−π

Tθ(x1cθ)

(
cθ
sθ

)
dθ

2π
(179)

=
π

2
x1

∫ π

−π

cθ
|cθ|

(
cθ
sθ

)
dθ

2π
(180)

=
1

4
x1

∫ π

−π

|cθ|dθe1 (181)

(We see that the integral on the second coordinate cancels by antisymmetry). Since

1

4

∫ π

−π

|cθ|dθ =
1

2

∫ π

0

|cθ|dθ =
∫ π/2

0

cθdθ = 1 (182)

we thus have

x1e1 = d

∫ π

−π

Tθ(⟨x|θ⃗⟩)θ⃗
dθ

2π
(183)

that is vµ(x) = 0. This proves that µ satisfies Definition 4.2 and is therefore a barycentric Lagrangian critical point for
SW2

2(·, ρ).

Now, we consider the case where d > 1, ρ = N (0, Id) and µ = (Id, 0d−1)#N (0, α2
d) with αd = d

∫
Sd−1 |⟨θ|e1⟩|dθ.

For every θ ∈ Sd−1, we have ρθ = N (0, 1). Noting (e1, ..., ed) the canonical basis of Rd, when ⟨θ|e1⟩ ̸= 0, we have
µθ = Pθ#µ = N (0, (αd|⟨θ|e1⟩|)2), and when ⟨θ|e1⟩ = 0, µθ = δ0. Therefore, the optimal transport map from µθ to ρθ is
given by Tθ : x 7→ (αd|⟨θ|e1⟩|)−1x. Let x = x1e1 ∈ sptµ = R× {0}d−1, then we have

d

∫
Sd−1

Tθ(⟨x|θ⟩)θdθ = d

∫
Sd−1

Tθ(x1⟨θ|e1⟩)θdθ (184)

= dx1

∫
Sd−1

⟨θ|e1⟩
αd|⟨θ|e1⟩|

θdθ (185)

(186)

By symmetry we see that the components of this integral along e2, ..., ed are zero, and thus

d

∫
Sd−1

Tθ(⟨x|θ⟩)θdθ = dx1

∫
Sd−1

⟨θ|e1⟩2

αd|⟨θ|e1⟩|
dθe1 (187)

= x1
1

αd
d

∫
Sd−1

|⟨θ|e1⟩|dθe1 (188)

= x1e1 by definition of αd (189)

This proves that µ satisfies Definition 4.2 and is therefore a barycentric Lagrangian critical point for SW2
2(·, ρ).

B.10. Proof of Proposition 5.2

Sketch of proof. Up to translating, rotating, and rescaling, we may decompose µ as µ = (1 − λ)µ0 + λµ1 where µ1 =
1
2H

1
|[−1,1]×{0}. For every θ ∈ S1, let γ̂θ ∈ Π(µ, ρ) be such that (Pθ, Pθ)#γ̂θ is optimal between µθ and ρθ. Then we can

decompose γ̂θ and ρ into
γ̂θ = (1− λ)γ̂θ,0 + λγ̂θ,1 (190)

and
ρ = (1− λ)ρθ,0 + λρθ,1, (191)
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where γ̂θ,i couples µi and ρθ,i ∈ P2(Rd). Denoting ρθ,i,θ the projection of ρθ,i on θ for i = 0, 1, these decompositions
verify

SW2
2(µ

t, ρ) ≤ (1− λ)
∫
S1
W

2
2(µ

t
0,θ, ρθ,0,θ)dθ + λ

∫
S1
W

2
2(µ

t
1,θ, ρθ,1,θ)dθ, (192)

with equality at t = 0. We bound separately the two terms of the right hand side. The first term can be easily bounded by

(1− λ)
∫
S1
W

2
2(µ0,θ, ρθ,0,θ)dθ +O(t2). (193)

All that is left is then to show that the second term can be bounded for any C > 0, on a neighborhood of t = 0, by∫
Sd−1

W
2
2(µ1,θ, ρθ,1,θ)dθ − Ct2. (194)

We obtain such a bound by writing W2
2(µ

t
1,θ, ρθ,1,θ) = ∥F

−1
µt
1,θ
−F−1

ρθ,1,θ
∥2L2([0,1]), and by making use of an explicit expression

of F−1
µt
1,θ

and of its symmetry to compute a Taylor expansion of

∫
Sd−1

W
2
2(µ

t
1,θ, ρθ,1,θ)dθ (195)

and bound it from above in the desired way.

Up to translating, rotating and rescaling, we may assume that S = [−1, 1]× {0, 0} and n⃗ = e2. Since aH1
|S ≤ µ, we write

µ = (1− λ)µ0 + λµ1 (196)

where λ ∈ [0, 1] and µ0, µ1 are probability measures such that µ1 = 1
2H

1
|[−1,1]×{0} and λ = 2a. For every θ ∈ S1,

let γ̂θ ∈ Π(µ, ρ) be such that (Pθ, Pθ)#γ̂θ is an optimal transport plan between µθ and ρθ. Using Theorem A.2 we
can disintegrate γ̂θ with respect to µ, thus writing dγ̂θ(x, y) = dγ̂θ(y|x)dµ(x), and we define two probability measures
ρθ,0, ρθ,1 ∈ P2(R2) by

∫
φ(y)ρθ,i(y) :=

∫ ∫
φ(y)dγ̂θ(y|x)dµi(x), i ∈ {0, 1}, φ ∈ Cb(R2) (197)

and two transport plans γ̂θ,i ∈ Π(µi, ρθ,i) by dγ̂θ,i(x, y) = dγ̂θ(y|x)dµi(x). By (Villani, 2008, Theorem 4.6), the
(Pθ, Pθ)#γ̂θ,i are actually optimal between their margins. In fact, we have

W
2
2(µ

t
θ, ρθ) ≤ (1− λ)W2

2(µ
t
0,θ, ρθ,0,θ) + λW

2
2(µ

t
1,θ, ρθ,1,θ) (198)

where νt := 1
2 (τte2#ν + τ−te2#ν) for any measure ν, with equality at t = 0. We will establish bounds separately on

W2
2(µ

t
0,θ, ρθ,0,θ) and W2

2(µ
t
1,θ, ρθ,1,θ). First, we notice that

∫
S1
W

2
2(µ

t
0,θ, ρθ,0,θ)dθ ≤

∫
S1
W

2
2(µ0,θ, ρθ,0,θ)dθ +

1

d
t2 (199)

Indeed, if we consider the transport plan γ̂tθ,0 ∈ Π(µt
0, ρθ,0) defined by

γ̂tθ,0 :=
1

2
((τte2 , Id)#γ̂θ,0 + (τ−te2 , Id)#γ̂θ,0) (200)

we have
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W
2
2(µ

t
0,θ, ρθ,0,θ) ≤

∫
⟨x− y|θ⟩2dγ̂tθ,0(x, y) (201)

≤
∫

1

2
(⟨x+ te2 − y|θ⟩2 + ⟨x− te2 − y|θ⟩2)dγ̂θ,0(x, y) (202)

≤
∫
⟨x− y|θ⟩2 + t2⟨e2|θ⟩2)dγ̂θ,0(x, y) (203)

≤W
2
2(µ0,θ, ρθ,0,θ) + t2⟨e2|θ⟩2 (204)

and by integrating on the sphere we get (199).

Now, all we need to prove is that for every C > 0, there exists a neighborhood of t = 0 in which

∫
S1
W

2
2(µ

t
1,θ, ρθ,1,θ)dθ ≤

∫
S1
W

2
2(µ1,θ, ρθ,1,θ)dθ − Ct2 (205)

By summing it with (199), we obtain the proposition’s statement. To derive this bound, we look at the quantile functions :
for every θ ∈ S1, we have

W
2
2(µ

t
1,θ, ρθ,1,θ)dθ = ∥F−1

µt
1,θ
− F−1

ρθ,1,θ
∥2L2([0,1]) (206)

= ∥F−1
µt
1,θ
− F−1

µ1,θ
+ F−1

µ1,θ
− F−1

ρθ,1,θ
∥2L2([0,1]) (207)

= ∥F−1
µt
1,θ
− F−1

µ1,θ
∥2L2([0,1]) + 2⟨F−1

µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) (208)

+ ∥F−1
µ1,θ
− F−1

ρθ,1,θ
∥2L2([0,1]) (209)

=W 2
2 (µ

t
1,θ, µ1,θ) +W 2

2 (µ1,θ, ρθ,1,θ) + 2⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) (210)

We easily see that W 2
2 (µ

t
1,θ, µ1,θ) ≤ W 2

2 (µ
t
1, µ1) ≤ t2. Therefore, we simply need to show that for every C > 0, there

exists a neighborhood of t = 0 on which∫
S1
⟨F−1

µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1])dθ ≤ −Ct2 (211)

Since µ1 = 1
2H

1
|[−1,1]×{0}, we have, for every t,

µt
1 =

1

4
(H1

|[−1,1]×{−t} +H
1
|[−1,1]×{t}) (212)

Now let θ ∈ S1 \ {±π
2 } (we make again the identification S1 ≃ R/2πZ). The projections of µt

1 and µ1 on Rθ are

µt
1,θ =

1

4|cθ|
(λA−

θ,t
+ λA+

θ,t
), A±

θ,t = [±|tsθ| − |cθ|,±|tsθ|+ |cθ|] (213)

and
µ1,θ =

1

2cθ
λAθ

, Aθ = [−|cθ|, |cθ|] (214)

Therefore the quantile function of µ1,θ is simply

F−1
µ1,θ

(x) = −|cθ|+ 2|cθ|x, x ∈ [0, 1] (215)

In the following, since for any θ and any measures ν1, ν2 ∈ P(R2), W 2
2 (ν1,θ+π, ν2,θ+π) =W 2

2 (ν1,θ, ν2,θ), we can restrict
ourselves to θ ∈ (−π

2 ,
π
2 ). To compute the quantile function of µt

1,θ, we then need to consider two cases.
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• First, when |θ| ∈ [0, arctan(1/|t|)], the two segments A±
θ,t overlap. Their union can then be decomposed into three

segments where the density of µt
1,θ is constant :

B− ∪B0 ∪B+ = [−|cθ| − |tsθ|,−|cθ|+ |tsθ|] (216)
∪ [−|cθ|+ |tsθ|, |cθ| − |tsθ|] (217)
∪ [|cθ| − |tsθ|, |cθ|+ |tsθ|] (218)

On B±, the density is 1
4|cθ| while on B0, it is 1

2|cθ| . One can check that the quantile function of µt
1,θ and µθ is then

(using the shorthand notation tθ = tan(θ))

F−1
µt
1,θ

(x) =


−|cθ| − |tsθ|+ 4|cθ|x for x ∈

[
0, |t|2 |tθ|

]
−|cθ|+ |tsθ|+ 2|cθ|

(
x− |t|

2 |tθ|
)

for x ∈
[
|t|
2 |tθ|, 1−

|t|
2 |tθ|

]
|cθ| − |tsθ|+ 4|cθ|

(
x− 1 + |t|

2 |tθ|
)

for x ∈
[
1− |t|

2 |tθ|, 1
] (219)

• Second, when |θ| ∈ (arctan(1/|t|), π/2), the two segments A±
θ,t do not overlap, in which case the quantile function of

µt
1,θ is

F−1
µt
1,θ

(x) =

{
−|cθ| − |tsθ|+ 4|cθ|x for x ∈

[
0, 12

]
−|cθ|+ |tsθ|+ 4|cθ|

(
x− 1

2

)
for x ∈

(
1
2 , 1

] (220)

Denoting mt,θ = 1
2 min(1, |ttθ|), we can actually condense the two previous expressions of F−1

µt
1,θ

into a single one valid for

every θ ∈ (−π/2, π/2) :

F−1
µt
1,θ

(x) =


−|cθ| − |tsθ|+ 4|cθ|x for x ∈ [0,mt,θ]

−|cθ|+ 2|cθ|x for x ∈ (mt,θ, 1−mt,θ]

−|cθ|+ |tsθ|+ 4|cθ|
(
x− 1

2

)
for x ∈ (1−mt,θ, 1]

(221)

We see in particular that

• F−1
µt
1,θ

(x) = F−1
µ1,θ

(x) for every x ∈ (mt,θ, 1−mt,θ]

• For every t ∈ R and x ∈ [0, 1], F−1
µt
1,θ

(1− x) = 1− F−1
µt
1,θ

(x) (in fact, we only needed to use the symmetry of µt
1,θ to

see this)

Therefore, we have

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) =

∫ 1

0

(F−1
µt
1,θ

(x)− F−1
µ1,θ

(x))(F−1
µ1,θ

(x)− F−1
ρθ,1,θ

(x))dx

=

∫ mt,θ

0

(F−1
µt
1,θ

(x)− F−1
µ1,θ

(x))(F−1
µ1,θ

(x)− F−1
ρθ,1,θ

(x))dx

+

∫ 1

1−mt,θ

(F−1
µt
1,θ

(x)− F−1
µ1,θ

(x))(F−1
µ1,θ

(x)− F−1
ρθ,1,θ

(x))dx

=

∫ mt,θ

0

(F−1
µt
1,θ

(x)− F−1
µ1,θ

(x))(F−1
µ1,θ

(x)− F−1
ρθ,1,θ

(x))dx

+

∫ mt,θ

0

(F−1
µt
1,θ

(1− x)− F−1
µ1,θ

(1− x))(F−1
µ1,θ

(1− x)− F−1
ρθ,1,θ

(1− x))dx

=

∫ mt,θ

0

(F−1
µt
1,θ

(x)− F−1
µ1,θ

(x))(F−1
µ1,θ

(x)− F−1
ρθ,1,θ

(x)− (F−1
µ1,θ

(1− x)− F−1
ρθ,1,θ

(1− x)))dx
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We have
F−1
µt
1,θ

(x)− F−1
µ1,θ

(x) = 2|cθ|x− |tsθ| = 2|cθ|(x−
1

2
|tθ|) (222)

F−1
µ1,θ

(x)− F−1
µ1,θ

(1− x) = −|cθ|+ 2|cθ|x− (−|cθ|+ 2|cθ|(1− x)) = 4|cθ|(x−
1

2
) (223)

for x ∈ [0,mt,θ]. If for x ∈ [0, 1] \ { 12} we note

Gθ(x) :=
F−1
ρθ,1,θ

(x)− F−1
ρθ,1,θ

(1− x)
x− 1

2

(224)

then we have

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) =

∫ mt,θ

0

(x− 1

2
)(4|cθ| −Gθ(x))2|cθ|(x−

1

2
|ttθ|)dx (225)

However, our hypothesis that for every θ the density of ρθ is bounded from above by b > 0 allows us to derive a lower
bound for Gθ. Indeed, since ρ = (1− λ)ρθ,0 + λρθ,1, we have ρθ,1 ≤ 1

λρ and thus ρθ,1,θ ≤ b̃ with b̃ = b
λ . Then, using the

shorthand notations Fθ = Fρθ,1,θ
and F−1

θ = F−1
ρθ,1,θ

, for almost every x ∈ [0, 1],

F−1
θ (Fθ(x)) = x (226)

Let x = α+ h with h > 0. Since

Fθ(x) = Fθ(α) + ρθ,1,θ((α, α+ h]) ≤ Fθ(α) + b̃h (227)

we have
α+ h = F−1

θ (Fθ(α+ h)) ≤ F−1
θ (Fθ(α) + b̃h) (228)

Similarly, if x = α− h with h > 0, we have

Fθ(x) = Fθ(α)− ρθ,1,θ((α− h, α]) ≥ Fθ(α)− b̃h (229)

thus
α− h = F−1

θ (Fθ(α− h)) ≥ F−1
θ (Fθ(α)− b̃h) (230)

and thus we have
−2h ≥ F−1

θ (Fθ(α)− b̃h)− F−1
θ (Fθ(α) + b̃h) (231)

Now, pick α such that Fθ(α) =
1
2 . Let x ∈ [0, 1/2], and let h > 0 be such that x = 1

2 − b̃h. Then, substituting the value of
x in the previous equation, we get

F−1
θ (x)− F−1

θ (1− x) ≤ −2h = −2

b̃
(
1

2
− x) (232)

Gθ(x) ≥
2

b̃
> 0 (233)

for almost every x ∈ [0, 1/2]. Thus, since by definition of mt,θ, (x− 1
2 )(x−

1
2 |ttθ|) ≥ 0 for x ∈ [0,mt,θ], this means that

for every θ ∈ (−π/2, π/2),

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) ≤ 2|cθ|(4|cθ| −

2

b̃
)

∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx (234)

Let’s compute the integral on the right-hand side :∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx =

∫ mt,θ

0

x2 − 1

2
(1 + |ttθ|)x+

1

4
|ttθ|dx (235)

=
m3

t,θ

3
− 1

4
(1 + |ttθ|)m2

t,θ +
1

4
|ttθ|mt,θ (236)
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If |θ| ≤ arctan(1/|t|), then mt,θ = 1
2 |ttθ| and∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx =

|ttθ|3

24
− 1

16
(1 + |ttθ|)|ttθ|2 +

1

8
|ttθ|2 (237)

=
|ttθ|2

16
− |ttθ|

3

48
(238)

=
1

16
|ttθ|2(1−

1

3
|ttθ|) (239)

and in fact, since |ttθ| ≤ 1 when |θ| ≤ arctan(1/|t|), we have∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx =

1

16
|ttθ|2(1−

1

3
|ttθ|) ≥

1

24
|ttθ|2 > 0 (240)

Let θ1 ∈ (0, π/2) be such that 4cθ1 − 2
b̃
≤ − 1

b̃
and let t be small enough so that αt := arctan(1/|t|) > θ1. Then :

• If |θ| ∈ (αt, π/2), then we can simply bound (234) from above by 0

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) ≤ 0 (241)

as 4|cθ| − 2
b̃
< 0 and the integral is positive. Thus∫

[−π/2,−αt]∪[αt,π/2]

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1])dθ ≤ 0 (242)

• If |θ| ∈ [0, θ1) then, combining (234) and (240) we have

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) ≤ 2|cθ|(4|cθ| −

2

b̃
)

∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx (243)

≤ 2|cθ|(4|cθ| −
2

b̃
)
1

16
|ttθ|2(1−

1

3
|ttθ|) (244)

≤ 1

4
(2 +

1

b̃
)t2t2θ1(1 +

1

3
|ttθ1 |) (245)

Therefore, we conclude that there exists some constant C0 > 0 such that∫
[−αt,−θ1]∪[θ1,αt]

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1])dθ ≤ C0t

2 + o(t2) (246)

• Finally, if |θ| ∈ [θ1, αt] then, again combining (234) and (240), we have

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1]) ≤ 2|cθ|(4|cθ| −

2

b̃
)

∫ mt,θ

0

(x− 1

2
)(x− 1

2
|ttθ|)dx (247)

≤ 2|cθ|(4|cθ| −
2

b̃
)
1

16
|ttθ|2(1−

1

3
|ttθ|) (248)

≤ − 1

12b̃
|cθ||ttθ|2 (249)

≤ − 1

12b̃
t2
|s2θ|
|cθ|
≤ −|sθ1 |

2

12b̃
t2

1

|cθ|
(250)

However, the integral
∫ αt

θ1
dθ
|cθ| diverges to infinity when t 7→ 0. Indeed, using the development

αt := arctan(1/|t|) = π

2
− arctan(|t|) = π

2
− |t|+ o(t2) (251)
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we have ∫ θt

θ1

dθ

|cθ|
=

∫ sin(αt)

sin(θ1)

du

1− u2
(252)

=
1

2
[ln(1 + u)− ln(1− u)]sin(αt)

sin(θ1)
(253)

=
1

2
(ln(1 + sin(αt))− ln(1− sin(αt))) + C (254)

=
1

2

(
ln
(
1 + sin

(π
2
− |t|+ o(t2)

))
− ln

(
1− sin

(π
2
− |t|+ o(t2)

)))
+ C (255)

=
1

2
(ln(1 + cos(|t|+ o(t2)))− ln(1− cos(|t|+ o(t2)))) + C (256)

=
1

2
(ln(1 + cos(|t|+ o(t2)))− ln(1− cos(|t|+ o(t2)))) + C (257)

=
1

2

(
ln

(
2− 1

2
t2 + o(t2)

)
− ln

(
1

2
t2 + o(t2)

))
+ C (258)

=
1

2
(ln(2) + o(1)− 2 ln(t) + ln(2) + o(1)) + C (259)

= − ln(t) + C + o(1) −−−→
t→0

+∞ (260)

Therefore, for any C > 0, there exists a neighborhood of t = 0 in which,∫
[−αt,−θ1]∪[θ1,αt]

⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩L2([0,1])dθ ≤ −Ct2 (261)

Thus, we can prove (211) by bounding the integral of ⟨F−1
µt
1,θ
− F−1

µ1,θ
|F−1

µ1,θ
− F−1

ρθ,1,θ
⟩ on (−π/2, π/2) separately on the

three regions (−π/2,−αt] ∪ [αt, π/2), [−θ1, θ1] and [−αt,−θ1] ∪ [θ1, αt] using (246), (242) and (261), taking in (261) a
constant C > 0 big enough to compensate the constant C0 in (246). This concludes the proof.

C. Stability and numerical approximation
In this section, we will discuss briefly the regularity properties of (practical) Monte Carlo approximations of the SW
objective and what they entail for applying our theoretical understanding of F to practical applications involving FL. The
discussion will be similar to the one found in (Tanguy et al., 2024a), although they focus on the discrete setting, where ρ is
also a point cloud, whereas we focus on the semi-discrete one.

In practice, the Sliced-Wasserstein distance objective (6) discussed in Section 3 is usually computed through a Monte
Carlo estimator to approximate the integral. In the semi-discrete setting, this amounts to approximating the function F (X)

discussed in Section 3 with the function FL = 1
2L

∑L
l=1 W

2
2(µPθl

(X), ρθl), where θ1, ..., θL ∈ Sd−1 are chosen directions.
The latter may vary: for example, they may be uniformly sampled on Sd−1 at every step of a stochastic gradient descent (or
some other optimization algorithm), or fixed once and for all.

In fact, the local behavior of FL is quite different from that of F , and exhibits a cell structure. Indeed, for every σ ∈ SL
n , let

Cσ = {X ∈ (Rd)N | ∀l ∈ {1, ..., L}, σθl,X is uniquely defined and is σl}. Then, for every X ∈ Cσ , we have

FL(X) =
1

2L

L∑
l=1

N∑
i=1

∫
Vθl,i

|⟨Xσl(i)|θl⟩ − x|
2dρθl(x) (262)

which simplifies to
FL(X) = qσ(X) + C0 (263)

with the quadratic function

qσ(X) =
1

2NL

L∑
l=1

N∑
i=1

|⟨Xσl(i)|θl⟩ − bθl,i|
2 (264)
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and the constant

C0 =
1

2L

L∑
l=1

N∑
i=1

∫
Vθl,i

|x− bθl,i|2dρθl(x) (265)

In fact, Cσ can also be written as Cσ = {X ∈ (Rd)N | ∀σ′ ∈ SL
N , qσ′(X) > qσ(X)}, from which we can deduce that Cσ

is an open polyhedral cone, obtained as the intersection of L(N !− 1) half-open planes. Furthermore, FL is actually the
infimum of the C0 + qσ:

FL(X) = inf
σ∈SL

N

qσ(X) + C0 (266)

As a consequence of these considerations, inside every cell Cσ , FL will be C∞ as it is equal to a quadratic function, and its
gradient and Hessian at X ∈ Cσ are respectively

∇XiFL(X) =
1

NL

L∑
l=1

(⟨Xi|θl⟩ − bθl,σ−1
l (i))θl (267)

and

∇Xi∇XjFL(X) =
1

NL
δij

L∑
l=1

θlθ
T
l ≥ 0 (268)

Thus, FL is convex inside every cell Cσ. In fact, we know by (Tanguy et al., 2024b, Theorem 2) that when L > d, for
almost every family θ1, ..., θL ∈ Sd−1,

⋂L
l=1(Rθi)⊥ = {0} and 1

L

∑L
l=1 θlθ

T
l is definite positive, which makes FL strictly

convex inside every cell. In these conditions, any critical point contained in a cell will be a local minimum.

This is of significance when optimizing FL. Indeed, even if it were possible to derive theoretical guarantees that high energy
critical points of F are unstable, a numerical scheme optimizing FL could end up converging to a high energy critical point
of FL because of its local convexity. Consequently, on must be chose a number of directions L and of points N large enough
to make sure the size of the cells Cσ is small enough to prevent this behavior.

Experiments In another experiment, based on the discussion of Section C, we considered again the point cloud X =
(X1, ..., XN ) with Xi = − 4

π + 8
π

i−1
N−1 , with N = 100, the perturbation ξ that alternates between e2 and −e2, and we

plotted the estimator t 7→ FL(X+ tξ) in Figure C, where ρ is the sliced-uniform measure, for different sets of test directions
{θ1, ..., θL}. We tested different values of L, and, for each of these values, we considered two cases :

• one set of test directions {θ1, ..., θL} including e2, with θi = π
2 + 2π(i−1)

L for i ∈ {1, ..., L}

• one set of test directions {θ1, ..., θL} excluding e2, with θi = π
2 + π

L + 2π(i−1)
L for i ∈ {1, ..., L}

We observe that, as expected from the discussion in Section C, when the test directions exclude e2 (so that the points of X
have distinct projections for every test direction), the estimator t 7→ FL(X + tξ) is locally smooth, and we distinctively see
its cell structure for the smaller values of L. On the other hand, when the test directions include e2, we see that the estimator
is not smooth at t = 0. This again conforms to what we theoretically expect, as

W
2
2(µX+tξ,e2 , ρe2) = W

2
2(
1

2
(δ−|t| + δ|t|,

1

2
L1
|[−1,1]) =

∫ 1

0

(|t| − x)2dx =
1

3
− |t|+ t2 (269)

so FL(X + tξ) = f(t)− 1
L |t| where f(t) is some smooth term.
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Figure 3. Behavior of FL for different sets of test directions. Depicts the value of FL(X + tξ), where X is a point cloud of N = 100
points uniformly distributed on the segment [−4/π, 4/π]×{0}, ξ alternates between e2 and −e2, and ρ is the sliced-uniform distribution.
Each column corresponds to a different number L ∈ {10, 20, 40, 100} of fixed test directions ; on the top line e2 is included in the test
directions while on the bottom line it is excluded
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