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ABSTRACT

Generalizing vision-based reinforcement learning (RL) agents to novel environ-
ments remains a difficult and open challenge. Current trends are to collect large-
scale datasets or use data augmentation techniques to prevent overfitting and im-
prove downstream generalization. However, the computational and data collection
costs increase exponentially with the number of task variations and can destabilize
the already difficult task of training RL agents. In this work, we take inspiration
from recent advances in computational neuroscience and propose a model, Asso-
ciative Latent DisentAnglement (ALDA), that builds on standard off-policy RL
towards zero-shot generalization. Specifically, we revisit the role of latent disentan-
glement in RL and show how combining it with a model of associative memory
achieves zero-shot generalization on difficult task variations without relying on
data augmentation. Finally, we formally show that data augmentation techniques
are a form of weak disentanglement and discuss the implications of this insight.

1 INTRODUCTION

Training generalist agents that can adapt to novel environments and unseen task variations is a long-
standing goal for vision-based RL. RL generalization benchmarks have focused on data augmentation
to increase the amount of training data available to the agent while preventing model overfitting and
increasing robustness to environment perturbations (Yarats et al., 2021a; Almuzairee et al., 2024;
Hansen et al., 2021). This follows the current trend in the broader robot learning community of
training large models at scale on massive datasets (Kim et al., 2024; Hansen et al., 2024; Team
et al., 2024) with the hope that the model will generalize. However, a significant drawback of these
approaches is, intuitively, that they require larger models, more training data, longer training times,
and have greater training instability that must be dealt with care when training RL agents.

Yet when we examine biological agents, we find that humans and, indeed, many other primates are
able to quickly adapt to task variations and environment perturbations DiCarlo et al. (2012); Friston
(2010). While all aspects of biological intelligence that contribute to generalization have yet to
be understood, there is some understanding in the recent neuroscience literature of aspects related
to representation learning that we look to for inspiration. Many parts of the brain in human and
non-human primates contain neurons that represent single factors of variation within the environment,
such as grid cells (Hafting et al., 2005), object-vector cells (Høydal et al., 2019), and border cells
(Solstad et al., 2008) that represent euclidean spaces, distance to objects, and distance to borders,
respectively. Such disentangled representations have been theorized to facilitate compositional
generalization (Higgins et al., 2018) and have been studied with curated datasets where the factors of
variation are known (Higgins et al., 2017a; Whittington et al., 2023), and even within the context of
RL (Higgins et al., 2017b). It is then to our surprise, with limited exceptions (Dunion et al., 2023;
Sax et al., 2018), that disentangled representation learning has not garnered much attention within
robot learning or RL more generally. One potential reason for this is that learning disentangled
representations while simultaneously learning an RL policy is extremely difficult. Indeed, Higgins
et al. (2017b) required a two-stage approach where the disentangled representation was learned first,
followed by policy learning. In addition, Yarats et al. (2021b) found that using a β-VAE directly led
to training instability and worse performance, instead opting to use a deterministic autoencoder with
softer constraints. Finally, there is counter-evidence by Schott et al. (2022) to suggest that, while
disentangling representations may facilitate generalization, it alone cannot achieve out-of-distribution
(OOD) generalization.
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Figure 1: Disentanglement + association. A disentangled representation is learned using the original
training data (top). When encountering an OOD sample (bottom), individual latents can be compared
and mapped back to known values (colored green). Latent dimensions that are more OOD (colored
red) can be mapped back without affecting other latent dimensions.

We hypothesize that one of the potential key missing ingredients to OOD generalization is associative
memory mechanisms that use prior experiences to help inform decision-making in light of new data in
a disentangled latent space. Intuitively, if the representation of a stored memory and new observation
are disentangled, then the projection of the new observation onto the stored memories becomes a
factorized projection in which individual factors can be compared independently of other factors
(Figure 1). Indeed, many of the aforementioned single-factor neurons exist in the entorhinal cortex in
the hippocampus (Hafting et al., 2005), responsible for, amongst other things, memory recollection
and association. Recent literature suggests that the hippocampus learns flexible representations of
memories by decomposing sensory information into reusable components and has been implicated in
other cognitive tasks such as planning, decision-making, and imagining novel scenarios (Behrens
et al., 2018; Rubin et al., 2014). It would then seem that the disentanglement of high-dimensional
data into a modular, reusable representation is simply the first step in a multi-step process that
enables generalization in biological agents. Inspired by these two ingredients found in nature, we
propose a new method, ALDA (Associative Latent DisentAnglement), that 1. learns a disentangled
representation from the training data and 2. uses an associative memory model to recover data points
in the original training distribution zero-shot given OOD data. We demonstrate how this approach
enables zero-shot generalization on a common generalization benchmark for vision-based RL without
using data augmentation techniques or techniques that remove distractor variables from the latent
space. Finally, we provide a formal proof showing that data augmentation methods for vision-based
RL create what we refer to as "weak" disentanglement, where the latent space is perhaps partitioned
into two or more categories but not perfectly factorized into individual subcomponents. We conclude
by discussing the implications of this insight and future directions of this line of research.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We wish to learn a policy π that maps states to optimal actions that maximize cumulative reward.
The agent-environment interaction loop is typically formulated as a Markov Decision Process
(MDP) (S,A,R,P, γ), where S and A are the state and action spaces, R(s, a) is the reward
function, P(s′|s, a) is the probabilistic transition function, and γ is the discount factor. The policy π
learns a mapping of state to action with the objective of maximizing cumulative discounted return
Gt = E

[∑T
t=0 γ

tR(st, at)
]
. In vision-based RL, we do not assume access to the low dimensional

state st ∈ S. Instead, we must infer st given high-dimensional image observations ot ∈ O, making
the problem a partially observable MDP, or POMDP (S,A,R,P,O, γ), where O is the space of
high-dimensional observations.

Soft Actor-Critic (Haarnoja et al., 2018) is an off-policy actor-critic algorithm that jointly trains a
policy π and state-action value function Q using the maximum entropy framework. The policy opti-
mizes the maximum entropy objective argmaxπ

∑T
t=1 E(st,at)∼ρpi [rt + αH(π(·|st))]. The optimal
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Q function Q∗(s, a) is estimated using temporal difference learning (Sutton, 1988) by minimizing
the soft Bellman residual:

J(Q) = E(st,at,st+1∼D
[
(Q(st, at)− rt − γy)2

]
.

Here, y is the soft Q-target, which is computed as y = r(st, at) + γ(minθ1,2Qθ
′
i
(st+1, at+1) −

αlogπ(·|st+1)). We can then describe the policy’s objective as:

J(π) = Est∼D [mini=1,2Qθi(st, at)− αlogπ(at|st)] .

A replay buffer D is maintained that contains transition tuples (st, at, st+1) collected from prior
interactions of a potentially different behavior policy. Since the off-policy RL formulation does not
require transitions to be from the current behavior policy, we can reuse prior experience to update
the policy and the Q-function. We use SAC as a foundation for our method, and while we propose
some architectural changes to improve the synergy between SAC and our method, the changes are
generally applicable to most off-policy RL algorithms.

2.2 DISENTANGLED REPRESENTATION LEARNING.

Nonlinear ICA: The disentanglement problem is sometimes formulated in the literature (Hsu et al.,
2023) through nonlinear independent component analysis (ICA) due to their conceptual similarity.
We follow suit since the notation will be useful in later sections. Suppose there are ns nonlinear
independent variables s1, ..., sns

that are the sources of variation of the images in the data distribution.
A data-generating model maps sources to images:

p(s) =
ns∏
i=1

p(si), o = g(s) (1)

where g : S → O is the non-linear data generating function. The nonlinear ICA problem is to recover
the underlying sources given samples from this model. Similarly, the goal of latent disentangle-
ment is to learn a latent representation z such that every variable z1, ..., zns ∈ z corresponds to a
distinct source s1, ..., sns . Unfortunately, nonlinear ICA is nonidentifiable – that is, there are many
decompositions of the data into sets of independent latents that fit the dataset, and so recovering
the true sources reliably is impossible. Thus, the field of disentangled representation learning has
focused more on empirical results and evaluation metrics on toy datasets where the true sources of
variation are known. Given a dataset of paired source-data samples (s, o = g(s)), the goal is to learn
an encoder f : O → Z and a decoder ĝ : Z → O such that the disentanglement evaluation metrics
are high while also maintaining acceptable reconstructions of the data. Disentanglement models are
typically constructed as (variational) autoencoders (Whittington et al., 2023; Hsu et al., 2023; Higgins
et al., 2017a) and are rarely applied outside of toy datasets.

2.3 GENERALIZATION IN VISION-BASED RL

Image augmentation methods have shown success and have become the go-to method for generalizing
vision-based RL algorithms such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and TD3
(Fujimoto et al., 2018), generally using augmentations such as random crops, random distortions,
and random image overlays to simulate distracting backgrounds. Methods such as DrQ (Yarats et al.,
2021a), SADA (Almuzairee et al., 2024), and SVEA (Hansen et al., 2021) regularize the Q function
by providing the original and augmented images as inputs into the critic. In many cases, however, the
image augmentations can put the training data within the support of the distributions of the evaluation
environments. For example, the "random convolution" image augmentation changes the color of
the agent and/or background, and the policy is evaluated on an environment where the color of the
agent is randomized. This brings into question whether these methods are truly capable of zero-shot
extrapolative generalization when the training data is made to be sufficiently similar to the test data.

Beyond image augmentation techniques are methods that perform self-supervision using auxiliary
objectives. Note that image augmentations for RL are also sometimes referred to as self-supervised
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objectives, however we wish to make the distinction between methods that leverage data augmentation
and those that don’t. DARLA Higgins et al. (2017b), to the best of our knowledge, is the only prior
method that learns a disentangled representation of the image inputs using a highly regularized
β-VAE (Higgins et al., 2017a) for zero-shot generalization in RL. DARLA’s approach is two-stage,
where an initial dataset is collected by sampling random actions to first learn a disentangled latent
representation, and then a policy is trained on this representation to maximize future return. However,
a significant shortcoming is that random actions may not cover the full state distribution of the agent
for more complicated tasks, whereas our method jointly learns the disentangled representation and
the policy. SAC+AE (Yarats et al., 2021b) trains a decoder to reconstruct the images, resulting in
a rich latent space that improves performance and sample efficiency on many vision-based tasks.
Interestingly, SAC+AE mentions β-VAE’s used by DARLA and proposes using a deterministic
variant with similar constraints that shows some zero-shot generalization capability, but the authors
make no mention of disentanglement and instead conclude that the key ingredient was adding a
reconstruction loss as an auxiliary objective.

Another promising approach to generalization is learning a task-centric or object-centric represen-
tation using auxiliary objectives. Yamada et al. (2022) learn a task-centric representation by using
expected discounted returns as labels, with the auxiliary task being to minimize the error between the
predicted and true return values using the learned representation. Ferraro et al. (2023); Pore et al.
(2024) use segmentation masks to learn object-centric representations that are robust to background
distractors. One drawback of these approaches is that the latent representation overfits to the task
by excluding all other information not relevant to the immediate task, usually citing that irrelevant
information in the latent space hinders generalization performance. However, adapting to a new
task that involves information that was previously considered irrelevant becomes a challenge for
these methods. We hypothesize that the issue is not having "irrelevant" information in the latent
space but rather that the latent variables are entangled without strong priors for disentanglement. A
disentangled representation then paves the way for association, whereby individual dimensions of
latent vectors from OOD images can be independently zero-shot mapped back to known values of
those latent variables learned from the training data.

2.4 ASSOCIATIVE MEMORY

An associative memory (AM) network stores a set of patterns with the intent to retrieve the most
similar stored pattern given an input. The best-known form is a Hopfield network, originally proposed
in Hopfield (1982), which was inspired by how the brain is capable of recalling entire memories
given partial or corrupted input (e.g., recalling a food item given a particular smell). Classical
Hopfield networks could only store and recall binarized memories, whereas modern (dense) Hopfield
networks (Krotov & Hopfield, 2016) can work with continuous representations and are trainable as
differentiable layers within existing Deep Learning frameworks (Ramsauer et al., 2021). The memory
retrieval dynamics are typically formulated as a function of energy minimization. Let ξ ∈ Rd be the
input query pattern, and X := [x1, ...xM ] ∈ Rd×M be memory patterns. In AM models, memories
are stored on the local minima of the energy landscape, where the goal is to retrieve the closest stored
pattern to ξ by minimizing energy. Modern Hopfield networks assume the following general form for
the energy function:

E = −
M∑
i=1

F (xTi ξ).

In particular, by setting F = −lse(β,XT ξ)+ 1
2ξ
T ξ (lse = log-sum-exponent), the retrieval dynamics

becomes ξnew = Xsoftmax(βXT ξ), which is the attention mechanism (Vaswani, 2017) and the
backbone of modern Hopfield networks. Follow-up works such as Bietti et al. (2023) show a tight
connection between the learning dynamics of Transformers and models of associative memory.

3 ON THE RELATIONSHIP BETWEEN DISENTANGLEMENT AND DATA
AUGMENTATION

We begin by motivating the case for learning a disentangled representation for RL agents by showing
a connection between data augmentation and disentangled representation learning. Specifically, we
formally prove that data augmentation is a weak disentanglement of the latent space. We define weak
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disentanglement as a partial factorization of some but perhaps not all latent dimensions of the latent
space i.e. ∃zi ∈ z , sj , sk ∈ s|cov(ŝj , ŝk|zi) ̸= 0. Strong disentanglement, on the other hand, is a
complete factorization where each latent dimension zk ∈ z encodes for a unique source si ∈ s and is
thus linearly independent of other latent dimensions, which is the goal of disentangled representation
learning. The full proof is provided in A.1.

Theorem 1: Suppose we are given a z = fθ(g(s)), where some latent dimension zk ∈ z approximates
one or more sources. We will denote the approximations as ŝi. We can categorize the sources s into
two categories, D and E, which correspond to task-relevant and task-irrelevant sources, respectively.
For any such zk, if Q∗(z, a) is an optimality invariant optimal Q-function immune to distractor
variables, then the following must be true of z:

cov(ŝi, ŝj |zk) = 0 ∀si ∈ D, sj ∈ E, zk ∈ z. (2)

Intuitively, if data augmentation enables learning a latent representation such that the Q(z, a), a
function of z, is immune to distractor variables, then any dimension of the latent space that encodes
for task-relevant variables cannot also encode for task-irrelevant variables. Otherwise, distribution
shifts involving the task-irrelevant variables would affect the Q function and, thus, the performance
of the agent. One of two conditions must be true: either z is partitioned, where some variables
approximate only sources from D, and others only sources from E, or z contains no information
about sources in E altogether, both of which are a form of weak disentanglement.

We take a probabilistic perspective to see why this relationship is important. Suppose s1...,k ∈ D
and s1+k,...,ns ∈ E. In order to learn a latent representation that contains no information about
task-irrelevant sources s1+k,...,ns , data augmentation methods essentially estimate the marginal
distribution over task-relevant sources:

p(s1, ..., sk) =
∑
sk+1

×
∑
sk+2

×...×
∑
sns

p(s1, ..., sk, sk+1, ...sns
). (3)

The implication of 3 is that we must collect data for every possible variation of the task-irrelevant
sources, which may be prohibitively expensive for real-world applications. Instead, a model with
strong priors that leads to disentanglement without data augmentation essentially achieves the same
result without the additional costs. Although the latent representation of such a model may still
contain task-irrelevant features, the policy can learn to simply ignore them or associate them with
known values in the presence of OOD data, as is the case with ALDA. In addition, these task-irrelevant
features may become relevant if the task changes (e.g., if the current task is for a manipulator to stack
a blue cube, and the next task is to stack a red cube), and so it may, in fact, be important to keep them.

4 METHOD

Experimental Setup. We first describe the generalization benchmark and our evaluation criteria to
provide additional context. We train on four challenging tasks from the DeepMind Control Suite
(Tassa et al., 2018). To evaluate zero-shot generalization capability, we periodically evaluate model
performance under challenging distribution shifts from the DMControl Generalization Benchmark
(Hansen & Wang, 2021) and the Distracting Control Suite (Stone et al., 2021) throughout training.
Specifically, we have two evaluation environments: color hard, which randomizes the color of the
agent and background to extreme RGB values, and distracting cs, which applies camera shaking and
plays a random video in the background from the DAVIS 2017 dataset (Pont-Tuset et al., 2017).

4.1 DISENTANGLEMENT

We now describe our framework for jointly learning a disentangled representation and performing
association. For latent disentanglement, we choose to use QLAE Hsu et al. (2023), the current SOTA
disentanglement method, which trains an encoder fθ that maps to a continuous disentangled latent
space, a discrete, parameterized latent model lψ, and a decoder gϕ that reconstructs the observation.
Similar to VQ-VAE (van den Oord et al., 2017), QLAE uses a discrete codebook for the latent space,
except that each dimension uses its own separate scalar codebook. Concretely, Z is the set of latent
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Figure 2: Diagram of our method SAC+ALDA. Trainable components are colored yellow. A strongly
regularized autoencoder and the quantized latent space enable latent disentanglement. The latent
model is also responsible for association when encountering OOD inputs.

codes defined by the Cartesian product of nz scalar codebooks Z = V1 × ... × Vnz
i.e., there are

nz latent variables and |Vj | discrete categories per variable. The continuous outputs of the encoder
are the latent variables, each of which is quantized to the nearest scalar value in their respective
codebooks.

zdj = argminvjk∈vj |fθ(x)j − vjk|, j = 1, ..., nz. (4)

Since we cannot differentiate through argmin, as with VQ-VAE, the authors of QLAE use quantiza-
tion and commitment losses and a straight-through gradient estimator (Bengio et al., 2013):

Lquantize = ||StopGradientfθ(x))− zd||22, Lcommit = ||fθ(x)− StopGradient(zd)||22. (5)

The authors claim that while this is a failure mode for vector quantization, Z is low-dimensional
enough that, in practice, it does not meaningfully impact performance. While this may be true for
standalone disentanglement benchmarks, we find that it causes training instability and performance
degradation when jointly learning a policy for high-dimensional continuous control problems. We
propose a solution in section 4.2 from the viewpoint of associative memory.

It is common practice in many vision-based RL algorithms to utilize framestacking to incorporate
temporal information into the latent space. This means that the encoder accepts as input, and
the decoder produces a stack of RGB images in RB×Ck×H×W , where k is the number of frames.
However, latent disentanglement models have only been shown to work on datasets of singular images
and struggle to disentangle sources of individual images when given stacks of images as inputs.
Evidence of this is presented in the appendix, Section A.5. To resolve this issue, we fold k into
the batch dimension and encode/decode batches of single images in RBk×C×H×W , resulting in a
batch size Bk of disentangled latent vectors zd ∈ RBk×nsi . To incorporate temporal information, we
reshape the batch of latent vectors into RB×knsi and feed it into a 1D convolutional neural network
(CNN), producing our final latent vector z ∈ RB×e. z is used as the state representation for the actor
and critic networks, while the decoder network for the disentanglement model only ever receives the
disentangled representation zd as input.

4.2 ASSOCIATION

The naive approach to performing association would be to feed the quantized latent rep-
resentation through a Hopfield network. However, upon closer inspection of QLAE’s
latent dynamics, we find that most of the components of a generic associative mem-
ory model are already present, i.e., QLAE is implicitly also a Hopfield network.

6
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Figure 3: Ablation comparing SAC+QLAE to
SAC+BioAE on the two distribution shift evalua-
tion environments for the walker walk task.

Figure 3 shows a comparison of using SAC with
QLAE vs with BioAE Whittington et al. (2023),
another disentanglement method that uses bio-
logically inspired constraints and achieves com-
parable results on disentanglement benchmarks
(Hsu et al., 2023). BioAE achieves strong ini-
tial performance on the two evaluation environ-
ments, but slowly degrades over the course of
training. We suspect both models overfit to the
training environment, but QLAE is capable of
zero-shot mapping OOD latent variables to in-
distribution values. To see the similarity, we
first present the general framework described in
Millidge et al. (2022) of a universal Hopfield
network that all feedforward associative memory networks in the literature can be factorized as:

z = P · sep(sim(X, ξ)). (6)

P is a projection, sep is a separation function, and sim is a similarity function between the stored
memories X and query ξ. While P is originally described as a projection matrix, we extend the
definition of P to be any function that projects X and ξ into a shared embedding space. In this case,
equation 4 can be interpreted as follows: fθ is the projection function that projects high-dimensional
images o into an embedding space shared by the scalar codebooks Z, which can be interpreted as
predetermined memories. The closest memory is recovered by computing the L1 distance, which
serves as the similarity function, and sep is the argmin function. Through this view, we can rewrite
the latent dynamics of QLAE in many ways, perhaps exchanging the similarity function for L2

distance or dot product, changing the separation function, etc., as long as it follows the framework
of 6. Since Z is a product of scalar codebooks, L1 distance remains an appropriate choice for the
similarity function. Instead, we augment the latent dynamics with a Softmax separation function as
follows:

zdj = Softmax(−βL1(fθ(o)j , vj))⊙ vj (7)

where β is a scalar temperature parameter. Equation 7 can be interpreted in two ways. From an
associative memory perspective, attention-based Hopfield models apply Softmax to separate the local
minima (stored memories) on the energy landscape, where β controls the degree of separation, and
so we’ve recovered the modern Hopfield memory retrieval dynamics. From a purely mathematical
perspective, we have what resembles the Gumbel-Softmax categorical reparameterization Jang et al.
(2017), although we do not perform any sampling in our method. This lends a novel view on
attention-based Hopfield networks – models with a high-temperature parameter can be interpreted as
classifiers over |X| classes, where |X| is the number of stored memories whose local minima are well
separated on the energy landscape.

In the limit, as β goes to infinity, we achieve maximum separation between memories and recover
equation 4. In practice, we choose a large value for β such that we retrieve one scalar from each
codebook, as originally intended, although our method works well with smaller values of β (see
appendix Section A.4 for additional results). Since large β values can cause downstream gradients
to vanish, we find that keeping the commitment loss from equation 5 helps keep the outputs of the
encoder close to the values of the latent model. However, we do not optimize the codebook towards
the encoder outputs i.e., we omit Lquantize. This can be interpreted as having a set of task-optimized
memories that the encoder must learn to map to under the Hopfield interpretation. Our final objective
for ALDA is as follows:

J(ALDA) = Lcommit + Lreconstruct

= Eot∼D

[
||StopGradient(fθ(o))− [Softmax(−βL1(fθ(o), V ))⊙ V ] ||22

+ log gϕ(ot|ztd) + λθ||θ||2 + λϕ||ϕ||2
] (8)
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Figure 4: Ablation comparing ALDA and QLAE. Average of 5 seeds, shaded region represents a
95% confidence interval.

where the last two terms are weight-decay on the encoder and decoder parameters controlled by
λθ and λϕ, respectively. Observations collected by the policy are stored in a replay buffer D, from
which batches are randomly sampled to train ALDA. We observe that this formulation considerably
improves training and evaluation performance on the "color hard" environment and to a degree, on
the DistractingCS environment, as shown in Figure 4.

The obvious question is, how do we set the dimensionality of zd, which should 1:1 correspond to the
number of sources ns if the number of sources is unknown? While there is no rigorous method to
derive |zd| at this time, we empirically found that setting |zd| to within the ballpark of the size of the
observation spaces for the proprioceptive, state-based versions of the tasks seemed to work well. |zd|
is set to 12 for all reported tasks.

5 EXPERIMENTS

We compare against several baselines that together represent the full range of different learning
paradigms in the literature that attempt to elicit zero-shot generalization. DARLA (Higgins et al.,
2017b) is, to the best of our knowledge, the only other algorithm that attempts to learn a disentan-
gled representation of the image distribution towards zero-shot generalization of vision-based RL.
SAC+AE (Yarats et al., 2021b) uses a deterministic autoencoder with an auxiliary reconstruction
objective and strong regularization that demonstrates decent zero-shot generalization capability.
RePo (Zhu et al., 2023) is a model-based RL algorithm that learns a task-centric latent representation
immune to background distractors. Finally, SVEA (Hansen et al., 2021) is an off-policy RL algorithm
that improves training stability and performance of off-policy RL under data augmentation. As in
their paper, we use the random overlay augmentation for SVEA, where images sampled from the
Places (Zhou et al., 2017) dataset of 10 million images are overlayed during training. The training
curves and evaluation on "color hard" and DistractingCS are presented in Figure 5.

Excluding SVEA, ALDA outperforms all baselines on both distribution shift environments. ALDA
also maintains stability and high performance on the training environment, despite the disentanglement
auxiliary objective and extremely strong weight decay (λθ, λϕ = 0.1) on the encoder and decoder.
We do not expect to outperform SVEA since it uses additional data sampled from a dataset of 1.8
million diverse real-world scenes, likely putting the training data within the support of the data
distributions of the evaluation environments. Nevertheless, ALDA performs comparably and, in some
cases, is equal to SVEA despite only seeing images from the original task. Performance degrades
severely for all algorithms on the DistractingCS environment. We suspect that, in addition to the
already difficult task of ignoring the background video, camera shaking affects the implicitly learned
dynamics, and thus, additional finetuning may be unavoidable for this task. Still, ALDA performs
better than all baselines excluding SVEA on Distracting CS as well, even matching the performance
of SVEA on cartpole balance and finger spin.

The disentangled representation learning field primarily uses toy datasets where the ground truth
sources of the data distribution are known. Therefore, all disentanglement metrics we are aware of re-
quire knowing the sources, making it difficult to quantitatively evaluate disentanglement performance
on DMControl. In the absence of any quantitative disentanglement metrics, we opt to show empirical
evidence of disentanglement in our model, presented in Figure 6. In this experiment, we encode an
observation o into the disentangled latent representation zd = lψ(fθ(o)). We pick a latent variable
zdi , traverse it while holding all other latent variables fixed, and decode the resulting latent vectors
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Figure 5: Top row: performance on the training environment. Middle and bottom rows are evaluation
results on the "color hard" and DistractingCS evaluation environments, respectively. Average of 5
seeds, shaded region represents a 95% confidence interval.

Figure 6: Visualization of different latent perturbations. Top: Traversal of select latents for the
standard training environment. Bottom: Traversal of select latents when training directly on the
color hard environment. Latents that encode for distractor variables (e.g., color) seemingly do not
simultaneously encode for task-relevant variables (e.g., agent dynamics). Visualizations of all latent
traversals can be found in Appendix section A.3.

into reconstructed observations o′ = gϕ(z
′
d). We find that each latent tends to learn information about

a single aspect of the robot, for example, the orientation of the torso or the rotation of the left/right
leg. We also find empirical evidence that ALDA does not discard task-irrelevant information, but
rather encodes it separately from task-relevant latent variables when training ALDA directly on the
color hard environment.

6 DISCUSSION

As stated previously, the disentanglement problem by extension of nonlinear ICA is underdeter-
mined, so there are many ways the latent space may factorize, perhaps by representing the sky and
background with one latent or by separating them into two latents, etc. Given that both the task
and reconstruction gradients of the critic/decoder affect the latent model/encoder, an interesting
scientific and philosophical implication is that the model is potentially biased towards a disentangled
representation that is useful, although there is no way to quantitatively or qualitatively show such a
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result at this time. Nevertheless, it remains an interesting line of further investigation from a scientific
standpoint, and perhaps, philosophically, says something about whether the question "What is the
ground truth factorized representation that best explains the data?" is even the right question to ask.

RL agents deployed in the real world must constantly adapt to changing environmental conditions.
Much of the variance can be captured with a sufficiently large dataset. However, there remains
a portion of the distribution containing every possible edge case and unaccounted-for variation,
commonly referred to as "the long tail," that remains elusive because it is prohibitively expensive to
account for every possible variation. Unfortunately, these uncaptured variations are frequent enough
due to the ever-changing dynamical nature and complexity of the real world that deploying agents in
the real world remains challenging. Therefore, it seems the case that data augmentation techniques,
collecting massive datasets, and the like are not sufficient to develop generalist agents capable of
adaptation the way humans and other animals are. That’s not to say that data isn’t important or a
fundamental ingredient to training machine learning models. In fact, the method proposed in this
paper scales with more data as with prior works that leverage data augmentation techniques. Instead,
our proposition is that if a data-driven model can generalize better with less data, then it will scale
better with more data.

In Section 3, we showed how data augmentation and disentangled representation learning aim to
achieve the same result – a factorization of the latent space into separate components in order to
improve downstream generalization performance. Given the additional computational and data
collection costs and potential training instabilities that data augmentation methods may incur, it
seems more fruitful to investigate models with inductive biases that elicit modular and generalizable
representations without relying on data scaling laws. While presenting the model with sufficiently
large and diverse datasets remains unquestionably important, we cannot rely solely upon the data
in hopes that the model learns a good representation. As with any other inductive biases, such as
using CNNs for vision tasks or transformers for NLP tasks, inductive biases that elicit modular
representations while leveraging data are worth studying if we are to develop agents that can perform
and adapt well in the real world.

We hope that the work presented here inspires future research into novel models and architectures
to learn representations that enable the adaptability we see in our biological counterparts. We
discuss some limitations of our method and promising directions for future research. One notable
limitation is that our disentangled latent representation zd does not explicitly account for temporal
information since it primarily estimates the sources that produce the image distribution. Instead, we
must capture temporal information in the downstream 1D-CNN layer as shown in Figure 2. How
to learn a disentangled representation that contains sources of both the image data and temporal
information for decision-making tasks remains an open question. Another limitation is that, while we
introduce a simple Hopfield model as a modification to QLAE, we do not take advantage of the more
recent literature involving learnable attention-based or energy-based Hopfield networks (Ramsauer
et al., 2021; Hoover et al., 2024). Stronger Hopfield models that synergize well with disentangled
representations is another potentially fruitful research direction.

Given that we use a very compact disentangled latent space with strong empirical evidence that
individual latents capture information about specific aspects of the agent, an interesting research
direction is to investigate whether all or parts of the proprioceptive state representation can be
recovered from image observations. We provide some preliminary evidence of this in the appendix
(A.2). Beyond interpretability, such a model may yield better performance since state-based RL
agents tend to perform better than vision-based agents. Finally, while our work was inspired by
the role of the hippocampus in biological intelligence, the exact mechanisms of the machinery and
how they interact with decision-making, planning, and imagination components of biological brains
are by no means precisely modeled in this paper, nor are all of the computations the hippocampus
may be performing fully understood. Future collaborative research between the machine learning
and neuroscience fields into data-driven computational models of these mechanisms may yield even
better-performing, adaptable agents.
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A APPENDIX

A.1 PROOF

Preliminaries. We reintroduce the nonlinear ICA problem formulation here for the reader’s reference.
There are ns nonlinear independent variables s = s1, ..., sns that are considered the "ground truth"
sources of variation of the data distribution. We assume there exists a data-generating model that
maps sources to images:

p(s) =
ns∏
i=1

p(si), o = g(s)

where g : S → O is the non-linear data generating function. For the purpose of this proof, we restrict
S and O to be the space of sources and images within our dataset. The goal of nonlinear ICA, and by
extension, disentangled representation learning, is to recover the underlying sources given samples
from this model. We claim that most, if not all, data augmentation techniques in Q-learning are a
form of weak disentanglement, where either the method factorizes the latent space into task-relevant /
task-irrelevant variables or removes task-irrelevant variables from the latent space entirely.

For a given task, we can split the sources into two categories: sources s1...k, k < ns that are task-
relevant, which we will call D, and sources sk+1,...,ns

that are not, whose category we will refer to as
E. The encoder maps observations to a latent space f : O → Z , and so z is a function of the sources
z = fθ(g(s)). We refer to ŝi as an approximation to the true variable si that exists in one or more
dimensions of z. We make no assumptions on whether the sources are entangled or disentangled in z.

Optimality Invariant Image Transformations Described in Yarats et al. (2021a), data augmentation
applied to Q-learning can be formulated using the following general framework. An optimality-
invariant state transformation h : O × T → O is a mapping that preserves Q values.

Q(fθ(o), a) = Q(fθ(h(o, v)), a)∀o ∈ O, a ∈ A, v ∈ T . (9)

v are the parameters of h(·, ·) drawn from the set of all possible parameters T . In other words, T
defines the space of all possible data augmentations that should not affect the output of the Q-function.

Proposition 1: Let ϕ : S → S be a function that perturbs sources sj ∈ E. Then

h(o, v) = g(ϕ(s)). (10)

This follows from the definition of E in that any optimality-invariant transformation to the observation
must have implicitly resulted from a perturbation of some task-irrelevant source sj ∈ E.

Proposition 2: For any given z = fθ(g(s)) and any perturbation to a true source sj ∈ E, j ∈
[k + 1, ns] resulting in a new latent z′ = fθ(g(s′)), the following must be true for an optimality
invariant optimal Q-function:

Q∗(z, a) = Q∗(z′, a). (11)

We can rewrite z′ as z′ = fθ(g(ϕ(s))) i.e. o = g(ϕ(s)), and by Proposition 1, g(ϕ(s)) = h(o, v).
Essentially, an optimality invariant Q-function is immune to variations of task-irrelevant sources from
the set E, since they correspond to optimality-invariant state transformations.

Theorem 1: For any z = fθ(g(s)), and for any dimension zk of z, the following must be true for an
optimality invariant Q-function:

cov(ŝi, ŝj |zk) = 0 ∀si ∈ D, sj ∈ E, i ∈ [1, k], j ∈ [k + 1, ns]. (12)

To see why this must be the case, suppose that the covariance is nonzero and suppose that we
perturb sj ∈ E to s′j , giving us a new observation o′ = g(s′). Since sj is task-irrelevant, z′ =
fθ(o′) = fθ(h(o, v)) for some v ∈ T . If z′ is a function of h, then by equations 9 and 11,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Q∗(z′, a) = Q∗(z, a). However, if cov(ŝi, ŝj |zk) ̸= 0 for some zk ∈ z, then ŝi
′ ∈ z′ ̸= ŝi ∈ z.

Since ŝi ∈ D, Q∗(z′, a) ̸= Q∗(z, a), which is a contradiction. Therefore, the conditional covariance
between any ŝi ∈ D and any ŝj ∈ E for any given zk must be zero, which implies that the
approximations of task-relevant and task-irrelevant sources in z are disentangled.

A.2 LATENT TRAJECTORY VISUALIZATIONS

Figure 7: Visualizations of a few latent/state trajectories through time for the Walker agent. Top:
Trajectories of several latent variables from the disentangled latent space. Bottom: Trajectories of
several rigid body orientations.

Given the low dimensionality of the disentangled latent representations and the fact that they are
disentangled, we hypothesize that their trajectories through time may correspond to trajectories
of proprioceptive state variables such as rigid-body positions and orientations. We visualize the
trajectories of individual latents through time for a single episode alongside the trajectories of several
proprioceptive state variables in Figure 7. Unfortunately, the mappings of sources to the disentangled
latent space likely do not correspond 1:1 with the proprioceptive state, given that the learned mappings
are arbitrary and not unique. However, upon visual inspection, we find that latent trajectories through
time exhibit oscillatory behavior patterns similar to that of rigid body orientations from the state
representation. Recovering all or parts of the proprioceptive state representation via unsupervised
learning from high-dimensional data is an interesting future research direction.
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A.3 ADDITIONAL LATENT TRAVERSAL PLOTS

Latent traversals for the other reported DMControl tasks are presented here. We also visualize the
latent traversals of ALDA trained directly on the color hard environment. We find that the latent
traversals for cartpole balance are more discontinuous than on other tasks. One reason for this might
be the lack of balanced data and data diversity of the cartpole replay buffer. The (near) optimal
policy is achieved quite early on, after which most images collected are of the cartpole upright
and roughly in the same x-position. The lack of data diversity likely makes it difficult to learn a
representation in which the latent traversals are more continuous / physically plausible. Interestingly,
this phenomenon does not seem to affect performance on the "color hard" evaluation environment,
although we suspect there are performance gains to be had on DistractingCS if the latent interpolations
were smoother. We leave an investigation into the effects of data balancing and data diversity on
downstream generalization performance as future work.

Figure 8: Latent traversals of the disentangled latent vector when training ALDA directly on the
"color hard" environment.

Figure 9: Latent traversals for cartpole balance. Each row corresponds to a latent dimension that is
traversed via linear interpolation while all other dimensions are held fixed.
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Figure 10: Latent traversals for the finger spin task. Each row corresponds to a latent dimension that
is traversed via linear interpolation while all other dimensions are held fixed.

Figure 11: Latent traversals for the ball in cup catch task. Each row corresponds to a latent dimension
that is traversed via linear interpolation while all other dimensions are held fixed.

A.4 BETA STUDY

We perform an analysis of the effects of different β values on ALDA’s performance. The memory
retrieval dynamics are reintroduced here for the reader’s reference:

zdj = Softmax(−βL1(fθ(o)j , vj))⊙ vj .

Small values of β result in a more even distribution of the probability mass between latent values
per codebook, which implies that the output will be a weighted sum of different latent values (or
memories under the Hopfield interpretation). We choose three different values, β = (1, 10, 50), and
compare with the main result (β = 100) presented in the paper on the Walker domain, shown in 12.
To our surprise, lower β values have little to no effect on generalization performance and, in fact,
increase training performance. This perhaps challenges the assumptions made in Hsu et al. (2023)
about the requirements of disentanglement via latent quantization, but admittedly requires further
analysis, which we leave to future work.
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Figure 12: ALDA is trained on the Walker domain with different values of β, with evaluations
periodically performed on the "color hard" and DistractingCS environments. Average of 4 seeds,
shaded region represents a 95% bootstrapped confidence interval.

A.5 FRAMESTACK ABLATION

We provide an ablation comparing against a version of ALDA where the encoder receives as input,
and the decoder predicts a stack k = 3 of frames, i.e., the observation size is (9× 64× 64). Since
the downstream 1D-CNN layer is no longer necessary, we remove this layer from the variant. We
refer to this variant as "ALDA (framestack)" and present results on the Walker domain in Figure 13.
We also provide latent traversal visualizations of ALDA (framestack), shown in Figure 14.

Figure 13: Ablation comparing ALDA to ALDA (framestack) on the Walker domain. Average of 4
seeds, shaded region represents a 95% confidence interval.

Figure 14: Latent traversal visualizations for ALDA (framestack).
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From the plots, we can see that while the generalization performance of ALDA (framestack) does not
degrade entirely, it does suffer when compared to ALDA. The latent traversal visualizations show
that ALDA (framestack) does not disentangle the dynamics of individual bodies of the agent the way
ALDA does. Many latent dimensions, for example, latent dim 8 (5th row from the bottom), affect
two or more aspects of the agent when interpolating the latent values. One possible explanation
is that ALDA (framestack) does better at capturing and disentangling temporal information, given
that it sees a stack of consecutive frames, but struggles to disentangle sources of singular images
corresponding to non-temporal information, whereas ALDA excels at the latter.

A.6 HYPERPARAMETERS AND MODEL ARCHITECTURES

Our SAC implementation is based on Yarats & Kostrikov (2020).

A.6.1 ACTOR AND CRITIC NETWORKS

Following Yarats & Kostrikov (2020), we use double Q-networks, each of which is a 3-layer multi-
layer perceptron (MLP) with 1024 hidden units per hidden layer and GeLU activations after all except
the final layer. The actor network is similarly a 3 layer MLP with 1024 hidden units per layer and
GeLU activations on all but the final layer.

A.6.2 ENCODER, DECODER, AND LATENT MODEL

We use the same encoder/decoder architectures as Hsu et al. (2023), with the exception that we
replace all leaky ReLU activations with GeLU. We instantiate the codebooks for the latent model
with values evenly spaced between [-1, 1].

A.6.3 HYPERPAREMETERS

We list a set of common hyperparameters that are used in all domains.

Parameter Value
Replay buffer capacity 1e6

Batch size 128
Latent model temperature β 100

Number of latents |zd| 12
Number of values per latent Vj 12

Encoder weight decay λθ 0.1
Decoder weight decay λϕ 0.1

Frame stack 3
Action repeat 2 for finger spin otherwise 4

Episode length 100
Observation space (9 x 64 x 64)

Optimizer Adam
Actor/Critic learning rate 1e-3

Encoder/Decoder learning rate 1e-3
Latent model learning rate 1e-3
Temperature learning rate 1e-4
Actor update frequency 2
Critic update frequency 2

Discount γ 0.99

Table 1: Common hyperparameters for SAC and ALDA.

A.7 ALDA PSEUDOCODE
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Algorithm 1 ALDA Forward Pass

Input: Observation o, encoder fθ, latent model lψ , history encoder hγ .

o ∈ RB×Ck×H×W → o ∈ RBk×C×H×W // rearrange the framestack dimension
zcont ∈ RBf×nz ← fθ(o)
zd ∈ RBf×nz ← lψ(zcont) // association step using the latent model
zd ∈ RBf×nz → zd ∈ RB×f×nz // rearrange the framestack dimension
zd ← hγ(zd) // encode temporal information
return zd

Algorithm 2 Associative Latent Dynamics

Input: Continuous latent vector zcont ∈ RBk×nz , latent model lψ

for i← 1 to nz do
wi ← Softmax(−βL1(zconti , vi)) ⊙ vi // compute weights for how similar zconti is to each
value in the i′th codebook.
zdi ←

∑
|vi| wi

end for
return zd

Algorithm 1 contains pseudocode for ALDA’s forward pass. The observation o can be an in-
distribution sample during training, or an OOD sample during evaluation. Post-training, when
presented with in-distribution samples, the association step is unlikely to significantly change zcont,
since zcont will map very close to the values learned by the latent model lψ . However, when presented
with OOD samples, zcont is more likely to change since certain dimensions of zcont may map far
away from the corresponding dimensions of the latent model. Algorithm 2 shows how the latent
model lψ maps potentially OOD continuous latent vectors to in-distribution values using modern
Hopfield retreival mechanisms.
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A.8 LATENT STUDY

Figure 15: Training (left) and evaluation (middle and right) results of increasing the dimensionality
of ALDA’s latent space on the Walker Walk task. Results are averaged over 4 seeds. Shaded region
represents a 95% bootstrapped confidence interval.

We examine the effects of increasing the dimensionality of the latent space on the performance
of the Walker "Walk" task and present the results in Figure 15. The baseline model (zd = 12)
performs the best on the training and "Color Hard" evaluation tasks, and that performance drops as
the dimensionality of the latent space increases. Since disentangled representation learning methods
try to approximate the number of ground truth sources of variation of the data distribution, it is
possible that setting zd to values far away from the number of true sources can cause the performance
degradation we observe in Figure 15.
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A.9 CRITIC GRADIENT ABLATION

Figure 16: Ablation of backpropogating the critic gradients to the encoder (ALDA CG) compared to
the standard model. Results are averaged over 4 seeds. Shaded area represents a 95% bootstrapped
confidence interval.

In this experiment, we examine the effects of backpropagating the critic’s gradients through the
latent model and back to the encoder. The results are presented in Figure 16. We refer to the ALDA
variant with critic gradients enabled as "ALDA (CG)" and compare on the Walker "Walk" task.
ALDA (CG) performs worse on all training and evaluation tasks. We suspect that backpropagating
the critic gradients to the encoder affects the ability for the encoder-decoder pair to disentangle
sources of the image distribution, since disentangled representation learning methods typically study
disentanglement in (Variational) Autoencoders without competing auxiliary objectives.
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A.10 SVEA + RANDOM CONV AUGMENTATION

Figure 17: Comparison of ALDA to SVEA using the "rand conv" data augmentation technique.
Results are averaged over 4 seeds. Shaded region represents a 95% bootstrapped confidence interval.

We compare ALDA to SVEA using the "random convolution" data augmentation technique, which
applies random convolutions to the input observation, changing the colors of the agent and background.
SVEA (image overlay) as presented in the main paper is also included as a baseline. The results are
presented in Figure 17. We find that SVEA (random conv) performs slightly better on the "color
hard" evaluation task compared to SVEA (image overlay), and roughly the same on the "Distracting
CS" evaluation task.
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