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Abstract— Segmentation convolutional neural networks 

(CNNs) are now popular for the semantic segmentation (i.e., 
dense pixel-wise labeling) of remote sensing imagery, such as 
color or hyperspectral satellite imagery.  In recent years a large 
number of hand-labeled datasets of overhead imagery have 
emerged, leading to breakthrough performance for CNNs.    
However, these datasets are typically used in isolation of one 
another because they are either (i) annotated with 
heterogeneous object type labels, or (ii) they are collected over 
different geographic areas.  This imposes a major bottleneck on 
the value of these datasets.  In this work we present what we call 
a class-asymmetric loss function that makes it possible to train 
a single multi-class network using multiple datasets that are 
heterogeneously-labeled.  We show, for example, that it is 
possible to train a segmentation algorithm for Buildings, roads, 
and background using two datasets: one annotated with 
buildings and one annotated with buildings.   We propose a class 
asymmetric loss that under certain common conditions, allows 
for one to train models on datasets in which the target class is 
unlabeled.   

Keywords—semantic segmentation, convolutional neural 
networks, deep learning, aerial imagery, building detection 

1. INTRODUCTION  
Convolutional neural networks have garnered substantial 

attention in recent years for the segmentation of overhead 
imagery (e.g., satellite or aerial imagery).  Such models have 
achieved top performance on several satellite image 
computer vision benchmarks such as a recent Urban 
Challenge [1], the INRIA building labeling competition [2], 
and the recent DeepGlobe satellite challenge [3].   

High-capacity learning models such as convolutional 
neural networks (CNNs) require substantial quantities of 
labeled training data to perform well without overfitting to 
training data.  Therefore, in addition to the development of 
effective CNNs, a major cause for recent performance 
breakthroughs has been the development of large annotated 
remote-sensing datasets.  Table I summarizes several large 
recent benchmark datasets.   

Thus far researchers and benchmark competitors train 
separate models: one model for each label-homogenous 
subset of data. This approach is illustrated in Fig. 1a.  
However, to increase model generalizability we would 
ideally represent the greatest diversity of geographic domains 
possible within a training set, and so we consider the problem 
of training a single CNN using all of these datasets.  In 
aggregate, the datasets in Table 1, for example, provide an 

unprecedented level geographic and temporal diversity (time 
of day, season of the year, etc.)   Furthermore, such datasets 
are expensive and time-consuming to create, providing 
additional motivation to combine existing training data 
resources. 

One challenge with this goal however is that different 
datasets contain annotations of different object categories, 
leading to heterogeneity of labels across the datasets.  For 
example, one dataset may contain road (R) annotations, and 
another dataset may contain building (B) annotations even 
when both datasets have both roads and buildings visible in 
the imagery.  This is the case with the datasets in Table I.  
Even within the same benchmark dataset, e.g., DeepGlobe, 
the building and road labels may be made on geographically 
disjoint subsets of the data.    

 
 Multi-task versus multi-class problems 

One straightforward solution to this problem – which has 
become popular in the deep learning community - is multi-
task learning [4].  A multi-task approach to training with all 
datasets in Table I, for example, might involve a CNN with 
different parallel output nodes as illustrated in Error! 
Reference source not found.b.   This is potentially an 
effective solution, however the classes in this case (R and B) 
are mutually exclusive (i.e., they cannot co-occur on the same 
pixel).  In other words, a single pixel cannot (usually) be 
labeled as both B R.  However, a multi-task solution assumes 
they can co-occur. A multi-class formulation of the problem, 

Table 1:  Recent labeled overhead imagery datasets.  The datasets 
contain annotations of either Roads (R) or Buildings (B).  A bar over the 
letter indicates the set complement.  Some datasets, such as DeepGlobe 
have two spatially disjoint datasets: one labeled with R, and one labeled 
with B. The classes are labeled as {𝑹, 𝑹$}, {𝑩,𝑩$} to indicate this.  When 

labels spatially co-occur we use {𝑹, 𝑩,𝑩𝒈} where 𝑩𝒈 = 𝑩 ∪ 𝑹********   

Name Year Classes No. of 
Cities 

Area 
(𝒌𝒎𝟐) 

DeepGlobe [3] 2018 {𝑅, 𝑅*}, {𝐵, 𝐵*} 7 ~11000 

INRIA Building [2] 

 
2017 {𝐵, 𝐵*} 10 360 

Duke road & 
building dataset [5] 2017 {𝑅, 𝐵, 𝐵𝑔} 9 60 

Urban challenge [1]  2017 {𝐵, 𝐵*} 3 361 
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shown in Fig. 1c, however does not permit labeling the same 
pixel with two labels.  Such a model returns a probability 
distribution over the three possible classes: 𝑅 , 𝐵 , 𝐵𝑔 =
𝐵 ∪ 𝑅.    Bg here is termed the “background” class in many 
contexts.   As a result of this label mutual exclusivity, we will 
focus on multi-class CNN formulations in this work.  We will 
propose a simple adjustment to the standard training 
procedure for SCNNs in order to facilitate training a single 
multi-class SCNN on multiple partially-labeled datasets.  
This will facilitate our subsequent goal, explained next.  

 
 A class-asymmetric loss for differently-labeled data  

An important consequence of mutual exclusivity in the 
classes is that it provides an opportunity for additional 
supervision during training.  Consider a multi-class (R,B,Bg) 
network that we wish to train on a dataset annotated only with 
{𝑅, 𝑅} . The network in this case can be penalized for 
predicting B, given that the true label is R.   

 
 
In this work we also propose a simple loss function, which 

we call class-asymmetric (CA) loss, that incorporates the 
extra supervision available when the data is labeled with 
mutually exclusive class labels, as illustrated in Fig. 2.  In this 
preliminary work, we conduct experiments on the Duke 
Road/Building dataset in Table I and compare it to two 

conventional baseline approaches.  The first baseline 
approach is simply to train one model on each of the available 
training datasets.  The second baseline is to train a 3-class 
SCNN on all of the available datasets, but without utilizing 
the proposed class-asymmetric loss. For this we will use our 
simple modification to the standard SCNN training procedure, 
allowing the network to be trained on multiple datasets, but 
without leveraging the proposed CA loss.  We then show that 
the proposed loss, when added to multi-dataset training, 
yields substantial performance improvements over the two 
baseline approaches.   

The remainder of this paper is organized as follows: 
Section 2 describes the Duke dataset; Section 3 discusses how 
we train a single multi-class network on partially-labeled 
datasets, as well as the proposed class-asymmetric loss; 
Section 4 and 5 discuss the experimental design and results, 
respectively; Section 6 discusses the conclusions.   

2. OVERHEAD IMAGERY DATASET 
In this work we use the Duke Building/Road dataset [5], 

which is summarized in Table 1.   This dataset is comprised 
of 30cm resolution color (RGB) overhead imagery from the 
US Geological Survey.  Although the dataset is comprised of 
10 cities, we use the city Arlington, MA because it has 
building and road labels over the same geographic area, 
providing greater control for our experiments (see Section 
4.1).  Our final dataset is therefore comprised of three large 
image tiles covering a total of 7.5 𝑘𝑚5  of area.  In our 
experiments, we crop the original images into chips with 572
×572 pixels. Ultimately, we have 507 patches of the images 
in total.  

3. LOSS FUNCTIONS TO LEVERAGE 
HETEROGENEOUSLY-LABELED DATASETS 

In this section we explain the basic cross-entropy loss 
function that is standard for SCNNs, followed by a simple 
adjustment we make in order to train a multi-class network 
on a partially-labeled dataset.  This will facilitate training a 
single network on multiple partially-labeled datasets.  The 
last subsection discusses our proposed class-asymmetric loss. 
For simplicity, in all of these discussion we will assume a we 
have a set of only two possible class labels, ℓ	 = {1,2} , 
although the methods can plausibly be extended to greater 
numbers of classes.  

 Brief review of convolutional segmentation networks 
SCNNs vary in their architectures and training procedures, 

but, like other neural networks, SCNNs use a cross-entropy 
loss given by 

𝓛𝑪𝑬	 = − 𝒚𝒊 𝐥𝐨𝐠 𝒑𝒊

𝓵 EF

𝒊G𝟎

 (1) 

where M is the number of classes, 𝑝𝑖  is the predicted 
probability of one class for each pixel and 𝑦𝑖 is the true label 
of one class for each pixel.  The output of the network is the 
one-hot coding of the predicted labels.   

 

Fig. 1.  Illustration of three possible formulations of the building and 
road segmentation problems.   Let 𝒑𝑹  and 𝒑𝑩  refer to the probability 
of Road (R) and Building (B) respectively.  The bar over a letter 
indicates a set complement.  (a) A multi-model formulation, in which a 
separate model is trained for each problem.  (b) A multi-task 
formulation, in which a single model is trained with two separate 
binary outputs.  A multi-class formulation (b) results in a 3-way output, 
where we define 𝑩𝒈 = 𝑩 ∪ 𝑹********.   

 

Fig. 2.  A truth table for 3-class SCNN making predictions on a 
dataset with only 2-classes labeled.  The SCNN predicts one of three 
classes: Road (R), Building (B), and Background (Bg).  The ground 
truth is assumed to be labeled with roads, and therefore the labels are 
R and 𝑹$  (equivalent to 𝑩𝒈 ∪ 𝑩 ).  Red boxes with ‘X’ indicate an 
incorrect prediction, green boxes with checkmarks indicate a correct 
label, and yellow boxes with ‘O’ indicates ambiguity.  Because the 
classes 𝑩 and 𝑹 are mutually exclusive, it is possible to say the network 
is making an error when the true label is 𝑹, even though the dataset 
was not annotated with building labels.  
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The major difference between SCNNs and other networks 
is that SCNNs provide pixel-wise labeling of their input 
imagery (as opposed to a single image-level label), and 
similarly, the cross-entropy loss is applied pixel-wise to the 
output of the SCNN.   

 Modifying the cross-entropy loss for training a multi-
class network on partially-labeled datasets  

The cross-entropy loss in equation (1) assumes that the 
output labels provided by the SCNN are identical to those 
annotated in the training dataset.  In this section we describe 
a simple adjustment to ℒMN in order to account for scenarios 
in which a subset of the total labels of the network, ℓ, are 
labeled in the dataset.  This loss will be used in our 
experiments, and is a useful prerequisite to describing our 
class-asymmetric loss. For simplicity, let us assume a 
scenario again in which we have a set of only two possible 
class labels, ℓ = {1,2} , and two dataset 𝐷F  and 𝐷5 , where 
each dataset is annotated with just one of the two possible 
labels, indicated by their respective subscripts.  For example, 
𝐷F is only labeled with class 1.  Then the proposed “partial-
labeling” loss is given by 

𝓛𝑷𝑳 𝑫𝒌 = − 𝒚𝒊 𝐥𝐨𝐠 𝒑𝒊|𝑫𝒌
𝒊∈𝓵	

. (2) 

Here the loss function depends upon which of the available 
datasets is being employed for training, indexed by𝑘.  We still 
sum over all possible labels, but we compute the SCNN’s 
softmax only over the subset of labels present in the training 
dataset; this alteration is denoted by 𝑝V|WX  and can be 
interpreted as the probability of class 𝑖 , given that the 
probability of all labels not in dataset 𝐷Y  are equal to zero 
(i.e., we apply a softmax only over the available labels).  In 
this case, the prediction for the unlabeled class is always 
equal to zero, and of course the ground truth label of the 
missing class is also 0 (i.e., 𝑦ℓ	/Y = 0)	, causing the unlabeled 
class to have no impact on the loss function.  Note that this 
loss does not assume, or exploit, mutual exclusivity of the 
class labels.  This loss is a simple way to train a multi-class 
network even when labels are missing in the training dataset.  

 The class-asymmetric (CA) loss  
Here we propose a “class-asymmetric” (CA) loss for 

exploiting mutual exclusivity among labels in order to better-
leverage partially-labeled datasets.  The motivation and 
intuition for exploring such a loss was described in Section I.   
The main idea of the CA loss is to implement the logic in Fig. 
2.  We will begin by presenting the CA loss, and then 
subsequently explain the terms in it. The CA loss is given by  

𝓛𝑪𝑨 𝑫𝒌 = −𝒚𝒌 𝝈 𝒛𝒋
𝒋∈	𝓵	/	Y

. (3) 

Once again this loss depends on the dataset currently being 
utilized for training, dentoed 𝐷Y . The index 𝑗  refers to the 
output nodes from the SCNN for each class. As indicated in 
the summation, we only sum over those labels that are not 
provided in the training dataset, as indicated by the set 

difference ℓ/𝑘; This is because we assumed only one label, 
𝑘, is provided in the training dataset.  The term 𝑦Y in front of 
the summation imposes that this loss is only applied when 
𝑦Y = 1 for the pixel under consideration.  The 𝜎(𝑧c) refers to 
a sigmoid function acting on the output of the SCNN for the 
label 𝑗, prior to the softmax operation.  We do not sofmax 
with the missing label because it is not present in the data, but 
we use the sigmoid function to constrain the magnitude of the 
penalties on mistakse.   

4. EXPERIMENTS 
The major goal of our experiments is to explore how 

effectively we can leverage partially-labeled datasets with the 
proposed CA loss.   For these experiments we will leverage 
the Duke dataset in Table I, and specifically the subset of data 
discussed in Section II.  This dataset was used because it is 
small and experiments and proof-of-concept results can be 
obtained efficiently.  The dataset includes two sets of labels 
– one for road and one for building - over the same 
geographic region, which will provide us with additional 
experimental control.  Let Roads and buildings have the 
numerical labels 1 and 2, respectively.  With these labels we 
can create three datasets: 𝐷F,𝐷5, and 𝐷{F,5}.		 Here 𝐷{F,5}	is an 
ideal scenario, with all three class labels present in the 
dataset.  We will use these datasets to develop several models 
in order to understand the benefits of the CA loss.  

Upper bound model:  Because the Duke dataset contains 
both road and building labels, we can build 𝐷{F,5} .  This 
dataset provides an ideal scenario in which we have all 
labeling information, permitting us to estimate an upper 
bound on the performance achievable with partially labeled 
data over the same location.  To obtain this upper bound, we 
will train a conventional three-class SCNN using 𝐷 F	,5  using 
ℒMN  in equation (1).  The remaining experiments will all 
assume that we have only 𝐷F  and 𝐷5 .  Although these 
datasets cover the same imagery, we will only be training 
with partial information about the true labels.  

Lower-bound model: We estimate a lower bound on 
performance by simply training two separate two-class 
models using ℒMN loss: one model for 𝐷F and another model 
for 𝐷5.  In this case the two models share no information from 
the two sets of available labels.  Any approach that effectively 
utilizes 𝐷F and 𝐷5 should outperform this lower bound.  

Baseline model: Next we create a baseline approach using 
a naïve strategy for leveraging two partially-labeled datasets. 
In the baseline approach, we train a single three-class SCNN 
by alternating mini-batches from 𝐷F and 𝐷5 using the partial-
label loss, ℒde, in equation (2).  This is similar to a multi-task 
training regime, except we use ℒde  to train a multi-class 
model.  However, in this case we are not leveraging the 
mutual-exclusivity of the class labels.  

Proposed approach:  In this case, we perform the exact 
same procedure as we do for the Baseline model, except our 
loss function now includes the CA loss.  The total loss 
function for the Proposed approach is given by  
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𝓛𝑪𝑨 𝑫𝒌 = 𝓛𝑷𝑳 𝑫𝒌 + 𝝀	𝓛𝑪𝑨 𝑫𝒌 . (4) 

The 𝜆  coefficient provides a way to balance the two loss 
functions.  We set 𝜆 = 1  for simplicity, assuming equal 
weighting, but in principal it practice it could be adjusted.   

 The U-net segmentation network and training details  
For our experiments we use a U-net network[6].  We use a 

(slightly) modified version and training procedure that 
recently achieved the highest accuracy on the Inria 
benchmark competition[2].  The final network architecture is 
illustrated in Fig. 3. We train our networks using Adam 
optimizer with learning rate 1e-4. The training is finished for 
200 epochs. The input size of patches is 572×572 with 
symmetric padding. We use a batch size of 5 to train our 
networks. For every experiment, we split the dataset into 
training set, validation set and test set. Each set contains 169 
patches from the original images.  All experiments used 
exactly the same images in the training, validation, and 
testing datasets, respectively.   

5. RESULTS 
The final results of all the experiments are summarized in 

Table 2. At the inference time, we measure the performance 
of our models by IoU (Intersection over Union), also known 
as Jaccard index.  The experimental results demonstrate that 
our proposed approach using the CA loss function is able to 
outperform (IoU 0.488) the more naïve approaches to this 
problem of using individual classifiers (IoU 0.372) and even 
a reasonable baseline (IoU 0.415). In this case, the multi-task 
learning approach (the Baseline) improved performance of 
the network compared to single task learning (the Lower 
Bound). All methods are outperformed by the single 3-class 
SCNN trained on homogeneously-labeled trained data (the 
best possible case). Of the cases in which the labels were 
heterogeneous across datasets our proposed method 
outperformed other approaches in this experiment. We 
summarize these results in Table 2. 

 
 

6. CONCLUSIONS 
In this work we explore techniques for leveraging the large 

number of annotated remote sensing datasets that have been 
developed recently for training segmentation convolutional 

neural networks (SCNNs).  Combining these datasets is not 
straightforward because the datasets are often differently 
labeled: they are annotated with somewhat different objects.  
We present a (AC) loss function to help train multi-class 
SCNNs using datasets with differing labels.  We compare the 
proposed approach using the AC loss to a baseline approach, 
indicating it provides performance improvements.   
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Table 2:  Experimental results 

Method Building 
IoU 

Road 
IoU 

Mean 

Lower bound 0.540 0.203 0.372 

Baseline 0.623 0.207 0.415 

Proposed approach  0.656 0.319 0.488 

Upper bound 0.728 0.511 0.620 
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