
GramML: Exploring Context-Free Grammars with
Model-Free Reinforcement Learning

Hernan C. Vazquez
MercadoLibre, Inc

hernan.vazquez@mercadolibre.com

Jorge A. Sánchez
MercadoLibre, Inc

jorge.sanchez@mercadolibre.com

Rafael Carrascosa
MercadoLibre, Inc

rafael.carrascosa@mercadolibre.com

Abstract

One concern of AutoML systems is how to discover the best pipeline configuration
to solve a particular task in the shortest amount of time. Recent approaches tackle
the problem using techniques based on learning a model that helps relate the
configuration space and the objective being optimized. However, relying on such
a model poses some difficulties. First, both pipelines and datasets have to be
represented with meta-features. Second, there exists a strong dependence on the
chosen model and its hyperparameters. In this paper, we present a simple yet
effective model-free reinforcement learning approach based on an adaptation of the
Monte Carlo tree search (MCTS) algorithm for trees and context-free grammars.
We run experiments on the OpenML-CC18 benchmark suite and show superior
performance compared to the state-of-the-art.

1 Introduction

Automated machine learning (AutoML) aims at automating the process of applying machine learning
to real-world problems (11). In particular, designing and finding the best machine learning pipelines is
a labor and time intensive task which requires extensive experimentation and expertise (7). Although
different solutions have been proposed for this problem (8), most successful techniques are model-
based (9), i.e. rely on a model trained to help explore the solution space efficiently. Learning this
model requires a description of the task and data via meta-features as well as setting up an additional
set of hyper-parameters. In this work, we present GramML, an approach that combines context-free
grammars (19) and a model-free reinforcement learning strategy (13). We propose a grammar that
generates pipeline configurations (e.g. python dictionaries) and that allow us to effectively decouple
the pipeline generation process from the technology in which they are instantiated. We also propose
a model-free Monte-Carlo tree search (13) algorithm specifically adapted to our problem in the
sense that it exploits the tree-structured search space induced by the grammar. Experiments on the
OpenML-CC18 benchmark (1) show improved performance compared to state-of-the-art approaches.

2 Related Work

This section briefly reviews previous work on AutoML. AutoSklearn is the main representative for
solving this kind of problems (5). AutoSklearn is an approach that relies on Bayesian optimization
and surrogate models techniques and it is based on the SMAC (10) algorithm. More recently, other
model-based approaches have shown good performance compared to AutoSklearn. For instance,

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

MOSAIC (17) combines the surrogate model formulation with a Monte Carlo Tree Search (MCTS)
strategy for exploring the hypothesis space. AlphaD3M (4) also builds upon MCTS and propose
to use of neural networks as surrogate model. In this case, the model explore sequences of actions
over pipeline parts instead of whole configurations. Recently, (3) explored the use of AlphaD3M
with a grammar but relying on a pre-trained model to guide the search. PIPER (14) uses a context-
free grammar and a greedy heuristic showing competitive results against other techniques. Other
approaches, like those based on genetic programming (16; 18) and hierarchical planning (15; 12) are
omitted due to space limitations.

3 GramML

Searching for optimal pipeline configurations involves two main problems: 1) how to define the
configuration space, and 2) how to explore it efficiently. In the first case, we choose to use context-
free grammars (19) as they provide a flexible description of the configuration space and allow for
tree-like navigation. We augment such grammar by allowing certain symbols to have properties or
operations associated with them. For the second, we use a model-free variation of the MCTS/UCT
(13) algorithm. We provide a detailed description below.

3.1 Pipeline Configuration Grammar

Context-free grammars have shown to be well suited for defining a configuration space (3; 14; 12).
They are well aligned with our goal of generating configuration objects (python dictionaries or JSON
objects) instead of explicit pipeline code. Working with such objects has several advantages, namely:
configurations are extensible, human-readable, and easily portable to different formats, helping im-
prove interoperability in service architectures. We call this family of grammars Pipeline Configuration
Grammars, PCG. A PCG is defined as < G, g0, T,R >, where G = {g, gnode, gstep} is the set
of non-terminal symbols, with g a regular non-terminal symbol and gnode and gstep two augmented
symbols that we use to simplify the construction. gnode is a g symbol that ends with “_NODE”. When
reduced, it generates the content between braces ({}). Similarly, gstep is a g symbol that ends with
“_STEPS”. When reduced, it encloses the content in square brackets ([]). g0 is a gnode non-terminal
symbol and denotes the initial symbol of the grammar. T = {t, tcomponent, tcolumn} is the set of
terminal symbols, with t a string and tcomponent, tcolumn two augmented symbols. tcomponent is a
t symbol that ends with “.component” and represents a pipeline component, e.g. a random forest
classifier. When the production algorithm comes across a tcomponent symbol, it automatically loads
the component definition. tcolumn is a t symbol that ends with “type.columns” where type is any of
the column types supported, e.g. “numerical.columns”. When the production algorithm comes across
a tcolumn symbol, it automatically loads the index of the columns of the required type. Finally, R
is the set of production rules. Fig. 1 show a simplified example of grammar rules and production.
The complete grammar we use in our experiments is based on the same set of components as in

ROOT_NODE := PIPELINE & ROOT_STEPS
ROOT_STEPS := PREPROCESS_NODE &
 ESTIMATOR_NODE
PREPROCESS_NODE := NUM_TRANSFORM &
 NUM_COLUMNS
NUM_TRANSFORM := Normalizer.component |
 StandardScaler.component
NUM_COLUMNS := "col_index": numerical.columns
ESTIMATOR_NODE := LogisticRegression.component |
 RandomForest.component

(a) Grammar Rules

{"class": "Pipeline",
 "steps": [{
 "class": "StandardScaler",
 "col_index": [1,2,3]
 },
 {"class": "RandomForest",
 "hyperparams": [{"name": "max_depth", "value": 10,
 "hptype": "int"}],
 },
]}

(b) Grammar Production

Figure 1: Simplified examples of grammar rules for pipeline configurations production.

AutoSklearn and it accounts for over 22k different pipeline configurations.

2

3.2 Model-Free MCTS for PCG

Exploring the space induced by the grammar can be done efficiently with tree search algorithms. In
our case, we use MCTS/UCT (13), a bandit-based Monte Carlo tree search algorithm for trees. We
choose UCT due to its simplicity and generality. For PCG the game is to generate productions of
the grammar p ∈ P (i.e. pipeline configurations) from the available actions A(s, g) that represent
the options given by the production rules for a particular non-terminal symbol g ∈ G given a partial
production s ∈ S, with S is the space of possible partial productions. The algorithm can be stopped
at any time and provide the currently best pipeline configuration p∗, as:

p∗ = argmax
λ∈Λ

score(λ), (1)

where λ is an evaluated pipeline, score(λ) denotes the empirical score of evaluating λ in a training
set sample, and Λ ⊆ P is the set of evaluated pipelines. The longer the algorithm is run, the more
productions will be generated and evaluated, and the more likely will be that the recommended
pipeline is indeed the optimal one. The process of generating grammar productions and pipeline
configuration evaluations consist on the following steps:

Selection. It starts from the root node that represents the initial symbol g0 and, at each level, selects
the next node according to the selection policy. Our selection policy is UCT (13):

a∗ = argmax
a∈A(s,g)

{
Q(s, a) + C

√
ln[N(s)]

N(s, a)

}
, (2)

where A(s, g) is a set of actions available for the partial production s and the symbol g ; Q(s, a)
denotes the average score of taking action of reducing g with the symbol a ∈ (G∪ T) to continue the
partial production s ; N(s) is the number of evaluated pipeline configuration that start with the partial
production s and N(s, a) the number of times symbol a has been sampled after partial production s.
The constant C controls the balance between exploration and exploitation.

Expansion. It opens a new path in the tree by taking an action unless the selection phase has
reached a terminal state. In our case, a terminal state corresponds to a full pipeline. This stage should
never ends in a terminal state.

Simulation. It performs a complete random walk through the grammar to produce a complete
pipeline configuration and evaluates it. This is the only phase in which a pipeline configuration is
evaluated. All evaluated pipelines λ are stored. The best pipeline is computed as in Eq. 3.2 once the
algorithm finishes.

Back-propagation. It propagates the results (scores) back to all nodes along the path from the leaf
up to the root. The statistics for Q and N are updated.

4 Evaluation

In what follows, we present an experimental evaluation of GramML. We compare our approach
with AutoSklearn and MOSAIC as they allow for a one-to-one assessment using the same set of
ML components. We also consider a baseline system consisting of expanding the configuration tree
induced by the grammar and using a random sampling heuristic, i.e. sampling without replacement
over the set of expanded pipelines. We term this model BruteForce as it corresponds to a complete
evaluation of the configuration space (∼24k different pipelines) if allowed to run long enough. As
mentioned above, our model spans the same configuration space as AutoSklearn. Hyperparameters
are set to their default values.

4.1 Experimental setup

For evaluation, we consider the OpenML-CC18 benchmark (20), a collection of 72 binary and multi-
class classification datasets carefully curated from the thousands of datasets on OpenML (1). We
use standard train-test splits, as provided by the benchmark suite. Testing performance is measured

3

on the test set after 1-hour execution (time budget of 1 hour) on an Amazon EC2 R5 spot instance
(8 vCPU and 64GB of RAM). For each task, we rank the performance obtained by all systems. We
report the average of such ranking at each time step.

4.2 Results

Comparative results are shown in Figure 2. Figure 2a shows the average rank (lower is better) across
time. It can be seen a strong prevalence of GramML compared to MOSAIC and AutoSklearn1.
During the first few minutes, MOSAIC shows the best performance among the three systems but it
becomes surpassed by GramML shortly after. An interesting phenomenon can be observed around
minute 20, where the performance of MOSAIC and AutoSklearn crosses. This might be attributed to
the time it takes for the surrogate model in AutoSklean to stabilize. After this point, the performance
of AutoSklearn improves over MOSAIC steadily. Interestingly, BruteForce seems to be a strong
baseline and its performance is similar to that of AutoSklearn. Figures 2c, 2d, and 2b show pairwise
comparisons of GramML with AutoSklearn, MOSAIC, and BruteForce, respectively. Note how the
performance gap between GramML and MOSAIC increases over time. In addition, GramML shows
a consistently better average ranking over AutoSklearn and BruteForce, especially in the first 15
minutes. After that, the difference tends to stabilize.

0 20 40 60
time (minutes)

1.5

2.0

2.5

3.0

av
g

ra
nk

AutoSklearn
GramML
MOSAIC
BruteForce

(a) All

0 20 40 60
time (minutes)

1.0

1.2

1.4

1.6

1.8

2.0

av
g

ra
nk

GramML
BruteForce

(b) GramML vs BruteForce

0 20 40 60
time (minutes)

1.2

1.4

1.6

1.8

av
g

ra
nk

GramML
AutoSklearn

(c) GramML vs AutoSklearn

0 20 40 60
time (minutes)

1.3

1.4

1.5

1.6

av
g

ra
nk GramML

MOSAIC

(d) GramML vs MOSAIC

Figure 2: Results of the approaches on OpenML-CC18 benchmark.

In order to check the presence of statistically significant differences in the average rank distributions,
Figure 3 shows the results using critical difference (CD) diagrams (2) for 15, 30, 45 and 60 minutes.
We use a non-parametric Friedman test at p < 0.05 and a Nemenyi post-hoc test to find which pairs
differ (6). If the difference is significant, the vertical lines for the different approaches appear as

1We use AutoSklearn v0.7.0 and MOSAIC v0.1b0, both of which rely on scikit-learn v0.22.2.post1

4

well separated. If the difference is not significant, they are joined by a thick horizontal line. The
diagrams show statistically significant differences at 15 minutes between all approaches. At 30
minutes there is a significant difference between MOSAIC and GramML but neither approach shows
any critical difference with AutoSklearn. Finally, the difference becomes statistically significant
again between all approaches after 1 hour. Interestingly, there seems to be no statistical difference
between Autosklearn and BruteForce baseline after 60 minutes of execution

1234

AutoSklean
MOSAIC BruteForce

GramML

(a) 15 minutes

1234

MOSAIC
AutoSklean BruteForce

GramML

(b) 30 minutes

1234

MOSAIC
AutoSklean BruteForce

GramML

(c) 45 minutes

1234

MOSAIC
AutoSklean BruteForce

GramML

(d) 1 hour

Figure 3: CD plots with Nimenyi post-hoc test

5 Conclusions

In this work, we explore the use of model-free MCTS with context-free grammars to generate pipeline
configurations. Experiments on a standard benchmark show statistically significant improvements
compared to other approaches. Although more experiments are needed for a thorough evaluation
(different machines and problem types), the results are encouraging. Future work will consider
horizontal scalability and distributed search strategies.

Acknowledgments

We thank all anonymous reviewers and area chair for their insightful comments and suggestions.

References
[1] Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R.G., van Rijn, J.N.,

Vanschoren, J.: Openml benchmarking suites. arXiv:1708.03731v2 [stat.ML] (2019)

[2] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
learning research 7, 1–30 (2006)

[3] Drori, I., Krishnamurthy, Y., Lourenco, R., Rampin, R., Cho, K., Silva, C., Freire, J.: Auto-
matic machine learning by pipeline synthesis using model-based reinforcement learning and a
grammar. arXiv preprint arXiv:1905.10345 (2019)

[4] Drori, I., Krishnamurthy, Y., Rampin, R., Lourenco, R.d.P., Ono, J.P., Cho, K., Silva, C., Freire,
J.: Alphad3m: Machine learning pipeline synthesis. arXiv preprint arXiv:2111.02508 (2021)

[5] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. Advances in neural information processing systems 28
(2015)

[6] Gijsbers, P., Bueno, M.L., Coors, S., LeDell, E., Poirier, S., Thomas, J., Bischl, B., Vanschoren,
J.: Amlb: an automl benchmark. arXiv preprint arXiv:2207.12560 (2022)

[7] Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An open source
automl benchmark. arXiv preprint arXiv:1907.00909 (2019)

5

[8] He, X., Zhao, K., Chu, X.: Automl: A survey of the state-of-the-art. Knowledge-Based Systems
212, 106622 (2021)

[9] Huang, Q.: Model-based or model-free, a review of approaches in reinforcement learning. In:
2020 International Conference on Computing and Data Science (CDS). pp. 219–221. IEEE
(2020)

[10] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: International conference on learning and intelligent optimization.
pp. 507–523. Springer (2011)

[11] Karmaker, S.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: Automl to
date and beyond: Challenges and opportunities. ACM Computing Surveys (CSUR) 54(8), 1–36
(2021)

[12] Katz, M., Ram, P., Sohrabi, S., Udrea, O.: Exploring context-free languages via planning:
The case for automating machine learning. In: Proceedings of the International Conference on
Automated Planning and Scheduling. vol. 30, pp. 403–411 (2020)

[13] Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: European conference on
machine learning. pp. 282–293. Springer (2006)

[14] Marinescu, R., Kishimoto, A., Ram, P., Rawat, A., Wistuba, M., Palmes, P.P., Botea, A.:
Searching for machine learning pipelines using a context-free grammar. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 35, pp. 8902–8911 (2021)

[15] Mohr, F., Wever, M., Hüllermeier, E.: Ml-plan: Automated machine learning via hierarchical
planning. Machine Learning 107(8), 1495–1515 (2018)

[16] Olson, R.S., Moore, J.H.: Tpot: A tree-based pipeline optimization tool for automating machine
learning. In: Workshop on automatic machine learning. pp. 66–74. PMLR (2016)

[17] Rakotoarison, H., Sebag, M.: Automl with monte carlo tree search. In: Workshop AutoML
2018@ ICML/IJCAI-ECAI (2018)

[18] de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V., Pappa, G.L.: Recipe: a grammar-based frame-
work for automatically evolving classification pipelines. In: European Conference on Genetic
Programming. pp. 246–261. Springer (2017)

[19] Segovia-Aguas, J., Jiménez, S., Jonsson, A.: Generating context-free grammars using classical
planning. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI-17); 2017 Aug 19-25; Melbourne, Australia. Melbourne: IJCAI; 2017. p.
4391-7. IJCAI (2017)

[20] Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

6

	Introduction
	Related Work
	GramML
	Pipeline Configuration Grammar
	Model-Free MCTS for PCG

	Evaluation
	Experimental setup
	Results

	Conclusions

