
A Unified Convergence Analysis for Shuffling-Type
Gradient Methods

Lam M. Nguyen Quoc Tran-Dinh Dzung T. Phan Phuong Ha Nguyen
Marten van Dijk

February 20, 2020

Abstract

In this paper, we provide a unified convergence analysis for a class of shuffling-type gradient methods
for solving a well-known finite-sum minimization problem commonly used in machine learning. This al-
gorithm covers various variants such as randomized reshuffling, single shuffling, and cyclic/incremental
gradient schemes. We consider two different settings: strongly convex and non-convex problems. Our
main contribution consists of new non-asymptotic and asymptotic convergence rates for a general class
of shuffling-type gradient methods to solve both non-convex and strongly convex problems. While our
rate in the non-convex problem is new (i.e., not known yet under standard assumptions), the rate on the
strongly convex case matches (up to a constant) the best-known results. However, unlike existing works
in this direction, we only use standard assumptions such as smoothness and strong convexity. Finally, we
empirically illustrate the effect of learning rates via a non-convex logistic regression and neural network
training examples.

1 Introduction

The goal of this paper is to provide a unified analysis for a class of shuffling-type gradient methods to solve
the following well-known finite sum minimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)
}
, (1)

where f(·, i) : Rd → R is a given smooth and possibly non-convex function for i ∈ [n] := {1, · · · , n}.
This problem covers a wide range of convex and non-convex models in machine learning and statistical

Lam M. Nguyen, IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA. Email: LamN-
guyen.MLTD@ibm.com

Quoc Tran-Dinh, Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA. Email: quoctd@email.unc.edu

Dzung T. Phan, IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA. Email:
phandu@us.ibm.com

Phuong Ha Nguyen, Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA. Email:
phuongha.ntu@gmail.com

Marten van Dijk, Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT, USA. Email:
marten.van dijk@uconn.edu

1

ar
X

iv
:2

00
2.

08
24

6v
1

 [
m

at
h.

O
C

]
 1

9
Fe

b
20

20

mailto:lamnguyen.mltd@ibm.com
mailto:lamnguyen.mltd@ibm.com
mailto:quoctd@email.unc.edu
mailto:phandu@us.ibm.com
mailto:phuongha.ntu@gmail.com
mailto:marten.van$_$dijk@uconn.edu

learning, including, but not limited to, logistic regression, multi-kernel learning, conditional random fields,
and neural networks. Especially, it covers empirical risk minimization as a special case. Very often, (1)
lives in a high dimensional space, and/or it has a large number of components n. Hence, deterministic
optimization methods relying on full gradients are usually inefficient to solve (1), see, e.g., [4, 40].

The stochastic gradient descent (SGD) method, originally introduced in [37], has been widely used to solve
(1) due to its efficiency in dealing with large-scale problems in big data regimes. In the last fifteen years,
there has been a tremendous progress of research in SGD, where numerous stochastic and randomized-
based algorithms have been proposed, making it the most active research area in optimization as well as in
machine learning. In addition, due to the revolution of deep learning, SGD for non-convex optimization in
deep learning also becomes an extremely active research topic nowadays.

SGD is also a method of choice to solve the following common expectation minimization problem (1):

min
w∈Rd

{
F (w) = E(x,y)∼D[f(w;x, y)]

}
, (2)

whereD is some distribution. Note that (1) is completely deterministic, while (2) is a stochastic optimization
formulation. The question is whether we could take the advantage of the finite-sum structure of problem (1)
to have a better convergence rate than that of (2).

To solve (1), at each step, SGD chooses an index i ∈ [n] uniformly at random, and updates the iterate as
wt+1 = wt − ηt∇f(wt; it) for t = 0, 1, · · · ,K, which is up-to n times “component gradient” cheaper than
an iteration of a full gradient method with the updates wt+1 = wt − ηt 1n

∑n
i=1 f(wt; i), where ηt > 0 is

some learning rate at the t-th iteration. Although SGD was introduced in 1951, its convergence rate was
investigated much later [35]. The convergence rate achieved by SGD for solving (2) in the strongly convex
case is O(1

K) [29, 35, 32, 34] and for finding a stationary point of (2) in the non-convex case is O(1√
K
)

[13], where K is the total number of iterations. Since (1) can be viewed as a special case of (2), these rates
also apply to (1).

Classical SGD for solving (1) relies on an i.i.d. sampling scheme to select component f(·, i) for updating
the iterates wt. We refer to this method as standard SGD. In practice, however, other mechanisms for select-
ing component f(·, i) such as randomized shuffling technique are more desirable to use for implementing
stochastic gradient algorithms due to their implementation convenience and efficiency [5, 3, 19]. Unfortu-
nately, convergence analysis for shuffling schemes and cyclic strategy is much more challenging than that
of the standard SGD or its variants due to the lack of independence. Hitherto, there has been only a very
limited number of theoretical works that show the convergence results of shuffling techniques, and mainly
for the strongly convex case [15, 16, 38, 26].

In this paper, we conduct a study on convergence aspects of shuffling-type gradient methods for the general
(non-convex) objective function as well as the strongly convex one. We provide a unified convergence
analysis framework and apply it to different variants of shuffling schemes in both non-convex and strongly
convex settings.

Contributions: Our main contribution consists of:

• We prove O(1/T 2/3)-convergence rate in epoch for constant step-sizes and Õ(1/T 2/3)-convergence
rate for diminishing step-sizes for a general shuffling-type gradient method to solve the non-convex
problem (1), where T is number of epochs. To the best of our knowledge, these are the first non-
asymptotic rates for SGD with shuffling using both constant and diminishing learning rates under
standard assumptions.

2

Table 1: Comparison of results in the strongly convex case: (1) Without Bounded Gradient, (2) Without Bounded
Hessian, (3) Non-convex fi, (4) Diminishing learning rate by epoch, (5) Convergence with probability one

Reference Complexity (1) (2) (3) (4) (5)
[15] O(1/T 2) 7 7 7 3 7

[16] O(1/T 2) 7 7 7 7 7

[26] O(1/T 2) 7 3 7 7 7

This paper O(1/T 2) 3 3 3 3 3

• We establish asymptotic convergence to a stationary point under diminishing learning rate scheme.
We achieve the best performance among different variants with the learning rate ηt = O(1

t1/3
) in both

theory and practice. In fact, our learning rate is close to “scheduled” learning rate, i.e., it is a constant
during each epoch update and decreases along the epochs.
• We prove O(1/T 2)-convergence rate in epoch of our general shuffling-type gradient scheme for the

strongly convex case without any “boundedness” assumptions. Different from existing works, our
analysis does not require convexity of each component function.

For more details of comparison between our work and recent state-of-the-arts, see the Comparison para-
graph.

Related work: Let us briefly review the most related works to our methods in this paper. The random
shuffling method has been empirically studied in early works such as [5] and also discussed in [3]. Its cyclic
variant, known as an incremental gradient method was proposed in [28], where the convergence analysis
was given in [27] for a subgradient variant, and in [14] for gradient variants. These results are only for
convex problems. Other incremental gradient variants can be found, e.g. in [9, 10] known as SAGA-based
methods.

In [15], the authors showed that if T is large, the randomized shuffling gradient method asymptotically con-
verges as O(1/T 2)-rate under a proper stepsize. However, this rate was only shown for strongly convex
problems with bounded gradient/sequence, smoothness, and Lipschitz Hessian. These assumptions all to-
gether are very unlikely to hold in practice. Under the same conditions, [16] improved the convergence rate
to O(1/(nT)2 + 1/T 3) non-asymptotically, but in the regime of T/ log(T) ≥ O(n). Another related work
is [26], which achieves Õ(1/(nT 2)) convergence rates without Lipschitz Hessian when T is above the order
of the condition number. Recently, an O(1/(nT)2 + 1/(nT 3)) lower bound was proved in [38] under the
same assumptions as [16].

In [42], the authors replaced i.i.d. sampling scheme by a randomized shuffling strategy and established that
variance reduced methods such as SAGA and SVRG still have linear converge for strongly convex problems
but using a unusual energy function. Unfortunately, it is unclear how to transform such a criterion to standard
convergence criterions such as loss residuals or solution distances. It has also been observed that Gradient
Descent and variance reduction methods (e.g., SAG [22], SAGA [11], SVRG [17], and SARAH [33]) for
solving (1) under strong strong convexity have linear convergence rates, but they are not efficient in practice
due to full gradient evaluations.

In [39], a convergence rate to a neighborhood of the optimal value of an SGD variant without replacement
sampling strategy were studied for general convex. Clearly, this type of convergence is different from
ours, and requires n to be large to get a suitable bound. If problem (1) is generalized linear and strongly
convex, then a faster non-asymptotic rate of O(log(K)/K) was achieved. Another recent work is [25]
which considers different distributed SGD variants with shuffling for strongly convex, general convex, and

3

non-convex problems. The authors could only show convergence to a neighborhood of an optimal solution
or a stationary point as in [39]. In addition, the convergence rates are much slower than existing results for
the strongly convex case, and also slower than ours, while requiring stronger assumptions.

Comparision: To the best of our knowledge, only [25, 24] studied convergence rates of Algorithm 1 for
solving non-convex instances of (1). Whereas [25] only provesO(1/

√
nT +log(n)/n)-convergence rate to

a neighborhood of a stationary point of a randomized reshuffling variant, [24] showed O(1/K1/2) conver-
gence rate under bounded subgradients, weak convexity, and quadratic growth conditions for an incremental
subgradient variant. Our convergence rate is O(1/T 2/3) in epoch, which corresponds to O(n2/3/K2/3) in
the total of iterations, and hence is better than [24] and using different assumptions.

For the strongly convex case, Table 1 shows a comparison of results on the convergence rate for Algorithm 1
to solve (1) under the smooth and strongly convex setting. Here, we compare these methods in terms of
required assumptions on F , learning rate, and convergence type. Perhaps, the best convergence rate was
proved in [16] but under stronger assumptions than ours, which nearly matches the lower bound proved
in [38]. However, [16] only covers certain regimes, while our result is quite general. Further comparison
between random shuffling methods and SGD, GD, and other deterministic shuffling schemes for strongly
convex problems can be found, e.g. in [16, 38].

2 The Shuffling-Type Gradient Algorithm

Shuffling-type gradient methods are widely used in practice due to their efficiency compared to standard
SGD schemes [5]. These methods have been investigated in many recent papers, including [15, 16, 26].

In this paper, we analyze convergence rates for a class of shuffling-type gradient algorithms to solve (1) as
described in Algorithm 1.

Algorithm 1 Shuffling-Type Gradient Scheme

Initialization: Choose an initial point w̃0 ∈ Rd;
for t = 1, 2, · · · , T do

Set w(t)
0 := w̃t−1;

Generate any permutation σ(t) of [n];
for i = 0, · · · , n− 1 do

Update w(t)
i+1 := w

(t)
i − η

(t)
i ∇f(w

(t)
i ;σ(t)(i+ 1));

end for
Set w̃t := w

(t)
n ;

end for
Output: Choose ŵT uniformly randomly in {w̃t}Tt=1.

Note that σ(t)(j) is the j-th element of σ(t). Each outer iteration t of Algorithm 1 can be counted for one
epoch. The inner loop updates the iterate sequence {w(t)

i } using only one component per iteration as in
SGD by shuffling the objective components. Our analysis will be done epoch-wise. Here, the output ŵT
can uniformly randomly be chosen from {w̃t}Tt=1, or can be chosen based on the best value of the loss F .
As discussed in [13], the first option does not incur any additional cost by uniformly randomly generating
an index T̂ ∈ {1, · · · , T} a priori and running Algorithm 1 up to T̂ iterations instead of T . Depending on
the choice of σ(t) we obtain different variants, especially the following methods:

4

• If σ(t) = {1, 2, · · · , n} or some fixed permutation of {1, 2, · · · , n} for all epochs t, then Algorithm 1
is equivalent to a cyclic gradient method. This method can also be viewed as the incremental gradient
scheme in [28].
• If σ(t) is randomly generated one time and repeatedly used at each iteration t, then Algorithm 1

becomes a single shuffling variant [38].
• If σ(t) is randomly generated at each epoch t, then Algorithm 1 reduces to a randomized reshuffling

scheme, broadly used in practice [19].

These schemes have been studied, e.g. in [15, 16, 26], but their convergence analysis has mainly been
investigated for the strongly convex case, and often under a strong set of assumptions.

Remark 1 (Types of guarantee). Since we can choose permutations σ(t) either deterministically or ran-
domly, our convergence and complexity bounds in the sequel will hold either deterministically or with prob-
ability 1 (w.p.1), respectively. Without loss of generality, we write these results in the context of w.p.1.

3 Basic Assumptions and Mathematical Tools

Our analysis relies on the following basic assumptions. We first require a bounded below assumption on F .

Assumption 1. F∗ := inf
w∈Rd

F (w) > −∞.

The L-smoothness assumption is fundamental in first-order methods, including SGD, and is expressed as
follows:

Assumption 2 (L-smoothness). f(·; i) is L-smooth for ∀i ∈ [n], i.e., there exists a constant L > 0 such
that, ∀w,w′ ∈ Rd, it holds that

‖∇f(w; i)−∇f(w′; i)‖ ≤ L‖w − w′‖. (3)

Assumption 2 implies that the objective function F is also L-smooth. Moreover, as shown in [30], for any
w,w′ ∈ Rd, one has

F (w) ≤ F (w′) + 〈∇F (w′), w − w′〉+ L

2
‖w − w′‖2. (4)

We refer to Assumptions 1 and 2 as our basic assumptions which are required throughout the paper.

For the convenience of our analysis, we will consider the case where the learning rate within a single epoch
is fixed. More specifically, at epoch t, let ηt > 0 be given, we consider the following form of learning rate
in Algorithm 1:

η
(t)
i :=

ηt
n
. (5)

Then, we have the following update after each epoch:

w(t)
n = w

(t)
0 −

ηt
n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1)). (6)

The following lemmas provide key tools for our convergence analysis in the sequel (the proof is in Ap-
pendix).

5

Lemma 1. Let {Yt}t≥1 be a nonnegative sequence in R and q be a positive number. For some α > 0, β ≥
0, ρ > 0 and D > 0, let

Yt+1 ≤ (1− ρ · ηt)Yt +D · ηq+1
t , (7)

with ηt := α
(t+β) . Suppose that γ > 0 and λ ≥ q are given such that Y1 ≤ γ

(1+β)q and γ(ρα−λ) ≥ Dαq+1.
Then

Yt ≤
γ

(t+ β)q
. (8)

Lemma 2. Let {Yt}t≥1 and {Zt}t≥1 be two nonnegative sequences in R and m and q be two positive
numbers such that q > m. For some ρ > 0 and D > 0, assume that

Yt+1 ≤ Yt − ρηmt · Zt + ηqt ·D (9)

where ηt :=
γ

(t+β)α for some α > 0, β > 0, and γ > 0 such that αm ≤ 1
2 . Suppose that Yt ≤ C+H ln(t+θ)

for some C > 0, H ≥ 0, θ > 0, and 1 + θ − β > (1− αm)e
αm

1−αm (where e is the natural number), for all
t ≥ 1. Then

1

T

T∑
t=1

Zt ≤
1

T

[(1 + β)αmY1
ργm

+
C(T − 1 + β)αm

2ραmγm
+
H(T − 1 + β)αm ln(T + θ)

2ραmγm

]
+
Dγq−m

ρ
· A(T)

T
,

(10)

where

A(T) :=

 ln(T + β)− ln(β), if α(q −m) = 1

(T+β)1−α(q−m)

1−α(q−m) , otherwise.

4 Convergence Analysis for Non-Convex Case

We provide convergence analysis for Algorithm 1 to solve non-convex smooth problem (1). The detailed
proofs of our results are given in Appendix.

Assume that (1) satisfies the following assumption.

Assumption 3. There exists a constant G > 0 such that ∀w ∈ Rd, we have

‖∇f(w; i)‖2 ≤ G2, ∀i ∈ [n]. (11)

We emphasize that this assumption may not be appropriate for strongly convex problems, but it is often used
in non-convex problems.

4.1 The General Case

Now, we state our first results on the non-convex case.

Theorem 1. Let {w(t)
i } be the sequence generated by Algorithm 1 with η(t)i = ηt

n = η
n , with 0 < η ≤ 1

L .
Then, under Assumptions 1, 2, and 3, we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2

Tη

[
F (w̃0)− F∗

]
+
L2G2

3
· η2.

6

Assuming that L andG are known. Then, we can choose the following learning rate to get a concrete bound.

Corollary 1. Let {w(t)
i } be the sequence generated by Algorithm 1 and ŵT be its output. For a given

tolerance ε > 0, under the same conditions as in Theorem 1, if we choose the constant learning rate
η :=

√
ε

LG , then to guarantee

E
[
‖∇F (ŵT)‖2

]
=

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤ ε,

for (1), it requires T :=
⌊
3LG[F (w̃0)− F∗] · 1

ε3/2

⌋
outer iterations. As a result, the total number of gradient

evaluations is at most Tw :=
⌊
3LG[F (w̃0)− F∗] · n

ε3/2

⌋
.

Remark 1. To have the same guarantee, the total complexity of a standard SGD is O(LF σ
2

ε2
) under the

condition
E
[
‖∇f(w; ξ)−∇F (w)‖2

]
≤ σ2,

and LF -smoothness when solving the following stochastic optimization problem

min
w∈Rd

{F (w) = Eξ∼D[f(w; ξ)]} ,

for a stochastic function f : Rd×D → R. Note that the standard SGD only requires F to be LF -smooth
while we impose the smoothness on individual realizations. Therefore, LF and L may be different [13].
However, for a rough comparison, if n < O

(
LF σ

2

LG ·
1
ε1/2

)
, then Algorithm 1 seems to have advantages

over the standard SGD in the non-convex setting. From this point of view, it seems that Algorithm 1
is inefficient compared to SGD when n is large and the accuracy ε is low or moderate. However, we
believe that Algorithm 1 allows more flexible strategy to choose f(·, i) rather than that i.i.d. sampling and
our convergence analysis may be loose in that it does not take into account a tight dependence on n in
our complexity bounds. We also note that our convergence guarantee is completely different from [25] as
mentioned above. Nevertheless, Assumptions 2 and 3 hold for various applications in machine learning.

Corollary 2. Let {w(t)
i } be the sequence generated by Algorithm 1 and ŵT be its output. Under the same

conditions as in Theorem 1, if we choose the constant learning rate η = γ
T 1/3 for some γ > 0, then

E
[
‖∇F (ŵT)‖2

]
=

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
R0

T 2/3
,

where R0 :=
2[F (w̃0)−F∗]

γ + γ2L2G2

3 , and ŵT is the output.

Note that the total number of iterations is K := nT . Hence, if we express (2) in terms of K, then we have
E
[
‖∇F (ŵK)‖2

]
≤ n2/3R0

K2/3 . Clearly, this rate matches the recent results in [41, 8] up to a constant factor,
but it is unclear to compare how the methods in those papers depend on n.

For general choices of diminishing learning rate, the following theorem characterizes an asymptotic conver-
gence.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by Algo-

rithm 1 with diminishing learning rate η(t)i = ηt
n such that

7

∞∑
t=1

ηt =∞ and
∞∑
t=1

η3t <∞.

Then, w.p.1. (i.e. almost surely), we have

lim inf
t→∞

‖∇F (w̃t−1)‖2 = 0.

Now, let us vary the learning rate ηt to see how it affects the convergence rate bounds as stated in the
following theorem.

Theorem 3. Suppose that Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by Algo-

rithm 1 with η(t)i = ηt
n , where ηt :=

γ
(t+β)α ≤

1
L , for some γ > 0, β > 0, and 1

3 < α < 1. Let us define

C := [F (w̃0)− F∗] + γ3L2G2

6(3α−1)β3α−1 > 0 be a given constant. Then, the following statements hold:

• If α = 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/2[F (w̃0)− F∗]

γ
· 1
T

+
2C

γ

(
(T − 1 + β)1/2

T

)

+
L2G2γ2

3

(
ln(T + β)− ln(β)

T

)
.

• If α 6= 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)α[F (w̃0)− F∗]

γ
· 1
T

+
C

αγ

(
(T − 1 + β)α

T

)
+

L2G2γ2

3(1− 2α)

(
(T + β)1−2α

T

)
.

Remark 2. In Theorem 3, if we choose α = 1
3 + δ for some 0 < δ < 1

6 , then we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)

1
3
+δ[F (w̃0)− F∗]
γ

· 1
T

+
C

γ(13 + δ)

(
(T − 1 + β)

1
3
+δ

T

)
+
L2G2γ2

1− 6δ

(
(T + β)

1
3
−2δ

T

)

= O
(

1

T
2
3
−δ

)
,

where C := [F (w̃0)− F∗] + γ3L2G2

18δβ3δ > 0. Notice that the convergence rate for regular SGD is O
(

1
T 1/2

)
.

For the special case α = 1
3 , we have the following result.

Theorem 4. Suppose that Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by Al-

gorithm 1 with η
(t)
i = ηt

n , where ηt := γ
(t+β)1/3

≤ 1
L , for some γ > 0, and β > 0. Let us define

8

C := [F (w̃0)− F∗] + γ3L2G2

6(1+β) > 0 be a given constant. Then,

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/3[F (w̃0)− F∗]

γ
· 1
T

+
3C

γ

(
(T − 1 + β)1/3

T

)

+
γ2L2G2

2

(
(T − 1 + β)1/3 ln(T + 1 + β)

T

)
+ L2G2γ2

(
(T + β)1/3

T

)

= O
(
ln(T)

T 2/3

)
= Õ

(
1

T 2/3

)
.

Remark 3. The choice of the learning rates in Theorems 3 and 4 is not necessarily dependent on the
smoothness constant L. Since ηt is diminishing and L is finite, after some certain epoch, it is able to satisfy
ηt =

γ
(t+β)α ≤

1
L . Theoretical results still hold by shifting the iteration indices. Therefore, the choices of γ,

β, and α are quite flexible. However, if we choose these properly from the beginning, then this will give an
advantage with respect to convergence in practice.

4.2 Convergence Under Gradient Dominance

The convergence rate of Algorithm 1 can be improved if the following gradient dominance condition holds.

Assumption 4. F is said to be τ -gradient dominant if there exists a constant τ > 0 such that ∀w ∈ Rd, it
holds that

F (w)− F∗ ≤ τ‖∇F (w)‖2, (12)

where F∗ is the global minimum value of F on Rd.

This assumption is well-known in literature (see e.g. [36, 31, 18]) and is weaker than strong convexity
assumption. We can observe that every stationary point of the τ -gradient dominant function F is a global
minimizer. However, such a function F does not necessarily need to be convex.

Theorem 5. Suppose that Assumptions 1, 2, 3, and 4 hold for (1). Let {w(t)
i } be the sequence generated

by Algorithm 1 with η(t)i := ηt
n for solving (1). Let ηt be updated as ηt := α

t+β for some α > 0 and
β ≥ 0. Assume further that γ > 0 and λ ≥ 2 are two constants such that F (w̃0) − F∗ ≤ γ

(1+β)2
and

γ(α− 2τλ) ≥ L2G2τ
3 α3. Then, we have

F (w̃t)− F∗ ≤
γ

(t+ 1 + β)2
, ∀t ≥ 0.

The following gives a concrete choice of parameters.

Corollary 3. Suppose that conditions of Theorem 5 hold. Then, for any β ≥ 0, if we choose γ as

γ := max

{
125

3
L2G2τ3, [F (w̃0)− F∗] (1 + β)2

}
, (13)

then, using the learning rate ηt := 5τ
t+β in Algorithm 1, we have

F (w̃t)− F∗ ≤
γ

(t+ 1 + β)2
,

where F∗ is the global optimal value of (1).

9

Note that [16] also provided O(1/T 2) convergence rate but under stronger assumptions, i.e., Lipschitz
Hessian and T/ log(T) > O(n).

5 Convergence Analysis for Strong Convexity

We first analyze convergence under strong convexity assumption, and then move to the general convex case.

Let us recall the following assumptions imposed on (1).

Assumption 5 (µ-strong convexity). The objective function F : Rd → R is µ-strongly convex, i.e., there
exists a constant µ > 0 such that ∀w,w′ ∈ Rd, it holds that

F (w) ≥ F (w′) + 〈∇F (w′), w − w′〉+ µ

2
‖w − w′‖2. (14)

It is well-known from the literature [30, 6] that Assumption 5 implies the existence and uniqueness of the
optimal solution w∗ of (1), and

F (w)− F (w∗) ≤
1

2µ
‖∇F (w)‖2 , ∀w ∈ Rd. (15)

It is important to note that Assumption 5 only requires F to be strongly convex, but some components f(·, i)
can be non-convex.

Definition 1. Define the following quantities

Ni := ‖∇f(w∗; i)‖2 ∀i ∈ [n], and N := max
i∈[n]

Ni. (16)

Clearly, since n is finite, both Ni and N are finite for i ∈ [n].

We prove the following result for the strongly convex case.

Theorem 6. Assume that Assumptions 2 and 5 hold. Let {w(t)
i } be the sequence generated by Algorithm 1

with η(t)i := ηt
n to solve (1). Let α > 0 and β > 0 be chosen such that α = µ

2L2β, and ηt := α
t+β .

Suppose that γ > 0 and λ ≥ 2 are two constants such that F (w̃0) − F (w∗) ≤ γ
(1+β)2

and γ(µα − 3λ) ≥
3(µ2 + L2)Nα3 with N given in (16). Then, we have

F (w̃t)− F (w∗) ≤
γ

(t+ 1 + β)2
, ∀t ≥ 0.

The following gives a specific choice of parameters.

Corollary 4. Suppose that the conditions in Theorem 6 hold. Let α, β, and γ be chosen as

α := 12L2+µ2

2L2µ
,

β := 12L2+µ2

µ2
,

C := 3(µ2+L2)(12L2+µ2)3N
4L4µ5

γ := max
{
C, (1 + β)2

[
F (w̃0)− F (w∗)

]}
.

(17)

10

Then, we have

F (w̃t)− F (w∗) ≤
γ

(t+ 1 + β)2
.

Given a tolerance ε > 0, to guarantee F (w̃t) − F (w∗) ≤ ε, the total number of gradient evaluations is at
most O(n√

ε
).

Since the total number of iterations is K := nT , if we write the convergence rates in terms of K, then
we have F (w̃T) − F∗ ≤ O

(
n2

K2

)
, which is worse than the one in [16]. However, as mentioned, our

assumptions are much weaker than those in [16]. In addition, Algorithm 1 covers much broader class of
algorithms compared to [16].

6 Numerical Experiments

We provide two representative numerical experiments to show the benefit of the learning rate ηt = γ
t1/3

for
non-convex problems. This choice corresponds to α = 1

3 for the best convergence performance as given in
Theorem 4. We experimented with 10 runs and reported the average results

6.1 Non-Convex Logistic Regression Example

We consider the following binary classification problem with non-convex loss widely used in the literature:

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

[
log(1 + exp(−yixTi w)) +

λ

2

d∑
j=1

w2
j

1 + w2
j

]}
, (18)

where {(xi, yi)}ni=1 is a set of training examples, and λ > 0 is a given regularization parameter.

We conducted experiments to demonstrate the advantage in performance of Algorithm 1 on the classification
data set w8a (n = 49, 749 training data) from LIBSVM [7]. Since we only care about the non-convexity of
each fi instead of statistical properties, we simply choose λ = 0.01, but other values also work.

Figure 1: A comparison of F (w) and ‖∇F (w)‖2 (starting from the 2nd epoch) for the non-convex logistic regression
problem (18) on different values of α and γ/n using the w8a dataset.

We apply Algorithm 1 with η(t)i = ηt
n to solve (18), where ηt = γ

(t+β)α and σ(t) is generated randomly
to obtain an SGD variant with randomized reshuffling strategy. Figure 1 shows the comparisons of the

11

squared norm ‖∇F (w)‖2 of gradient and the value F (w) of the objective function on different values of
α = {1/3, 1/2, 1} and γ/n = {0.001, 0.005, 0.01}, respectively, on the data set w8a. As predicted by our
theory, the choice of α = 1/3 generally performs better than others. Combining with γ/n = 0.01, this
variant perform best on such a given dataset. Note that since we only plot w.r.t. epochs t ≥ 1, the initial
values in these plots are different.

If we use another dataset, ijcnn1 (n = 91, 701) from LIBSVM, then under the same setting of Algorithm 1,
we obtain the result as in Figures 2.

Figure 2: A comparison on F (w) (starting from the 2nd epoch) of Algorithm 1 for solving (18) using different values
of α and γ/n and the ijcnn1 data set.

The first plot of this figure again shows that α = 1/3 gives the best performance. Once, we fix α = 1/3 and
using different ratios γ/n, then as showed in the second plot, γ/n = 0.01 seems to work best.

6.2 Fully Connected Neural Network Example

Our second example is to test Algorithm 1 on a neural network. We perform this test on a neural network
with two fully connected hidden layers of 300 and 100 nodes, followed by a fully connected output layer
which feeds into the soft-max cross entropy loss. We use Tensorflow [1] to train this model on the well-
known MNIST data set with n = 60, 000 [23]. This data set has 10 classes corresponding to 10 soft-max
output nodes in the network, and are normalized to interval [0, 1] as a simple data pre-processing.

Figure 3: A comparison of F (w) and ‖∇F (w)‖2 (from 2nd epoch) for the neural network training problem produced
by Algorithm 1 on different values of α and γ/n using the MNIST dataset.

We apply Algorithm 1 with η(t)i = ηt
n , where ηt = γ

(t+β)α to solve this training problem. We repeatedly
run the algorithm 10 times and report the average results in Figure 3. These plots compare the squared
norm ‖∇F (w)‖2 of gradient and the value (F (w)) of the objective function on different values of α =
{1/3, 1/2, 1} and γ/n = {0.05, 0.1, 0.5}, respectively, on the data set MNIST.

12

Now, we conduct another test on the CIFAR-10 dataset (n = 50, 000 samples and 10 classes) [21]. We run
Algorithm 1 with the same setting as in the previous test, then the results are plotted in Figure 4.

Figure 4: A comparisons on F (w) of Algorithm 1 for the neural network training problem using different values of α
and γ/n on the CIFAR10 dataset.

We observe again from Figure 4 that α = 1/3 works best when fixing γ/n = 0.05. Once we fix α = 1/3
and test on γ/n, the ratio γ/n = 0.1 gives the best performance.

As empirically observed in [5] that randomized shuffling gradient methods often perform better than SGD.
This behavior has been also observed in deep learning and other machine learning training tasks. In this
paper, we only provide some evidence on the choice of learning rate guided by our theoretical results using
only a randomized reshuffling strategy. We omit an intensive comparison between our methods and SGD as
well as other shuffling strategies due to space limit.

7 Conclusion

We have conducted an intensive convergence analysis for a class of shuffling-type gradient methods for
solving a finite-sum minimization problem. We have proved a non-asymptotic O(1/T 2/3) convergence rate
for our algorithm for solving non-convex problems under standard assumptions. We have also considered
this rate in both constant and diminishing learning rates, and investigated an asymptotic convergence. To
the best of our knowledge, this is the first work showing non-asymptotic O(1/T 2/3) convergence rate for
a wide class of shuffling-type gradient methods in non-convex settings. In the strongly convex setting, we
have achieved the same orderO(1/T 2) convergence rate under just strong convexity and smoothness, which
is weaker than known result up to a constant factor of n, but our result uses much weaker assumptions than
state-of-the-arts. We believe that our results would provide a unified analysis for shuffling-type algorithms
using both randomized and deterministic sampling strategies, where it covers the well-known incremental
gradient scheme as a special case. Our numerical examples on two non-convex problems have greatly
verified our theoretical results. We believe that our analysis framework can be extended to study non-
asymptotic convergence rates of SGD and its variants, including adaptive SGD ones such as Adam [20] and
AdaGrad [12] under shuffling strategies.

Acknowledgements: The authors would like to thank Trang H. Tran for her valuable comments on some
technical proofs. The work of Q. Tran-Dinh has partly been supported by the National Science Foundation
(NSF), grant no. DMS-1619884, the Office of Naval Research (ONR), grant no. N00014-20-1-2088 (2020-
2023), and The Statistical and Applied Mathematical Sciences Institute (SAMSI).

13

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Dimitri P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimiza-
tion: A survey, 2015.

[3] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

[4] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine Learning.
SIAM Rev., 60(2):223–311, 2018.

[5] Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009.

[6] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learn-
ing. Siam Review, 60(2):223–311, 2018.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[8] A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex SGD.
arxiv:1905.10018, 2019.

[9] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems
(NIPS), pages 1646–1654, 2014.

[10] A. Defazio, T. Caetano, and J. Domke. Finito: A faster, permutable incremental gradient method for
big data problems. In International Conference on Machine Learning, pages 1125–1133, 2014.

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information Pro-
cessing Systems, pages 1646–1654, 2014.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[13] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming. SIAM J. Optim., 23(4):2341–2368, 2013.

[14] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. Convergence rate of incremental gradient and Newton
methods. arXiv preprint arXiv:1510.08562, 2015.

14

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[15] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Why random reshuffling beats stochastic gra-
dient descent. arXiv preprint arXiv:1510.08560, 2015.

[16] Jeffery Z HaoChen and Suvrit Sra. Random shuffling beats sgd after finite epochs. arXiv preprint
arXiv:1806.10077, 2018.

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance re-
duction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[18] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak-Łojasiewicz condition. In Paolo Frasconi, Niels Landwehr, Giuseppe
Manco, and Jilles Vreeken, editors, Machine Learning and Knowledge Discovery in Databases, pages
795–811, Cham, 2016. Springer International Publishing.

[19] Hiroyuki Kasai. SGDLibrary: A MATLAB library for stochastic optimization algorithms. Journal of
Machine Learning Research, 18(215):1–5, 2018.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[21] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Techni-
cal report, Citeseer, 2009.

[22] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, pages 2663–2671, 2012.

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] X. Li, Z. Zhu, A. So, and J. D. Lee. Incremental methods for weakly convex optimization. arXiv
preprint arXiv:1907.11687, 2019.

[25] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu. Convergence analysis of distributed stochastic
gradient descent with shuffling. Neurocomputing, 337:46–57, 2019.

[26] Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Sgd without replacement: Sharper rates for
general smooth convex functions. In International Conference on Machine Learning, pages 4703–
4711, 2019.

[27] A. Nedić and D. Bertsekas. Convergence rate of incremental subgradient algorithms. In Stochastic
optimization: algorithms and applications, pages 223–264. Springer, 2001.

[28] A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable optimization.
SIAM J. on Optim., 12(1):109–138, 2001.

[29] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM J. on Optimization, 19(4):1574–1609, 2009.

[30] Yurii Nesterov. Introductory lectures on convex optimization : a basic course. Applied optimization.
Kluwer Academic Publ., Boston, Dordrecht, London, 2004.

[31] Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

15

[32] Lam Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtarik, Katya Scheinberg, and Martin
Takac. SGD and Hogwild! convergence without the bounded gradients assumption. In Proceedings of
the 35th International Conference on Machine Learning-Volume 80, pages 3747–3755, 2018.

[33] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 2613–2621. JMLR. org, 2017.

[34] Lam M. Nguyen, Phuong Ha Nguyen, Peter Richtárik, Katya Scheinberg, Martin Takáč, and Marten
van Dijk. New convergence aspects of stochastic gradient algorithms. Journal of Machine Learning
Research, 20(176):1–49, 2019.

[35] B. Polyak and A. Juditsky. Acceleration of stochastic approximation by averaging. SIAM J. Control
Optim., 30(4):838–855, 1992.

[36] Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Compu-
tational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[37] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400–407, 1951.

[38] Itay Safran and Ohad Shamir. How good is sgd with random shuffling? arXiv preprint
arXiv:1908.00045, 2018.

[39] O. Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in neural
information processing systems, pages 46–54, 2016.

[40] S. Sra, S. Nowozin, and S. J. Wright. Optimization for Machine Learning. MIT Press, 2012.

[41] Q. Tran-Dinh, N. H. Pham, D. T. Phan, and L. M. Nguyen. A hybrid stochastic optimization framework
for stochastic composite nonconvex optimization. Preprint: UNC-STOR 07.10.2019, 2019.

[42] B. Ying, K. Yuan, and A. H. Sayed. Convergence of variance-reduced stochastic learning under random
reshuffling. arXiv preprint arXiv:1708.01383, 2(3):6, 2017.

16

Appendix

A Some Key Lemmas for Convergence Analysis

Appendix proves some key lemmas that will be used for our convergence analysis of the entire paper.

A.1 General Frameworks

Let us first prove two general elementary lemmas used for our convergence analysis in the sequel.

Lemma 1. Let {Yt}t≥1 be a nonnegative sequence in R and q be a positive number. For some α > 0, β ≥
0, ρ > 0 and D > 0, let

Yt+1 ≤ (1− ρ · ηt)Yt +D · ηq+1
t , (19)

with ηt := α
(t+β) . Suppose that γ > 0 and λ ≥ q are given such that Y1 ≤ γ

(1+β)q and γ(ρα−λ) ≥ Dαq+1.
Then

Yt ≤
γ

(t+ β)q
. (20)

Proof. First, let us consider ψ(τ) := 1 + λτ(1 + τ)q − (1 + τ)q with τ ≥ 0. Clearly ψ(0) = 0, and
ψ′(τ) = (1 + τ)q−1 [λ− q + λτ(1 + q)] ≥ 0 for all τ ≥ 0 provided that λ ≥ q. As a consequence,
ψ(τ) ≥ ψ(0) = 0 for all τ ≥ 0. This fact leads to (1 + τ)q ≤ 1

1−τλ for 0 ≤ τ < 1
λ . Therefore,

by using τ := 1
k+β < 1

λ into the last inequality, we obtain (1 + 1
k+β)

q ≤ k+β
k+β−λ , which is equivalent

to (k + β)q+1 ≥ (k + β + 1)q(k + β − λ) for λ ≥ q and λ < k + β. For λ ≥ k + β, it is trivial that
(k+β)q+1 ≥ (k+β+1)q(k+β−λ) for any β ≥ 0. Therefore, we have (k+β)q+1 ≥ (k+β+1)q(k+β−λ)
for λ ≥ q.

Now, we prove (20) by induction. For t = 1, (20) becomes Y1 ≤ γ
(1+β)q which is exactly our initial

condition. Suppose that (20) holds for all t ≤ k, that is Yt ≤ γ
(t+β)q . Now, we show that it holds for

t := k + 1. Indeed, from (19) and ηk := α
(k+β) , we have

Yk+1

(19)
≤ (1− ρ · ηk)Yk + ηq+1

k ·D
(20)
≤
(
1− ρα

(k + β)

)
γ

(k + β)q
+

Dαq+1

(k + β)q+1

=

(
k + β − ρα
(k + β)q+1

)
γ +

Dαq+1

(k + β)q+1

=

(
k + β − λ
(k + β)q+1

)
γ −

(
ρα− λ

(k + β)q+1

)
γ +

Dαq+1

(k + β)q+1

≤ γ

(k + 1 + β)q
,

where the last inequality follows from the initial condition γ(ρα − λ) ≥ Dαq+1, which is equivalent to
−γ(ρα − λ) +Dαq+1 ≤ 0, and the fact that (k + β)q+1 ≥ (k + β + 1)q(k + β − λ) for λ ≥ q as proved
above. Finally, by the induction argument, we conclude that (20) holds for all t ≥ 1.

17

We first prove the following elementary results in Lemma 3 which will be used in the proof of Lemma 2.

Lemma 3. The following statements hold:

(a) For any 0 ≤ ν ≤ 1
2 and s > 0, we have

(s+ 1)ν − sν ≤ 1

2s1−ν
. (21)

(b) For any c > 0, θ > 0, β > 0, and 1+ θ−β > ce
1−c
c , the function f(t) := ln(t+1+θ)

(t+β)c is monotonically
decreasing on [0,+∞).

(c) Suppose that f is a real-valued and monotonically decreasing function on [a,+∞) such that f(x) ≥ 0
for all x ∈ [a,+∞). Then, for any choice of N ≥ a and t ≥ N , we have

t∑
i=N+1

f(i) ≤
∫ t

N
f(x)dx. (22)

Proof. (a) If 2ν ≤ 1, then
(
s+1
s

)1−2ν ≥ 1, which is equivalent to s+1
s ≥

(
s+1
s

)2ν . This leads to (s +
1)νs1−ν − sν(s+ 1)1−ν ≤ 0. Hence, we have

(s+ 1)ν − sν =
1 + (s+ 1)νs1−ν − sν(s+ 1)1−ν

(s+ 1)1−ν + s1−ν
≤ 1

(s+ 1)1−ν + s1−ν
≤ 1

2s1−ν
,

which proves (21).

(b) Our goal is to show that f ′(t) < 0 for all t ≥ 0. We can directly compute f ′(t) as

f ′(t) = (t+ β)−c−1
[
1− 1 + θ − β

t+ 1 + θ
− c · ln(t+ 1 + θ)

]
= (t+ β)−c−1g(t+ 1 + θ),

where g(τ) := 1 − 1+θ−β
τ − c ln(τ). We consider g(τ) for τ > 0. It is obvious to show that g′(τ) =

1+θ−β
τ2

− c
τ = (1+θ−β)−cτ

τ2
and g′′(τ) = cτ−2(1+θ−β)

τ3
. Hence, g′(τ) = 0 at τ∗ := 1+θ−β

c and g′′(τ∗) =

− c3

(1+θ−β)2 < 0. Consequently, g attains its maximum at τ∗, and by the condition that 1 + θ − β > ce
1−c
c ,

we have

g(τ) ≤ g(τ∗) = 1− c− c ln
(
1 + θ − β

c

)
< 0.

Since f ′(t) = (t+ β)−c−1g(t+ 1 + θ), where (t+ β)−c−1 > 0 for any t ≥ 0 and c, we have f ′(t) < 0 for
all t ≥ 0. Hence, f is monotonically decreasing on [0,+∞).

(c) If f is monotonically decreasing and nonnegative, then f(i) ≤
∫ i
i−1 f(x)dx for any i. Hence, by

summing this inequality from i = N + 1 to t, we have

t∑
i=N+1

f(i) ≤
t∑

i=N+1

∫ i

i−1
f(x)dx =

∫ t

N
f(x)dx,

which proves (22).

18

Lemma 2. Let {Yt}t≥1 and {Zt}t≥1 be two nonnegative sequences in R and m and q be two positive
numbers such that q > m. For some ρ > 0 and D > 0, assume that

Yt+1 ≤ Yt − ρηmt · Zt + ηqt ·D (23)

where ηt :=
γ

(t+β)α for some α > 0, β > 0, and γ > 0 such that αm ≤ 1
2 . Suppose that Yt ≤ C+H ln(t+θ)

for some C > 0, H ≥ 0, θ > 0, and 1 + θ − β > (1− αm)e
αm

1−αm (where e is the natural number), for all
t ≥ 1. Then, we have

1

T

T∑
t=1

Zt ≤
1

T

[
(1 + β)αmY1

ργm
+
C(T − 1 + β)αm

2ραmγm
+
H(T − 1 + β)αm ln(T + θ)

2ραmγm

]
+
Dγq−m

ρ
· A(T)

T
,

(24)

where

A(T) :=

ln(T + β)− ln(β), if α(q −m) = 1

(T + β)1−α(q−m)

1− α(q −m)
, otherwise.

Proof. From the recursive inequality (23) and ηt := γ
(t+β)α , we have

Zt ≤
1

ρηmt
(Yt − Yt+1) +

Dηq−mt

ρ
=

(t+ β)αm

ργm
(Yt − Yt+1) +

Dγq−m

ρ
· 1

(t+ β)α(q−m)
.

Next, using (21) from Lemma 3(a) with s := t+ β and ν := mα we have

(t+ β + 1)αm − (t+ β)αm ≤ 1

2(t+ β)1−αm
, (25)

because we assume mα ≤ 1
2 . Summing the first inequality from t = 1, · · · , T and taking average, we have

1

T

T∑
t=1

Zt ≤
1

ργm
· 1
T

T∑
t=1

(t+ β)αm(Yt − Yt+1) +
Dγq−m

ρ
· 1
T

T∑
t=1

1

(t+ β)α(q−m)

=
1

ργm
· 1
T
[(1 + β)αmY1 − (T + β)αmYT+1] +

1

ργm
· 1
T

T−1∑
t=1

((t+ 1 + β)αm − (t+ β)αm)Yt+1

+
Dγq−m

ρ
· 1
T

T∑
t=1

1

(t+ β)α(q−m)

(25)
≤ (1 + β)αmY1

ργm
· 1
T

+
1

2ργm
· 1
T

T−1∑
t=1

C +H ln(t+ 1 + θ)

(t+ β)1−αm
+
Dγq−m

ρ
· 1
T

T∑
t=1

1

(t+ β)α(q−m)

(22)
≤ (1 + β)αmY1

ργm
· 1
T

+
C

2ργm
· 1
T

∫ T−1

t=0

dt

(t+ β)1−αm
+

H

2ργm
· 1
T

∫ T−1

t=0

ln(t+ 1 + θ)

(t+ β)1−αm
dt

+
Dγq−m

ρ
· 1
T

∫ T

t=0

dt

(t+ β)α(q−m)
,

where the second inequality follows since 0 ≤ Yt ≤ C +H ln(t+ θ) for some C > 0, H ≥ 0, and θ > 0,
for all t ≥ 1, and αm ≤ 1

2 . The last inequality follows since ln(t+1+θ)
(t+β)1−αm is nonnegative and monotonically

19

decreasing on [0,∞) according to Lemma 3(b) with 1−αm ≥ 1
2 > 0 and 1+θ−β > (1−αm)e

αm
1−αm , and

both 1
(t+β)1−αm and 1

(t+β)α(q−m) are also nonnegative and monotonically decreasing on [0,∞). Note that

∫ T−1

t=0

ln(t+ 1 + θ)

(t+ β)1−αm
dt =

1

αm
(t+ β)αm ln(t+ 1 + θ)

∣∣∣T−1
t=0
− 1

αm

∫ T−1

t=0

(t+ β)αm

(t+ 1 + θ)
dt

≤ 1

αm
(T − 1 + β)αm ln(T + θ).

Therefore, we consider two cases:

• If α(q −m) = 1, we have

1

T

T∑
t=1

Zt ≤
(1 + β)αmY1

ργm
· 1
T

+
C

2ραmγm

(
(T − 1 + β)αm − βαm

T

)
+

H

2ραmγm

(
(T − 1 + β)αm ln(T + θ)

T

)
+
Dγq−m

ρ

(
ln(T + β)− ln(β)

T

)
≤ (1 + β)αmY1

ργm
· 1
T

+
C

2ραmγm

(
(T − 1 + β)αm

T

)
+

H

2ραmγm

(
(T − 1 + β)αm ln(T + θ)

T

)
+
Dγq−m

ρ

(
ln(T + β)− ln(β)

T

)
.

• If α(q −m) 6= 1, we have

1

T

T∑
t=1

Zt ≤
(1 + β)αmY1

ργm
· 1
T

+
C

2ραmγm

(
(T − 1 + β)αm − βαm

T

)
+

H

2ραmγm

(
(T − 1 + β)αm ln(T + θ)

T

)
+

Dγq−m

ρ(1− α(q −m))

(
(T + β)1−α(q−m) − β1−α(q−m)

T

)

≤ (1 + β)αmY1
ργm

· 1
T

+
C

2ραmγm

(
(T − 1 + β)αm

T

)
+

H

2ραmγm

(
(T − 1 + β)αm ln(T + θ)

T

)
+

Dγq−m

ρ(1− α(q −m))

(
(T + β)1−α(q−m)

T

)
.

Here, the result is obtained by directly computing the integrals. Hence, (24) is proved.

A.2 Key Lemmas for Convex Problems

This subsection provides three key lemmas for Algorithm 1 for convex problems. Note thatw∗ = argminw∈Rd F (w).

Lemma 4. Suppose that Assumption 2 holds. Let {w(t)
i } be the sequence generated by Algorithm 1 with the

20

learning rate η(t)i := ηt
n > 0 for a given positive sequence {ηt}. Then, we have

‖w(t)
i − w

(t)
0 ‖2 ≤ η2t ·

2iL2

n2

i−1∑
j=0

‖w(t)
j − w∗‖

2 + η2t · 2N.

‖w(t)
i − w∗‖2 ≤ 2‖w(t)

0 − w∗‖2 +
4L2iη2t
n2

·
i−1∑
j=0

‖w(t)
j − w∗‖

2 + 4Nη2t .

(26)

Proof. Since η(t)i = ηt
n , for i ∈ [n], and for any t ≥ 1, by the gradient update step, we have

w
(t)
i = w

(t)
i−1 −

ηt
n
∇f(w(t)

i−1;σ
(t)(i)) = w

(t)
0 −

ηt
n

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1)).

Using the last expression, the optimality condition ∇F (w∗) = 0 in (a), (u + v)2 ≤ 2u2 + 2v2 in (b), and
the Cauchy-Schwarz inequality in (c), for i ∈ [n], we can derive

‖w(t)
i − w

(t)
0 ‖

2 =
η2t
n2

∥∥∥ i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1))

∥∥∥2
=

i2 · η2t
n2

∥∥∥1
i

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1))

∥∥∥2
(a)
=

i2 · η2t
n2

∥∥∥1
i

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1))− 1

i

i−1∑
j=0

∇f(w∗;σ(t)(j + 1))− 1

i

n−1∑
j=i

∇f(w∗;σ(t)(j + 1))
∥∥∥2

(b)

≤ 2i2 · η2t
n2

∥∥∥1
i

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1))− 1

i

i−1∑
j=0

∇f(w∗;σ(t)(j + 1))
∥∥∥2

+
2i2 · η2t
n2

∥∥∥1
i

n−1∑
j=i

∇f(w∗;σ(t)(j + 1))
∥∥∥2

(c)

≤ 2i2 · η2t
n2

· 1
i
·
i−1∑
j=0

‖∇f(w(t)
j ;σ(t)(j + 1))−∇f(w∗;σ(t)(j + 1))‖2

+
2i2 · η2t
n2

· (n− i)
i2

·
n−1∑
j=i

‖∇f(w∗;σ(t)(j + 1))‖2

(3),(16)
≤ 2L2i · η2t

n2

i−1∑
j=0

‖w(t)
j − w∗‖

2 +
2(n− i) · η2t

n2

n−1∑
j=i

Nσ(t)(j+1)

(16)
≤ 2L2i · η2t

n2

i−1∑
j=0

‖w(t)
j − w∗‖

2 +
2(n− i) · η2t

n2
(n− i)N, (using Nσ(t)(j+1) ≤ N)

≤ η2t ·
2iL2

n2

i−1∑
j=0

‖w(t)
j − w∗‖

2 + η2t · 2N.

This is exactly the first inequality of (26). By ‖u + v‖2 ≤ 2‖u‖2 + 2‖v‖2, for i ∈ [n] the last inequality
leads to

‖w(t)
i − w∗‖

2 ≤ 2‖w(t)
0 − w∗‖

2 + 2‖w(t)
i − w

(t)
0 ‖

2

21

≤ 2‖w(t)
0 − w∗‖

2 + η2t ·
4iL2

n2

i−1∑
j=0

‖w(t)
j − w∗‖

2 + η2t · 4N,

which proves the second estimate of (26).

Lemma 5. Under the same conditions as in Lemma 4, for any t ≥ 1, if 0 < ηt ≤ 1
2L , then we have

1

n

n−1∑
i=0

i
i−1∑
j=0

‖w(t)
j − w∗‖

2 ≤ 4

3
n2‖w(t)

0 − w∗‖
2 +

8N

3
n2η2t . (27)

Proof. For notational simplicity, let us denote W (t)
i := ‖w(t)

i − w∗‖2, A := 2L2

n2 , and B := 2N . By
Lemma 4, for j ∈ [n], and for any t ≥ 1 we have

W
(t)
j ≤ 2W

(t)
0 + 2Aη2t · j

j−1∑
k=0

W
(t)
k + η2t · 2B.

Summing up this inequality from j = 0 to j = i− 1 with i ≥ 1, we have

i−1∑
j=0

W
(t)
j =W

(t)
0 +

i−1∑
j=1

W
(t)
j ≤W

(t)
0 + 2(i− 1)W

(t)
0 + 2B(i− 1)η2t + 2Aη2t

 i−1∑
j=1

j

j−1∑
k=0

W
(t)
k

 . (28)

By convention, we have
∑k

j=h gj = 0 for all h > k. Moreover, since j ≤ i− 1 < i and W (t)
k ≥ 0, we have

i−1∑
j=1

j

j−1∑
k=0

W
(t)
k ≤

i−1∑
j=1

j

i−1∑
k=0

W
(t)
k ≤

i2

2

i−1∑
k=0

W
(t)
k .

Using this inequality into (28), we can further derive

i−1∑
k=0

W
(t)
k ≤W

(t)
0 + 2(i− 1)W

(t)
0 + 2B(i− 1)η2t + 2Aη2t ·

i2

2

i−1∑
k=0

W
(t)
k .

Rearranging this inequality by moving the last term from the RHS to the LHS and then dividing both sides
by (1− η2tAi2) > 0 we arrive at

i−1∑
k=0

W
(t)
k ≤

(
2i− 1

1−Ai2η2t

)
W

(t)
0 +

(
2B(i− 1)

1−Ai2η2t

)
· η2t .

Since η2t ≤ 1
4L2 ≤ n2

4L2i2
for i ∈ [n], we have Ai2η2t ≤ n2

4L2i2
· i2 · 2L2

n2 = 1
2 , we can upper bound the last

inequality as
i−1∑
k=0

W
(t)
k ≤ 2(2i− 1)W

(t)
0 + 4B(i− 1)η2t < 4iW

(t)
0 + 4Bi · η2t . (29)

Note that
∑n−1

i=0 i
2 = 2n3−3n2+n

6 ≤ n3

3 , using this inequality and (29), we can show that

1

n

n−1∑
i=0

i

i−1∑
k=0

W
(t)
k <

4W
(t)
0

n

n−1∑
i=0

i2 +
4Bη2t
n

n−1∑
i=0

i2 ≤ 4n2

3
W

(t)
0 +

4Bn2

3
· η2t ,

which proves (27) by substituting back W (t)
i := ‖w(t)

i − w∗‖2 and B := 2N .

22

Lemma 6. Under the same conditions as in Lemma 4, we have

1

n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2 ≤ η2t ·
8L2

3
‖w(t)

0 − w∗‖
2 +

16L2N

3
· η4t + 2N · η2t . (30)

Proof. From the first inequality of (26) and (27), we can derive

1

n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2
(26)
≤ η2t ·

2L2

n2

 1

n

n−1∑
i=0

i ·
i−1∑
j=0

‖w(t)
j − w∗‖

2

+ 2N · η2t

(27)
≤ η2t ·

2L2

n2

(
4

3
n2‖w(t)

0 − w∗‖
2 +

2

3
n2 · 4Nη2t

)
+ 2N · η2t

=
8L2

3
· η2t · ‖w

(t)
0 − w∗‖

2 +
16L2N

3
· η4t + 2N · η2t ,

which is exactly (30).

B Convergence Analysis for Non-Convex Case

In this section, we provide the full proofs of the results in Section 4 of the main text.

B.1 Proofs of Theorem 1, Corollary 1, and Corollary 2: Convergence Analysis with Con-
stant Stepsize

Theorem 1. Let {w(t)
i } be the sequence generated by Algorithm 1 with η(t)i = ηt

n = η
n , with ηt ≤ 1

L . Then,
under Assumptions 1, 2, and 3, we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2

Tη

[
F (w̃0)− F∗

]
+
L2G2

3
· η2. (31)

Proof. First, from the update w(t)
i+1 := w

(t)
i − η

(t)
i ∇f(w

(t)
i ;σ(t)(i+ 1)) in Algorithm 1 with η(t)i := ηt

n , for
i ∈ [n], we have

w
(t)
i = w

(t)
i−1 −

ηt
n
∇f(w(t)

i−1;σ
(t)(i)) = w

(t)
0 −

ηt
n

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j + 1)).

Hence, for i ∈ [n], using this expression and (11) in Assumption 3, we can bound

‖w(t)
i −w

(t)
0 ‖

2 =
η2t
n2

∥∥∥ i−1∑
j=0

∇f(w(t)
j ;σ(t)(j+1))

∥∥∥2 = i2 · η2t
n2

∥∥∥1
i

i−1∑
j=0

∇f(w(t)
j ;σ(t)(j+1))

∥∥∥2 (11)
≤ i2 · η2t

n2
G2.

(32)

23

Since F is L-smooth, we can derive

F (w
(t+1)
0)

(4)
≤ F (w

(t)
0) +∇F (w(t)

0)T (w
(t+1)
0 − w(t)

0) +
L

2
‖w(t+1)

0 − w(t)
0 ‖

2

(6)
= F (w

(t)
0)− ηt∇F (w(t)

0)T

(
1

n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1))

)
+
Lη2t
2

∥∥∥ 1
n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1))

∥∥∥2
(a)
= F (w

(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + ηt
2

∥∥∥∇F (w(t)
0)− 1

n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1))

∥∥∥2
− ηt

2
(1− Lηt)

∥∥∥ 1
n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1))

∥∥∥2
(b)

≤ F (w
(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + ηt
2

∥∥∥ 1
n

n−1∑
i=0

∇f(w(t)
0 ;σ(t)(i+ 1))− 1

n

n−1∑
i=0

∇f(w(t)
i ;σ(t)(i+ 1))

∥∥∥2
(c)

≤ F (w
(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + ηt
2n

n−1∑
i=0

∥∥∇f(w(t)
0 ;σ(t)(i+ 1))−∇f(w(t)

i ;σ(t)(i+ 1))
∥∥2

(3)
≤ F (w

(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + L2ηt
2n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2, (33)

where (a) follows from uT v = 1
2(‖u‖

2+ ‖v‖2−‖u− v‖2), (b) follows from the fact that ηt ≤ 1
L , and (c) is

from the Cauchy-Schwarz inequality. Hence, using (32) and following the same argument as (33), we can
derive

F (w
(t+1)
0)

(32)
≤ F (w

(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + L2ηt
2

1

n

n−1∑
i=0

i2 · η2t
n2

G2

≤ F (w(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + L2G2

6
· η3t ,

where we use
∑n−1

i=0 i
2 ≤ n3

3 in the last inequality. Note that w̃t = w
(t+1)
0 and w̃t−1 = w

(t)
0 in Algorithm 1,

the last estimate becomes

F (w̃t) ≤ F (w̃t−1)−
ηt
2
‖∇F (w̃t−1)‖2 +

L2G2

6
· η3t . (34)

Using ηt := η into (34) and rearranging its result, we end up with

‖∇F (w̃t−1)‖2 ≤
2

η

[
F (w̃t−1)− F (w̃t)

]
+
L2G2

3
· η2.

Summing the last inequality from t = 1, · · · , T and taking average, we finally obtain

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2

Tη

[
F (w̃0)− F∗

]
+
L2G2

3
· η2,

which is exactly (31).

24

Corollary 1. Let {w(t)
i } be the sequence generated by Algorithm 1 and ŵT be its output. For given

tolerance ε > 0, under the same conditions as in Theorem 1, if we choose the constant learning rate
η :=

√
ε

LG , then to guarantee

E
[
‖∇F (ŵT)‖2

]
=

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤ ε,

for (1), it requires T :=
⌊
3LG[F (w̃0)− F∗] · 1

ε3/2

⌋
outer iterations. As a result, the total number of gradient

evaluations is at most Tw :=
⌊
3LG[F (w̃0)− F∗] · n

ε3/2

⌋
.

Proof. Given ε > 0, to guarantee 1
T

∑T
t=1 ‖∇F (w̃t−1)‖2 ≤ ε, by using (31) in Theorem 1, we impose

2

Tη

[
F (w̃0)− F∗

]
+
L2G2

3
· η2 ≤ ε.

Using η =
√
ε

LG into this equation, we can easily get

2LG

T
√
ε

[
F (w̃0)− F∗

]
≤ 2ε

3
⇒ T ≥ 3LG

[
F (w̃0)− F∗

]
· 1

ε3/2

Rounding this expression we get T :=
⌊
3LG[F (w̃0)− F∗] · 1

ε3/2

⌋
. As a result, the total number of gradient

evaluations is Tw := nT =
⌊
3LG[F (w̃0)− F∗] · n

ε3/2

⌋
.

Corollary 2. Let {w(t)
i } be the sequence generated by Algorithm 1 and ŵT be its output. Under the same

conditions as in Theorem 1, if we choose the constant learning rate η := γ
T 1/3 for some γ > 0, then

E
[
‖∇F (ŵT)‖2

]
=

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
1

T 2/3

[
2
[
F (w̃0)− F∗

]
γ

+
γ2L2G2

3

]
.

Proof. Substituting η = γ
T 1/3 into (31) of Theorem 1, we obtain

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2

Tη

[
F (w̃0)− F∗

]
+ η2

L2G2

3
=

1

T 2/3

[
2[F (w̃0)− F∗]

γ
+
γ2L2G2

3

]
,

which is exactly our desired estimate.

B.2 Proof of Theorem 2: Asymptotic Convergence with Diminishing Step-Size

To establish the results in this section, we will use the following lemma from [2].

Lemma 7 ([2]). Let {Yt}t≥0, {Zt}t≥0, and {Wt}t≥0 be three sequences of random variables. Let {Ft}t≥0
be a filtration, that is, σ-algebras such that Ft ⊂ Ft+1 for all t ≥ 0. Suppose that the following conditions
hold:

25

(i) The random variables Yt, Zt, and Wt are nonnegative, and Ft-measurable;
(ii) For each t ≥ 0, we have E [Yt+1 | Ft] ≤ Yt − Zt +Wt;
(iii) With probability 1, it holds that

∑∞
t=0Wt <∞.

Then, w.p.1, we have

∞∑
t=0

Zt <∞ and Yt → Y ≥ 0.

Using Lemma 7 we prove Theorem 2 in the main text as follows.

Theorem 2. Suppose Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by Algorithm 1

with diminishing learning rate η(t)i := ηt
n such that

∞∑
t=1

ηt =∞ and
∞∑
t=1

η3t <∞.

Then, w.p.1. (i.e. almost surely), the following limit holds:

lim inf
t→∞

‖∇F (w̃t−1)‖ = 0.

Proof. First, following the same argument as in the proof of (34) of Theorem 1, we have

F (w̃t+1) ≤ F (w̃t)−
ηt+1

2
‖∇F (w̃t)‖2 +

L2G2

6
· η3t+1.

Let us define Ft = σ(w̃0, · · · , w̃t) be the σ-algebra generated by w̃0, · · · , w̃t. Then, for t ≥ 0, the last
inequality implies

E [[F (w̃t+1)− F∗] | Ft] ≤ [F (w̃t)− F∗]−
ηt+1

2
‖∇F (w̃t)‖2 +

L2G2

6
· η3t+1.

Let us define Yt := [F (w̃t)− F∗] ≥ 0, Zt :=
ηt+1

2 ‖∇F (w̃t)‖
2 ≥ 0 and Wt :=

L2G2

6 · η3t+1. Then, the first
condition (i) of Lemma 7 holds. Moreover, the last inequality shows that E [Yt+1 | Ft] ≤ Yt − Zt +Wt,
which means that the condition (ii) of Lemma 7 holds. Since

∑∞
t=1 η

3
t < ∞, we have

∑∞
t=0Wt < ∞,

which fulls fill the condition (iii) of Lemma 7. Then, by applying Lemma 7, we obtain w.p.1 that

F (w̃t)− F∗ → Y ≥ 0 and
∞∑
t=0

ηt+1

2
‖∇F (w̃t)‖2 <∞.

We prove lim inf
t→∞

‖∇F (w̃t−1)‖ = 0 w.p.1. by contradiction. Indeed, we assume that there exist ε > 0 and

t0 ≥ 0 such that ‖∇F (w̃t)‖2 ≥ ε for ∀t ≥ t0. In this case, since
∑∞

t=0 ηt =∞, we have

∞ >

∞∑
t=t0

ηt+1

2
‖∇F (w̃t)‖2 ≥

ε

2

∞∑
t=t0

ηt+1 =∞.

This is a contradiction. As a result, w.p.1., we have lim inf
k→∞

‖∇F (w̃k)‖2 = 0, or equivalently, it holds that

lim inf
k→∞

‖∇F (w̃k)‖ = 0.

26

B.3 Convergence Analysis with Different Learning Rates

This subsection provides convergence analysis for general choice of learning rate.

Theorem 3. Suppose that Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by Algo-

rithm 1 with η(t)i = ηt
n , where ηt :=

γ
(t+β)α ≤

1
L , for some γ > 0, β > 0, and 1

3 < α < 1. Let us define

C := [F (w̃0)− F∗] + γ3L2G2

6(3α−1)β3α−1 > 0. Then, the following statements hold:

• If α = 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/2[F (w̃0)− F∗]

γ
· 1
T

+
2C

γ

(
(T − 1 + β)1/2

T

)

+
L2G2γ2

3

(
ln(T + β)− ln(β)

T

)
.

• If α 6= 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)α[F (w̃0)− F∗]

γ
· 1
T

+
C

αγ

(
(T − 1 + β)α

T

)
+

L2G2γ2

3(1− 2α)

(
(T + β)1−2α

T

)
.

Proof. By (34), we have

F (w̃t) ≤ F (w̃t−1)−
ηt
2
‖∇F (w̃t−1)‖2 + η3t

L2G2

6
≤ F (w̃t−1) + η3t

L2G2

6
.

Notice that since ηt = γ
(t+β)α , summing up this inequality from t = 1 to t = k ≥ 1, we have

F (w̃k) ≤ F (w̃0) +
L2G2

6

k∑
t=1

η3t = F (w̃0) +
L2G2

6

k∑
t=1

γ3

(t+ β)3α

(22)
≤ F (w̃0) +

γ3L2G2

6

∫ k

t=0

dt

(t+ β)3α
= F (w̃0) +

γ3L2G2

6

[
−(t+ β)−(3α−1)

3α− 1

∣∣∣k
t=0

]

≤ F (w̃0) +
γ3L2G2

6(3α− 1)β3α−1
.

Here, we use the fact that 1
(t+β)3α

is nonnegative and monotonically decreasing on [0,+∞) and 1
3 < α < 1.

Subtracting F∗ to both sides, for t ≥ 1, we have

F (w̃t)− F∗ ≤ [F (w̃0)− F∗] +
γ3L2G2

6(3α− 1)β3α−1
. (35)

On the other hand, subtracting F∗ to both sides of (34), we have

F (w̃t)− F∗ ≤ [F (w̃t−1)− F∗]−
ηt
2
‖∇F (w̃t−1)‖2 +

L2G2

6
· η3t . (36)

27

Now, let us define Yt := F (w̃t−1)− F∗ ≥ 0, Zt := ‖∇F (w̃t−1)‖2 ≥ 0, for t ≥ 1, ρ := 1
2 , and D := L2G2

6 .
The estimate (36) becomes

Yt+1 ≤ Yt − ρηtZt +Dη3t .

Let us define C := [F (w̃0)− F∗] + γ3L2G2

6(3α−1)β3α−1 > 0. By (35), we have Yt ≤ C (note that H = 0), t ≥ 1.
Applying Lemma 2 with q = 3 and m = 1. we conclude that

• If α = 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/2[F (w̃0)− F∗]

γ
· 1
T

+
2C

γ

(
(T − 1 + β)1/2

T

)

+
L2G2γ2

3

(
ln(T + β)− ln(β)

T

)
.

• If α 6= 1
2 , we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)α[F (w̃0)− F∗]

γ
· 1
T

+
C

αγ

(
(T − 1 + β)α

T

)
+

L2G2γ2

3(1− 2α)

(
(T + β)1−2α

T

)
.

This completes the proof.

Remark 4. In Theorem 3, if we choose α = 1
3 + δ for some 0 < δ < 1

6 , then we have

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)

1
3
+δ[F (w̃0)− F∗]
γ

· 1
T

+
C

γ(13 + δ)

(
(T − 1 + β)

1
3
+δ

T

)

+
L2G2γ2

1− 6δ

(
(T + β)

1
3
−2δ

T

)

= O
(

1

T
2
3
−δ

)
,

where C := [F (w̃0)− F∗] + γ3L2G2

18δβ3δ > 0. Note that the convergence rate for regular SGD is O
(

1
T 1/2

)
.

For the extreme case where α = 1
3 , we have the following result.

Theorem 4. Suppose that Assumptions 1, 2, and 3 hold. Let {w(t)
i } be the sequence generated by

Algorithm 1 with η
(t)
i = ηt

n , where ηt := γ
(t+β)1/3

≤ 1
L , for some γ > 0, and β > 0, and C :=

[F (w̃0)− F∗] + γ3L2G2

6(1+β) . Then, the following bound holds:

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/3[F (w̃0)− F∗]

γ
· 1
T

+
3C

γ

(
(T − 1 + β)1/3

T

)

+
γ2L2G2

2

(
(T − 1 + β)1/3 ln(T + 1 + β)

T

)
+ L2G2γ2

(
(T + β)1/3

T

)

= O
(
ln(T)

T 2/3

)
= Õ

(
1

T 2/3

)
.

28

Proof. By (34), we have

F (w̃t) ≤ F (w̃t−1)−
ηt
2
‖∇F (w̃t−1)‖2 + η3t

L2G2

6
≤ F (w̃t−1) + η3t

L2G2

6
.

Since ηt = γ
(t+β)1/3

, summing up this inequality from t = 1 to t = k ≥ 1, we obtain

F (w̃k) ≤ F (w̃0) +
L2G2

6

k∑
t=1

η3t = F (w̃0) +
L2G2

6

k∑
t=1

γ3

(t+ β)

(22)
≤ F (w̃0) +

γ3L2G2

6(1 + β)
+
γ3L2G2

6

∫ k

t=1

dt

(t+ β)
≤ F (w̃0) +

γ3L2G2

6(1 + β)
+
γ3L2G2

6
ln(k + 2 + β).

Here, we use the fact that 1
t+β is nonnegative and monotonically decreasing on [0,+∞). Subtracting F∗ to

both sides, for t ≥ 1, we have

F (w̃t)− F∗ ≤ [F (w̃0)− F∗] +
γ3L2G2

6(1 + β)
+
γ3L2G2

6
ln(t+ 2 + β). (37)

Define Yt := F (w̃t−1) − F∗ ≥ 0, Zt := ‖∇F (w̃t−1)‖2 ≥ 0, for t ≥ 1, ρ := 1
2 , and D := L2G2

6 . The
estimate (36) becomes

Yt+1 ≤ Yt − ρηtZt +Dη3t .

Let us define C := [F (w̃0)− F∗] + γ3L2G2

6(1+β) > 0, H := γ3L2G2

6 > 0, and θ := 1 + β > 0. Clearly, we have

1+ θ− β = 2 > 2
3e

1/2. By (37), we have Yt ≤ C +H ln(t+ θ) for t ≥ 1. Applying Lemma 2 with q = 3,
m = 1, and α = 1

3 . we conclude that

1

T

T∑
t=1

‖∇F (w̃t−1)‖2 ≤
2(1 + β)1/3[F (w̃0)− F∗]

γ
· 1
T

+
3C

γ

(
(T − 1 + β)1/3

T

)

+
γ2L2G2

2

(
(T − 1 + β)1/3 ln(T + 1 + β)

T

)
+ L2G2γ2

(
(T + β)1/3

T

)

= O
(
ln(T)

T 2/3

)
= Õ

(
1

T 2/3

)
,

which proves our main bound.

B.4 Proofs of Theorem 5 and Corollary 3: Convergence under Gradient Dominance

Theorem 5. Suppose that Assumptions 1, 2, 3, and 4 hold for (1). Let {w(t)
i } be the sequence generated

by Algorithm 1 with η(t)i := ηt
n for solving (1). Let ηt be updated as ηt := α

t+β for some α > 0 and
β ≥ 0. Assume further that γ > 0 and λ ≥ 2 are two constants such that F (w̃0) − F∗ ≤ γ

(1+β)2
and

γ(α− 2τλ) ≥ L2G2τ
3 α3. Then, we have

F (w̃t)− F∗ ≤
γ

(t+ 1 + β)2
, ∀t ≥ 0.

29

Proof. Using (34) of Theorem 1 and Assumption 4, we can derive

F (w̃t)− F∗ ≤ F (w̃t−1)− F∗ −
ηt
2
‖∇F (w̃t−1)‖2 +

L2G2

6
· η3t

(12)
≤
(
1− ηt

2τ

) [
F (w̃t−1)− F∗

]
+
L2G2

6
· η3t .

Let Yt := F (w̃t−1) − F∗ ≥ 0, ρ := 1
2τ , and D := L2G2

6 > 0. We now verify that these quantities
satisfy the conditions of Lemma 1 with q = 2. Indeed, the condition γ(α − 2τλ) ≥ L2G2τ

3 α3 is equivalent
γ(ρα − λ) ≥ Dα3. We also have Y1 = F (w̃0) − F∗ ≤ γ

(1+β)2
. Hence, applying Lemma 1 with q = 2,

w.p.1., we end up with F (w̃t)− F∗ ≤ γ
(t+1+β)2

, which proves our theorem.

Corollary 3. Suppose that conditions of Theorem 5 hold. Then, for any β ≥ 0, if we choose α and γ such
that

α := 5τ and γ := max

{
125

3
L2G2τ3, [F (w̃0)− F∗] (1 + β)2

}
, (38)

then, using the learning rate ηt := α
t+β = 5τ

t+β in Algorithm 1, we have

F (w̃t)− F∗ ≤
γ

(t+ 1 + β)2
,

where F∗ is the global optimal value of (1).

Proof. For any β ≥ 0, if we choose α = 5τ and λ = 2, then the condition γ(α − 2τλ) ≥ L2G2τ
3 α3 in

Theorem 5 becomes

γ ≥ L2G2τ

3(α− 2τλ)
α3 =

L2G2τ

3(5τ − 4τ)
(5τ)3 =

125

3
L2G2τ3.

At the same time, we requires Y1 := [F (w̃0) − F∗] ≤ γ
(1+β)2

in Lemma 1, which is equivalent to γ ≥
[F (w̃0) − F∗](1 + β)2. Combining both conditions, we can choose γ as in (38). Consequently, w.p.1. we
have F (w̃t)− F∗ ≤ γ

(t+1+β)2
.

C Convergence Analysis for Convex Case

In this section, we prove the full proof of the results in the main text of Section 5.

C.1 Proofs of Theorem 6 and Corollary 4: The Strongly Convex Case

We first prove the main result of Section 5.

Theorem 6. Assume that Assumptions 2 and 5 hold for (1). Let {w(t)
i } be the sequence generated by

Algorithm 1 with η(t)i := ηt
n for solving (1). Let α and β be two positive constants such that α = µ

2L2β, and
the learning rate ηt be updated as ηt := α

t+β . Assume further that γ > 0 and λ ≥ 2 are two constants such

30

that F (w̃0) − F (w∗) ≤ γ
(1+β)2

and γ(µα − 3λ) ≥ 3(µ2 + L2)Nα3 with N := max1≤i≤n ‖∇f(w∗; i)‖2.
Then, we have

F (w̃t)− F (w∗) ≤
γ

(t+ 1 + β)2
, ∀t ≥ 0.

Proof. Using (32) and following the same argument as (33) in the proof of Theorem 1, we can derive

F (w
(t+1)
0) ≤ F (w(t)

0)− ηt
2
‖∇F (w(t)

0)‖2 + L2ηt
2

1

n

n−1∑
i=0

‖w(t)
i − w

(t)
0 ‖

2

(30)
≤ F (w

(t)
0)− ηt

2
‖∇F (w(t)

0)‖2 + L2ηt
2

(
η2t ·

8L2

3
‖w(t)

0 − w∗‖
2 + η4t ·

16L2N

3
+ η2t · 2N

)
(15),(14)
≤ F (w

(t)
0)− µηt

[
F (w

(t)
0)− F (w∗)

]
+ η3t

8L4

3µ

[
F (w

(t)
0)− F (w∗)

]
+

8L4N

3
· η5t + L2N · η3t , (39)

Subtracting F (w∗) from both sides of (39), we can further derive

F (w
(t+1)
0)− F (w∗) ≤

[
1− ηt

(
µ− 8L4

3µ
η2t

)] [
F (w

(t)
0)− F (w∗)

]
+ η3t

(
η2t

8L4N

3
+ L2N

)
. (40)

Now, assume that 0 < ηt ≤
√

3
8
µ
L2 . Then, one can show that

µ− 8L4

3µ
η2t ≥ µ−

2

3
µ =

µ

3
> 0 and

8L4N

3
η2t ≤

8L4N

3
· 3
8

µ2

L4
= µ2N.

Using these bounds into (40), we can further upper bound it as

F (w
(t+1)
0)− F (w∗) ≤

(
1− µ

3
ηt

) [
F (w

(t)
0)− F (w∗)

]
+ η3t

(
µ2N + L2N

)
. (41)

Next, we note that we have imposed ηt ≤ min
{

1
2L ,
√

3
8
µ
L2

}
due to the Lemma 5. To simplify the choice

of ηt, we can impose a stricter condition ηt ≤ µ
2L2 . The condition α = µβ

2L2 and the update rule ηt = α
t+β

guarantee this condition.

Now, let us define Yt := F (w
(t)
0)− F (w∗) = F (w̃t−1)− F (w∗) ≥ 0, ρ := µ

3 , and D := µ2N +L2N . The
estimate (41) becomes

Yt+1 ≤ (1− ρ · ηt)Yt +Dη3t .

Moreover, the condition γ(ρα − λ) ≥ Dα3 of Lemma 1 holds with q = 2 and Y1 = F (w̃0) − F (w∗) ≤
γ

(1+β)2
. Applying this lemma we conclude that w.p.1, it holds that Yt+1 = F (w̃t)−F (w∗) ≤ γ

(t+1+β)2
.

Corollary 4. Suppose that the conditions in Theorem 6 hold. Let α, β, and γ be chosen as

α :=
12L2 + µ2

2L2µ
,

β :=
12L2 + µ2

µ2
,

γ := max

{
3(µ2 + L2)(12L2 + µ2)3N

4L4µ5
,
(12L2 + 2µ2)2

µ4
[
F (w̃0)− F (w∗)

]}
.

(42)

31

Then, we have

F (w̃t)− F (w∗) ≤
γ

(t+ 1 + β)2
.

Proof. Let us choose λ = 2 for simplicity. Since α = µβ
2L2 , the condition γ(µα − 6) ≥ 3(µ2 + L2)Nα3 is

equivalent to

γ ≥ 3(µ2 + L2)Nα3

µα− 6
=

3(µ2 + L2)Nµ3β3

8L6(µ
2β

2L2 − 6)
=

3(µ2 + L2)Nµ3β3

4L4(µ2β − 12L2)
.

Let us choose β := 12L2

µ2
+ 1 = 12L2+µ2

µ2
as in the second line of (42). Then, the last condition becomes

γ ≥ 3(µ2 + L2)Nµ3β3

4L4(µ2β − 12L2)
=

3(µ2 + L2)(12L2 + µ2)3N

4L4µ5
.

One the other hand, the condition F (w̃0)− F (w∗) ≤ γ
(1+β)2

implies that

γ ≥
[
F (w̃0)− F (w∗)

]
(1 + β)2 =

(12L2 + 2µ2)2

µ4
[
F (w̃0)− F (w∗)

]
.

Combining these two conditions, we can choose γ as in the last line of (42). Due to the choice of β, we have
α = µβ

2L2 = 12L2+µ2

2L2µ
as in the first line of (42). Hence, all the conditions of Theorem 6 hold, leading to the

last conclusion of this corollary.

D (Regular) Stochastic Gradient Descent (SGD) Method

As a side result of our fundamental lemma, Lemma 2, we show in this section that we can apply the analysis
framework of Lemma 2 to obtain convergence rate results for the regular SGD algorithm.

To keep it more general, we consider the stochastic optimization problem with respect to some distribution
D as in (2):

min
w∈Rd

{
F (w) = Eξ∼D[f(w; ξ)]

}
, (43)

where∇f is a unbiased gradient estimator of∇F , i.e.,

Eξ∼D[∇f(w; ξ)] = ∇F (w), ∀w ∈ Rd.

The standard SGD method without mini-batch for solving (43) can be described as in Algorithm 2.

To analyze convergence rate of Algorithm 2, we assume that problem (43) satisfies Assumptions 1, 6, and 7.

Assumption 6 (L-weaker smooth). The objective function F of (43) satisfies, ∀w,w′ ∈ Rd,

F (w) ≤ F (w′) + 〈∇F (w′), w − w′〉+ L

2
‖w − w′‖2. (44)

32

Algorithm 2 Stochastic Gradient Descent (SGD) Method (without mini-batch)

Initialize: Choose an initial point w1 ∈ Rd.
for t = 1, 2, · · · do

Generate a realization of a random variable ξt and evaluate a stochastic gradient∇f(wt; ξt);
Choose a step size (i.e., a learning rate) ηt > 0 (specified later);
Update the new iterate wt+1 := wt − ηt∇f(wt; ξt);

end for

Assumption 7. For (43), there exists a constant σ ∈ (0,+∞) such that ∀w ∈ Rd, we have

E
[
‖∇f(w; ξ)−∇F (w)‖2

]
≤ σ2. (45)

We prove our first result for Algorithm 2 to solve (43) in the following theorem.

Theorem 7. Assume that Assumptions 1, 6, and 7 hold for (43). Let {wt} be the sequence generated
by Algorithm 2 with 0 < ηt := γ

(t+β)α ≤
1
L for some γ > 0, β > 0, and 1

2 < α < 1, and C :=

[F (w1)− F∗] + Lσ2γ2

2(2α−1)β2α−1 > 0. Then, the following bound holds:

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)α[F (w1)− F∗]

γ
· 1
T

+
C

αγ

(
(T − 1 + β)α

T

)
+

Lσ2γ

(1− α)

(
(T + β)1−α

T

)
. (46)

Proof. Let Ft = σ(w1, · · · , wt) be the σ-algebra generated by w1, · · · , wt. From L-smooth property of F ,
we have

E[F (wt+1)|Ft] ≤ F (wt)− ηt‖∇F (wt)‖2 +
η2tL

2
E[‖∇f(wt; ξt)‖2|Ft]

= F (wt)− ηt
(
1− ηtL

2

)
‖∇F (wt)‖2 +

η2tL

2
E[‖∇f(wt; ξt)−∇F (wt)‖2|Ft]

(45)
≤ F (wt)−

ηt
2
‖∇F (wt)‖2 +

η2tL

2
σ2,

where the first equality follows since E[‖∇f(wt; ξt)−∇F (wt)‖2|Ft] = E[‖∇f(wt; ξt)‖2|Ft]−‖∇F (wt)‖2;
and the last inequality follows since F has bounded variance. Note that ηt

(
1− ηtL

2

)
≥ ηt

2 since 0 < ηt ≤
1
L . Subtracting F∗ and taking the expectation to both sides, we have

E [F (wt+1)− F∗] ≤ E [F (wt)− F∗]−
ηt
2
E
[
‖∇F (wt)‖2

]
+
η2tLσ

2

2
, (47)

≤ E [F (wt)− F∗] +
η2tLσ

2

2
.

Hence, taking the sum from t = 1, · · · , k to both sides, for k ≥ 1, we have

E [F (wk+1)− F∗] ≤ E [F (w1)− F∗] +
Lσ2

2

k∑
t=1

η2t = [F (w1)− F∗] +
Lσ2

2

k∑
t=1

γ2

(t+ β)2α

(22)
≤ [F (w1)− F∗] +

Lσ2γ2

2

∫ k

t=0

dt

(t+ β)2α
. (48)

33

If 1
2 < α < 1, then for k ≥ 1

E [F (wk+1)− F∗] ≤ [F (w1)− F∗] +
Lσ2γ2

2(2α− 1)β2α−1
, (49)

Now, let us define Yt := E [F (wt)− F∗] ≥ 0, Zt := E
[
‖∇F (wt)‖2

]
≥ 0, for t ≥ 1, ρ := 1

2 , and

D := Lσ2

2 . The estimate (47) becomes

Yt+1 ≤ Yt − ρηtZt +Dη2t .

Let us define C := [F (w1)− F∗] + Lσ2γ2

2(2α−1)β2α−1 > 0. By (49), we have Yt ≤ C (note that H = 0), t ≥ 1.

Applying Lemma 2 with q = 2, m = 1, and 1
2 < α < 1. we conclude that

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)α[F (w1)− F∗]

γ
· 1
T

+
C

αγ

(
(T − 1 + β)α

T

)
+

Lσ2γ

(1− α)

(
(T + β)1−α

T

)
,

which proves (46).

Remark 5. In Theorem 7, if we choose α = 1
2 + δ for some 0 < δ < 1

2 , then we have

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)

1
2
+δ[F (w1)− F∗]
γ

· 1
T

+
C

γ(12 + δ)

(
(T − 1 + β)

1
2
+δ

T

)

+
Lσ2γ

(12 − δ)

(
(T + β)

1
2
−δ

T

)
.

= O
(

1

T
1
2
−δ

)
,

where C := [F (w1)− F∗] + Lσ2γ2

4δβ4δ > 0.

Theorem 8. Assume that Assumptions 1, 6, and 7 hold for (43). Let {wt} be the sequence generated
by Algorithm 2 with the step-size 0 < ηt := γ

(t+β)1/2
≤ 1

L for some γ > 0 and β > 0, and C :=

[F (w1)− F∗] + Lσ2γ2

2(1+β) > 0. Then, the following bound holds:

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)1/2[F (w1)− F∗]

γ
· 1
T

+
2C

γ

(
(T − 1 + β)1/2

T

)

+ Lγσ2

(
(T − 1 + β)1/2 ln(T + 1 + β)

T

)
+ 2Lγσ2

(
(T + β)1/2

T

)

= O
(
ln(T)

T 1/2

)
= Õ

(
1

T 1/2

)
. (50)

34

Proof. If α = 1
2 , by (48), we have

E [F (wk+1)− F∗] ≤ E [F (w1)− F∗] +
Lσ2

2

k∑
t=1

η2t = [F (w1)− F∗] +
Lσ2

2

k∑
t=1

γ2

(t+ β)

(22)
≤ [F (w1)− F∗] +

Lσ2γ2

2(1 + β)
+
Lσ2γ2

2

∫ k

t=1

dt

(t+ β)2α
.

Hence, for k ≥ 1, we have

E [F (wk+1)− F∗] ≤ [F (w1)− F∗] +
Lσ2γ2

2(1 + β)
+
Lσ2γ2

2
ln(k + 2 + β), (51)

Define Yt := E [F (wt)− F∗] ≥ 0, Zt := E
[
‖∇F (wt)‖2

]
≥ 0 for t ≥ 1, ρ := 1

2 , and D := Lσ2

2 . The
estimate (47) becomes

Yt+1 ≤ Yt − ρηtZt +Dη2t .

Let us define C := [F (w1) − F∗] +
Lσ2γ2

2(1+β) > 0, H := Lσ2γ2

2 > 0, and θ := 1 + β > 0. Clearly,
1 + θ − β = 2 > 1

2e. By (51), we have Yt ≤ C +H ln(t + θ) for t ≥ 1. Applying Lemma 2 with q = 2,
m = 1, and α = 1

2 , we conclude that

1

T

T∑
t=1

E
[
‖∇F (wt)‖2

]
≤ 2(1 + β)1/2[F (w1)− F∗]

γ
· 1
T

+
2C

γ

(
(T − 1 + β)1/2

T

)

+ Lγσ2

(
(T − 1 + β)1/2 ln(T + 1 + β)

T

)
+ 2Lγσ2

(
(T + β)1/2

T

)

= O
(
ln(T)

T 1/2

)
= Õ

(
1

T 1/2

)
,

which proves (50).

35

	1 Introduction
	2 The Shuffling-Type Gradient Algorithm
	3 Basic Assumptions and Mathematical Tools
	4 Convergence Analysis for Non-Convex Case
	4.1 The General Case
	4.2 Convergence Under Gradient Dominance

	5 Convergence Analysis for Strong Convexity
	6 Numerical Experiments
	6.1 Non-Convex Logistic Regression Example
	6.2 Fully Connected Neural Network Example

	7 Conclusion
	A Some Key Lemmas for Convergence Analysis
	A.1 General Frameworks
	A.2 Key Lemmas for Convex Problems

	B Convergence Analysis for Non-Convex Case
	B.1 Proofs of Theorem ??, Corollary ??, and Corollary ??: Convergence Analysis with Constant Stepsize
	B.2 Proof of Theorem ??: Asymptotic Convergence with Diminishing Step-Size
	B.3 Convergence Analysis with Different Learning Rates
	B.4 Proofs of Theorem ?? and Corollary ??: Convergence under Gradient Dominance

	C Convergence Analysis for Convex Case
	C.1 Proofs of Theorem ?? and Corollary ??: The Strongly Convex Case

	D (Regular) Stochastic Gradient Descent (SGD) Method

