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Abstract

Vision Transformer (ViT) has achieved remark-
able success due to its large-scale pretraining on
general domains, but it still faces challenges when
applying it to downstream distant domains that
have only scarce training data, which gives rise to
the Cross-Domain Few-Shot Learning (CDFSL)
task. Inspired by Self-Attention’s insensitivity to
token orders, we find an interesting phenomenon
neglected in current works: disrupting the con-
tinuity of image tokens (i.e., making pixels not
smoothly transited across patches) in ViT leads to
a noticeable performance decline in the general
(source) domain but only a marginal decrease in
downstream target domains. This questions the
role of image tokens’ continuity in ViT’s gener-
alization under large domain gaps. In this paper,
we delve into this phenomenon for an interpre-
tation. We find continuity aids ViT in learning
larger spatial patterns, which are harder to trans-
fer than smaller ones, enlarging domain distances.
Meanwhile, it implies that only smaller patterns
within each patch could be transferred under ex-
treme domain gaps. Based on this interpretation,
we further propose a simple yet effective method
for CDFSL that better disrupts the continuity of
image tokens, encouraging the model to rely less
on large patterns and more on smaller ones. Ex-
tensive experiments show the effectiveness of our
method in reducing domain gaps and outperform-
ing state-of-the-art works. Codes and models are
available at https://github.com/shuaiyi308/ReCIT.
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Figure 1. (a) Four approaches are utilized to disrupt the continuity
of image tokens, i.e., making the pixels not smoothly transited
across patches. (b) We find an interesting phenomenon: although
disrupting the continuity of image tokens in the source domain
has a substantial impact on the performance of ViT-based models,
the model’s performance in the target domain, which undergoes
an equivalent level of continuity disruption, is only marginally
affected. In this paper, we will delve into this phenomenon for
an interpretation, explore the role of image tokens’ continuity in
model generalization, and propose methods based on it for better
cross-domain few-shot learning.

1. Introduction

Vision Transformer (ViT) has achieved great success across
numerous tasks (Yuan et al., 2021; Wu et al., 2022) because
of its ability to learn from large-scale datasets (Naseer et al.,
2021), which makes it a prevailing option for downstream
applications by generalizing an upstream-pretrained ViT to
downstream expert tasks. However, in real-world scenar-
ios, downstream tasks can be in domains distant from up-
stream large-scale datasets, and it may not be easy for down-
stream tasks to collect sufficient training samples, which
makes it challenging for the generalization and finetuning of
ViT (Zou et al., 2022; 2024b). To mitigate this issue, Cross-
Domain Few-Shot Learning (CDFSL) has been proposed,
aiming to transfer general knowledge from source domains,
such as ImageNet (Deng et al., 2009), to target domains,
like medical datasets (Mohanty et al., 2016), that possess
only a scarcity of training samples (Oh et al., 2022).

However, the generalization of ViT under large domain
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gaps is still under-explored. Different from Convolutional
Neural Networks (CNN), ViT partitions the image into non-
overlapping patches for input and takes Multi-head Self-
Attention (MSA) (Chen et al., 2023) to model the coherence
of patches. However, MSA itself is not sensitive to the order
of input tokens, i.e., two subsequent tokens do not have
to be continuous in pixels. The only assurance of continu-
ity is the positional embeddings (Dosovitskiy et al., 2021),
which is relatively weak. Inspired by this characteristic, we
find an intriguing phenomenon that is ignored by current
works: when the continuity of images is disrupted e.g., by
removing positional embeddings, shuffling image patches,
or shuffling the amplitude or phase of image patches in
the frequency domain (Fig. 1a), the performance of ViT
experiences a noticeable decline in the source domain but
decreases only marginally on target domains (Fig. 1b). This
phenomenon questions the role of image tokens’ continuity
in ViT’s generalization under large domain gaps.

In this paper, we delve into this phenomenon for an interpre-
tation. We discover that disrupting image tokens’ continuity
can paradoxically be beneficial in reducing domain gaps.
Then, we find that the more disrupted image tokens’ con-
tinuity (by binding fewer patches not disrupted), the more
generally increased domain similarity between source and
target domains. Based on these experiments, we interpret
the continuity as an aid of ViT in learning larger spatial
patterns. However, since large spatial patterns, e.g., a whole
dog, are harder to transfer to target domains than smaller pat-
terns, e.g., the head of a dog, under extremely large domain
gaps, this phenomenon implies that only smaller patterns
within each patch could be transferred to target domains,
therefore interrupting image tokens’ continuity has only
marginal effect on target-domain performance.

Drawing upon this interpretation, we further propose a sim-
ple but effective method tailored for the CDFSL task that
better disrupts the continuity of image tokens, encourag-
ing the model to strengthen the learning of smaller spatial
patterns and reduce its reliance on large ones, thereby en-
hancing the model’s generalization to downstream tasks.
Specifically, we integrate the continuity disruption of image
tokens in both spatial and frequency domains, and construct
a balanced disruption among different style distributions,
ensuring the diversity of the disruption. Extensive experi-
ments on four CDFSL benchmarks with large domain gaps
show that we can outperform state-of-the-art performance
and effectively reduce domain gaps.

In summary, our contributions can be listed as follows.
* To the best of our knowledge, we are the first to con-

sider image tokens’ continuity in the CDFSL task.

* We find a phenomenon that is neglected by others:
pretrained ViT undergoes a much less performance

decline when disrupting image tokens’ continuity on
target domains than on general (source) domains.

* We delve into this phenomenon for an interpretation:
continuity aids ViT in learning large spatial patterns;
however, under large domain gaps, large patterns
across patches are hard to transfer, making the disrup-
tion of large patterns less effective on target domains.

» Based on this interpretation, we further propose a novel
method to better disrupt the continuity of image tokens
for CDFSL, thereby enabling the model to reduce its
reliance on large patterns and enhance its learning of
smaller ones, thereby enhancing its transferability.

» Extensive experiments on four benchmark datasets val-
idate our rationale and state-of-the-art performance.

2. Delve into Continuity of Image Tokens in
Cross-Domain Few-Shot Learning

2.1. Preliminaries

Cross-Domain Few-Shot Learning (CDFSL) entails a model
to acquire knowledge from a source-domain dataset abun-
dant with training samples (e.g., minilmageNet (Vinyals
et al., 2016)), then transfer it to downstream tasks, enabling
learning of target-domain datasets using merely a handful of
training instances. Finally, the model is evaluated on target
datasets.

Specifically, we denote the source dataset as D° =
{x,y? N | with 7 and y symbolizing the ith training
sample and its corresponding label, respectively. Analo-
gously, DT = {zI 4T zN:,1 represents the target dataset.
During the learning and evaluation phases on D7, to ensure
a fair comparison, current research (Fu et al., 2022; Zou
et al., b) employs a k-way n-shot paradigm. This involves
sampling from D7 to construct limited datasets, known as
episodes, each comprising k classes with n training sam-
ples per class. Based on these episodes, the model learns
from the k£ % n samples, collectively termed the support
set {7}, yiT]}f:”l j—1» and its performance is assessed using
testing samples from the same k classes, referred to as the
query set {z]'}.

The Vision Transformer (ViT) has recently gained signif-
icant popularity in vision-related tasks. It operates by di-
viding an image x € RH*WXC into fixed-sized patches
z, € RM*(P*C) Where (H, W) denotes the resolution
of the original image, C' represents the number of chan-
nels, (P, P) signifies the resolution of each image patch,
and M = HW/P? is the resulting count of patches. This
count, M, also functions as the number of input tokens for
the Transformer. Then each image patch is flattened and
projected into a D-dimensional space through a trainable
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linear projection £ € R(P >OxD termed patch embed-
dings. Additionally, a learnable embedding called class
token (denoted as x.;4ss) is prepended to the sequence
of patch embeddings. To maintain positional information,
the patch embeddings are added with position embeddings
Eyos € R(MA+1)xD , which can be represented as

20 = [Tetass; Ty B3 a0 B+ 10y E| 4 Epos, (1)

The resultant sequence of embedding vectors subsequently
serves as the input to an encoder architecture that consists
of L stacked blocks, each encompassing a multiheaded self-
attention (MSA) network, a Multi-Layer Perceptron (MLP)
network, Layernorm (LN) and residual connections. The
overall process can be depicted as follows

Zl/ = MSA (LN (2’171)) + z1—-1, 2)
2 = MLP (LN (2])) + 2, 3)
f(af) =LN(z1), 4

In this paper, we focus on exploring ViT’s downstream
generalization on the CDFSL task. We follow (Fu et al.,
2023; Zou et al., a) to employ the DINO (Zhang et al.,
2022) pretraining on ImageNet (Deng et al., 2009) as the
initialization. Then, we train the ViT on D by minimizing
the cross-entropy loss relevant to the source-domain label
space |Y¥|, with a fully connected (FC) layer as

N
I— %ZLds(«b(ﬂmf)),yf» )

where ¢(-) represents the FC layer and f(-) denotes ViT.
Finally, we employ prototype-based classification (Zhou
et al., 2023) for target-domain recognition with a distance
function d(-, -) as

yZ” = arg rniin d(% Z f($£)7 f(qu))> (©)
J

2.2. Breaking the continuity of image tokens

As illustrated in Fig. 1a, we first contemplate four of the
simplest approaches to disrupt the continuity of images,
applying each separately to the training set within the source
domain to facilitate the model’s training on that domain.

Remove Position Embedding (RPE): The first method con-
sists of inputting the image patches directly into the encoder
of ViT, without incorporating positional embeddings as

20 = (Terss; 2p B3 a3 B -+ b E] @)

Shuffle Patches (SP): The second approach involves shuf-
fling the image patches directly, concatenating them with a
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Figure 2. Disrupting the continuity of input images significantly
increases domain similarity, although the performance decreases
on all datasets in Fig. 1. Intriguingly, the more decrease in Fig. 1,
the more increase in domain similarity, which shows disrupting
continuity can surprisingly mitigate domain discrepancies.

class token, and then adding positional embeddings before
inputting them into the encoder:

z20 = [xclass;ley nyf) E;--- ;xé\/[ E} +Epos» (8)

Shuffle Patch Amplitude (SPA): The two subsequent meth-
ods involve transitioning image patches from the spatial
domain to the frequency domain, starting with obtaining the
Fourier transformations of the input patches z,,

H —1w’ -1

Flaplmnl = 3 32 aphul exp(—zw(§m+%n)), ©

where i2 = —1 and m, n denote spatial frequencies. When
Re(F(x)[-,]) and Im(F(z)[-,-]) represent the real and
imaginary components of the Fourier spectrum, respectively,
the corresponding amplitude spectrum A(z)[-, | and phase
spectrum P(z)[-, -] can be expressed as follows

A(zp)[m, n] = \/RE(F(GE;:)[Wn])2 + Im(F(x)[m,n])?,  (10)

Im(F (zp)[m, n]))

Re(F () m, n)) an

P(zp)[m,n] = arctan (
Our third method disrupts the amplitudes of the patches
within an image, merges them with the original phases of
these patches, and then applies an inverse Fourier transform
to revert the combined data back to the spatial domain as

k

« = iDFT (AW ® ei'PIp) , (12)
where k denote kth patch in image, k' denote after be
shulffed, the kth patch’s amplitude.

Shuffle Patch Phase (SPP): The fourth method, in contrast
to the third one, disrupts continuity by shuffling the phases
while retaining the amplitudes as

k . i P
wh = iDFT (A ¢ ), (13)
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Figure 3. Take a fish as an example, although disrupting continuity
distorts its overall shape, it is still feasible to recognize the fish’s
patterns in individual patches, such as fins and eyes. This indicates
that the continuity between patches primarily assists the model in
learning larger spatial patterns; however, even after disrupting the
continuity, the model can only recognize the patterns maintained
within each patch, which is smaller but easier to transfer.

2.3. What role does ViT’s weak continuity play under
large domain gaps?

In Fig. 1, we observe that a pretrained ViT is highly sensitive
to disruptions in continuity on the source domain that is
similar to its pretraining data, yet exhibits a much smaller
impact on target domains that are distant from the source
domain. Therefore, we are inspired to question the role that
image tokens’ continuity plays under large domain gaps.

Firstly, we quantitatively assess the domain distance be-
tween the source and target domains using the Centered
Kernel Alignment (CKA (Kornblith et al., 2019)) similarity
following (Oh et al., 2022; Davari et al., 2022). Specifically,
utilizing ViT as the backbone network, we extract features
from images belonging to different domains and then com-
pute the CKA similarity between different domains’ features
by aligning the channel dimension. A higher CKA similar-
ity indicates a smaller domain distance, implying that the
model encompasses less domain-specific information.

The results are in Fig. 2, from which we observe the domain
similarity between the source and target datasets increased
significantly, although in Fig. 1 the model’s performance
declines on all datasets. Intriguingly, the greater the decline
in model performance in Fig. 1, the more the increase in
domain similarities. This indicates the surprising benefit of
disrupting continuity in reducing domain discrepancies,
thereby enhancing the model’s transferability.

2.4. Why does breaking continuity reduce domain
discrepancy?

To account for breaking continuity reduces domain distance,
we look back on the disrupted images. Although the connec-
tion of each patch is disrupted, patterns within each patch
are not disrupted. For example, as shown in Fig. 3, given
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Figure 4. We sequentially divide the images into pseudo-patches,
where the pseudo-patch size decreases from left to right, and shuf-
fle them. The smaller the patterns preserved within these pseudo-
patches, (a) the more the model’s performance decreases, and
(b) the more the domain similarity increases. This suggests that
breaking the continuity essentially influences the spatial size of
maintained patterns, where larger ones are discriminative on the
source domain but harder to transfer, and vice versa.

an image of a fish, although the patches are shuffled, the
internal details of each patch still allow us to discern fea-
tures such as fish scales, eyes, fins, tail, and other distinctive
attributes. Based on such a disrupted image, the model
extracts features majorly based on the patterns maintained
within each patch, while the patterns across patches are lost.

Intuitively, patterns within each patch are spatially smaller,
such as fish eyes, while patches are interconnected with
their neighbors to build spatially larger patterns, such as
a whole fish. Simultaneously, larger patterns are always
harder to transfer than smaller ones (Zou et al., 2024b). For
example, capturing a pattern similar to a whole fish in a
dog is difficult, but capturing a pattern similar to a fish eye
is relatively easier, e.g., the dog eyes. Therefore, we hy-
pothesize that breaking continuity essentially breaks the
large patterns across patches into small patterns within
each patch. Under large domain gaps, large patterns are
inherently harder to transfer. Therefore, the major effec-
tive patterns on target domains are small patterns within
each patch. Consequently, disrupting token continuity has a
much smaller effect on target domains, as the recognition of
target domains is only marginally based on large patterns
across patches. Similarly, since larger patterns are effective
for the source domain, the performance of source-domain
recognition drops drastically. On the other hand, breaking
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continuity forces the model to extract features majorly based
on smaller patterns, aligning with the patterns used on target
domains. Therefore, the domain similarity increases.

To validate our hypothesis, we disrupt images to varying
degrees of shuffling, in order to verify how the maintained
patterns’ spatial size influences the performance and domain
similarity. Specifically, each image is divided into pseudo-
patches of sizes 1 % 1,2% 2,4 %4, 7% 7,8 %8, and 14 * 14.
For instance, 2 * 2 signifies dividing the whole image into
four equal-sized sections along both its length and width'.
Then, these pseudo-patches are randomly shuffled and then
reassembled to form the shuffled images, which are then
input into ViT. Since patches within each pseudo-patch are
not disrupted, the size of spatial patterns is larger.

As in Fig. 4a, the performance consistently decreases with
the growing number of pseudo-patches, i.e., smaller patterns
within each pseudo-patch. Meanwhile, domain similarities
between source and target domains consistently increase as
the pseudo-patch size reduces, verifying it is the maintained
pattern’s spatial size that influences domain similarities.

2.5. Conclusion and Discussion

Based on it, we interpret as follows. The continuity between
image tokens essentially assists models in learning larger
spatial patterns, which are beneficial for source-domain
classification, therefore breaking the continuity significantly
harms source-domain performance. However, excessively
large patterns often struggle to transfer to target domains.
Conversely, smaller patterns are easier to transfer. Under
large domain gaps, most patterns transferred to target do-
mains are those small ones that are within each patch, there-
fore disrupting the continuity has smaller influences on the
target-domain performance. By aligning patterns used in
feature extraction for source and target domains to small
patterns, the domain similarity also increases.

3. Method

Building upon the above analysis and interpretation, we
conclude that under large domain gaps, maybe only small
patterns within each patch can be transferred. Therefore,
we aim to prioritize learning within patches and reduce
models’ reliance on large patterns across patches. Specif-
ically, during the source-domain training, we propose to
disrupt the continuity of image tokens in two steps, includ-
ing a warm-up spatial-domain disruption and a balanced
frequency-domain disruption (Fig. 5).

'We resize the image to 256 * 256 if the number of tokens is
not evenly divided, preserving the number of pixels in each patch.

3.1. Warm-Up Spatial-Domain Disruption

Since the model’s pretraining data is significantly different
from the disrupted data, the training on the disrupted ones
may be difficult. Therefore, gradually increasing the diffi-
culty will be beneficial for model training. As illustrated in
Fig. 4b, the magnitude of Shuffle Patches’ performance drop
and domain-similarity increase is smaller than that of the
amplitude-based disruption. Therefore, we first use Shuffle
Patches as a spatial-domain disruption for warming up.

Specifically, our method involves randomly dividing images
into varying numbers of patches and subsequently shuffling
these patches. This approach encourages the model to learn
the internal information within patches of different sizes,
gradually enabling it to adapt and learn smaller patterns. As
in the Fig. 5@, we divide a set of images into a random num-
ber of equally sized patches (e.g., L patches). Afterward,
we shuffle the patches belonging to the same image, append
the CLS token and positional encoding to them, and then
feed them into the ViT as

20 = [xclass§m;/E§$§/E§"' ;2 B| + Epoy,  (14)

3.2. Balanced Frequency-Domain Disruption

Considering the comparison of the four simple continuity
disruption methods presented in Fig. 2, it is observed that
shuffling the amplitudes in the frequency domain maximizes
domain similarity between the source and target domains.
This consideration is primarily based on the following two
reasons. Firstly, transferred patterns may also encompass
regions in adjacent patches, e.g., a fish eye split into two ad-
jacent patches, suggesting that retaining a certain degree of
continuity is beneficial. Secondly, studies (Chen et al., 2021)
have demonstrated that some information in the frequency
domain encompasses domain information. By shuffling the
amplitudes, the model can eliminate style biases. There-
fore, we aim to take Shuffle Patch Amplitude as a strong
frequency-domain disruption to enhance the learning of
small and domain-agnostic patterns.

Considering the distribution of patches may vary across
images, simply shuffling the amplitudes of image patches
directly may not diversely disrupt the continuity. Take the
classification of jellyfish in the ocean as an example: most
patches may be dark water. When we directly shuffle the
amplitudes of image patches, the overall image remains
largely unchanged, with most areas retaining the continuity.
Therefore, we consider balancing the distribution of patches
for better disruption of the continuity.

Therefore, we first cluster image patches based on their vi-
sual appearances, randomly sample styles from each cluster,
and finally re-assign the sampled styles to each patch. This
approach balances different sizes of image clusters, e.g.,
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Figure 5. We take two steps to disrupt the continuity of images during source-domain training. Step @ involves dividing the image into a
random number of patches and then shuffling them. This approach poses a relatively lower difficulty for the model and is utilized during
the warming up of training. Step @ decomposes and reassembles the amplitudes of the clustered image patches to ensure the diversity of
disruptions, which presents a greater challenge for the model and is thus employed during the middle to later stages of training.

even if dark water takes a large area in the jellyfish image,
its sampling probability is similar to those in small areas.

Specifically, as in Fig. 5@, an input image 2 € RH*W*C ig
split into the patches z;, € RM*P where 7, and 2 are the
average of pixels in the ith and jth patches (i, 7 € M). Then,
we calculate the similarity distance among these patches by
employing the cosine similarity metric

cos(z’,xl) = e (15)
T el el

Subsequently, we categorize these patches into different
types based on their similarity exceeding a predefined thresh-
old, thereby dividing all patches within an image into mul-
tiple clusters. A cluster is defined as comprising a patch

x;, and its corresponding patches, all of which fall within a

predefined similarity threshold sim

Clustery; = {xﬁ, | cos(xt, 7)) > sim, :v{, €xpt, (16)

p>p

Next, as shown in the Eq. 10, we extract the amplitudes of
each patch within each cluster

Cluster 5o = {A7 | cos(zt, x?) > sim,z? € z,}, (17)
P P pp p p

where A7 is the amplitude corresponding to the patch 7,
M is the total numbers of patches in this cluster.

Then, we model the amplitude distribution of each patch
within each cluster as a multivariate Gaussian distribution.
This Gaussian distribution centers around the mean ampli-
tude of all patches within the corresponding cluster and its
variance can be computed from the differences between
the amplitudes of the patches within the cluster and their
mean value, thereby obtaining a Gaussian distribution that
represents that particular amplitude of cluster.

=

u(ClusterA;)) = Aé, Ag) € Cluster i,  (18)
1

==

J

=

, 2
o(Cluster 4;) = [A;, — u(ClusterA;)} , (19

= -
-
<.
Il

1

After extracting the distributions of multiple amplitudes
from an image, we random sample on each cluster distribu-
tion, e.g. €cusier,,, ~ N(p(Cluster 1), 0(Cluster 5 ))

p

Finally, we sum these samples with random proportions p to
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Table 1. Comparison with state-of-the-art works based on ViT-S on target domains.

Method Shot FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
MEM-FS (Walsh et al., 2023) 1 X TIP-23 22.76 32.97 68.11 81.11 51.24
StyleAdv (Fu et al., 2023) 1 X CVPR-23 22.92 33.05 72.15 81.22 52.34
FLoR (Zou et al., 2024a) 1 X CVPR-24 22.78 34.20 72.39 81.81 52.80
DAMIM (Ma et al., 2024) 1 X AAAI-25 22.97 34.66 72.87 82.34 53.21
CD-CLS (Zou et al., b) 1 X Neur[PS-24 2293 34.21 74.08 83.51 53.68
AttnTemp (Zou et al., a) 1 X NeurIPS-24  23.19 34.92 74.35 84.02 54.12
ReCIT 1 X Ours 23.27 35.13 74.56 84.76 54.43
PMF (Shell Xu, 2022) 1 v CVPR-22 21.73 30.36 70.74 80.79 50.91
FLoR (Zou et al., 2024a) 1 v CVPR-24 23.26 35.49 73.09 83.55 53.85
StyleAdv (Fu et al., 2023) 1 v CVPR-23 22.92 33.99 74.93 84.11 53.99
DAMIM (Ma et al., 2024) 1 v AAAI-25 23.38 36.35 73.61 83.90 54.31
CD-CLS (Zou et al., b) 1 v NeurIPS-24  23.39 35.56 74.97 84.54 54.62
AttnTemp (Zou et al., a) 1 v NeurIPS-24  23.63 38.05 75.09 84.78 55.39
ReCIT 1 v Ours 23.84 38.48 75.23 85.92 55.87
MEM-FS + RDA™ (Walsh et al., 2023) 1 v TIP-23 23.85 37.07 75.91 83.74 55.14
DAMIM" (Ma et al., 2024) 1 v AAAI-25 23.91 38.07 77.23 86.74 56.49
CD-CLS (Zou et al., b) 1 v NeurIPS-24  23.88 37.20 78.41 87.39 56.72
AttnTemp (Zou et al., a) 1 v NeurIPS-24  23.96 40.13 77.40 87.58 57.23
ReCIT" 1 v Ours 24.42 39.39 78.84 88.45 57.78
MEM-FS (Walsh et al., 2023) 5 X TIP-23 26.67 47.38 86.49 93.74 63.57
StyleAdv (Fu et al., 2023) 5 X CVPR-23 26.97 47.73 88.57 94.85 64.53
FLoR (Zou et al., 2024a) 5 X CVPR-24 26.71 49.52 90.41 95.28 65.48
DAMIM (Ma et al., 2024) 5 X AAAI-25 27.28 50.76 89.50 95.52 65.77
CD-CLS (Zou et al., b) 5 X NeurIPS-24  27.23 50.46 91.04 95.68 66.10
AttnTemp (Zou et al., a) 5 X NeurIPS-24  27.72 53.09 90.13 95.53 66.62
ReCIT 5 X Ours 28.23 52.36 90.42 96.02 66.76
PMF (Shell Xu, 2022) 5 v CVPR-22 27.27 50.12 85.98 92.96 64.08
StyleAdv (Fu et al., 2023) 5 v CVPR-23 26.97 51.23 90.12 95.99 66.08
FLoR (Zou et al., 2024a) 5 v CVPR-24 27.02 53.06 90.75 96.47 66.83
DAMIM (Ma et al., 2024) 5 v AAAI-25 27.82 54.86 91.18 96.34 67.55
CD-CLS (Zou et al., b) 5 v NeurIPS-24  27.66 54.69 91.53 96.27 67.54
AttnTemp (Zou et al., a) 5 v NeurIPS-24  28.03 5491 90.82 96.66 67.61
ReCIT 5 v Ours 28.88 54.91 91.58 96.85 68.06
MEM-FS + RDA™ (Walsh et al., 2023) 5 v TIP-23 27.98 51.02 88.77 95.04 65.70
DAMIM" (Ma et al., 2024) 5 v AAAI-25 28.10 55.44 91.08 96.49 67.78
CD-CLS" (Zou et al., b) 5 v NeurIPS-24  28.25 55.66 91.68 96.62 68.05
AttnTemp” (Zou et al., a) 5 v NeurIPS-24 2841 55.22 91.34 96.74 67.93
ReCIT" 5 v Ours 28.97 55.60 91.72 96.97 68.32

assign to patches, N is the number of clusters in an image

N
AL =D Py * €Cluser, - (20)
i=1
Epro Al
Pai = Nipaepram NN(O,(X) (21)
> o b
i=1%pro;
This process reconfigures the amplitudes of each patch, ad-
dressing the issue of uneven patch distribution within the
image and ensuring continuity in amplitudes among patches.

During the target-domain stage, we conduct prototype-based
classification (Eq. 6) or finetune-based classification follow-
ing (Zhou et al., 2023).

4. Experiments
4.1. Dataset and Implementation Details

Following current works (Oh et al., 2022), we employ the
minilmageNet dataset (Vinyals et al., 2016) as our source
domain, and target domains involve four datasets: CropDis-
ease (Mohanty et al., 2016), EuroSAT (Helber et al., 2019),
ISIC (Codella et al., 2019), and ChestX (Wang et al., 2017).
These datasets cover agriculture, remote sensing, and medi-
cal data, with substantial domain discrepancies.

In implementation, we set the similarity threshold to 0.3.
We adopt ViT-S as our backbone network and initialize it
with DINO pretraining on ImageNet following (Caron et al.,
2021; Fu et al., 2023; Zhang et al., 2022). Additionally, our
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Table 2. Ablation study by 5-shot.

Method CropDisease  EuroSAT  ISIC2018  ChestX Ave.
Baseline 9429017 89.43+017  45.83+023 26.07+017  63.91
+ Warm up disruption 95.31+01s 89.61+017 48.83+023 27.01+017  65.19
+ Balanced disruption 96.02+0.14 90.42+017  52.36023  28.23:018  66.76
(a) Remove Position Embedding 95.02+0.16 89.96+016 47.40+024  26.85+017 64.81
(b) Shuffled Patches 95.03+0.15 88.67+01s  48.04x025  27.08+017  64.70
(c) Shuffle Patch Amp. 94.75+016  88.78x017  49.67x023  27.04+017  65.06
(d) Shuffle Patch Phase 94941016 88.56x018  49.47x023  26.96+017  64.98
(e) Shuffle Image Amp. 94.73+0.16 88.96+017  47.95+023  26.79+017  64.61
(f) Shuffle Cluster Amp. w/ Balancing 95.28+0.15 89.13x017  49.51+023  27.85+017  65.44
(g) Shuffle Patch Amp. w/ Balancing 96.05+0.14 89.25:017  50.85+023  28.12+018  65.94

model leverages the Adam optimizer(Kingma & Ba, 2017)
for 50 epochs, with a learning rate of 10~ assigned to the
backbone network and 1073 to the classifier, respectively.
Experiments are conducted on NVIDIA GeForce RTX 3090
GPUs.

4.2. Comparison with State-of-the-Art Works

We report our comparison with state-of-the-art works for the
1-shot and 5-shot configurations in Tab.1, respectively. To
ensure a fair assessment, we separately compare works that
have undergone finetuning (FT) and those that have not. The
asterisk (*) indicates a transductive setting. Notably, our
results demonstrate superior average performance across all
configurations and consistently surpass existing works.

4.3. Ablation Study

The ablation study for each module is presented in Tab.2.
It is evident that all types of our proposed methods aimed
at disrupting the continuity of image patches contribute
positively to the performance in the target domains. Addi-
tionally, we conduct a comparative analysis between our
approaches and other similar works to substantiate the ratio-
nale underlying our design choices.

4.3.1. VERIFICATION OF BREAKING THE CONTINUITY

To study the contribution of our methods, we compare our
four types of methods for disrupting the continuity of image
patches with the baseline model in Tab. 2a. It is evident that
all four methods we propose outperform the baseline model
significantly on the target domain, thereby demonstrating
the effectiveness of our approaches.

4.3.2. SHUFFLING AMPLITUDE IN PATCH DIMENSION

We study the impact of shuffling amplitude in patch dimen-
sion and directly contrast it with shuffling amplitude across
entire images (e), an approach that has been extensively ex-
plored in many previous works (as shown in Table 2b). Our
findings reveal that the performance of the latter is inferior
to ours, suggesting that manipulating image patches offers
a more effective means of enhancing the transferability of
ViT-based models. Moreover, by gradually reducing the size
of maintained continuity to clusters (f) or patches (g), we
can see the performance consistently increases, verifying

67.20% 66.80%

66.40%
66.40%

65.60%

66.00%
64.80%

64.00% 65.60%
0 2 4 6 8 10 12 0 0.2 0.4 0.6 08 1

(a) Block ID vs. 5-shot average performance (b) Sim threshold vs. 5-shot average performance

Figure 6. (a) Applying our approach to any layer results in perfor-
mance enhancements, but the greatest improvement is achieved
when it is applied to the input layer. (b) A relatively small similar-
ity threshold can more effectively balance the style.

the importance of disrupting the continuity.

4.3.3. BALANCED DISRUPTION AND WARMING UP

Comparing the default shuffling of amplitude (c) and the
balanced shuffling (g), we can see the balancing operation
consistently increases the performance. Moreover, com-
paring the disruption without warming up (g) and our final
performance, we can see the warming up step can also con-
sistently improve the performance.

4.4. Sensitivity Study of Hyper-parameters

We conduct an analysis of the hyper-parameters presented
in Fig.6 and 7, and see that:

(1) The input layer demonstrates effectiveness. As illus-
trated in Fig. 6a, merely applying our approach within the
first block (i.e., the input layer) results in a substantial im-
provement in the model performance in target domains.
Moreover, the application of our method to any layer yields
notable improvements compared to not using it, further con-
firming the validity of our approach.

(2) A moderately small similarity distance threshold for di-
viding patches into clusters yields optimal results but should
not be too minute, whereas a smaller threshold refers to
larger clusters. As depicted in Fig. 6b, reducing it initially
leads to a steady improvement in performance in the target
domains. However, once this threshold is below approxi-
mately 30%, performance begins to decline.

(3) A larger standard deviation of sampling the proportions
pin Eq. 21 yields optimal results. As illustrated in Fig. 7a,
increasing the standard deviation leads to a steady enhance-
ment in performance until it reaches a plateau. This suggests
that a larger standard deviation results in greater variability
among patches and a higher degree of disrupted continuity,
which is more beneficial for generalization in target domains.

4.5. Verification of model generalization

4.5.1. QUANTITATIVE STUDY

As depicted in Fig. 7b, we assess the domain similarity of
the features extracted from the trained backbone network
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67.20% 08 Baseline
66.40% 06
Spatial-Domain

65.60% 04 Disruption

64.80% 02

64.00%

0.01 1 100 10000 CropDiseases EuroSAT  ISIC2018  ChestX Ave,

(a) Standard deviation vs. 5-shot average performance (b) Domain Similarity measured by the CKA

Figure 7. (a) A larger standard deviation indicates greater discrep-
ancy and discontinuity among image patches, and consequently,
the performance on the target domain improves accordingly. This
demonstrates that disrupting continuity is effective in reducing
domain discrepancies. (b) Employing our method markedly boosts
the similarity across domains.

BT
KBNS

Image Baseline Ours Image

Ours

Baseline

Figure 8. The heatmap for the source domain displayed in the first
row illustrates that our method takes into account smaller patterns
scattered throughout the image, collectively forming a broader
perceptual area. The heatmaps for the target domains shown in
the following two rows demonstrate that our approach effectively
enhances ViT’s perception of the target domain.

between the source and target domains using the CKA simi-
larity metric. The results reveal that our model substantially
elevates the domain similarity, suggesting that our model
acquires domain-agnostic information.

4.5.2. QUALITATIVE STUDY

The visualization of the attention maps in both the source
and target domains is presented in Fig. 8. In contrast to the
baseline, which exhibits dispersed attention, our model not
only focuses on the most discriminative large patterns but
also attends to smaller, less discriminative patterns scattered
across the image, forming a larger perceptual field. By
transferring these patterns to the target domain, our model
achieves a better perception of the target domain.

5. Related Work

Cross-Domain Few-Shot Learning(CDFSL) was intro-
duced in FWT(Tseng et al., 2020), and a novel benchmark
for this field has been established in BSCD-FSL(Guo et al.,
2020). It strives to transfer knowledge from a proficiently
trained source domain to a separate target domain char-
acterized by limited labeled data and a large domain gap.

This field is primarily explored through two approaches:
transferring-based methods (Zhou et al., 2023; Zou et al.,
2024a), which adapt pre-trained models from extensive
source datasets to target domains with scant data, and meta-
learning approaches(Fu et al., 2022; Hu & Ma, 2022), which
emphasize training models to swiftly adapt to novel tasks.
However, no studies have explored the impact of continuity
of ViT on cross-domain scenarios.

Continuity. ViT was introduced by (Dosovitskiy et al.,
2021), which adopts an input approach by dividing images
into patches and explores that when the input images are
larger, the model is able to capture more detailed informa-
tion. Further investigation is conducted by them on the
incorporation of positional encoding, revealing that absolute
positional encoding causes ViT to lack the translation invari-
ance required for image processing. Then, (Liu et al., 2021)
proposes a relative positional encoding to preserve invari-
ance but is highly demanding of computational resources.
Alternatively, (Chu et al., 2021) proposes a conditional
positional encoding to address ViT’s translation invariance
while conserving computational resources. (Li et al., 2019;
Wertheimer et al., 2021; Rong et al., 2023) find that the low-
level local visual features can be more easily transferred to
the target domain than those high-level semantic features.
However, none of these studies specifically explore the im-
pact of continuity on cross-domain performance. We are
the first to investigate the influence of continuity on cross-
domain performance.

6. Conclusion

In this paper, we find an intriguing phenomenon that break-
ing image tokens’ continuity affects differently on the per-
formance of source and target domains. We delve into this
phenomenon for an interpretation, which inspires us to fur-
ther propose a method to break the continuity, encouraging
the model to rely less on large patterns and more on small
patterns for recognition. Extensive experiments on four
CDFSL benchmarks validate our rationale and effectiveness.
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Impact Statement

We propose a CD-FSL method that disrupts the continuity
of image tokens within the Vision Transformer (ViT) archi-
tecture. This strategy encourages the model to reduce its de-
pendence on large patterns and instead rely more on smaller,
highly transferable patterns to the target domain. Addition-
ally, our approach holds promise for application in other
fields, including domain generalization, domain adaptation,
and few-shot class-incremental learning, where enhancing
model transferability poses a universal challenge. Although
our evaluations concentrate on four distinct target domains,
it is important to note that these may not exhaustively cover
all potential real-world scenarios. Hence, further evaluation
across a broader spectrum of target domains is crucial to
validate our approach in more realistic and diverse settings.
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Appendix for Revisiting Continuity of Image Tokens for
Cross-Domain Few-shot Learning

Figure 9. Samples of the minilmageNet dataset.

A. Dataset Description

minilmageNet (Vinyals et al., 2016) is a meticulously
selected subset derived from the extensive ImageNet
dataset (Deng et al., 2009). It encompasses 100 categories,
with each category represented by 600 natural images, total-
ing 60,000 images. Consistent with recent research (Zou
et al., a;b), we utilize the training portion of minilmageNet
as our source domain dataset. This comprises 64 classes
and a total of 38,400 images, with representative samples
displayed in Fig. 9.

Furthermore, as illustrated in Fig. 10, we adopt the method-
ology outlined in (Guo et al., 2020) and employ datasets
from four distinct domains as our target domains. These
domains include plant disease images, surface satellite im-
agery, skin disease images, and chest X-ray images, which
will be elaborated on in the following sections.

CropDiseases (Mohanty et al., 2016) is specifically de-
signed for the recognition of agricultural diseases. It con-
tains 43,456 images across 38 different classes, featuring
a diverse range of crops, both healthy and diseased, each
labeled with a specific disease category.

EuroSAT (Helber et al., 2019) is a comprehensive dataset
comprising an extensive collection of satellite imagery of
Earth’s surface. It encompasses a total of 27,000 images,
meticulously categorized into 10 diverse classes, spanning
a broad spectrum of geographical and topographical at-
tributes.

ISIC2018 (Codella et al., 2019) is a specialized dataset
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Figure 10. Samples of the CropDiseases, EuroSAT, ISIC2018 and
ChestX datasets.

dedicated to medical imaging, particularly focusing on the
classification of skin lesions. This dataset boasts 10,015
images distributed across 7 distinct categories, serving as a
pivotal resource for diagnosing skin diseases.

ChestX (Wang et al., 2017) is another medical imaging
dataset that centers on chest X-rays. It comprises 25,847
images, meticulously categorized into 7 unique classes, of-
fering invaluable data for tasks related to chest disease clas-
sification.

B. Centered Kernel Alignment

Centered Kernel Alignment (CKA) (Kornblith et al., 2019)
is a statistical technique designed to quantify the similarity
between representations learned by disparate neural net-
works. Originating from kernel methods, CKA excels in
comparing high-dimensional representations. To compute
CKA between two sets of data representations X € R"*¢
and Y € R™*4 we first calculate the Gram matrices
K = XXT and L = YY", These matrices encapsulate
the inner products between all pairs of data points within
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Table 3. Comparison with more state-of-the-art works based by 5-way 1-shot accuracy.

Method Backbone FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
GNN + FT (Tseng et al., 2020) ResNet10 X ICLR-20 22.00 30.22 55.53 60.74 42.12
MN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 22.11 32.32 61.28 60.71 44.10
GNN + ATA (Wang & Deng, 2021) ResNet10 X IJCAI-21 22.10 33.21 61.35 67.47 46.53
GNN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 22.92 33.21 63.12 67.61 46.97
LDP-net (Zhou et al., 2023) ResNet10 X CVPR-23 23.01 33.97 65.11 69.64 47.18
FLoR (Zou et al., 2024a) ResNet10 X CVPR-24 23.11 38.11 62.90 73.64 49.69
MEM-FS (Walsh et al., 2023) ViT-S X TIP-23 22.76 32.97 68.11 81.11 51.24
StyleAdv (Fu et al., 2023) ViT-S X CVPR-23 22.92 33.05 72.15 81.22 52.34
FLoR (Zou et al., 2024a) ViT-S X CVPR-24 22.78 34.20 72.39 81.81 52.80
DAMIM (Ma et al., 2024) ViT-S X AAAI-25 22.97 34.66 72.87 82.34 53.21
CD-CLS (Zou et al., b) ViT-S X NeurIPS-24 2293 34.21 74.08 83.51 53.68
AttnTemp (Zou et al., a) ViT-S X NeurIPS-24  23.19 34.92 74.35 84.02 54.12
ReCIT ViT-S X Ours 23.27 35.13 74.56 84.76 54.43
PMF (Shell Xu, 2022) ViT-S v CVPR-22 21.73 30.36 70.74 80.79 50.91
FLoR (Zou et al., 2024a) ViT-S v CVPR-24 23.26 35.49 73.09 83.55 53.85
StyleAdv (Fu et al., 2023) ViT-S v CVPR-23 22.92 33.99 74.93 84.11 53.99
DAMIM (Ma et al., 2024) ViT-S v AAAI-25 23.38 36.35 73.61 83.90 54.31
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  23.39 35.56 74.97 84.54 54.62
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24 23.63 38.05 75.09 84.78 55.39
ReCIT ViT-S v Ours 23.84 38.48 75.23 85.92 55.87
LDP-net” (Zhou et al., 2023) ResNet10 v CVPR-23 22.21 33.44 73.25 81.24 52.54
TPN + ATA" (Wang & Deng, 2021) ResNet10 v 1JCAI-21 22.45 35.55 70.84 82.47 52.83
RDC” (Li et al., 2022) ResNet10 v CVPR-22 22.32 36.28 70.51 85.79 53.73
MEM-FS + RDA" (Walsh et al., 2023) ViT-S v TIP-23 23.85 37.07 75.91 83.74 55.14
DAMIM” (Ma et al., 2024) ViT-S v AAAI-25 23.91 38.07 77.23 86.74 56.49
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  23.88 37.20 78.41 87.39 56.72
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24  23.96 40.13 77.40 87.58 57.23
ReCIT" ViT-S v Ours 24.42 39.39 78.84 88.45 57.78

their respective feature spaces. Subsequently, we proceed to
center the Gram matrices by applying the following process:

K, = HKH,
Lg= HLH,

(22)
(23)

where H = I,, — %1"1; is the centering matrix, I, is
the identity matrix, and 1,, is a vector of ones. Finally, the
centered kernel alignment is computed as:

TI'(Kde)

Te(KD)/T(L3)

where Tr denotes the trace of a matrix. CKA is an exception-
ally valuable tool for assessing similarity, particularly when
comparing different datasets or models. High CKA values
serve as indicators of strong similarity, whereas low values
point to notable differences. In this paper, we leverage CKA
to evaluate the similarity of features across various datasets
and models. Specifically, for each dataset, we extract fea-
tures from the model and compute the CKA similarity be-
tween the source and target domains, aiming to gain insights
into the model’s generalization capabilities across diverse
data distributions.

CKA(K, L) = 24)
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C. Comparison with more SOTAs

As depicted in Tab. 3 and 4, we undertake a comprehensive
comparison of diverse ViT-based and CNN-based method-
ologies in the context of CDFSL tasks. Our proposed meth-
ods consistently outperform all other approaches, attaining
superior performance. These results underscore the effec-
tiveness of our approach.

D. Source Domain Performance

We have provided the performance on the source domain
(minilmageNet) for reference in Tab. 5.

Although there is a slight performance trade-off on the
source domain, this aligns with our hypothesis: disrupting
token continuity prioritizes learning smaller, transferable
patterns over domain-specific holistic features. Crucially,
the significant gains on target domains demonstrate the ef-
fectiveness of our approach for cross-domain adaptation.

E. Detailed related work

Cross-Domain Few-Shot Learning (CDFSL) (Zhou et al.,
2023) focuses on training a model on the source domain
that can generalize well to target domain with limited ex-
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Table 4. Comparison with more state-of-the-art works by 5-way 5-shot accuracy.

Method Backbone FT Mark ChestX ISIC2018 EuroSAT CropDiseases Average
MN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 23.18 39.88 69.63 80.07 53.19
GNN + FT (Tseng et al., 2020) ResNet10 X ICLR-20 24.28 40.87 78.02 87.07 57.06
GNN + ATA (Wang & Deng, 2021) ResNet10 X TJCAI-21 24.32 4491 83.75 90.59 60.39
LDP-net (Zhou et al., 2023) ResNet10 X CVPR-23 26.67 48.06 82.01 89.40 61.29
GNN + AFA (Hu & Ma, 2022) ResNet10 X ECCV-22 25.02 46.01 85.58 88.06 61.67
FLoR (Zou et al., 2024a) ResNet10 X CVPR-24 26.70 51.44 80.87 91.25 62.32
MEM-FS (Walsh et al., 2023) ViT-S X TIP-23 26.67 47.38 86.49 93.74 63.57
StyleAdv (Fu et al., 2023) ViT-S X CVPR-23 26.97 47.73 88.57 94.85 64.53
FLoR (Zou et al., 2024a) ViT-S X CVPR-24 26.71 49.52 90.41 95.28 65.48
DAMIM (Ma et al., 2024) ViT-S X AAAI-25 27.28 50.76 89.50 95.52 65.77
CD-CLS (Zou et al., b) ViT-S X NeurIPS-24  27.23 50.46 91.04 95.68 66.10
AttnTemp (Zou et al., a) ViT-S X NeurIPS-24  27.72 53.09 90.13 95.53 66.62
ReCIT ViT-S X Ours 28.23 52.36 90.42 96.02 66.76
PMF (Shell Xu, 2022) ViT-S v CVPR-22 27.27 50.12 85.98 92.96 64.08
StyleAdv (Fu et al., 2023) ViT-S v CVPR-23 26.97 51.23 90.12 95.99 66.08
FLoR (Zou et al., 2024a) ViT-S v CVPR-24 27.02 53.06 90.75 96.47 66.83
DAMIM (Ma et al., 2024) ViT-S v AAAI-25 27.82 54.86 91.18 96.34 67.55
CD-CLS (Zou et al., b) ViT-S v NeurIPS-24  27.66 54.69 91.53 96.27 67.54
AttnTemp (Zou et al., a) ViT-S v NeurIPS-24 28.03 54.91 90.82 96.66 67.61
ReCIT ViT-S v Ours 28.88 54.91 91.58 96.85 68.06
ConFeSS™ (Das et al., 2022) ResNet10 v ICLR-2022  27.09 48.85 84.65 88.88 62.37
LDP-net” (Zhou et al., 2023) ResNet10 v CVPR-23 26.88 48.44 84.05 91.89 62.82
RDC" (Li et al., 2022) ResNet10 v CVPR-22 25.07 4991 84.29 93.30 63.14
TPN + ATA" (Wang & Deng, 2021) ResNet10 v 1JCAI-21 24.74 49.83 85.47 93.56 63.40
MEM-FS + RDA" (Walsh et al., 2023) ViT-S v TIP-23 27.98 51.02 88.77 95.04 65.70
DAMIM" (Ma et al., 2024) ViT-S v AAAI-25 28.10 55.44 91.08 96.49 67.78
CD-CLS™ (Zou et al., b) ViT-S v NeurIPS-24  28.25 55.66 91.68 96.62 68.05
AttnTemp* (Zou et al., a) ViT-S v NeurIPS-24 28.41 55.22 91.34 96.74 67.93
ReCIT* ViT-S v Ours 28.97 55.60 91.72 96.97 68.32

Table 5. Ablation study of source-domain training by 5-shot.

Method

Source Domain

97.78
96.33

Target Domain

63.91
66.76

Baseline
Ours

amples. Current methods can be grouped into two types:
meta-learning-based approaches and transfer-learning-based
ones. Meta-learning-based approaches (Zhang et al., 2018)
aim at learning task-agnostic knowledge to learn new tasks
efficiently, differing in their way of learning the parameter
of the initial model on the base class data. MAML (Raghu
et al., 2019) aims at learning an initial parameter that can
quickly adapt to new tasks, while FWT (Tseng et al., 2020)
uses a feature-wise transformation to learn representations
with improved ability to generalization. An alternative way
to tackle the problem is transfer-learning-based approaches,
tackling the problem based on reusing the model trained
on the base class data in a standard supervised learning
way. Among these approaches, LRP (Sun et al., 2021)
aims to use the explanation results to guide the learning
process. STARTUP (Phoo & Hariharan, 2021), and Meta-
FDMixup (Fu et al., 2021) mainly aim at defining relaxed
settings for CD-FSL. Wave-SAN (Fu et al., 2022) tackles
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CD-FSL by spanning distributions of source styles. IM-
DCL (Xu et al., 2024) sets the entire feature as positive
and negative sets to learn the query set without accessing
the source domain. However, no studies have explored the
impact of the continuity of ViT in cross-domain scenarios.



