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ABSTRACT

The increasing use of machine learning in safety-critical domains amplifies the
risk of adversarial threats, especially data poisoning attacks that corrupt training
data to degrade performance or induce unsafe behavior. Most existing defenses
lack formal guarantees or rely on restrictive assumptions about the model class,
attack type, extent of poisoning, or point-wise certification, limiting their practi-
cal reliability. This paper introduces a principled formal robustness certification
framework that models gradient-based training as a discrete-time dynamical sys-
tem (dt-DS) and formulates poisoning robustness as a formal safety verification
problem. By adapting the concept of barrier certificates (BCs) from control the-
ory, we introduce sufficient conditions to certify a robust radius within which the
model’s parameter trajectories during training remain safe under worst-case ℓp-
norm based poisoning. To make this practical, we parameterize BCs as neural
networks trained on finite sets of poisoned trajectories. We further derive prob-
ably approximately correct (PAC) bounds by solving a scenario convex program
(SCP), which yields a confidence lower bound on the certified robustness radius
generalizing beyond the training set. Importantly, our framework also extends to
certification against test-time attacks, making it the first unified framework to pro-
vide formal guarantees in both training and test-time attack settings. Experiments
on MNIST, SVHN, and CIFAR-10 show that our approach certifies non-trivial
perturbation budgets while being model-agnostic and requiring no prior knowl-
edge of the attack or contamination level.

1 INTRODUCTION

The deployment of machine learning (ML) models in safety-critical domains, such as autonomous
driving and medical diagnostics, increases the risk of adversarial threats, especially data poisoning
attacks. In such attacks, an adversary deliberately injects crafted perturbations into the training
dataset to subvert the model’s behavior, degrade performance, or break the safety requirements at
test-time (Biggio et al., 2012; Shafahi et al., 2018; Koh & Liang, 2017). These attacks exploit
the training pipeline, embedding backdoors or stealth vulnerabilities that can persist unnoticed and
trigger failures in mission critical applications (Carlini et al., 2024; Schwarzschild et al., 2021). Al-
though a variety of defenses have been proposed to mitigate data poisoning attacks, ranging from
detecting and removing poisoned samples to modifying training strategies for robustness, these ap-
proaches are largely heuristic and remain vulnerable to sophisticated adaptive attacks (Goldblum
et al., 2023; Koh et al., 2022; Shafahi et al., 2018; Huang et al., 2020). This highlights the need
to develop formal robustness certificates that guarantee that the predictions of a model remain
unchanged by poisoning.

A small but growing line of work explores such robustness certification under fixed-threat mod-
els and a certain allowed corruption budget for poisoning. Notable techniques include randomized
smoothing (Weber et al., 2023), model ensembling (Levine & Feizi, 2021), parameter-space interval
bounds via convex relaxation (Sosnin et al., 2025), and combining kernels and linear programming
approaches for large-width networks (Sabanayagam et al., 2025; Gosch et al., 2025). However,
these methods face three major limitations: (i) Threat model and budget assumptions: Most
works assume a fixed (un)bounded corruption budget, with no mechanism to compute the budget
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Figure 1: BaRC framework against data poisoning attacks. An NNBC B is learned from the param-
eters of hθ and verified through a PAC bound guarantee, ensuring robustness with violation at most
ϵ and a confidence of at least 1−β.

corresponding to a desired robustness level. Furthermore, it is assumed that the number of corrupted
data points is known (Weber et al., 2023); (ii) Model specificity: The approaches are limited to
specific architectures in some cases, such as decision trees (Meyer et al., 2021), nearest neighbors
(Jia et al., 2022), or graph neural networks (Sabanayagam et al., 2025; Gosch et al., 2025), and as-
sume white-box access; (iii) Pointwise guarantees: Most certification methods provide guarantees
only for individual test points, failing to account for the global behavior of the model in the test data
(Levine & Feizi, 2021). Together, these limitations underscore a fundamental open question:
Can we determine, for any ML model, a certified poisoning budget under ℓp-norm based corruption
such that the model’s performance degradation under poisoning is at most a desired threshold α?

In this work, we answer this question positively by developing a framework inspired by control-
theoretic safety verification to certify ML models against data poisoning. We model gradient-based
training as a discrete-time dynamical system (dt-DS), where the model parameters form the system
state and the (potentially poisoned) training data act as the input to the system. Within this dynam-
ical system view, we recast poisoning robustness as a formal safety verification problem and adapt
barrier certificates (BCs) (Ames et al., 2014; Prajna et al., 2007) to certify a robust radius ℓp for
a prescribed accuracy-degradation tolerance α, ensuring that parameter trajectories remain within
the safe set under worst-case poisoning. This enables principled worst-case guarantees without re-
quiring knowledge of the specific ML architecture, the poisoning attack strategy, or the fraction of
corrupted data, and provides a certificate for the entire test dataset, not just point-wise test samples.
We note that it is challenging to explicitly construct the BCs for ML training processes due to the
high dimensionality of the parameter space, lack of a closed-form training model, and the unknown
nature of the poisoning attack model, thus rendering the exact system dynamics inaccessible. To
address this, we adopt a data-driven approach that parameterizes BC as a neural network, producing
a neural network-based BC (NNBC), similar to recent data-driven safety verification using BC for
unknown systems (Anand & Zamani, 2023; Zhang et al., 2025; Rickard et al., 2025). Although the
NNBC is trained on a finite set of trajectories generated under admissible perturbations, we ensure
that the BC conditions hold more generally by reformulating verification as a scenario convex pro-
gram (SCP). This allows us to derive probably approximately correct (PAC) bounds (Campi &
Garatti, 2008; Rickard et al., 2025), providing a probabilistic guarantee. The PAC bound ensures,
with some confidence, that the probability of violating the barrier conditions on unseen trajectories
stays below a prescribed level, ensuring that the certified radius generalizes beyond the training tra-
jectories. Figure 1 presents the BaRC framework against data poisoning attacks. Importantly, our
NNBC framework allows for certifying test-time corruptions as well, providing a unified approach
to certify both train and test data poisoning.

Key novel contributions of this work are as follows:
1. We cast gradient-based ML training as a discrete-time dynamical system and reformulate ro-
bustness certification against train and test data perturbations as a formal safety verification problem
using barrier certificates (BC).
2. We introduce a scalable neural network-based BC (NNBC) framework to overcome the in-
tractability of the explicit BC design for high-dimensional and unknown poisoned training dynamics.
NNBC is trained to obtain the certified robust radius, the largest admissible perturbation of the train
or test data for which the degradation in test accuracy is provably at most a given threshold.
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3. We derive a probably approximately correct (PAC) bound that provides a rigorous probabilistic
guarantee for the trained NNBC and its associated certified robust radius.
4. Our approach is model-agnostic and does not require prior knowledge of the architecture, the
poisoning attack strategy, or the amount of data corrupted, thus broadly applicable.
5. We empirically validate the effectiveness of our certification framework on various models and
datasets, demonstrating its ability to quantify and formally certify safe perturbation budgets for
training and test-time attacks in practice.

Related Work. Although determining the maximum allowable poisoning budget for a specified
model performance is understudied, many different flavors of certificates are developed for data
poisoning (see Appendix E for a detailed discussion). Ensemble-based certifications are generally
developed assuming unbounded perturbations to the samples and provide robustness guarantees by
aggregating over multiple base models trained on randomly subsampled datasets. These certificates
establish a lower bound on the number of clean samples required to outweigh poisoned examples
under majority voting (Levine & Feizi, 2021; Jia et al., 2021). Moreover, these methods typically
assume the independence between base models. Weber et al. (2023) extends randomized smooth-
ing, a test-time certification strategy, to poisoning by considering that a fixed pattern is injected into
a subset of training and all test inputs and certifies the prediction of a smoothed classifier. Other
methods assume a bounded adversary, where the perturbation budget and the number of poisoned
examples are explicitly constrained. Gosch et al. (2025) takes a kernel-based approach that requires
knowledge of the corrupted training data and the magnitude of the perturbations, providing guaran-
tees via linear programming. Sosnin et al. (2025) introduces a gradient-based certification method
based on convex relaxations and interval bounds, certifying robustness for convex losses trained with
known corruption levels. However, these approaches rely on restrictive knowledge of the adversary’s
behavior and are limited to specific model families.

2 PRELIMINARIES

All proofs, expanded notation, algorithmic procedures, and additional experimental results are de-
ferred to the Appendix.

2.1 SETUP FORMULATION

We consider a supervised learning problem defined on a clean training dataset Dtrain =
{(ui, yi)}ni=1 ⊆ Rm × Y , where Y := {1, . . . , k}, consisting of n input–label pairs, where each
feature vector ui ∈ Rm is associated with a label yi ∈ Y . Similarly, let Dtest = {(u′

i, y
′
i)}n

′

i=1 ⊆
Rm × Y be a held-out test set of size n′. Let hθ : Rm → Y denote a parameterized ML model
(e.g., a neural network) with parameter vector θ ∈ Rd. The model is trained by iteratively updating
θ according to a gradient-based update rule f :Rd×J →Rd, where J denotes auxiliary inputs (e.g.,
gradients or batch indices). The parameters are updated by:

θ(t+ 1) = f(θ(t),J (t)) := θ(t)− γt∇θL(hθ(t),Dtrain(t)), (1)

where γt > 0 is the learning rate, J (t) := (γt,Dtrain(t)), and Dtrain(t) ⊆ Dtrain denotes the
complete data set or a batch sampled in iteration t ∈ N0. The model is trained on the dataset
Dtrain by minimizing the empirical training loss L(hθ,Dtrain) := 1

n

∑n
i=1 ℓ

(
hθ(ui), yi

)
, where

ℓ : Y×Y → R+ is a non-negative pointwise loss function. Training is performed until convergence
or a predefined termination criterion is met. The generalization performance of the trained model is
evaluated on Dtest via the test accuracy denoted by g, such that:

g(θ) :=
1

n′

n′∑
i=1

1{hθ(u′
i)=y′

i}. (2)

In practice, the data used to train or evaluate an ML model hθ may be adversarially perturbed, re-
sulting in degraded performance. Such poisoning attacks can target input features, labels, or both,
and may occur during either the training or testing phases of the ML pipeline. In this work, we focus
on input-space poisoning, where perturbations affect the training or test data features. Our certifi-
cation framework provides formal guarantees of the maximum allowable perturbation magnitude,
measured in the ℓp norm. The following definitions formalize this poisoning threat model.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 1 (Train-time poisoning attack). LetDtrain = {(ui, yi)}ni=1 be the clean training set. A
poisoning attack is modeled as an adversary A that perturbs an unknown fraction ρ ∈ [0, 1] of the
training samples, resulting in r := ⌈ρ.n⌉ modified inputs. The poisoned dataset is given by:

D∆
train :=

{
(ui + δi, yi)

}r

i=1
∪
{
(ui, yi)

}n

i=r+1
, s.t. ∥∆∥p := max

i∈[r]
∥δi∥p ≤ δ, (3)

where ∆ := [δ1, . . . , δr] ∈ Rr×m is the perturbation matrix, and each row δi ∈ Rm perturbs the
feature vector ui of the i-th training sample and is constrained by a row-wise ℓp norm bound.

Definition 2 (Test-time evasion attack). Let Dtest = {(u′
i, y

′
i)}n

′

i=1 be the clean test set. An evasion
attack is modeled as an adversary A′ that perturbs an unknown fraction ρ′ ∈ [0, 1] of the test
samples, resulting in r′ := ⌈ρ′.n′⌉ modified inputs. The perturbed test set is given by:

D∆′

test :=
{
(u′

i + δ′i, y
′
i)
}r′

i=1
∪
{
(u′

i, y
′
i)
}n′

i=r′+1
, s.t. ∥∆′∥p := max

i∈[r′]
∥δ′i∥p ≤ δ′, (4)

where ∆′ := [δ′1, . . . , δ
′
r′ ] ∈ Rr′×m is the matrix of input-space perturbations applied at test-time.

Note that, without loss of generality, we assume that the first r elements of the training dataset and
the first r′ elements of the test dataset are poisoned. In addition, if δ = 0 or ρ = 0 (resp. δ′ = 0 or
ρ′ = 0), the poisoned dataset reduces to the clean one, i.e., D∆

train = Dtrain (resp. D∆′

test = Dtest).

2.2 METHODOLOGY

The goal of this paper is to formally certify the robustness of an ML model hθ against data poisoning
or evasion attacks by determining its certified robust radius under ℓp perturbations, within which
the performance of the trained model remains above a target threshold. We now formalize this
robustness certification problem:

Problem 3 (Certified robust radius). Let hθ be a parameterized ML model trained on a potentially
poisoned training setD∆

train and evaluated on a potentially poisoned test setD∆′

test. Given a threshold
α ∈ [0, 1], the objective is to determine the largest poisoning radius δcert for training-time (resp.
δ′cert for test-time), such that, for all perturbations ∆ (resp. ∆′) satisfying ∥∆∥p ≤ δcert (resp.
∥∆′∥p ≤ δ′cert), the performance degradation of the trained model remains within α.

During training, data poisoning can alter the optimization process, causing convergence to subop-
timal or unsafe regions in the parameter space. At test-time, evasion attacks can shift the decision
boundary, degrading generalization and reliability. We capture these effects through a safety crite-
rion that distinguishes safe from unsafe parameter regions with respect to a given gap threshold.

Definition 4 (Safety criterion). Let hθ be an ML model with parameters θ(t) ∈ Rd at iteration
t ∈ N0, initialized at θ(0) ∈ Θ0, trained on a possibly poisoned dataset D∆

train, and converges at
t = t∞. To quantify degradation in test performance under poisoning, we define the safety criterion
as the accuracy drop of hθ relative to clean training: G

(
θ(t′)

)
= gc

(
θ(t′)

)
− gp

(
θ(t′)

)
, where

gc
(
θ(t′)

)
denotes the test accuracy of the model trained on the clean dataset, and gp

(
θ(t′)

)
denotes

the test accuracy of the model trained on the poisoned dataset; both accuracies are evaluated at
iteration t = t′. Given a threshold α ∈ [0, 1], we define the safe and unsafe sets, as follows:

Θs :=
{
θ ∈ Rd

∣∣ G(θ) ≤ α
}
, Θu :=

{
θ ∈ Rd

∣∣ G(θ) > α
}
. (5)

Consequently, we define the empirical train-time robust radius δemp (resp. test-time radius δ′emp) as
the largest perturbation bound such that, for all ∆ (resp. ∆′) with ∥∆∥p ≤ δemp (resp. ∥∆′∥p ≤
δ′emp), the terminal parameters θ(t∞) satisfy G(θ(t∞))≤α, and thus remain within the safe set Θs.

Remark 5. Note that Definition 4 is generally stated to allow for reasoning and evaluating G(θ(t′))
at any iteration. However, the robustness objective in Problem 3 and our focus in this work is to
certify that the terminal parameters θ(t∞) are in the safe set, i.e., G(θ(t∞)) ≤ α.

Although empirical robust radii estimate robustness on poisoned data, they lack formal guarantees
for all trajectories within the admissible budget realizations. To bridge this critical gap, we model
the training process of hθ as a dt-DS, enabling the derivation of conditions to certify a robust radius.
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Definition 6 (Dynamical system). Let hθ be an ML model. A discrete-time dynamical system (dt-
DS) is a tuple S = (Θ, Θ0, D∆

train, f), whereD∆
train ⊆ Rm×Y is a (potentially poisoned) training

dataset, Θ ⊆ Rd is the set of model parameters, Θ0 ⊆ Θ is the set of initial model parameters, and
f : Rd × Rm × Y → Rd is the parameter update map specified by the gradient-based optimization
algorithm in Section 2.1. Thus, the system S evolves according to equation (1), i.e., θ(t + 1) =
f
(
θ(t),J (t)

)
, for all t ∈ N0, where θ(t) ∈ Θ and J (t) = (γt,D∆

train(t)) represent the state and
input of the system at time t, respectively.

Since the learning rate γt is treated as a fixed hyperparameter, we omit it from the update rule
notation in the rest of the paper and write f(θ,D∆

train) for notational simplicity. We then adopt a BC
formulation, inspired by Prajna & Jadbabaie (2004), as the foundation of our robustness certification.
Definition 7 (Barrier certificate). Let hθ be an ML model with its associated dt-DS S =
(Θ, Θ0, D∆

train, f). Consider G be the safety criterion function as in definition 4. Let δemp (resp.
δ′emp) be the empirical train-time (resp. test-time) robust radius, and let Θu ⊆ Θ be the corre-
sponding unsafe set, derived by training hθ on D∆

train and evaluating performance via g on D∆′

test. A
function B : Rd→R is called a barrier certificate (BC) if there exists a certified train-time robust
radius δcert (resp. test-time radius δ′cert) such that the following conditions hold for all (potential)
perturbations satisfying ∥∆∥p ≤ δcert (resp. ∥∆′∥p ≤ δ′cert):

B(θ) ≤ 0, ∀ θ ∈ Θ0, (6)
B(θ) > 0, ∀ θ ∈ Θu, (7)
B(f (θ,D∆

train)) ≤ 0, ∀ θ ∈ Θ, s.t. B(θ) ≤ 0. (8)

Remark 8. Train-time poisoning alters the dynamics f(θ,D∆
train) and affects the reachability condi-

tion (8), while test-time poisoning modifies only D∆′

test, influencing the output of the safety function
g(θ). However, the form of the BC conditions remains identical for both cases, sinceB certifies safety
based solely on terminal parameters, without requiring knowledge of the source of the perturbation.
Remark 9. Conditions (6) and (7) ensure that every admissible initialization θ(0)∈Θ0 lies within
the barrier sublevel set. Note that a safe initial parameter does not guarantee that the robustness
certificate holds for the ML model. As detailed in Section 2.1, the model must still be trained to
attain the desired functionality, during which it may become unsafe at convergence. For this reason,
we enforce condition (8) to ensure the safety of the final trained model.

The following theorem shows that the existence of a BC B implies a certified robust radius for the
ML model. For more details about the role of B and the proof, see Appendix B.1.
Theorem 10 (Certified robust radius). Let hθ be an ML model, trained on a (potentially) poisoned
dataset D∆

train and evaluated on a (potentially) poisoned dataset D∆′

test, as in Section 2.1. Consider
a dt-DS S=(Θ,Θ0,D∆

train, f) as in Definition 6, modeling the training dynamics of hθ. Let δemp

(resp. δ′emp) denote the empirically derived train-time (resp. test-time) robust radius, and let Θs⊆Θ
and Θu ⊆Θ denote the corresponding safe and unsafe sets of terminal parameters, as introduced
in Definition 4. If there exists a BC B satisfying the conditions in Definition 7 for a train-time
(resp. test-time) robust radius δcert (resp. δ′cert), then all trajectories initialized at θ(0)∈Θ0 remain
within the safe set Θs and never enter the unsafe set Θu for any perturbations ∥∆∥p≤ δcert (resp.
∥∆′∥p ≤ δ′cert). Thus, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust
radius, ensuring that, under worst-case perturbations, the degradation in test accuracy is at most α.

However, constructing a BC B for S is intractable due to the high dimensionality of the model
parameters and the lack of an explicit mathematical model of S. To overcome this, we propose a
data-driven approach to synthesize B.

3 DATA-DRIVEN ROBUSTNESS CERTIFICATION

In this section, we present our data-driven approach to certify the robustness of an ML model hθ

by constructing a neural network-based barrier certificate (NNBC) whose parameters are trained to
satisfy the conditions in Definition 7. Given a dynamical system S, we define an NNBC Bφ :Rd→R
parameterized by φ. The input to the network is the state vector θ ∈Rd, and the output is a scalar
barrier value Bφ(θ). The network uses ReLU activations in the hidden layers to ensure a piecewise

5
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affine, locally Lipschitz structure, and an identity activation in the output layer. The depth and width
of Bφ(θ) are tunable hyperparameters.

Data. To train an NNBC Bφ, we generate a dataset by training hθ under varying levels of data poi-
soning across N uniformly spaced budgets. Specifically, we define two grids δgrid = ⟨δ1, . . . , δN ⟩,
and δ′grid = ⟨δ′1, . . . , δ′N ⟩, where each point in δgrid and δ′grid, represent train- and test-time poison-
ing levels, respectively. Depending on the certification type (train- or test-time), one grid is fixed to
zero. Then, for each i ∈ {1, . . . , N}, we randomly initialize hθ at θi(0)∈Θ0 and train it on D∆

train
with ∥∆∥p=δi, yielding the terminal state θi(t∞). Next, following Definition 4, each trained model
is evaluated on the dataset D∆′

test, where ∥∆′∥p = δ′i, and classified as safe or unsafe based on the
safety criterion G(θi(t∞)) compared to a threshold α∈ [0, 1]. Thus, the resulting datasets are:

I=
{
θi(0) |θi(0)∈Θ0

}
, S=

{
θi(t∞) |G(θ(t∞))≤α

}
, U=

{
θi(t∞) |G(θ(t∞))>α

}
, (9)

where I ⊆ Θ0, S ⊆ Θs, and U ⊆ Θu, and we denote the union ϑ := I ∪ S ∪ U ⊆ Θ. Then δemp

or δ′emp is computed. Note that, depending on the chosen threshold α, some sampled sets may be
empty; we refer interested readers to the Appendix for more details.

Loss. In order to train an NNBCBφ that satisfies the conditions in Definition 7 across the generated
datasets in (9), we define a composite loss function, as follows for all i∈{1, . . . , N}:

L(φ) = cI
∑
θi∈I

R
(
Bφ(θi)

)
+ cU

∑
θi∈U

R
(
−Bφ(θi)

)
+ cZ

∑
θi∈Z

R
(
Bφ

(
f(θi,D∆i

train)
))
, (10)

whereR := ReLU and ∥∆i∥p ≤ δcert. The scalars cI , cU , cZ > 0 weight the respective conditions,
and the set Z ⊆ ϑ, is defined by Z = {θi | θi ∈ ϑ, Bφ(θi) ≤ 0}. When the loss function satisfies
L(φ)= 0, the NNBC Bφ is considered trained and denoted by B∗φ, along with the certified robust
radius denoted by δ∗cert (resp. δ′∗cert). This implies that the conditions (6)–(8) hold for all sampled
states I, U , and S. However, since NNBC B∗φ is trained based on a finite set of parameter states, it
does not cover the entire set Θ. To overcome this limitation, we establish a probabilistic guarantee
that extends the validity of the certificate beyond the training samples with some confidence.

4 PROBABILISTIC ROBUSTNESS GUARANTEE FOR NNBC

We now provide a formal robustness guarantee that quantifies how well the certified robust radius
generalizes beyond the training samples. Specifically, we derive a probably approximately correct
(PAC) guarantee with explicit confidence. To do this, we first need to assume that the learned NNBC
B∗φ is fixed and given to us. Let us define ΘZ = {θ | θ ∈Θ,Bφ(θ)≤ 0} ⊆Θ. We then introduce a
scalar margin denoted by ηr ≤ 0 and functions qk :Rd→R, where k ∈ {1, 2, 3}, corresponding to
the conditions in Definition 7, such that:

q1(θ, ηr) =
(
B∗φ(θ)− ηr

)
1Θ0 , (11)

q2(θ, ηr) =
(
− B∗φ(θ)− ηr

)
1Θu

, (12)

q3(θ,∆, ηr) =
(
B∗φ(f(θ,D∆

train)
)
− ηr

)
1ΘZ . (13)

Robust convex problem (RCP). To robustly verify the BC conditions (11)-(13) under all possible
poisoning perturbations ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), we formulate an RCP over the only
decision variable ηr, enforcing strict satisfaction of all constraints:

RCP :

{
min
ηr≤0

ηr

s.t. qk(θ,∆, ηr) ≤ 0, ∀θ ∈ Θ, ∀k ∈ {1, 2, 3}.
(14)

Since B∗φ is fixed, the RCP is a robust linear program over the scalar variable ηr, with the optimal
value denoted by η∗r . A solution η∗r < 0 certifies that B∗φ satisfies the conditions in Definition 7,
and thus provides an exact robustness certificate for the poisoning attack with the corresponding
radius δ∗cert (resp. δ′∗cert) with a guarantee 100%. However, solving this robust linear program is
intractable, as the state transition map f is not available under unknown poisoning attacks and the
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robust problem involves infinitely many constraints due to θ and ∆ belonging to some continuous
sets. To make this tractable, we relax the RCP into the following chance-constrained problem (CCP):

CCP :

{
min
ηr≤0

ηr

s.t. P [qk(θ,∆, ηr) ≤ 0, ∀θ ∈ Θ, ∀k ∈ {1, 2, 3}] ≥ 1− ϵ,
(15)

where ϵ ∈ (0, 1) denotes the given violation probability. The goal is to solve the CCP in (15) rather
than the RCP in (14). The CCP optimally discards a constraint subset of probability mass at most ϵ
to maximize objective improvement. However, solving CCP is still challenging since both θ and ∆
lie in continuous spaces. Therefore, we tackle the associated Scenario Convex Problem (SCP).

Scenario convex problem (SCP). We approximate infinitely many constraints by sampling N̂
i.i.d. scenarios using the data generation process described in (9). This yields sampled sets Z1⊂Θ0,
Z2 ⊂Θu, and ϑ′ ⊂Θcorresponding to data points in the initial, unsafe, and safe sets, respectively.
Then, SCP enforces the inequalities only in these sampled scenarios for all i ∈ {1, . . . , N̂} and
∥∆i∥p≤δ∗cert (resp. ∥∆′

i∥p≤δ′∗cert) as follows:

SCP :

{
min
ηs≤0

ηs

s.t. qk(θi,∆i, ηs) ≤ 0, ∀θi ∈ Zk, ∀k ∈ {1, 2, 3}.
(16)

where Z3 = {θi | θi ∈ ϑ′,Bφ(θi)≤ 0} Let η∗s denote the optimal value of the SCP. Since the SCP
replaces the infinite set with finitely many trajectories, it is crucial to assess the generalization of
this solution. Hence, we establish a probabilistic bound that quantifies the gap between η∗s and η∗r ,
guarantees the constructed BC B∗φ, and thus certifies the robust radii with some confidence.

Probably approximately correct (PAC) guarantee. To rigorously connect the CCP, and SCP, we
adopt the PAC guarantee based on Theorem 1 of Calafiore & Campi (2006). Specifically, with a
confidence of at least 1−β, the solution η∗s of SCP in (16) is a feasible solution of CCP in (15),
provided that the number of i.i.d. scenarios N̂ satisfies:

N̂ ≥
⌈ ln(β)

ln(1− ϵ)

⌉
. (17)

We now present the main theoretical result of BaRC. A summary of the certification procedure is
given in Algorithm 1, with extended versions for poisoning and evasion attacks in the Appendix C.
Theorem 11 (BaRC). Let hθ be an ML model, trained on a potentially poisoned training dataset
D∆

train and evaluated on a potentially poisoned test dataset D∆′

test, as described in Section 2.1. As-
sume that model updates follow the gradient-based rule f as in (1), with the training process mod-
eled by a dt-DS S. Consider α ∈ [0, 1], ϵ ∈ (0, 1), and β ∈ [0, 1] as a gap threshold as in (5),
the probability of violation as in (15), and the confidence level as in (17), respectively. Suppose an
NNBC B∗φ is trained using a finite number of samples generated through the procedure in Section
9, producing a certified train-time robust radius δ∗cert (resp. certified test-time robust radius δ′∗cert).
Let η∗s < 0 be the optimal barrier margin obtained by solving the SCP in (16) on N̂ i.i.d. samples,
with N̂ satisfying the bound in (17). Then, with a confidence of at least 1−β, the learned certificate
B∗φ ensures that, for all poisoning perturbations satisfying ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), the
model’s converged parameters remain in the safe set Θs and G(θ(t∞))≤α as in Definition 4, with
the violation probability of at most ϵ.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of BaRC and analyze how key design choices impact the
certified robustness of the trained model hθ under the ℓ∞ and ℓ2 train-time threat models. Additional
experiments for test-time certification are provided in the Appendix D. We perform experiments on
three standard image classification benchmarks: MNIST, SVHN, and CIFAR-10. Robustness is
assessed against three representative poisoning strategies during training, Projected Gradient De-
scent (PGD) (Madry et al., 2018), Backdoor Attack (BDA) (Gu et al., 2017), and Bullseye Polytope
Attack (BPA) (Aghakhani et al., 2021), and against PGD and AutoAttack (AA) (Croce & Hein,
2020) at test time. The hypothesis class hθ spans multiple architectures, including MLP, CNN, and
ResNet, trained with optimizers GD, SGD, and Adam. We provide the details of the experimental
setups with hyperparameters in Table 3, and list all model architectures in Table 4 in the Appendix.
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Algorithm 1 BaRC against Poisoning Attacks
Input: Model hθ , gap threshold α, number of samples for training NNBC N , number of scenario for solving
SCP N̂ , training horizon t∞, confidence level 1−β, max iterations T
Output: Trained B∗

φ, certified robust radius δ∗cert, violation probability ϵ

1: Sample N poisoned training trajectories dataset.
2: Train hθ on each to obtain θi for all i ∈ {1, . . . , N}. Collect terminal parameters θi(t∞) and label as safe

or unsafe using G(θi(t∞)) ≤ α; assign θi(0) to initial set.
3: Fix δemp ← max{δi | G(θi(t∞)) ≤ α} and initialize δcert ← δemp.
4: Train an NNBC Bφ on collected data to satisfy L = 0.
5: If there is no B∗

φ, reduce δcert or increase N and retrain. If not feasible after T tries, hθ can not be certified.
6: Generate N̂ new i.i.d. poisoned samples using Step 1.
7: Solve the SCP in equation (16) to obtain the margin η∗

s . If η∗
s > 0, reduce δcert and return to Step 2 until

η∗
s ≤ 0. Then, compute the minimum violation probability ϵ from condition (17).

(a) CIFAR10, ResNet, BPA
(ρ = 0.2)

(b) SVHN, ResNet, PGD
(ρ = 0.9)

(c) SVHN, MLP, BDA
(ρ = 0.1)

(d) MNIST, CNN, PGD
(ρ = 1)

Figure 2: Certified accuracy (g∗p) versus perturbation magnitude (δ) on different settings and poison-
ing scenarios. Each figure reports the terminal test accuracy g(θ(t∞)), the empirical robust radius
δemp, and the certified robust radius δ∗cert obtained using the proposed BaRC framework. The con-
fidence level is fixed at 1 − β, β = 10−4, across all settings, with the corresponding violation
probabilities being ϵ = (a) 0.015, (b) 0.013, (c) 0.006, and (d) 0.005.

Results. We present representative results of different combinations of ℓ2 and ℓ∞ train-time at-
tacks under poisoning ratio ρ ranging from 0.1 to 1 and datasets, with a confidence level of 99.99%
in Table 1 and Figure 2 (see Table 3 and Figure 5 for all the results). We denote the certified ac-
curacy by g∗p which is computed by g∗p = gc − α as in Definition 4. Non-trivial certificates are
obtained in all settings. Exemplary, for SVHN, at g∗p = 0.75 under PGD (ℓ2), BaRC certifies robust
radii up to δ∗cert = 0.92 even when the poisoning ratio is as high as ρ = 0.9. All SCP margins η∗s are
non-positive, ensuring feasibility, and the violation probability ϵ remains below 0.02 in most con-
figurations (Table 1). Importantly, BaRC results in tight certificates, as the certified robust radius
δ∗cert is consistently close to the empirical robust radius δ∗emp.

Figure 3: Comparison of
BaRC and RAB on SVHN
under test-time BDA with
ℓ∞ attack. BaRC consis-
tently yields higher certi-
fied robustness than RAB.

Additionally, we compare BaRC with RAB, a randomized smooth-
ing–based certified defense against evasion and backdoor attacks (We-
ber et al., 2023). As shown in Figure 3, BaRC consistently achieves
stronger and tighter guarantees than RAB. Notably, BaRC more
closely matches the empirical robustness (see Table 5 for more results).
Other feature-poisoning certificates are less suitable for direct com-
parison: BagFlip (Zhang et al., 2022) is restricted to ℓ0 corruptions;
ensemble-based methods permit unbounded perturbations (Levine &
Feizi, 2021; Wang et al., 2022); and model-specific approaches tai-
lored to neural networks either apply only to infinite-width graph neu-
ral networks (Gosch et al., 2025) or impose unrealistic restrictions on
training and model choice (Sosnin et al., 2025). More experiments, including diverse train- and
test-time attack scenarios and a runtime analysis, are provided in Appendix D.

6 DISCUSSION AND CONCLUSION

Our proposed framework, BaRC, offers a principled, model-agnostic, attack-independent, data-
driven solution for certifying both train-time and test-time poisoning of an ML model. We model
gradient-based training as a dt-DS and frame poisoning robustness as a safety verification problem
in parameter space. BaRC employs neural network–based barrier certificates, trained on sampled
poisoning trajectories, and certifies robustness with probably approximately correct guarantees.
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Dataset ML model Optimizer A ρ-ratio p-norm N N̂ g∗
p δemp δ∗cert η∗

s ϵ

MNIST CNN SGD PGD 1 ∞ 4000 1800 0.90 0.14 0.13 -0.01 0.0050.80 0.18 0.16 -0.01

SVHN
ResNet Adam PGD 0.9 2 3000 700 0.75 1.21 0.92 -0.11 0.0130.60 2.0 1.67 -0.05

MLP SGD BDA 0.1 ∞ 4000 1500 0.80 0.25 0.23 -0.02 0.0060.60 0.35 0.32 -0.03

CIFAR-10 ResNet Adam BPA 0.2 2 2000 600 0.70 0.61 0.52 -0.01 0.0150.60 0.84 0.68 -0.02

Table 1: Certification results for the train-time ℓ2 and ℓ∞ poisoning attacks and datasets in Figure 2.
Each row reports the certified accuracy (g∗p), the empirical (δemp) and certified (δ∗cert) radii, BC mar-
gin (η∗s ), and violation probability (ϵ), evaluated at a performance gap threshold α and a confidence
level of at least 99.99%. Larger δ∗cert indicates stronger certified robustness.

BaRC for train-time vs. test-time. BaRC certifies robustness against both train-time and test-
time poisoning, though these settings affect the learning differently. Train-time poisoning modifies
the training data D∆

train, altering the learning dynamics and influencing which parameters are reach-
able, directly impacting the reachability-based constraints used in constructing the barrier certificate.
In contrast, test-time poisoning affects only the evaluation data D∆′

test, modifying the safety predicate
g(θ) by changing how the final model is judged as safe or unsafe. Despite these differences, the
barrier certificate Bφ enforces the same structural constraints in both settings, and the certified radii
ensure that the terminal model parameters remain within the safe set under each poisoning modality.

Empirical robust radius vs. certified robust radius. Any certified robust radius δcert (resp. δ′cert
for test-time) satisfies δcert ≤ δemp (resp. δ′cert ≤ δ′emp). Ideally, a tight certificate would achieve
equality, but this is rarely possible due to the inherent conservativeness of formal guarantees from
finite samples. The tightness largely depends on how the model’s test accuracy g(θ) degrades under
increasing poisoning. When the degradation is stable and predictable, the learned parameter exhibit
more structure, making the NNBC easier to train and the certificate tighter. This highlights a key
insight: the regularity of model behavior under poisoning affects not just robustness and accuracy,
but also the feasibility of learning a generalizable barrier, reflecting the foundational principle of
BCs, which rely on the continuity and predictability of system dynamics in parameter space.

Influence of number of samples in the data generation process. The effectiveness of BaRC
hinges on its data generation process, which produces (i) poisoned training trajectories for learning
the NNBC and (ii) i.i.d. scenario samples for PAC-style certification. These are controlled by two
key parameters: N (number of trajectories) and N̂ (number of scenarios). While N̂ can be selected
based on the desired violation rate ϵ and confidence level 1 − β via inequality (17), choosing N
is more empirical. Since the NNBC is a learned function, N must be large enough to capture the
safe/unsafe boundary, and it depends on the dataset and model complexity. Empirically, BaRC
achieves reliable certification when initialized with at least N = 1000 samples. If NNBC training
or SCP feasibility fails, increasing N by ∼500 typically restores feasibility, balancing statistical
coverage with computational cost. This incremental strategy balances cost and coverage, ensuring
sufficient data for both learning the NNBC and robust certification.

Scalability of BaRC. BaRC is designed to be broadly applicable across architectures, optimizers,
and poisoning modalities, and it has demonstrated strong scalability by certifying high-capacity
models such as ResNet on CIFAR-10. However, this generality and empirical robustness come at a
computational cost since BaRC relies on empirical training trajectories and data generation process,
each corresponding to a ML model training run. (see Table 3 for runtime analysis).

Generality of BaRC. BaRC models gradient-based training as a discrete-time stochastic dynam-
ical system, operating entirely in parameter space. It assumes no white-box access to the attack
(e.g., strategy, trigger, or poisoning ratio), model architecture, loss landscape, or optimizer; all these
elements are abstracted into the realized update map f , which is observed only through sampled
trajectories used to train and verify the barrier certificate Bφ. While BaRC directly certifies ro-
bustness only against feature-space perturbations (not label corruption), its generality is evident in
several ways: (i) it certifies both training-time and test-time poisoning, (ii) it supports any model
architecture and hyperparameters under gradient-based optimizers such as (S)GD or Adam, and
(iii) it requires no knowledge of the attack strategy or poisoning ratio. Extending BaRC to non-ℓp
perturbations remains a promising direction for future work.
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7 ETHICS STATEMENT

Our work provides a way to formally assess the worst-case robustness of neural networks against
poisoning at both training and test time—addressing them jointly for the first time. Although such
insights could, in principle, be misused by adversaries, we argue that identifying and understanding
these vulnerabilities is essential for the safe deployment of neural networks now and in the future.
We therefore believe that the societal benefits of advancing robustness research outweigh the po-
tential risks, and we do not anticipate any immediate misuse arising from our contributions. In
addition, this paper was entirely written by the authors. Large language models (LLMs), were used
solely for final-stage language editing and polishing, without contributing to the scientific content
or experimental results.

8 REPRODUCIBILITY STATEMENT

We have taken considerable care to ensure the reproducibility of our findings. Detailed descriptions
of the experimental setup are provided in Sections 5 and D, where we also report all hyperparameter
choices. To control stochasticity, we fixed random seeds in all pseudorandom number generators
used in the experiments. The complete codebase, along with the configuration files for every exper-
iment, is available at https://figshare.com/s/42f69e5af3c98213688c and will be
publicly released upon acceptance.
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A NOTATION

We denote the sets of real, positive real, and negative real numbers by R, R+, and R−, respectively.
The absolute value of a scalar θ ∈ R is denoted by |x|. The sets of positive integers and non-negative
integers are denoted by N and N0, respectively. The set Rd denotes the d-dimensional Euclidean
space. We define [r] as the set of the first r natural numbers (i.e., [r] := {1, 2, . . . , r}). For any vector
x ∈ Rd, its Euclidean (ℓ2-norm) is denoted by ∥x∥2, and its infinity norm (ℓ∞-norm) is denoted by
∥x∥∞ := max |xi|. For any a ∈ R, the ceiling function ⌈a⌉ returns the smallest integer greater than
or equal to a, and the Rectified Linear Unit (ReLU) activation is defined as ReLU(a) := max{0, a}.
Finally, for any set Θ, the indicator function 1Θ(θ) equals 1 if θ ∈ Θ and 0 otherwise.
For more clarity, all symbols, notation, and key quantities used throughout the BaRC framework are
summarized in Table 2.

Table 2: Summary of key symbols and definitions in the BaRC framework.

Symbol Definition / Scope

Threat Model & Perturbation
p Norm type for threat model (ℓ∞ in main; ℓ2 in Appendix)
δ, δ′ Max perturbation magnitude (per feature) for train/test
ρ, ρ′ Poisoning ratio: fraction of corrupted samples in train/test algorithm
∆, ∆′ Feature-space perturbation matrices for train/test data
D∆

train Poisoned training dataset
D∆′

test Poisoned test dataset
P Distribution over poisoning scenarios for PAC guarantees

Training Dynamics & Parameters
Θ, Θ0 Parameter space; distribution of initial parameters
θ(0), θ(t) Model parameters at initialization and iteration t

t∞ Terminal time step at training convergence
f(θ,J ) Update rule (e.g., SGD): θ − γt∇L
S Discrete-time stochastic dynamical system modeling training

Safety criterion and robust radii
g(θ) Accuracy of model hθ on test data
gc(θ), gp(θ) Accuracy on clean vs. poisoned test set
G(θ) Test degradation gap: G = gc − gp
α Threshold for maximum allowed test accuracy degradation
Θs, Θu Safe/unsafe sets s.t. G(θ) ≤ α / > α

δemp, δ
′
emp Empirical robust radius: largest δ/δ′ such that test accuracy degradation at most ≥ α

δ∗cert, δ
′∗
cert Certified train/test-time robust radius

g∗p Certified accuracy (g∗p = gc − α as in definition 4)

Neural Barrier Certificate (NNBC)
Bφ(θ) Barrier certificate parameterized by neural weights φ
N Number of poisoning trajectories used for NNBC training
B∗φ Trained NNBC satisfying all loss constraints
ΘZ Feasible domain: sublevel set {θ : B(θ) ≤ 0}
L(φ) Barrier training loss (Eq. 10) with three ReLU terms
ϑ Collected dataset for barrier training (initial/safe/unsafe parameters)

Scenario Certification (RCP / SCP)
q1, q2, q3 Constraint functions encoding the three BC conditions
ηr Margin in robust convex problem (RCP) over full scenario space
ηs, η∗s Margin in scenario convex problem (SCP) and its optimal value
N̂ Number of i.i.d. scenarios used in SCP evaluation
ϵ Max violation probability allowed over unseen scenarios
β Confidence parameter for PAC bound (1− β confidence)
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B PROOFS

Here we provide the proofs for the results stated in the main part of the paper.

B.1 PROOF OF THEOREM 10

Theorem (Certified robust radius). Let hθ be an ML model, trained on a (potentially) poisoned
dataset D∆

train and evaluated on a (potentially) poisoned dataset D∆′

test, as in section 2.1. Consider
a dt-DS S=(Θ,Θ0,D∆

train, f) as in Definition 6, modeling the training dynamics of hθ. Let δemp

(resp. δ′emp) denote the empirically derived train-time (resp. test-time) robust radius, and let Θs⊆Θ
and Θu ⊆ Θ denote the corresponding safe and unsafe sets of terminal parameters, as introduced
in Definition 4. If there exists a BC B satisfying the conditions in Definition 7 for a train-time
(resp. test-time) robust radius δcert (resp. δ′cert), then all trajectories initialized at θ(0)∈Θ0 remain
within the safe set Θs and never enter the unsafe set Θu for any perturbations ∥∆∥p ≤ δcert (resp.
∥∆′∥p≤δ′cert). Thus, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust radius,
ensuring that, under worst-case perturbations, the degradation in test accuracy is at most α.

Proof. By Definitions 4 and 7, the zero-level set of the barrier, {θ ∈ Rd | B(θ) = 0}, separates the
safe region Θs := {θ ∈ Rd | G(θ) ≤ α} from the unsafe region Θu := {θ ∈ Rd | G(θ) > α}.
(1) Without loss of generality, because the parameters at t = 0 are randomly initialized with small
magnitudes—hence untrained and uninfluenced by data—the model’s predictions are essentially
random. Its test accuracy is therefore at chance level, whether evaluated on clean or poisoned in-
puts. Consequently, the initialization gap satisfies G(θ(0)) ≈ 0, which is negligible relative to any
admissible threshold α. By Definition 4, it follows that θ(0) ∈ Θs.
(2) By condition (6), the initial model parameters θ(0) ∈ Θ0 always satisfy B(θ(0)) ≤ 0. This aligns
with (1). So training begins inside (or on the boundary of) the barrier zero sublevel set.
(3) Suppose that at iteration t, B(θ(t)) ≤ 0. If θ(t) ∈ Θu, then condition (7) implies B(θ(t)) > 0,
which is a contradiction. Therefore, θ(t) must lie in Θs.
(4) By condition (8), for any admissible poisoning with ∥∆∥p ≤ δcert, if B(θ(t)) ≤ 0, then the next
state θ(t + 1) also satisfies B(θ(t + 1)) ≤ 0 and the zero sub-level set {θ ∈ Rd | B(θ) ≤ 0} is
forward invariant for the training dynamics under all admissible ∆.
(5) From (2)–(4) we conclude that once the training starts inside the safe region, the barrier con-
dition guarantees that B(θ(t)) ≤ 0 holds for every iteration t. In particular, at the terminal time
t = t∞ we have B(θ(t∞)) ≤ 0, which by the separation property in (3) implies that θ(t∞) ∈ Θs.
By Definition 4, this means that the accuracy gap at convergence satisfies G(θ(t∞)) ≤ α, that is, the
trajectory remains in Θs for all t and never enters Θu. For test-time perturbations ∆′, observe that
they do not alter the training dynamics and only affect the accuracy at evaluation. Hence, the same
separation argument applies: the terminal parameters remain in Θs for all ∆′ with ∥∆′∥p ≤ δ′cert.
(6) Hence, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust radius, guarantee-
ing that under worst-case admissible perturbations the degradation in test accuracy at convergence
is bounded by α.

B.2 PROOF OF THEOREM 11

Theorem (BaRC) Let hθ be an ML model, trained on a potentially poisoned training dataset
D∆

train and evaluated on a potentially poisoned test datasetD∆′

test, as described in Section 2.1. Assume
that model updates follow the gradient-based rule f as in (1), with the training process modeled by
a dt-DS S. Consider α∈ [0, 1], ϵ∈ (0, 1), and β ∈ [0, 1] as a gap threshold as in (5), the probability
of violation as in (15), and the confidence level as in (17), respectively. Suppose an NNBC B∗φ is
trained using a finite number of samples generated through the procedure in Section 9, producing
a certified train-time robust radius δ∗cert (resp. certified test-time robust radius δ′∗cert). Let η∗s < 0

be the optimal barrier margin obtained by solving the SCP in (16) on N̂ i.i.d. samples, with N̂
satisfying the bound in (17). Then, with a confidence of at least 1 − β, the learned certificate B∗

φ

ensures that, for all poisoning perturbations satisfying ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), the
model’s converged parameters remain in the safe set S, and the certified test accuracy g∗b (θ(t∞))
satisfies G(θ(t∞))≤α as in Definition 4, with the violation probability of at most ϵ.
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Proof. Let P denote a probability measure on the product space Θ× S∆, where Θ is the parameter
space of the ML model and S∆ denotes the set of admissible poisoning perturbation matrices ∆.
Our goal is to certify, with high confidence, that the trained model hx satisfies safety and accuracy
constraints even under worst-case poisoning. In the main text, this objective is posed as a robust
constrained program (RCP) in (14), where the constraints must hold for all admissible perturbations.

Because solving the RCP is generally intractable—owing to its dependence on the full uncertainty
space and the absence of a closed form for f—we relax it to a chance-constrained problem (CCP).
The CCP permits violations on at most an ϵ fraction of the uncertainty set, which is acceptable from
a probabilistic safety perspective. In this formulation, we define the violation probability V(η) as

V(η) := P [(θ,∆) ∈ Θ× S∆ : ∃k ∈ {1, 2, 3} such that qk(θ,∆) > η] . (18)

This quantity is the central object of the CCP, capturing the probability that the BC margin η is
violated under a random poisoning scenario. We say η is ϵ-feasible if V(η) ≤ ϵ, i.e., the CCP holds
with probability at least 1− ϵ.

To solve the CCP in practice, we approximate it by the SCP in (16), which replaces the probabilistic
constraint with empirical constraints over N̂ i.i.d. scenarios drawn from P. Concretely, the SCP
seeks a margin η such that (16) is satisfied.

Let η∗s be the SCP solution constructed from the sample set ω = {(θi,∆i)}N̂i=1 ∼ P. By the
scenario framework of Calafiore & Campi (2006), under standard assumptions (e.g., uniqueness and
measurability of the solution), the probability that η∗s violates the original CCP constraint is bounded
as

PN̂ (V(η∗s ) > ϵ) ≤
R−1∑
k=0

(
N̂

k

)
ϵk (1− ϵ)N̂−k, (19)

where PN̂ = P× · · · × P (taken N̂ times) is the product measure on the full multi-sample ω, and R
denotes the number of support constraints of the SCP.

In our setting, the trained NNBC Bφ is fixed in (16), and the SCP has a single decision variable (the
scalar margin ηs). Hence the maximal number of support constraints is R = 1. Substituting R = 1
into the scenario bound yields

PN̂ (V(η∗s ) > ϵ) ≤ (1− ϵ)N̂ . (20)

To make this failure probability at most β, it suffices to require (1− ϵ)N̂ ≤ β, i.e.

N̂ ≥ lnβ

ln(1− ϵ)

(
equivalently, N̂ ≥

⌈
ln β

ln(1−ϵ)

⌉
for integer N̂

)
.

Therefore, if the number of sampled scenarios N̂ satisfies this condition, then with probability at
least 1−β (over the draw of ω), the SCP solution η∗s is ϵ-feasible for the CCP and thus approximates
the RCP by certifying safety and test-accuracy constraints on all but an ϵ-fraction of poisoning
scenarios drawn from P.

Finally, if η∗s < 0 for some poisoning radius δ∗cert (or test-time radius δ′∗cert), we conclude that, with
confidence at least 1 − β, for all poisoning perturbation matrices ∆ satisfying ∥∆∥p ≤ δ∗cert (and
analogously for test-time ∆′ with ∥∆′∥p ≤ δ′∗cert), the terminal parameters remain in the certified
safe set and the test accuracy satisfies g(θ(t∞)) ≥ α, except on an ϵ-fraction of cases.

This shows how the intractable RCP is relaxed to a CCP and solved via an SCP while preserv-
ing formal, probabilistic guarantees on robust generalization; the BaRC framework inherits these
guarantees through this layered connection, completing the proof.
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C ALGORITHMS

We summarize the certification procedure in Figure 4, which illustrates the overall workflow. In
addition, Algorithms 2 and 3 describe the certification process under train-time and test-time poi-
soning settings, respectively. These procedures detail how the NNBC is trained and verified using
disjoint parameter sets to provide valid robustness guarantees.

Figure 4: BaRC framework. The left panel illustrates the data generation process under both train-
time poisoning attacks and test-time evasion attacks. For each perturbation level, the model hθ is
trained on perturbed datasets to produce two disjoint sets of parameter vectors: θ and θ̂. A safety
criterion function is then applied to each parameter vector to label it as safe or unsafe. The set
θ is used to train an NNBC Bφ, while the set θ̂ is used to evaluate Bφ through a scenario-based
PAC analysis. The BaRC process (right panel) outputs a certified NNBC B∗ϕ, and its corresponding
robustness radius δ∗cert or δ′∗cert, and a probabilistic guarantee with violation probability at most ϵ and
a confidence of at least 1−β.
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Algorithm 2 BaRC for an ML model hθ Against Data Poisoning Attack

Input Clean train and test datasets Dtrain and Dtest, model hθ, gap threshold α, training horizon t∞,
norm p, number of samples for NNBC N , number of samples for SCP N̂ , step size dδ , confidence
level 1− β ∈ [0, 1], poison ratio ρ ∈ [0, 1], max iterations T ;
Output Certified radius δ∗cert, NNBC B∗φ, violation probability ϵ;

Step 1 - Data Generation for BarC

1: for i = 1 to N do
2: Initialize θi(0) ∈ Θ0 and add to I;
3: Sample poisoning level δi;
4: Create ρ-ratio poisoned dataset D∆i

train with ∥∆i∥p=δi;
5: for j = 1 to t∞ do
6: Train hθ on D∆i

train to obtain θi(j);
7: end for
8: Evaluate test accuracy G(θi(t∞)) on Dtest as in definition 4;
9: if G(θi(t∞)) ≥ α then

10: Add θi(t∞) to S;
11: else
12: Add θi(t∞) to U ;
13: end if
14: end for
15: Set ϑ← I ∪ U ∪ S;
16: Compute δemp ← max {δi | g(θi(t∞)) ≥ α};
17: return I,U , ϑ, δemp;

Step 2 - BaRC Process

18: Generate N trajectories to form I,U , ϑ along with corresponding empirical robust radius δemp

and generate N̂ i.i.d. trajectories to form Z1,Z2, ϑ
′ from Step 1;

19: Initialize δcert ← δemp, NNBC Bφ, and counter k ← 0;
20: while δcert > 0 do
21: while L ̸= 0 and k < T do
22: Train Bφ using I,U , ϑ with loss L as in (10);
23: Update L and increment k ← k + 1;
24: if L ̸= 0 and k ≥ T then
25: Decrease radius: δcert ← δcert − dδ break;
26: else if L = 0 then
27: Solve SCP as in (16) using Z1,Z2, ϑ

′ to obtain margin η∗s ;
28: if η∗s > 0 then
29: Decrease radius: δcert ← δcert − dδ;
30: (Optional: Increase N );
31: else
32: δ∗cert ← δcert;
33: B∗φ ← Bφ;

34: Compute ϵ from N̂ =
⌈

ln(β)
ln(1−ϵ)

⌉
;

35: break
36: end if
37: end if
38: end while
39: end while
40: return B∗φ, δ∗cert, ϵ
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Algorithm 3 BaRC for an ML model hθ Against Evasion Attack

Input Clean train and test datasets Dtrain and Dtest, model hθ, gap threshold α, training horizon t∞,
norm p, number of samples for NNBC N , number of samples for SCP N̂ , step size dδ , confidence
level 1− β ∈ [0, 1], poison ratio ρ′ ∈ [0, 1], max iterations T ;
Output Certified radius δ′∗cert, NNBC B∗φ, violation probability ϵ;

Step 1 - Data Generation for BarC

1: for i = 1 to N do
2: Initialize θi(0) ∈ Θ0 and add to I;
3: for j = 1 to t∞ do
4: Train hθ on Dtrain to obtain θi(j);
5: end for
6: Sample poisoning level δ′i;
7: Create ρ-ratio poisoned dataset D∆′

i
test with ∥∆′

i∥p=δ′i;

8: Evaluate test accuracy G(θi(t∞)) on D∆′
i

test as in definition 4;
9: if G(θi(t∞)) ≥ α then

10: Add θi(t∞) to S;
11: else
12: Add θi(t∞) to U ;
13: end if
14: end for
15: Set ϑ← I ∪ U ∪ S;
16: Compute δ′emp ← max {δ′i | g(θi(t∞)) ≥ α};
17: return I,U , ϑ, δ′emp

Step 2 - BaRC Process

18: Generate N trajectories to form I,U , ϑ along with corresponding empirical robust radius δemp

and generate N̂ i.i.d. trajectories to form Z1,Z2, ϑ
′ from Step 1;

19: Initialize δ′cert ← δ′emp, NNBC Bφ, and counter k ← 0;
20: while δ′cert > 0 do
21: while L ̸= 0 and k < T do
22: Train Bφ using I,U , ϑ with loss L as in (10);
23: Update L and increment k ← k + 1;
24: if L ̸= 0 and k ≥ T then
25: Decrease radius: δ′cert ← δ′cert − dδ; break
26: else if L = 0 then
27: Solve SCP as in (16) using Z1,Z2, ϑ

′ to obtain margin η∗s ;
28: if η∗s > 0 then
29: Decrease radius: δ′cert ← δ′cert − dδ;
30: (Optional: Increase N );
31: else
32: δ′∗cert ← δ′cert;
33: B∗φ ← Bφ;

34: Compute ϵ from N̂ =
⌈

ln(β)
ln(1−ϵ)

⌉
;

35: break
36: end if
37: end if
38: end while
39: end while
40: return B∗φ, δ′∗cert, ϵ
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D ADDITIONAL EXPERIMENTS

Additional results. Figure 5 plots certified accuracy g∗p versus the perturbation radius δ across
attacks, models, and datasets, for both train- and test-time settings. In most configurations, the certi-
fied robust radius δ∗cert closely tracks the empirical radius δ∗emp (especially when accuracy degrades
smoothly) highlighting the tightness of BaRC’s certificates in those regimes. In addition, a quantita-
tive comparison with RAB under clean-label backdoor attacks (Table 5) shows that BaRC achieves
similarly strong certified radii and more tightly aligns with the empirical robustness. NNBC Bφ are
trained with Adam using the multi-term loss in equaion (10). To balance penalties across constraint
sets, we normalize the weights by set size: cI = 1

NI
, cU = 1

NU
, cZ = 1

NZ
, where NI , NU , NZ

are the cardinalities of the initial, unsafe, and feasible sublevel sets, respectively. This compensates
for variations induced by the choice of the gap threshold α.

Configurations. All experiments were implemented in PyTorch (Python 3.11) and run on two en-
vironments: (A) a MacBook Pro with Apple M3 Pro (12-core CPU), 36 GB RAM, macOS Sonoma
14.4; (B) 4× NVIDIA H100 GPUs with a 16-core CPU, and 64 GB RAM. Hardware configurations
are denoted abstractly as A and B in the tables. Full experimental settings appear in Table 3, with
corresponding figures in the last column; model architectures are listed in Table 4.

Table 3: Experimental configurations across datasets, attacks, optimizers, models, and NNBC set-
tings. The Attack block lists the poisoning method (PGD, BPA, BDA, AA), perturbation norm
(p-norm), poisoning ratio, and step size. ML Setup specifies the baseline model, optimizer, and
learning rate used for training. The Certificate block highlights how robustness guarantees are con-
structed: a neural barrier certificate (NNBC) is learned directly from the parameters of the trained
ML model and then validated via a PAC bound, which provides a formal generalization guarantee on
unseen data by bounding the violation probability ϵ (confidence 99.99%). Execution Setup records
hardware abstraction (HW) and runtime (minutes).

Dataset
Attack ML Setup Certificate Execution Setup

Fig.
Type p-norm ρ Step Model Optimizer (lr) Type NNBC PAC HW Run time

N Layer Optimizer (lr) N̂ ϵ (min)

MNIST PGD ∞ 1 40 CNN SGD (0.01) Train-Time 4000 5 Adam (0.001) 1800 0.005 A 53 5a
MNIST BPA ∞ 0.3 30 MLP GD (0.10) Train-Time 5000 7 Adam (0.001) 2500 0.003 A 36 5d
MNIST PGD 2 1 40 CNN Adam (0.001) Train-Time 3000 5 Adam (0.01) 1500 0.006 A 19 5g
MNIST PGD ∞ 1 40 MLP SGD (0.01) Train-Time 4000 5 Adam (0.001) 2000 0.004 A 31 5h
MNIST BDA ∞ 0.1 40 CNN SGD (0.01) Test-Time 3000 5 Adam (0.001) 1500 0.006 A 18 5k
MNIST AA 2 1 100 MLP Adam (0.001) Test-Time 4000 7 Adam (0.10) 2500 0.003 A 26 5n

SVHN PGD ∞ 0.9 40 CNN Adam (0.001) Train-Time 2000 4 Adam (0.001) 800 0.011 A 39 5b
SVHN BDA ∞ 0.1 30 MLP GD (0.10) Train-Time 4000 5 Adam (0.001) 1500 0.006 B 13 5e
SVHN PGD 2 0.9 30 MLP SGD (0.01) Train-Time 4000 5 Adam (0.001) 1500 0.006 B 27 5f
SVHN PGD 2 0.9 40 CNN SGD (0.01) Train-Time 2000 4 Adam (0.001) 800 0.011 A 73 5i
SVHN BDA 2 0.9 40 CNN SGD (0.10) Test-Time 2500 4 Adam (0.001) 600 0.015 A 25 5j
SVHN AA 2 0.8 100 CNN SGD (0.01) Test-Time 3000 4 Adam (0.001) 1000 0.009 A 81 5m
SVHN AA 2 0.8 100 MLP GD (0.10) Test-Time 4000 5 Adam (0.001) 2000 0.004 A 63 5o
SVHN BPA ∞ 0.2 30 ResNet Adam (0.10) Train-Time 4000 4 Adam (0.001) 1000 0.009 B 72 5p
SVHN PGD 2 0.9 40 ResNet Adam (0.01) Train-Time 3000 5 Adam (0.001) 700 0.015 B 84 5s

CIFAR10 PGD ∞ 0.8 40 CNN Adam (0.001) Train-Time 1500 4 Adam (0.001) 200 0.045 A 138 5c
CIFAR10 BDA ∞ 0.1 40 CNN Adam (0.10) Test-Time 1500 4 Adam (0.001) 200 0.045 B 66 5l
CIFAR10 BPA 2 0.2 30 ResNet Adam (0.01) Train-Time 2000 4 Adam (0.001) 600 0.015 B 81 5q
CIFAR10 BDA ∞ 0.2 100 ResNet Adam (0.10) Train-Time 3000 4 Adam (0.001) 600 0.015 B 76 5r
CIFAR10 AA 2 0.3 30 ResNet Adam (0.01) Test-Time 2000 4 Adam (0.001) 400 0.022 B 98 5t

Table 4: Architectural specifications of models used across datasets. Conv Layers reports the num-
ber of convolutional layers and their output channels. Pooling specifies the type and frequency of
downsampling. FC Layers denotes the fully connected layers with hidden dimensions up to the
output layer. Params (M) provides the approximate number of trainable parameters (in millions).

Dataset Model Conv Layers Pooling FC Layers Params (M)

MNIST
CNN 3 conv (32, 64, 128) 3× MaxPool (2×2) 3 FC (256, 128, 10) ∼1.2M
MLP – – 4 FC (512, 256, 128, 10) ∼0.6M
LeNet 2 conv (16, 32) 2× AvgPool (2×2) 3 FC (240, 120, 10) ∼0.1M

SVHN
CNN 2 conv (64, 128) 2× MaxPool (2×2) 3 FC (256, 128, 10) ∼1.5M
MLP – – 4 FC (1024, 512, 256, 10) ∼3.2M

ResNet18 18 conv (standard) Global AvgPool 1 FC (10) ∼11M

CIFAR-10 CNN 3 conv (64, 128, 256) 3× MaxPool (2×2) 3 FC (512, 256, 10) ∼4.5M
ResNet18 18 conv (standard) Global AvgPool 1 FC (10) ∼11M
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(a) MNIST, CNN, PGD
Train-Time

(b) SVHN, CNN, PGD
Train-Time

(c) CIFAR-10, CNN, PGD
Train-Time

(d) MNIST, MLP, BPA
Train-Time

(e) SVHN, MLP, BDA
Train-Time

(f) SVHN, MLP, PGD
Train-Time

(g) MNIST, CNN, PGD
Train-Time

(h) MNIST, MLP, PGD
Train-Time

(i) SVHN, CNN, PGD
Train-Time

(j) SVHN, CNN, BDA
Test-Time

(k) MNIST, CNN, BDA
Test-Time

(l) CIFAR-10, CNN, BDA
Test-Time

(m) SVHN, CNN, AA
Test-Time

(n) MNIST, MLP, AA
Test-Time

(o) SVHN, MLP, AA
Test-Time

(p) SVHN, ResNet, BPA
Train-Time

(q) CIFAR-10, ResNet, BPA
Train-Time

(r) CIFAR-10, ResNet, BDA
Train-Time

(s) SVHN, ResNet, PGD
Train-Time

(t) CIFAR-10, ResNet, AA
Test-Time

Figure 5: Certified accuracy versus perturbation magnitude δ under different poisoning scenarios
and datasets. Each subplot shows the test accuracy g, empirical robust radius δemp, and certified
robust radius δ∗cert under the proposed BaRC framework. The confidence level is fixed at 1−β with
β = 10−4. Violation probabilities are: ϵ = (a) 0.005, (b) 0.011, (c) 0.045, (d) 0.003, (e) 0.006, (f)
0.006, (g) 0.006, (h) 0.004, (i) 0.011, (j) 0.015, (k) 0.006, (l) 0.045, (m) 0.009, (n) 0.003, (o) 0.004,
(p) 0.009, (q) 0.015, (r) 0.015, (s) 0.015, (t) 0.022.

Dataset Optimizer A ρ-ratio p-norm g∗
p δemp δ∗cert (RAB) δ∗cert (BaRC)

MNIST SGD BDA 0.15 ∞
0.90 0.08 NA 0.08
0.80 0.16 0.10 0.15
0.60 0.22 0.14 0.19

SVHN SGD BDA 0.1 2
0.80 0.09 NA 0.06
0.60 0.12 0.07 0.11
0.40 0.16 0.08 0.14

CIFAR-10 Adam BDA 0.1 ∞
0.50 0.05 NA 0.04
0.40 0.09 NA 0.07
0.30 0.15 0.05 0.12

Table 5: Comparison of certified robust radii obtained by BaRC and RAB under identical poisoning
settings and CNN architecture. While RAB is the only directly comparable baseline available, it is
limited to test-time certification and supports only a narrow class of attacks, specifically, Backdoor
Attacks (BDA). In contrast, BaRC has no such restriction and produces certified radii that closely
match empirical robustness, even in cases where RAB fails to certify the target test accuracy.
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E ADDITIONAL DISCUSSION

How BaRC is fully agnostic? BaRC models gradient-based training as a dt-SD, and reasons
purely in parameter space. The certificate uses only (i) observed parameter trajectories {θ(t)} from
training runs under admissible perturbations and (ii) a terminal safety predicate G(θ) ≤ α. It as-
sumes no white-box access to the attack (strategy, trigger, poisoning ratio), the network architecture,
the loss landscape, or the optimizer/scheduler; all of these are subsumed into the realized update
map f and are reflected only through the trajectories (the empirical reachable set) on which the BC
B(θ) is trained and verified. Consequently, the same construction applies to both train-time and
test-time perturbations (only the terminal labels change) and to arbitrary model classes and training
pipelines without threat-model tuning. As qualitative support, Figure 6 contrasts training trajectories
of 20,000 parameters of the same CNN on clean SVHN (left) yields compact, near-stationary tra-
jectories, whereas a BDA-poisoned SVHN (right) exhibits early drift and dispersion. Configuration
details are immaterial, the point is that poisoning reshapes the empirical reachable set, and BaRC’s
barrier exploits this separability to carve a safe sublevel set that retains clean runs while excluding
poisoned ones.

Figure 6: Training trajectories of 20,000 parameters from a CNN on SVHN. Left: CNN trained
on clean data. Right: The same CNN trained on SVHN with BDA poisoning. The clear visual
separation between the two regimes illustrates the core intuition behind BaRC’s framework.

If the model is initially safe, why do we still need to train it? In BaRC, an initial parameter
assumed as safe state because it lies inside the certified region, but this is not a judgment of model
utility. At initialization the network is untrained; any apparent accuracy can be incidental to a
particular split and is not a reliable indicator of quality. The purpose of training the ML model
is to optimize the learning objective on the training data, drive the empirical loss to a target level,
and satisfy a clear convergence or stopping criterion (for example, a gradient-norm threshold or a
fixed training horizon). Until this optimization occurs, discussing accuracy is largely uninformative,
since the training loss remains high even if it satisfies the safety criterion. The barrier certificate
reconciles safe initialization with the need to learn. Being safe at the start only authorizes us to
begin from an allowed region. The forward-invariance condition ensures that, while we minimize
the loss, the optimization trajectory remains within the safe set and the terminal parameters meet
the prescribed robustness tolerance. In short, safe-at-start does not equal trained-or-useful; training
is indispensable for reducing loss and achieving acceptable performance, and BaRC guarantees that
this learning process remains within certified safety at convergence.

Gap vs. certified accuracy. Based on definition 4, we can fix the certified accuracy under poison-
ing as well, that is, choose the minimum test accuracy level we want to guarantee for gp(θ(t∞)) and
find the corresponding robust radius. This is exactly equivalent to fixing the gap threshold α, because
the relation G(θ) = gc(θ)−gp(θ) is linear. Once the clean accuracy at the terminal model gc(θ(t∞))
is a number, setting a target for gp(θ(t∞)) is the same as setting α via α = gc(θ(t∞))− g∗p(θ(t∞)),
and conversely a fixed α immediately implies the certified gp(θ(t∞)) = gc(θ(t∞))− α. We report
certified accuracy for readability, but reporting the gap is interchangeable; both lead to the same
safe/unsafe split and the same certified radius.
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Figure 7: Violation rate ϵ vs the
number of scenarios N̂ used for
solving the SCP at different confi-
dence level.

Challenging settings sometimes yield tighter certificates!
We occasionally observe that more challenging configurations
(harder datasets or larger architectures) produce certified radii
δ∗cert that track the empirical radii δ∗emp more tightly. The pri-
mary driver is not the dataset difficulty per se, but the stronger
models these settings necessitate (e.g., ResNet in place of
MLP/CNN). Such architectures typically achieve higher clean
accuracy and, more importantly for certification, induce a
smoother degradation of test accuracy as the perturbation ra-
dius δ increases. Because our barrier separates safe from un-
safe based on this accuracy–radius curve, smoother trajectories
in parameter space and more regular accuracy decline make
the safe set easier to approximate, yielding tighter certificates. That benefit comes with a statisti-
cal trade-off in our PAC check. Harder settings are computationally heavier. Since the PAC bound
scales with N̂ , a smaller N̂ directly increases the certified violation probability ϵ (See Figure 7).
Consequently, on configurations like CIFAR-10 with a ResNet, one may see a tight δ∗cert (thanks
to the smoother accuracy–radius behavior of the stronger model) but a higher ϵ than in easier set-
tings. In short: stronger models can improve tightness of the certified radius, while computational
constraints in challenging regimes can worsen the PAC violation rate.

On seemingly extreme poisoning ratios. In several figures we intentionally show very large cor-
ruption ratios (e.g., 0.5 − 1). This is by design and reflects what BaRC certifies: a bound on the
perturbation magnitude per sample (the robust radius) without assuming any fixed fraction of cor-
rupted points. The fraction (how many samples the adversary touches) is treated as unknown and
can range anywhere in [0, 1]; the statement of our certificate does not include this ratio. Why, then,
display large ratios? Two reasons: (i) to stress, test the method with challenging scenarios and illus-
trate that the guarantee is decoupled from the corruption fraction; and (ii) to provide a clear contrast
with prior works that typically fix the ratio and certify how many points can be corrupted. BaRC
makes the opposite design choice: we place a hard limit on the size of admissible perturbations and
certify robustness regardless of how many points the attacker modifies.

Role of RCP, CCP, SCP, and PAC. Achieving robustness certification for all possible poisoning
trajectories is unfeasible due to the requirement to address an infinite number of perturbation sce-
narios and to know the closed form of the map f . BaRC navigates this complexity by employing
the RCP⇒ CCP⇒ SCP⇒ PAC approach: it avoids comprehensive safety verification (RCP) by
tolerating a minor probability of violation (CCP), verify the validity of the certificate in a limited set
of scenarios (SCP), and apply PAC bounds to ensure that the learned barrier is broadly applicable
with some level of confidence. This method allows BaRC to resolve a complex robustness issue via
a manageable data-centric method with assured formal guarantees derived from statistical learning
theory.

Effect of margin η∗
s . The SCP margin η∗s measures how well the trained barrier certificate Bϑ

satisfies the safety constraints over the sampled scenarios. Specifically, η∗s < 0 implies that all
constraints are strictly satisfied, confirming that the NNBC is valid under the given certified radius
and the scenarios sampled. Thus, the more negative the margin, the more robust the barrier appears
against the sampled violations. If η∗s > 0, the barrier does not satisfy at least one constraint, implying
that the NNBC must be retrained or the certified radius must be reduced. Once η∗s ≤ 0, the learned
certificate is accepted with confidence 1− β and the probability of violation at most ϵ, according to
the PAC guarantee.

Empty sets and robust radius adjustment. The empirical labeling of models as safe or un-
safe, defined in equation (9), depends on a fixed threshold α ∈ [0, 1] applied to the test accuracy
g(θi(t∞)). If α exceeds the clean accuracy at δ = 0, all models are labeled unsafe and S = ∅; if it
falls below the worst-case accuracy at δ = δmax, all are labeled safe and U = ∅. These degenerate
cases invalidate the empirical margin η∗s required by the SCP. To ensure feasibility, we adopt the
following convention: if S = ∅, we set the certified robust radius δcert (or δ′cert for test-time) to zero.
If U = ∅, we increase α until the dataset becomes non-empty and SCP verification succeeds. The
smallest such threshold is then used as the effective certified α. This explains a recurring pattern
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in our evaluation plots, such as Figure 2, where the final certified radius often equals the previous
one despite being computed at a lower α. In these cases, certification at the lower threshold fails
(either due to infeasibility or lack of data) and we conservatively reuse the last valid radius to avoid
overstating robustness.

Effect of sampling density on robust radius curves. In certain cases, the test-accuracy curve
appears to drop below the robust-radius curves, which should not occur from a theoretical standpoint.
This discrepancy arises from insufficient sampling of α values when computing δcert, leading to
interpolation errors. The fidelity of both certified and empirical robust-radius curves depends on the
density of these evaluation points: increasing the number of sampled α thresholds produces curves
that more accurately reflect the true robustness profile. In Figure 8, we increase the sampling density
from 10 α points in (a) to 20 in (b). The resulting curves in (b) are smoother and more accurate, and
no longer exhibit anomalous crossing. This confirms that denser sampling yields more precise and
theoretically consistent robust-radius estimates in both empirical and certified settings.

(a) (b)
Figure 8: MNIST, MLP, PGD, Train-Time

Why we report attack parameters despite being attack-agnostic? Although BaRC is inherently
attack-agnostic, we still present details such as attack types, poisoning ratios, datasets, and model
architectures. These specifications are not required by the framework itself, which certifies robust-
ness solely from training trajectories, independent of adversarial strategy, corruption level, or model
family. Rather, they are reported to provide clarity and to illustrate the scope and strength of BaRC
when subjected to a wide range of adversarial conditions.

On the limitations of trajectory separability Our certification framework implicitly relies on
the assumption that training trajectories under clean and poisoned data remain sufficiently separable
in parameter space, allowing the NNBC to distinguish safe from unsafe regions. One might ask
whether an advanced adversary could engineer a poisoning strategy whose trajectory stays arbitrarily
close to the clean one, thereby making the learning of a separating certificate infeasible. Indeed,
in cases where the perturbation is extremely weak, the resulting degradation in test accuracy is
negligible, so that clean and poisoned trajectories are effectively indistinguishable. In such regimes,
however, the model is not meaningfully threatened: the attack has little practical impact, and a
robustness certificate is not required in the first place. Thus, the difficulty of separating nearly
identical trajectories is directly aligned with the lack of adversarial effect, reinforcing that BaRC is
most relevant in regimes where poisoning causes non-trivial accuracy degradation.

Related Work. While there has been limited progress in computing a certified ℓp-norm poisoning
radius for a desired model accuracy, the general literature on formal certificates for data poisoning
robustness remains even more nascent. Different data poisoning certification approaches include: (i)
Ensemble-based methods that partition the training dataset and train base classifiers independently.
A final ensemble classifier aggregates its predictions (e.g., via majority voting, run-off election), and
robustness is certified by analyzing the clean sample majority needed to withstand poisoning (Levine
& Feizi, 2021; Jia et al., 2021; Cohen et al., 2019; Wang et al., 2022; Rezaei et al., 2023). These
methods generally assume independence among base classifiers and allow unbounded perturbation
budgets. (ii) Randomized Smoothing is a technique inspired by test-time probabilistic certificates
(Cohen et al., 2019). Several works adapt this idea by introducing randomness into the training
process. These approaches guarantee robustness by assuming a fixed bounded perturbation through
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averaging model behavior over perturbed training datasets to certify label corruption (Rosenfeld
et al., 2020), specific backdoor patterns (Weber et al., 2023; Wang et al., 2020), and both data
feature and label corruptions (Zhang et al., 2022). (iii) Differential Privacy based approaches
leverage theoretical connections between privacy and robustness to certify the models (Ma et al.,
2019; Xie et al., 2023). (iv) Model-specific methods usually assume bounded perturbation budgets
and a bounded number of poisoned samples. For instance, in the case of graph neural networks,
Gosch et al. (2025) leverages the kernel equivalence of neural networks and develops mixed integer
linear programming-based certificates using graph neural tangents (Sabanayagam et al., 2023) for
ℓp norm based feature corruption. (Sabanayagam et al., 2025) extends the framework developed in
Gosch et al. (2025) to label corruptions. Sosnin et al. (2025) proposes a gradient-based certification
method for neural networks using convex overapproximations of parameter trajectories. However,
their relaxations tend to be loose, especially as the training progresses, and their method is tightly
coupled to specific architectures, making generalization to broader model classes difficult.

In contrast to prior work, BaRC provides the first general-purpose framework for certifying the
robust radius in the case of poisoning based on training dynamics. By modeling training as a
discrete-time dynamical system and leveraging barrier certificates from control theory, BaRC en-
ables formal certification across both train- and test-time poisoning settings. Crucially, BaRC does
not require model-specific assumptions, adversary knowledge, or white-box access, and can be ap-
plied to a wide class of models trained via (stochastic) gradient descent optimization, including
Adam or momentum-based methods.

25


	Introduction
	Preliminaries
	Setup formulation
	Methodology

	 Data-driven robustness certification
	Probabilistic robustness guarantee for NNBC
	Experimental Results
	Discussion and Conclusion
	Ethics Statement
	Reproducibility Statement
	Notation
	Proofs
	Proof of theorem 10
	Proof of theorem 11

	Algorithms
	Additional Experiments
	Additional Discussion

