
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BARC: BARRIER ROBUSTNESS CERTIFICATES
FOR NEURAL NETWORKS AGAINST DATA POISONING
AND EVASION ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The increasing use of machine learning in safety-critical domains amplifies the
risk of adversarial threats, especially data poisoning attacks that corrupt training
data to degrade performance or induce unsafe behavior. Most existing defenses
lack formal guarantees or rely on restrictive assumptions about the model class,
attack type, extent of poisoning, or point-wise certification, limiting their practi-
cal reliability. This paper introduces a principled formal robustness certification
framework that models gradient-based training as a discrete-time dynamical sys-
tem (dt-DS) and formulates poisoning robustness as a formal safety verification
problem. By adapting the concept of barrier certificates (BCs) from control the-
ory, we introduce sufficient conditions to certify a robust radius within which the
model’s parameter trajectories during training remain safe under worst-case ℓp-
norm based poisoning. To make this practical, we parameterize BCs as neural
networks trained on finite sets of poisoned trajectories. We further derive prob-
ably approximately correct (PAC) bounds by solving a scenario convex program
(SCP), which yields a confidence lower bound on the certified robustness radius
generalizing beyond the training set. Importantly, our framework also extends to
certification against test-time attacks, making it the first unified framework to pro-
vide formal guarantees in both training and test-time attack settings. Experiments
on MNIST, SVHN, and CIFAR-10 show that our approach certifies non-trivial
perturbation budgets while being model-agnostic and requiring no prior knowl-
edge of the attack or contamination level.

1 INTRODUCTION

The deployment of machine learning (ML) models in safety-critical domains, such as autonomous
driving and medical diagnostics, increases the risk of adversarial threats, especially data poisoning
attacks. In such attacks, an adversary deliberately injects crafted perturbations into the training
dataset to subvert the model’s behavior, degrade performance, or break the safety requirements at
test-time (Biggio et al., 2012; Shafahi et al., 2018; Koh & Liang, 2017). These attacks exploit
the training pipeline, embedding backdoors or stealth vulnerabilities that can persist unnoticed and
trigger failures in mission critical applications (Carlini et al., 2024; Schwarzschild et al., 2021). Al-
though a variety of defenses have been proposed to mitigate data poisoning attacks, ranging from
detecting and removing poisoned samples to modifying training strategies for robustness, these ap-
proaches are largely heuristic and remain vulnerable to sophisticated adaptive attacks (Goldblum
et al., 2023; Koh et al., 2022; Shafahi et al., 2018; Huang et al., 2020). This highlights the need
to develop formal robustness certificates that guarantee that the predictions of a model remain
unchanged by poisoning.

A small but growing line of work explores such robustness certification under fixed-threat mod-
els and a certain allowed corruption budget for poisoning. Notable techniques include randomized
smoothing (Weber et al., 2023), model ensembling (Levine & Feizi, 2021), parameter-space interval
bounds via convex relaxation (Sosnin et al., 2025), and combining kernels and linear programming
approaches for large-width networks (Sabanayagam et al., 2025; Gosch et al., 2025). However,
these methods face three major limitations: (i) Threat model and budget assumptions: Most
works assume a fixed (un)bounded corruption budget, with no mechanism to compute the budget

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: BaRC framework against data poisoning attacks. An NNBC B is learned from the param-
eters of hθ and verified through a PAC bound guarantee, ensuring robustness with violation at most
ϵ and a confidence of at least 1−β.

corresponding to a desired robustness level. Furthermore, it is assumed that the number of corrupted
data points is known (Weber et al., 2023); (ii) Model specificity: The approaches are limited to
specific architectures in some cases, such as decision trees (Meyer et al., 2021), nearest neighbors
(Jia et al., 2022), or graph neural networks (Sabanayagam et al., 2025; Gosch et al., 2025), and as-
sume white-box access; (iii) Pointwise guarantees: Most certification methods provide guarantees
only for individual test points, failing to account for the global behavior of the model in the test data
(Levine & Feizi, 2021). Together, these limitations underscore a fundamental open question:
Can we determine, for any ML model, a certified poisoning budget under ℓp-norm based corruption
such that the model’s performance degradation under poisoning is at most a desired threshold α?

In this work, we answer this question positively by developing a framework inspired by control-
theoretic safety verification to certify ML models against data poisoning. We model gradient-based
training as a discrete-time dynamical system (dt-DS), where the model parameters form the system
state and the (potentially poisoned) training data act as the input to the system. Within this dynam-
ical system view, we recast poisoning robustness as a formal safety verification problem and adapt
barrier certificates (BCs) (Ames et al., 2014; Prajna et al., 2007) to certify a robust radius ℓp for
a prescribed accuracy-degradation tolerance α, ensuring that parameter trajectories remain within
the safe set under worst-case poisoning. This enables principled worst-case guarantees without re-
quiring knowledge of the specific ML architecture, the poisoning attack strategy, or the fraction of
corrupted data, and provides a certificate for the entire test dataset, not just point-wise test samples.
We note that it is challenging to explicitly construct the BCs for ML training processes due to the
high dimensionality of the parameter space, lack of a closed-form training model, and the unknown
nature of the poisoning attack model, thus rendering the exact system dynamics inaccessible. To
address this, we adopt a data-driven approach that parameterizes BC as a neural network, producing
a neural network-based BC (NNBC), similar to recent data-driven safety verification using BC for
unknown systems (Anand & Zamani, 2023; Zhang et al., 2025; Rickard et al., 2025). Although the
NNBC is trained on a finite set of trajectories generated under admissible perturbations, we ensure
that the BC conditions hold more generally by reformulating verification as a scenario convex pro-
gram (SCP). This allows us to derive probably approximately correct (PAC) bounds (Campi &
Garatti, 2008; Rickard et al., 2025), providing a probabilistic guarantee. The PAC bound ensures,
with some confidence, that the probability of violating the barrier conditions on unseen trajectories
stays below a prescribed level, ensuring that the certified radius generalizes beyond the training tra-
jectories. Figure 1 presents the BaRC framework against data poisoning attacks. Importantly, our
NNBC framework allows for certifying test-time corruptions as well, providing a unified approach
to certify both train and test data poisoning.

Key novel contributions of this work are as follows:
1. We cast gradient-based ML training as a discrete-time dynamical system and reformulate ro-
bustness certification against train and test data perturbations as a formal safety verification problem
using barrier certificates (BC).
2. We introduce a scalable neural network-based BC (NNBC) framework to overcome the in-
tractability of the explicit BC design for high-dimensional and unknown poisoned training dynamics.
NNBC is trained to obtain the certified robust radius, the largest admissible perturbation of the train
or test data for which the degradation in test accuracy is provably at most a given threshold.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We derive a probably approximately correct (PAC) bound that provides a rigorous probabilistic
guarantee for the trained NNBC and its associated certified robust radius.
4. Our approach is model-agnostic and does not require prior knowledge of the architecture, the
poisoning attack strategy, or the amount of data corrupted, thus broadly applicable.
5. We empirically validate the effectiveness of our certification framework on various models and
datasets, demonstrating its ability to quantify and formally certify safe perturbation budgets for
training and test-time attacks in practice.

Related Work. Although determining the maximum allowable poisoning budget for a specified
model performance is understudied, many different flavors of certificates are developed for data
poisoning (see Appendix E for a detailed discussion). Ensemble-based certifications are generally
developed assuming unbounded perturbations to the samples and provide robustness guarantees by
aggregating over multiple base models trained on randomly subsampled datasets. These certificates
establish a lower bound on the number of clean samples required to outweigh poisoned examples
under majority voting (Levine & Feizi, 2021; Jia et al., 2021). Moreover, these methods typically
assume the independence between base models. Weber et al. (2023) extends randomized smooth-
ing, a test-time certification strategy, to poisoning by considering that a fixed pattern is injected into
a subset of training and all test inputs and certifies the prediction of a smoothed classifier. Other
methods assume a bounded adversary, where the perturbation budget and the number of poisoned
examples are explicitly constrained. Gosch et al. (2025) takes a kernel-based approach that requires
knowledge of the corrupted training data and the magnitude of the perturbations, providing guaran-
tees via linear programming. Sosnin et al. (2025) introduces a gradient-based certification method
based on convex relaxations and interval bounds, certifying robustness for convex losses trained with
known corruption levels. However, these approaches rely on restrictive knowledge of the adversary’s
behavior and are limited to specific model families.

2 PRELIMINARIES

All proofs, expanded notation, algorithmic procedures, and additional experimental results are de-
ferred to the Appendix.

2.1 SETUP FORMULATION

We consider a supervised learning problem defined on a clean training dataset Dtrain =
{(ui, yi)}ni=1 ⊆ Rm × Y , where Y := {1, . . . , k}, consisting of n input–label pairs, where each
feature vector ui ∈ Rm is associated with a label yi ∈ Y . Similarly, let Dtest = {(u′

i, y
′
i)}n

′

i=1 ⊆
Rm × Y be a held-out test set of size n′. Let hθ : Rm → Y denote a parameterized ML model
(e.g., a neural network) with parameter vector θ ∈ Rd. The model is trained by iteratively updating
θ according to a gradient-based update rule f :Rd×J →Rd, where J denotes auxiliary inputs (e.g.,
gradients or batch indices). The parameters are updated by:

θ(t+ 1) = f(θ(t),J (t)) := θ(t)− γt∇θL(hθ(t),Dtrain(t)), (1)

where γt > 0 is the learning rate, J (t) := (γt,Dtrain(t)), and Dtrain(t) ⊆ Dtrain denotes the
complete data set or a batch sampled in iteration t ∈ N0. The model is trained on the dataset
Dtrain by minimizing the empirical training loss L(hθ,Dtrain) := 1

n

∑n
i=1 ℓ

(
hθ(ui), yi

)
, where

ℓ : Y×Y → R+ is a non-negative pointwise loss function. Training is performed until convergence
or a predefined termination criterion is met. The generalization performance of the trained model is
evaluated on Dtest via the test accuracy denoted by g, such that:

g(θ) :=
1

n′

n′∑
i=1

1{hθ(u′
i)=y′

i}. (2)

In practice, the data used to train or evaluate an ML model hθ may be adversarially perturbed, re-
sulting in degraded performance. Such poisoning attacks can target input features, labels, or both,
and may occur during either the training or testing phases of the ML pipeline. In this work, we focus
on input-space poisoning, where perturbations affect the training or test data features. Our certifi-
cation framework provides formal guarantees of the maximum allowable perturbation magnitude,
measured in the ℓp norm. The following definitions formalize this poisoning threat model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition 1 (Train-time poisoning attack). LetDtrain = {(ui, yi)}ni=1 be the clean training set. A
poisoning attack is modeled as an adversary A that perturbs an unknown fraction ρ ∈ [0, 1] of the
training samples, resulting in r := ⌈ρ.n⌉ modified inputs. The poisoned dataset is given by:

D∆
train :=

{
(ui + δi, yi)

}r

i=1
∪
{
(ui, yi)

}n

i=r+1
, s.t. ∥∆∥p := max

i∈[r]
∥δi∥p ≤ δ, (3)

where ∆ := [δ1, . . . , δr] ∈ Rr×m is the perturbation matrix, and each row δi ∈ Rm perturbs the
feature vector ui of the i-th training sample and is constrained by a row-wise ℓp norm bound.

Definition 2 (Test-time evasion attack). Let Dtest = {(u′
i, y

′
i)}n

′

i=1 be the clean test set. An evasion
attack is modeled as an adversary A′ that perturbs an unknown fraction ρ′ ∈ [0, 1] of the test
samples, resulting in r′ := ⌈ρ′.n′⌉ modified inputs. The perturbed test set is given by:

D∆′

test :=
{
(u′

i + δ′i, y
′
i)
}r′

i=1
∪
{
(u′

i, y
′
i)
}n′

i=r′+1
, s.t. ∥∆′∥p := max

i∈[r′]
∥δ′i∥p ≤ δ′, (4)

where ∆′ := [δ′1, . . . , δ
′
r′] ∈ Rr′×m is the matrix of input-space perturbations applied at test-time.

Note that, without loss of generality, we assume that the first r elements of the training dataset and
the first r′ elements of the test dataset are poisoned. In addition, if δ = 0 or ρ = 0 (resp. δ′ = 0 or
ρ′ = 0), the poisoned dataset reduces to the clean one, i.e., D∆

train = Dtrain (resp. D∆′

test = Dtest).

2.2 METHODOLOGY

The goal of this paper is to formally certify the robustness of an ML model hθ against data poisoning
or evasion attacks by determining its certified robust radius under ℓp perturbations, within which
the performance of the trained model remains above a target threshold. We now formalize this
robustness certification problem:

Problem 3 (Certified robust radius). Let hθ be a parameterized ML model trained on a potentially
poisoned training setD∆

train and evaluated on a potentially poisoned test setD∆′

test. Given a threshold
α ∈ [0, 1], the objective is to determine the largest poisoning radius δcert for training-time (resp.
δ′cert for test-time), such that, for all perturbations ∆ (resp. ∆′) satisfying ∥∆∥p ≤ δcert (resp.
∥∆′∥p ≤ δ′cert), the performance degradation of the trained model remains within α.

During training, data poisoning can alter the optimization process, causing convergence to subop-
timal or unsafe regions in the parameter space. At test-time, evasion attacks can shift the decision
boundary, degrading generalization and reliability. We capture these effects through a safety crite-
rion that distinguishes safe from unsafe parameter regions with respect to a given gap threshold.

Definition 4 (Safety criterion). Let hθ be an ML model with parameters θ(t) ∈ Rd at iteration
t ∈ N0, initialized at θ(0) ∈ Θ0, trained on a possibly poisoned dataset D∆

train, and converges at
t = t∞. To quantify degradation in test performance under poisoning, we define the safety criterion
as the accuracy drop of hθ relative to clean training: G

(
θ(t′)

)
= gc

(
θ(t′)

)
− gp

(
θ(t′)

)
, where

gc
(
θ(t′)

)
denotes the test accuracy of the model trained on the clean dataset, and gp

(
θ(t′)

)
denotes

the test accuracy of the model trained on the poisoned dataset; both accuracies are evaluated at
iteration t = t′. Given a threshold α ∈ [0, 1], we define the safe and unsafe sets, as follows:

Θs :=
{
θ ∈ Rd

∣∣ G(θ) ≤ α
}
, Θu :=

{
θ ∈ Rd

∣∣ G(θ) > α
}
. (5)

Consequently, we define the empirical train-time robust radius δemp (resp. test-time radius δ′emp) as
the largest perturbation bound such that, for all ∆ (resp. ∆′) with ∥∆∥p ≤ δemp (resp. ∥∆′∥p ≤
δ′emp), the terminal parameters θ(t∞) satisfy G(θ(t∞))≤α, and thus remain within the safe set Θs.

Remark 5. Note that Definition 4 is generally stated to allow for reasoning and evaluating G(θ(t′))
at any iteration. However, the robustness objective in Problem 3 and our focus in this work is to
certify that the terminal parameters θ(t∞) are in the safe set, i.e., G(θ(t∞)) ≤ α.

Although empirical robust radii estimate robustness on poisoned data, they lack formal guarantees
for all trajectories within the admissible budget realizations. To bridge this critical gap, we model
the training process of hθ as a dt-DS, enabling the derivation of conditions to certify a robust radius.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 6 (Dynamical system). Let hθ be an ML model. A discrete-time dynamical system (dt-
DS) is a tuple S = (Θ, Θ0, D∆

train, f), whereD∆
train ⊆ Rm×Y is a (potentially poisoned) training

dataset, Θ ⊆ Rd is the set of model parameters, Θ0 ⊆ Θ is the set of initial model parameters, and
f : Rd × Rm × Y → Rd is the parameter update map specified by the gradient-based optimization
algorithm in Section 2.1. Thus, the system S evolves according to equation (1), i.e., θ(t + 1) =
f
(
θ(t),J (t)

)
, for all t ∈ N0, where θ(t) ∈ Θ and J (t) = (γt,D∆

train(t)) represent the state and
input of the system at time t, respectively.

Since the learning rate γt is treated as a fixed hyperparameter, we omit it from the update rule
notation in the rest of the paper and write f(θ,D∆

train) for notational simplicity. We then adopt a BC
formulation, inspired by Prajna & Jadbabaie (2004), as the foundation of our robustness certification.
Definition 7 (Barrier certificate). Let hθ be an ML model with its associated dt-DS S =
(Θ, Θ0, D∆

train, f). Consider G be the safety criterion function as in definition 4. Let δemp (resp.
δ′emp) be the empirical train-time (resp. test-time) robust radius, and let Θu ⊆ Θ be the corre-
sponding unsafe set, derived by training hθ on D∆

train and evaluating performance via g on D∆′

test. A
function B : Rd→R is called a barrier certificate (BC) if there exists a certified train-time robust
radius δcert (resp. test-time radius δ′cert) such that the following conditions hold for all (potential)
perturbations satisfying ∥∆∥p ≤ δcert (resp. ∥∆′∥p ≤ δ′cert):

B(θ) ≤ 0, ∀ θ ∈ Θ0, (6)
B(θ) > 0, ∀ θ ∈ Θu, (7)
B(f (θ,D∆

train)) ≤ 0, ∀ θ ∈ Θ, s.t. B(θ) ≤ 0. (8)

Remark 8. Train-time poisoning alters the dynamics f(θ,D∆
train) and affects the reachability condi-

tion (8), while test-time poisoning modifies only D∆′

test, influencing the output of the safety function
g(θ). However, the form of the BC conditions remains identical for both cases, sinceB certifies safety
based solely on terminal parameters, without requiring knowledge of the source of the perturbation.
Remark 9. Conditions (6) and (7) ensure that every admissible initialization θ(0)∈Θ0 lies within
the barrier sublevel set. Note that a safe initial parameter does not guarantee that the robustness
certificate holds for the ML model. As detailed in Section 2.1, the model must still be trained to
attain the desired functionality, during which it may become unsafe at convergence. For this reason,
we enforce condition (8) to ensure the safety of the final trained model.

The following theorem shows that the existence of a BC B implies a certified robust radius for the
ML model. For more details about the role of B and the proof, see Appendix B.1.
Theorem 10 (Certified robust radius). Let hθ be an ML model, trained on a (potentially) poisoned
dataset D∆

train and evaluated on a (potentially) poisoned dataset D∆′

test, as in Section 2.1. Consider
a dt-DS S=(Θ,Θ0,D∆

train, f) as in Definition 6, modeling the training dynamics of hθ. Let δemp

(resp. δ′emp) denote the empirically derived train-time (resp. test-time) robust radius, and let Θs⊆Θ
and Θu ⊆Θ denote the corresponding safe and unsafe sets of terminal parameters, as introduced
in Definition 4. If there exists a BC B satisfying the conditions in Definition 7 for a train-time
(resp. test-time) robust radius δcert (resp. δ′cert), then all trajectories initialized at θ(0)∈Θ0 remain
within the safe set Θs and never enter the unsafe set Θu for any perturbations ∥∆∥p≤ δcert (resp.
∥∆′∥p ≤ δ′cert). Thus, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust
radius, ensuring that, under worst-case perturbations, the degradation in test accuracy is at most α.

However, constructing a BC B for S is intractable due to the high dimensionality of the model
parameters and the lack of an explicit mathematical model of S. To overcome this, we propose a
data-driven approach to synthesize B.

3 DATA-DRIVEN ROBUSTNESS CERTIFICATION

In this section, we present our data-driven approach to certify the robustness of an ML model hθ

by constructing a neural network-based barrier certificate (NNBC) whose parameters are trained to
satisfy the conditions in Definition 7. Given a dynamical system S, we define an NNBC Bφ :Rd→R
parameterized by φ. The input to the network is the state vector θ ∈Rd, and the output is a scalar
barrier value Bφ(θ). The network uses ReLU activations in the hidden layers to ensure a piecewise

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

affine, locally Lipschitz structure, and an identity activation in the output layer. The depth and width
of Bφ(θ) are tunable hyperparameters.

Data. To train an NNBC Bφ, we generate a dataset by training hθ under varying levels of data poi-
soning across N uniformly spaced budgets. Specifically, we define two grids δgrid = ⟨δ1, . . . , δN ⟩,
and δ′grid = ⟨δ′1, . . . , δ′N ⟩, where each point in δgrid and δ′grid, represent train- and test-time poison-
ing levels, respectively. Depending on the certification type (train- or test-time), one grid is fixed to
zero. Then, for each i ∈ {1, . . . , N}, we randomly initialize hθ at θi(0)∈Θ0 and train it on D∆

train
with ∥∆∥p=δi, yielding the terminal state θi(t∞). Next, following Definition 4, each trained model
is evaluated on the dataset D∆′

test, where ∥∆′∥p = δ′i, and classified as safe or unsafe based on the
safety criterion G(θi(t∞)) compared to a threshold α∈ [0, 1]. Thus, the resulting datasets are:

I=
{
θi(0) |θi(0)∈Θ0

}
, S=

{
θi(t∞) |G(θ(t∞))≤α

}
, U=

{
θi(t∞) |G(θ(t∞))>α

}
, (9)

where I ⊆ Θ0, S ⊆ Θs, and U ⊆ Θu, and we denote the union ϑ := I ∪ S ∪ U ⊆ Θ. Then δemp

or δ′emp is computed. Note that, depending on the chosen threshold α, some sampled sets may be
empty; we refer interested readers to the Appendix for more details.

Loss. In order to train an NNBCBφ that satisfies the conditions in Definition 7 across the generated
datasets in (9), we define a composite loss function, as follows for all i∈{1, . . . , N}:

L(φ) = cI
∑
θi∈I

R
(
Bφ(θi)

)
+ cU

∑
θi∈U

R
(
−Bφ(θi)

)
+ cZ

∑
θi∈Z

R
(
Bφ

(
f(θi,D∆i

train)
))
, (10)

whereR := ReLU and ∥∆i∥p ≤ δcert. The scalars cI , cU , cZ > 0 weight the respective conditions,
and the set Z ⊆ ϑ, is defined by Z = {θi | θi ∈ ϑ, Bφ(θi) ≤ 0}. When the loss function satisfies
L(φ)= 0, the NNBC Bφ is considered trained and denoted by B∗φ, along with the certified robust
radius denoted by δ∗cert (resp. δ′∗cert). This implies that the conditions (6)–(8) hold for all sampled
states I, U , and S. However, since NNBC B∗φ is trained based on a finite set of parameter states, it
does not cover the entire set Θ. To overcome this limitation, we establish a probabilistic guarantee
that extends the validity of the certificate beyond the training samples with some confidence.

4 PROBABILISTIC ROBUSTNESS GUARANTEE FOR NNBC

We now provide a formal robustness guarantee that quantifies how well the certified robust radius
generalizes beyond the training samples. Specifically, we derive a probably approximately correct
(PAC) guarantee with explicit confidence. To do this, we first need to assume that the learned NNBC
B∗φ is fixed and given to us. Let us define ΘZ = {θ | θ ∈Θ,Bφ(θ)≤ 0} ⊆Θ. We then introduce a
scalar margin denoted by ηr ≤ 0 and functions qk :Rd→R, where k ∈ {1, 2, 3}, corresponding to
the conditions in Definition 7, such that:

q1(θ, ηr) =
(
B∗φ(θ)− ηr

)
1Θ0 , (11)

q2(θ, ηr) =
(
− B∗φ(θ)− ηr

)
1Θu

, (12)

q3(θ,∆, ηr) =
(
B∗φ(f(θ,D∆

train)
)
− ηr

)
1ΘZ . (13)

Robust convex problem (RCP). To robustly verify the BC conditions (11)-(13) under all possible
poisoning perturbations ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), we formulate an RCP over the only
decision variable ηr, enforcing strict satisfaction of all constraints:

RCP :

{
min
ηr≤0

ηr

s.t. qk(θ,∆, ηr) ≤ 0, ∀θ ∈ Θ, ∀k ∈ {1, 2, 3}.
(14)

Since B∗φ is fixed, the RCP is a robust linear program over the scalar variable ηr, with the optimal
value denoted by η∗r . A solution η∗r < 0 certifies that B∗φ satisfies the conditions in Definition 7,
and thus provides an exact robustness certificate for the poisoning attack with the corresponding
radius δ∗cert (resp. δ′∗cert) with a guarantee 100%. However, solving this robust linear program is
intractable, as the state transition map f is not available under unknown poisoning attacks and the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

robust problem involves infinitely many constraints due to θ and ∆ belonging to some continuous
sets. To make this tractable, we relax the RCP into the following chance-constrained problem (CCP):

CCP :

{
min
ηr≤0

ηr

s.t. P [qk(θ,∆, ηr) ≤ 0, ∀θ ∈ Θ, ∀k ∈ {1, 2, 3}] ≥ 1− ϵ,
(15)

where ϵ ∈ (0, 1) denotes the given violation probability. The goal is to solve the CCP in (15) rather
than the RCP in (14). The CCP optimally discards a constraint subset of probability mass at most ϵ
to maximize objective improvement. However, solving CCP is still challenging since both θ and ∆
lie in continuous spaces. Therefore, we tackle the associated Scenario Convex Problem (SCP).

Scenario convex problem (SCP). We approximate infinitely many constraints by sampling N̂
i.i.d. scenarios using the data generation process described in (9). This yields sampled sets Z1⊂Θ0,
Z2 ⊂Θu, and ϑ′ ⊂Θcorresponding to data points in the initial, unsafe, and safe sets, respectively.
Then, SCP enforces the inequalities only in these sampled scenarios for all i ∈ {1, . . . , N̂} and
∥∆i∥p≤δ∗cert (resp. ∥∆′

i∥p≤δ′∗cert) as follows:

SCP :

{
min
ηs≤0

ηs

s.t. qk(θi,∆i, ηs) ≤ 0, ∀θi ∈ Zk, ∀k ∈ {1, 2, 3}.
(16)

where Z3 = {θi | θi ∈ ϑ′,Bφ(θi)≤ 0} Let η∗s denote the optimal value of the SCP. Since the SCP
replaces the infinite set with finitely many trajectories, it is crucial to assess the generalization of
this solution. Hence, we establish a probabilistic bound that quantifies the gap between η∗s and η∗r ,
guarantees the constructed BC B∗φ, and thus certifies the robust radii with some confidence.

Probably approximately correct (PAC) guarantee. To rigorously connect the CCP, and SCP, we
adopt the PAC guarantee based on Theorem 1 of Calafiore & Campi (2006). Specifically, with a
confidence of at least 1−β, the solution η∗s of SCP in (16) is a feasible solution of CCP in (15),
provided that the number of i.i.d. scenarios N̂ satisfies:

N̂ ≥
⌈ ln(β)

ln(1− ϵ)

⌉
. (17)

We now present the main theoretical result of BaRC. A summary of the certification procedure is
given in Algorithm 1, with extended versions for poisoning and evasion attacks in the Appendix C.
Theorem 11 (BaRC). Let hθ be an ML model, trained on a potentially poisoned training dataset
D∆

train and evaluated on a potentially poisoned test dataset D∆′

test, as described in Section 2.1. As-
sume that model updates follow the gradient-based rule f as in (1), with the training process mod-
eled by a dt-DS S. Consider α ∈ [0, 1], ϵ ∈ (0, 1), and β ∈ [0, 1] as a gap threshold as in (5),
the probability of violation as in (15), and the confidence level as in (17), respectively. Suppose an
NNBC B∗φ is trained using a finite number of samples generated through the procedure in Section
9, producing a certified train-time robust radius δ∗cert (resp. certified test-time robust radius δ′∗cert).
Let η∗s < 0 be the optimal barrier margin obtained by solving the SCP in (16) on N̂ i.i.d. samples,
with N̂ satisfying the bound in (17). Then, with a confidence of at least 1−β, the learned certificate
B∗φ ensures that, for all poisoning perturbations satisfying ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), the
model’s converged parameters remain in the safe set Θs and G(θ(t∞))≤α as in Definition 4, with
the violation probability of at most ϵ.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of BaRC and analyze how key design choices impact the
certified robustness of the trained model hθ under the ℓ∞ and ℓ2 train-time threat models. Additional
experiments for test-time certification are provided in the Appendix D. We perform experiments on
three standard image classification benchmarks: MNIST, SVHN, and CIFAR-10. Robustness is
assessed against three representative poisoning strategies during training, Projected Gradient De-
scent (PGD) (Madry et al., 2018), Backdoor Attack (BDA) (Gu et al., 2017), and Bullseye Polytope
Attack (BPA) (Aghakhani et al., 2021), and against PGD and AutoAttack (AA) (Croce & Hein,
2020) at test time. The hypothesis class hθ spans multiple architectures, including MLP, CNN, and
ResNet, trained with optimizers GD, SGD, and Adam. We provide the details of the experimental
setups with hyperparameters in Table 3, and list all model architectures in Table 4 in the Appendix.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1 BaRC against Poisoning Attacks
Input: Model hθ , gap threshold α, number of samples for training NNBC N , number of scenario for solving
SCP N̂ , training horizon t∞, confidence level 1−β, max iterations T
Output: Trained B∗

φ, certified robust radius δ∗cert, violation probability ϵ

1: Sample N poisoned training trajectories dataset.
2: Train hθ on each to obtain θi for all i ∈ {1, . . . , N}. Collect terminal parameters θi(t∞) and label as safe

or unsafe using G(θi(t∞)) ≤ α; assign θi(0) to initial set.
3: Fix δemp ← max{δi | G(θi(t∞)) ≤ α} and initialize δcert ← δemp.
4: Train an NNBC Bφ on collected data to satisfy L = 0.
5: If there is no B∗

φ, reduce δcert or increase N and retrain. If not feasible after T tries, hθ can not be certified.
6: Generate N̂ new i.i.d. poisoned samples using Step 1.
7: Solve the SCP in equation (16) to obtain the margin η∗

s . If η∗
s > 0, reduce δcert and return to Step 2 until

η∗
s ≤ 0. Then, compute the minimum violation probability ϵ from condition (17).

(a) CIFAR10, ResNet, BPA
(ρ = 0.2)

(b) SVHN, ResNet, PGD
(ρ = 0.9)

(c) SVHN, MLP, BDA
(ρ = 0.1)

(d) MNIST, CNN, PGD
(ρ = 1)

Figure 2: Certified accuracy (g∗p) versus perturbation magnitude (δ) on different settings and poison-
ing scenarios. Each figure reports the terminal test accuracy g(θ(t∞)), the empirical robust radius
δemp, and the certified robust radius δ∗cert obtained using the proposed BaRC framework. The con-
fidence level is fixed at 1 − β, β = 10−4, across all settings, with the corresponding violation
probabilities being ϵ = (a) 0.015, (b) 0.013, (c) 0.006, and (d) 0.005.

Results. We present representative results of different combinations of ℓ2 and ℓ∞ train-time at-
tacks under poisoning ratio ρ ranging from 0.1 to 1 and datasets, with a confidence level of 99.99%
in Table 1 and Figure 2 (see Table 3 and Figure 5 for all the results). We denote the certified ac-
curacy by g∗p which is computed by g∗p = gc − α as in Definition 4. Non-trivial certificates are
obtained in all settings. Exemplary, for SVHN, at g∗p = 0.75 under PGD (ℓ2), BaRC certifies robust
radii up to δ∗cert = 0.92 even when the poisoning ratio is as high as ρ = 0.9. All SCP margins η∗s are
non-positive, ensuring feasibility, and the violation probability ϵ remains below 0.02 in most con-
figurations (Table 1). Importantly, BaRC results in tight certificates, as the certified robust radius
δ∗cert is consistently close to the empirical robust radius δ∗emp.

Figure 3: Comparison of
BaRC and RAB on SVHN
under test-time BDA with
ℓ∞ attack. BaRC consis-
tently yields higher certi-
fied robustness than RAB.

Additionally, we compare BaRC with RAB, a randomized smooth-
ing–based certified defense against evasion and backdoor attacks (We-
ber et al., 2023). As shown in Figure 3, BaRC consistently achieves
stronger and tighter guarantees than RAB. Notably, BaRC more
closely matches the empirical robustness (see Table 5 for more results).
Other feature-poisoning certificates are less suitable for direct com-
parison: BagFlip (Zhang et al., 2022) is restricted to ℓ0 corruptions;
ensemble-based methods permit unbounded perturbations (Levine &
Feizi, 2021; Wang et al., 2022); and model-specific approaches tai-
lored to neural networks either apply only to infinite-width graph neu-
ral networks (Gosch et al., 2025) or impose unrealistic restrictions on
training and model choice (Sosnin et al., 2025). More experiments, including diverse train- and
test-time attack scenarios and a runtime analysis, are provided in Appendix D.

6 DISCUSSION AND CONCLUSION

Our proposed framework, BaRC, offers a principled, model-agnostic, attack-independent, data-
driven solution for certifying both train-time and test-time poisoning of an ML model. We model
gradient-based training as a dt-DS and frame poisoning robustness as a safety verification problem
in parameter space. BaRC employs neural network–based barrier certificates, trained on sampled
poisoning trajectories, and certifies robustness with probably approximately correct guarantees.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset ML model Optimizer A ρ-ratio p-norm N N̂ g∗
p δemp δ∗cert η∗

s ϵ

MNIST CNN SGD PGD 1 ∞ 4000 1800 0.90 0.14 0.13 -0.01 0.0050.80 0.18 0.16 -0.01

SVHN
ResNet Adam PGD 0.9 2 3000 700 0.75 1.21 0.92 -0.11 0.0130.60 2.0 1.67 -0.05

MLP SGD BDA 0.1 ∞ 4000 1500 0.80 0.25 0.23 -0.02 0.0060.60 0.35 0.32 -0.03

CIFAR-10 ResNet Adam BPA 0.2 2 2000 600 0.70 0.61 0.52 -0.01 0.0150.60 0.84 0.68 -0.02

Table 1: Certification results for the train-time ℓ2 and ℓ∞ poisoning attacks and datasets in Figure 2.
Each row reports the certified accuracy (g∗p), the empirical (δemp) and certified (δ∗cert) radii, BC mar-
gin (η∗s), and violation probability (ϵ), evaluated at a performance gap threshold α and a confidence
level of at least 99.99%. Larger δ∗cert indicates stronger certified robustness.

BaRC for train-time vs. test-time. BaRC certifies robustness against both train-time and test-
time poisoning, though these settings affect the learning differently. Train-time poisoning modifies
the training data D∆

train, altering the learning dynamics and influencing which parameters are reach-
able, directly impacting the reachability-based constraints used in constructing the barrier certificate.
In contrast, test-time poisoning affects only the evaluation data D∆′

test, modifying the safety predicate
g(θ) by changing how the final model is judged as safe or unsafe. Despite these differences, the
barrier certificate Bφ enforces the same structural constraints in both settings, and the certified radii
ensure that the terminal model parameters remain within the safe set under each poisoning modality.

Empirical robust radius vs. certified robust radius. Any certified robust radius δcert (resp. δ′cert
for test-time) satisfies δcert ≤ δemp (resp. δ′cert ≤ δ′emp). Ideally, a tight certificate would achieve
equality, but this is rarely possible due to the inherent conservativeness of formal guarantees from
finite samples. The tightness largely depends on how the model’s test accuracy g(θ) degrades under
increasing poisoning. When the degradation is stable and predictable, the learned parameter exhibit
more structure, making the NNBC easier to train and the certificate tighter. This highlights a key
insight: the regularity of model behavior under poisoning affects not just robustness and accuracy,
but also the feasibility of learning a generalizable barrier, reflecting the foundational principle of
BCs, which rely on the continuity and predictability of system dynamics in parameter space.

Influence of number of samples in the data generation process. The effectiveness of BaRC
hinges on its data generation process, which produces (i) poisoned training trajectories for learning
the NNBC and (ii) i.i.d. scenario samples for PAC-style certification. These are controlled by two
key parameters: N (number of trajectories) and N̂ (number of scenarios). While N̂ can be selected
based on the desired violation rate ϵ and confidence level 1 − β via inequality (17), choosing N
is more empirical. Since the NNBC is a learned function, N must be large enough to capture the
safe/unsafe boundary, and it depends on the dataset and model complexity. Empirically, BaRC
achieves reliable certification when initialized with at least N = 1000 samples. If NNBC training
or SCP feasibility fails, increasing N by ∼500 typically restores feasibility, balancing statistical
coverage with computational cost. This incremental strategy balances cost and coverage, ensuring
sufficient data for both learning the NNBC and robust certification.

Scalability of BaRC. BaRC is designed to be broadly applicable across architectures, optimizers,
and poisoning modalities, and it has demonstrated strong scalability by certifying high-capacity
models such as ResNet on CIFAR-10. However, this generality and empirical robustness come at a
computational cost since BaRC relies on empirical training trajectories and data generation process,
each corresponding to a ML model training run. (see Table 3 for runtime analysis).

Generality of BaRC. BaRC models gradient-based training as a discrete-time stochastic dynam-
ical system, operating entirely in parameter space. It assumes no white-box access to the attack
(e.g., strategy, trigger, or poisoning ratio), model architecture, loss landscape, or optimizer; all these
elements are abstracted into the realized update map f , which is observed only through sampled
trajectories used to train and verify the barrier certificate Bφ. While BaRC directly certifies ro-
bustness only against feature-space perturbations (not label corruption), its generality is evident in
several ways: (i) it certifies both training-time and test-time poisoning, (ii) it supports any model
architecture and hyperparameters under gradient-based optimizers such as (S)GD or Adam, and
(iii) it requires no knowledge of the attack strategy or poisoning ratio. Extending BaRC to non-ℓp
perturbations remains a promising direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our work provides a way to formally assess the worst-case robustness of neural networks against
poisoning at both training and test time—addressing them jointly for the first time. Although such
insights could, in principle, be misused by adversaries, we argue that identifying and understanding
these vulnerabilities is essential for the safe deployment of neural networks now and in the future.
We therefore believe that the societal benefits of advancing robustness research outweigh the po-
tential risks, and we do not anticipate any immediate misuse arising from our contributions. In
addition, this paper was entirely written by the authors. Large language models (LLMs), were used
solely for final-stage language editing and polishing, without contributing to the scientific content
or experimental results.

8 REPRODUCIBILITY STATEMENT

We have taken considerable care to ensure the reproducibility of our findings. Detailed descriptions
of the experimental setup are provided in Sections 5 and D, where we also report all hyperparameter
choices. To control stochasticity, we fixed random seeds in all pseudorandom number generators
used in the experiments. The complete codebase, along with the configuration files for every exper-
iment, is available at https://figshare.com/s/42f69e5af3c98213688c and will be
publicly released upon acceptance.

REFERENCES

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.
Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In
IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, Septem-
ber 6-10, 2021, pp. 159–178. IEEE, 2021. doi: 10.1109/EUROSP51992.2021.00021. URL
https://doi.org/10.1109/EuroSP51992.2021.00021.

Aaron D. Ames, Xu Xu, Jessy W. Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs with application to adaptive cruise control. In Proceedings of the 53rd IEEE
Conference on Decision and Control (CDC), pp. 6271–6278, 2014.

Mahathi Anand and Majid Zamani. Formally verified neural network control barrier certificates for
unknown systems. IFAC-PapersOnLine, 56(2):2431–2436, 2023.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. In Proceedings of the 29th International Conference on Machine Learning (ICML), pp.
1467–1474, 2012.

Giuseppe Carlo Calafiore and Marco C Campi. The scenario approach to robust control design.
IEEE Transactions on automatic control, 51(5):742–753, 2006.

Marco C Campi and Simone Garatti. The exact feasibility of randomized solutions of uncertain
convex programs. SIAM Journal on Optimization, 19(3):1211–1230, 2008.

Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum S. Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale
training datasets is practical. In IEEE Symposium on Security and Privacy, SP 2024, San Fran-
cisco, CA, USA, May 19-23, 2024, pp. 407–425. IEEE, 2024. doi: 10.1109/SP54263.2024.00179.
URL https://doi.org/10.1109/SP54263.2024.00179.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning (ICML), 2019.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensem-
ble of diverse parameter-free attacks. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 2206–2216. PMLR, 2020. URL http://proceedings.
mlr.press/v119/croce20b.html.

10

https://figshare.com/s/42f69e5af3c98213688c
https://doi.org/10.1109/EuroSP51992.2021.00021
https://doi.org/10.1109/SP54263.2024.00179
http://proceedings.mlr.press/v119/croce20b.html
http://proceedings.mlr.press/v119/croce20b.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: data poison-
ing, backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell., 45(2):1563–1580,
2023. doi: 10.1109/TPAMI.2022.3162397. URL https://doi.org/10.1109/TPAMI.
2022.3162397.

Lukas Gosch, Mahalakshmi Sabanayagam, Debarghya Ghoshdastidar, and Stephan Günnemann.
Provable robustness of (graph) neural networks against data poisoning and backdoor attacks.
Transactions on Machine Learning Research, 2025. URL https://openreview.net/
forum?id=jIAPLDdGVx.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. CoRR, abs/1708.06733, 2017. URL http://arxiv.
org/abs/1708.06733.

W. Ronny Huang, Jacob Steinhardt, and Tom Goldstein. Metapoison: Practical general-purpose
clean-label data poisoning. In Advances in Neural Information Processing Systems, volume 33,
pp. 15670–15681, 2020.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Intrinsic certified robustness of bagging
against data poisoning attacks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 7961–7969. AAAI Press, 2021. doi: 10.1609/AAAI.V35I9.16971.
URL https://doi.org/10.1609/aaai.v35i9.16971.

Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest
neighbors against data poisoning and backdoor attacks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 9575–9583, 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 1885–1894,
2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break data
sanitization defenses. Mach. Learn., 111(1):1–47, 2022. doi: 10.1007/S10994-021-06119-Y.
URL https://doi.org/10.1007/s10994-021-06119-y.

Alexander Levine and Soheil Feizi. Deep partition aggregation: Provable defenses against general
poisoning attacks. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.
net/forum?id=YUGG2tFuPM.

Yuzhe Ma, Xiaojin Zhu, and Justin Hsu. Data poisoning against differentially-private learners:
Attacks and defenses. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 4732–
4738. ijcai.org, 2019. doi: 10.24963/IJCAI.2019/657. URL https://doi.org/10.24963/
ijcai.2019/657.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR), 2018.

Anna P. Meyer, Aws Albarghouthi, and Loris D’Antoni. Certifying robustness to pro-
grammable data bias in decision trees. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 26276–
26288, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html.

11

https://doi.org/10.1109/TPAMI.2022.3162397
https://doi.org/10.1109/TPAMI.2022.3162397
https://openreview.net/forum?id=jIAPLDdGVx
https://openreview.net/forum?id=jIAPLDdGVx
http://arxiv.org/abs/1708.06733
http://arxiv.org/abs/1708.06733
https://doi.org/10.1609/aaai.v35i9.16971
https://doi.org/10.1007/s10994-021-06119-y
https://openreview.net/forum?id=YUGG2tFuPM
https://openreview.net/forum?id=YUGG2tFuPM
https://doi.org/10.24963/ijcai.2019/657
https://doi.org/10.24963/ijcai.2019/657
https://proceedings.neurips.cc/paper/2021/hash/dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dcf531edc9b229acfe0f4b87e1e278dd-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In Rajeev Alur and George J. Pappas (eds.), Hybrid Systems: Computation and Control, pp. 477–
492, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Transactions on Automatic Control, 52(8):
1415–1428, 2007.

Keivan Rezaei, Kiarash Banihashem, Atoosa Malemir Chegini, and Soheil Feizi. Run-off election:
Improved provable defense against data poisoning attacks. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 29030–29050. PMLR, 2023. URL
https://proceedings.mlr.press/v202/rezaei23a.html.

Luke Rickard, Alessandro Abate, and Kostas Margellos. Data-driven neural certificate synthesis.
arXiv preprint arXiv:2502.05510, 2025.

Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and J. Zico Kolter. Certified robustness to label-
flipping attacks via randomized smoothing. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pp. 8230–8241. PMLR, 2020. URL http://proceedings.
mlr.press/v119/rosenfeld20b.html.

Mahalakshmi Sabanayagam, Pascal Mattia Esser, and Debarghya Ghoshdastidar. Analysis of con-
volutions, non-linearity and depth in graph neural networks using neural tangent kernel. Trans-
actions on Machine Learning Research, 2023. URL https://openreview.net/forum?
id=xgYgDEof29.

Mahalakshmi Sabanayagam, Lukas Gosch, Stephan Günnemann, and Debarghya Ghoshdastidar.
Exact certification of (graph) neural networks against label poisoning. In The Thirteenth Inter-
national Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net, 2025. URL https://openreview.net/forum?id=d9aWa875kj.

Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P. Dickerson, and Tom Goldstein. Just
how toxic is data poisoning? A unified benchmark for backdoor and data poisoning attacks.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pp. 9389–9398. PMLR, 2021. URL http://proceedings.
mlr.press/v139/schwarzschild21a.html.

Amirhossein Shafahi, W. Ronny Huang, Mahyar Najibi, Olatunji Suciu, Christoph Studer, Tudor
Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. Advances in Neural Information Processing Systems, 31, 2018.

Philip Sosnin, Mark Niklas Müller, Maximilian Baader, Calvin Tsay, and Matthew Wicker. Certified
robustness to data poisoning in gradient-based training. CoRR, abs/2406.05670, 2025. doi: 10.
48550/ARXIV.2406.05670. URL https://doi.org/10.48550/arXiv.2406.05670.

Binghui Wang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. On certifying robustness against
backdoor attacks via randomized smoothing. CoRR, abs/2002.11750, 2020. URL https://
arxiv.org/abs/2002.11750.

Wenxiao Wang, Alexander Levine, and Soheil Feizi. Improved certified defenses against data
poisoning with (deterministic) finite aggregation. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 22769–22783. PMLR, 2022. URL https:
//proceedings.mlr.press/v162/wang22m.html.

Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness against
backdoor attacks. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1311–1328. IEEE,
2023.

12

https://proceedings.mlr.press/v202/rezaei23a.html
http://proceedings.mlr.press/v119/rosenfeld20b.html
http://proceedings.mlr.press/v119/rosenfeld20b.html
https://openreview.net/forum?id=xgYgDEof29
https://openreview.net/forum?id=xgYgDEof29
https://openreview.net/forum?id=d9aWa875kj
http://proceedings.mlr.press/v139/schwarzschild21a.html
http://proceedings.mlr.press/v139/schwarzschild21a.html
https://doi.org/10.48550/arXiv.2406.05670
https://arxiv.org/abs/2002.11750
https://arxiv.org/abs/2002.11750
https://proceedings.mlr.press/v162/wang22m.html
https://proceedings.mlr.press/v162/wang22m.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li. Unraveling the
connections between privacy and certified robustness in federated learning against poisoning at-
tacks. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda (eds.),
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30, 2023, pp. 1511–1525. ACM, 2023. doi:
10.1145/3576915.3623193. URL https://doi.org/10.1145/3576915.3623193.

Hongchao Zhang, Zhizhen Qin, Sicun Gao, and Andrew Clark. SEEV: synthesis with efficient exact
verification for relu neural barrier functions. In Proceedings of the 38th International Conference
on Neural Information Processing Systems. Curran Associates Inc., 2025. ISBN 9798331314385.

Yuhao Zhang, Aws Albarghouthi, and Loris D’Antoni. Bagflip: A certified defense against data poi-
soning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
cc19e4ffde5540ac3fcda240e6d975cb-Abstract-Conference.html.

13

https://doi.org/10.1145/3576915.3623193
http://papers.nips.cc/paper_files/paper/2022/hash/cc19e4ffde5540ac3fcda240e6d975cb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/cc19e4ffde5540ac3fcda240e6d975cb-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATION

We denote the sets of real, positive real, and negative real numbers by R, R+, and R−, respectively.
The absolute value of a scalar θ ∈ R is denoted by |x|. The sets of positive integers and non-negative
integers are denoted by N and N0, respectively. The set Rd denotes the d-dimensional Euclidean
space. We define [r] as the set of the first r natural numbers (i.e., [r] := {1, 2, . . . , r}). For any vector
x ∈ Rd, its Euclidean (ℓ2-norm) is denoted by ∥x∥2, and its infinity norm (ℓ∞-norm) is denoted by
∥x∥∞ := max |xi|. For any a ∈ R, the ceiling function ⌈a⌉ returns the smallest integer greater than
or equal to a, and the Rectified Linear Unit (ReLU) activation is defined as ReLU(a) := max{0, a}.
Finally, for any set Θ, the indicator function 1Θ(θ) equals 1 if θ ∈ Θ and 0 otherwise.
For more clarity, all symbols, notation, and key quantities used throughout the BaRC framework are
summarized in Table 2.

Table 2: Summary of key symbols and definitions in the BaRC framework.

Symbol Definition / Scope

Threat Model & Perturbation
p Norm type for threat model (ℓ∞ in main; ℓ2 in Appendix)
δ, δ′ Max perturbation magnitude (per feature) for train/test
ρ, ρ′ Poisoning ratio: fraction of corrupted samples in train/test algorithm
∆, ∆′ Feature-space perturbation matrices for train/test data
D∆

train Poisoned training dataset
D∆′

test Poisoned test dataset
P Distribution over poisoning scenarios for PAC guarantees

Training Dynamics & Parameters
Θ, Θ0 Parameter space; distribution of initial parameters
θ(0), θ(t) Model parameters at initialization and iteration t

t∞ Terminal time step at training convergence
f(θ,J) Update rule (e.g., SGD): θ − γt∇L
S Discrete-time stochastic dynamical system modeling training

Safety criterion and robust radii
g(θ) Accuracy of model hθ on test data
gc(θ), gp(θ) Accuracy on clean vs. poisoned test set
G(θ) Test degradation gap: G = gc − gp
α Threshold for maximum allowed test accuracy degradation
Θs, Θu Safe/unsafe sets s.t. G(θ) ≤ α / > α

δemp, δ
′
emp Empirical robust radius: largest δ/δ′ such that test accuracy degradation at most ≥ α

δ∗cert, δ
′∗
cert Certified train/test-time robust radius

g∗p Certified accuracy (g∗p = gc − α as in definition 4)

Neural Barrier Certificate (NNBC)
Bφ(θ) Barrier certificate parameterized by neural weights φ
N Number of poisoning trajectories used for NNBC training
B∗φ Trained NNBC satisfying all loss constraints
ΘZ Feasible domain: sublevel set {θ : B(θ) ≤ 0}
L(φ) Barrier training loss (Eq. 10) with three ReLU terms
ϑ Collected dataset for barrier training (initial/safe/unsafe parameters)

Scenario Certification (RCP / SCP)
q1, q2, q3 Constraint functions encoding the three BC conditions
ηr Margin in robust convex problem (RCP) over full scenario space
ηs, η∗s Margin in scenario convex problem (SCP) and its optimal value
N̂ Number of i.i.d. scenarios used in SCP evaluation
ϵ Max violation probability allowed over unseen scenarios
β Confidence parameter for PAC bound (1− β confidence)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B PROOFS

Here we provide the proofs for the results stated in the main part of the paper.

B.1 PROOF OF THEOREM 10

Theorem (Certified robust radius). Let hθ be an ML model, trained on a (potentially) poisoned
dataset D∆

train and evaluated on a (potentially) poisoned dataset D∆′

test, as in section 2.1. Consider
a dt-DS S=(Θ,Θ0,D∆

train, f) as in Definition 6, modeling the training dynamics of hθ. Let δemp

(resp. δ′emp) denote the empirically derived train-time (resp. test-time) robust radius, and let Θs⊆Θ
and Θu ⊆ Θ denote the corresponding safe and unsafe sets of terminal parameters, as introduced
in Definition 4. If there exists a BC B satisfying the conditions in Definition 7 for a train-time
(resp. test-time) robust radius δcert (resp. δ′cert), then all trajectories initialized at θ(0)∈Θ0 remain
within the safe set Θs and never enter the unsafe set Θu for any perturbations ∥∆∥p ≤ δcert (resp.
∥∆′∥p≤δ′cert). Thus, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust radius,
ensuring that, under worst-case perturbations, the degradation in test accuracy is at most α.

Proof. By Definitions 4 and 7, the zero-level set of the barrier, {θ ∈ Rd | B(θ) = 0}, separates the
safe region Θs := {θ ∈ Rd | G(θ) ≤ α} from the unsafe region Θu := {θ ∈ Rd | G(θ) > α}.
(1) Without loss of generality, because the parameters at t = 0 are randomly initialized with small
magnitudes—hence untrained and uninfluenced by data—the model’s predictions are essentially
random. Its test accuracy is therefore at chance level, whether evaluated on clean or poisoned in-
puts. Consequently, the initialization gap satisfies G(θ(0)) ≈ 0, which is negligible relative to any
admissible threshold α. By Definition 4, it follows that θ(0) ∈ Θs.
(2) By condition (6), the initial model parameters θ(0) ∈ Θ0 always satisfy B(θ(0)) ≤ 0. This aligns
with (1). So training begins inside (or on the boundary of) the barrier zero sublevel set.
(3) Suppose that at iteration t, B(θ(t)) ≤ 0. If θ(t) ∈ Θu, then condition (7) implies B(θ(t)) > 0,
which is a contradiction. Therefore, θ(t) must lie in Θs.
(4) By condition (8), for any admissible poisoning with ∥∆∥p ≤ δcert, if B(θ(t)) ≤ 0, then the next
state θ(t + 1) also satisfies B(θ(t + 1)) ≤ 0 and the zero sub-level set {θ ∈ Rd | B(θ) ≤ 0} is
forward invariant for the training dynamics under all admissible ∆.
(5) From (2)–(4) we conclude that once the training starts inside the safe region, the barrier con-
dition guarantees that B(θ(t)) ≤ 0 holds for every iteration t. In particular, at the terminal time
t = t∞ we have B(θ(t∞)) ≤ 0, which by the separation property in (3) implies that θ(t∞) ∈ Θs.
By Definition 4, this means that the accuracy gap at convergence satisfies G(θ(t∞)) ≤ α, that is, the
trajectory remains in Θs for all t and never enters Θu. For test-time perturbations ∆′, observe that
they do not alter the training dynamics and only affect the accuracy at evaluation. Hence, the same
separation argument applies: the terminal parameters remain in Θs for all ∆′ with ∥∆′∥p ≤ δ′cert.
(6) Hence, δcert (resp. δ′cert) serves as a certified train-time (resp. test-time) robust radius, guarantee-
ing that under worst-case admissible perturbations the degradation in test accuracy at convergence
is bounded by α.

B.2 PROOF OF THEOREM 11

Theorem (BaRC) Let hθ be an ML model, trained on a potentially poisoned training dataset
D∆

train and evaluated on a potentially poisoned test datasetD∆′

test, as described in Section 2.1. Assume
that model updates follow the gradient-based rule f as in (1), with the training process modeled by
a dt-DS S. Consider α∈ [0, 1], ϵ∈ (0, 1), and β ∈ [0, 1] as a gap threshold as in (5), the probability
of violation as in (15), and the confidence level as in (17), respectively. Suppose an NNBC B∗φ is
trained using a finite number of samples generated through the procedure in Section 9, producing
a certified train-time robust radius δ∗cert (resp. certified test-time robust radius δ′∗cert). Let η∗s < 0

be the optimal barrier margin obtained by solving the SCP in (16) on N̂ i.i.d. samples, with N̂
satisfying the bound in (17). Then, with a confidence of at least 1 − β, the learned certificate B∗

φ

ensures that, for all poisoning perturbations satisfying ∥∆∥p ≤ δ∗cert (resp. ∥∆′∥p ≤ δ′∗cert), the
model’s converged parameters remain in the safe set S, and the certified test accuracy g∗b (θ(t∞))
satisfies G(θ(t∞))≤α as in Definition 4, with the violation probability of at most ϵ.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Let P denote a probability measure on the product space Θ× S∆, where Θ is the parameter
space of the ML model and S∆ denotes the set of admissible poisoning perturbation matrices ∆.
Our goal is to certify, with high confidence, that the trained model hx satisfies safety and accuracy
constraints even under worst-case poisoning. In the main text, this objective is posed as a robust
constrained program (RCP) in (14), where the constraints must hold for all admissible perturbations.

Because solving the RCP is generally intractable—owing to its dependence on the full uncertainty
space and the absence of a closed form for f—we relax it to a chance-constrained problem (CCP).
The CCP permits violations on at most an ϵ fraction of the uncertainty set, which is acceptable from
a probabilistic safety perspective. In this formulation, we define the violation probability V(η) as

V(η) := P [(θ,∆) ∈ Θ× S∆ : ∃k ∈ {1, 2, 3} such that qk(θ,∆) > η] . (18)

This quantity is the central object of the CCP, capturing the probability that the BC margin η is
violated under a random poisoning scenario. We say η is ϵ-feasible if V(η) ≤ ϵ, i.e., the CCP holds
with probability at least 1− ϵ.

To solve the CCP in practice, we approximate it by the SCP in (16), which replaces the probabilistic
constraint with empirical constraints over N̂ i.i.d. scenarios drawn from P. Concretely, the SCP
seeks a margin η such that (16) is satisfied.

Let η∗s be the SCP solution constructed from the sample set ω = {(θi,∆i)}N̂i=1 ∼ P. By the
scenario framework of Calafiore & Campi (2006), under standard assumptions (e.g., uniqueness and
measurability of the solution), the probability that η∗s violates the original CCP constraint is bounded
as

PN̂ (V(η∗s) > ϵ) ≤
R−1∑
k=0

(
N̂

k

)
ϵk (1− ϵ)N̂−k, (19)

where PN̂ = P× · · · × P (taken N̂ times) is the product measure on the full multi-sample ω, and R
denotes the number of support constraints of the SCP.

In our setting, the trained NNBC Bφ is fixed in (16), and the SCP has a single decision variable (the
scalar margin ηs). Hence the maximal number of support constraints is R = 1. Substituting R = 1
into the scenario bound yields

PN̂ (V(η∗s) > ϵ) ≤ (1− ϵ)N̂ . (20)

To make this failure probability at most β, it suffices to require (1− ϵ)N̂ ≤ β, i.e.

N̂ ≥ lnβ

ln(1− ϵ)

(
equivalently, N̂ ≥

⌈
ln β

ln(1−ϵ)

⌉
for integer N̂

)
.

Therefore, if the number of sampled scenarios N̂ satisfies this condition, then with probability at
least 1−β (over the draw of ω), the SCP solution η∗s is ϵ-feasible for the CCP and thus approximates
the RCP by certifying safety and test-accuracy constraints on all but an ϵ-fraction of poisoning
scenarios drawn from P.

Finally, if η∗s < 0 for some poisoning radius δ∗cert (or test-time radius δ′∗cert), we conclude that, with
confidence at least 1 − β, for all poisoning perturbation matrices ∆ satisfying ∥∆∥p ≤ δ∗cert (and
analogously for test-time ∆′ with ∥∆′∥p ≤ δ′∗cert), the terminal parameters remain in the certified
safe set and the test accuracy satisfies g(θ(t∞)) ≥ α, except on an ϵ-fraction of cases.

This shows how the intractable RCP is relaxed to a CCP and solved via an SCP while preserv-
ing formal, probabilistic guarantees on robust generalization; the BaRC framework inherits these
guarantees through this layered connection, completing the proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C ALGORITHMS

We summarize the certification procedure in Figure 4, which illustrates the overall workflow. In
addition, Algorithms 2 and 3 describe the certification process under train-time and test-time poi-
soning settings, respectively. These procedures detail how the NNBC is trained and verified using
disjoint parameter sets to provide valid robustness guarantees.

Figure 4: BaRC framework. The left panel illustrates the data generation process under both train-
time poisoning attacks and test-time evasion attacks. For each perturbation level, the model hθ is
trained on perturbed datasets to produce two disjoint sets of parameter vectors: θ and θ̂. A safety
criterion function is then applied to each parameter vector to label it as safe or unsafe. The set
θ is used to train an NNBC Bφ, while the set θ̂ is used to evaluate Bφ through a scenario-based
PAC analysis. The BaRC process (right panel) outputs a certified NNBC B∗ϕ, and its corresponding
robustness radius δ∗cert or δ′∗cert, and a probabilistic guarantee with violation probability at most ϵ and
a confidence of at least 1−β.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 BaRC for an ML model hθ Against Data Poisoning Attack

Input Clean train and test datasets Dtrain and Dtest, model hθ, gap threshold α, training horizon t∞,
norm p, number of samples for NNBC N , number of samples for SCP N̂ , step size dδ , confidence
level 1− β ∈ [0, 1], poison ratio ρ ∈ [0, 1], max iterations T ;
Output Certified radius δ∗cert, NNBC B∗φ, violation probability ϵ;

Step 1 - Data Generation for BarC

1: for i = 1 to N do
2: Initialize θi(0) ∈ Θ0 and add to I;
3: Sample poisoning level δi;
4: Create ρ-ratio poisoned dataset D∆i

train with ∥∆i∥p=δi;
5: for j = 1 to t∞ do
6: Train hθ on D∆i

train to obtain θi(j);
7: end for
8: Evaluate test accuracy G(θi(t∞)) on Dtest as in definition 4;
9: if G(θi(t∞)) ≥ α then

10: Add θi(t∞) to S;
11: else
12: Add θi(t∞) to U ;
13: end if
14: end for
15: Set ϑ← I ∪ U ∪ S;
16: Compute δemp ← max {δi | g(θi(t∞)) ≥ α};
17: return I,U , ϑ, δemp;

Step 2 - BaRC Process

18: Generate N trajectories to form I,U , ϑ along with corresponding empirical robust radius δemp

and generate N̂ i.i.d. trajectories to form Z1,Z2, ϑ
′ from Step 1;

19: Initialize δcert ← δemp, NNBC Bφ, and counter k ← 0;
20: while δcert > 0 do
21: while L ̸= 0 and k < T do
22: Train Bφ using I,U , ϑ with loss L as in (10);
23: Update L and increment k ← k + 1;
24: if L ̸= 0 and k ≥ T then
25: Decrease radius: δcert ← δcert − dδ break;
26: else if L = 0 then
27: Solve SCP as in (16) using Z1,Z2, ϑ

′ to obtain margin η∗s ;
28: if η∗s > 0 then
29: Decrease radius: δcert ← δcert − dδ;
30: (Optional: Increase N);
31: else
32: δ∗cert ← δcert;
33: B∗φ ← Bφ;

34: Compute ϵ from N̂ =
⌈

ln(β)
ln(1−ϵ)

⌉
;

35: break
36: end if
37: end if
38: end while
39: end while
40: return B∗φ, δ∗cert, ϵ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 3 BaRC for an ML model hθ Against Evasion Attack

Input Clean train and test datasets Dtrain and Dtest, model hθ, gap threshold α, training horizon t∞,
norm p, number of samples for NNBC N , number of samples for SCP N̂ , step size dδ , confidence
level 1− β ∈ [0, 1], poison ratio ρ′ ∈ [0, 1], max iterations T ;
Output Certified radius δ′∗cert, NNBC B∗φ, violation probability ϵ;

Step 1 - Data Generation for BarC

1: for i = 1 to N do
2: Initialize θi(0) ∈ Θ0 and add to I;
3: for j = 1 to t∞ do
4: Train hθ on Dtrain to obtain θi(j);
5: end for
6: Sample poisoning level δ′i;
7: Create ρ-ratio poisoned dataset D∆′

i
test with ∥∆′

i∥p=δ′i;

8: Evaluate test accuracy G(θi(t∞)) on D∆′
i

test as in definition 4;
9: if G(θi(t∞)) ≥ α then

10: Add θi(t∞) to S;
11: else
12: Add θi(t∞) to U ;
13: end if
14: end for
15: Set ϑ← I ∪ U ∪ S;
16: Compute δ′emp ← max {δ′i | g(θi(t∞)) ≥ α};
17: return I,U , ϑ, δ′emp

Step 2 - BaRC Process

18: Generate N trajectories to form I,U , ϑ along with corresponding empirical robust radius δemp

and generate N̂ i.i.d. trajectories to form Z1,Z2, ϑ
′ from Step 1;

19: Initialize δ′cert ← δ′emp, NNBC Bφ, and counter k ← 0;
20: while δ′cert > 0 do
21: while L ̸= 0 and k < T do
22: Train Bφ using I,U , ϑ with loss L as in (10);
23: Update L and increment k ← k + 1;
24: if L ̸= 0 and k ≥ T then
25: Decrease radius: δ′cert ← δ′cert − dδ; break
26: else if L = 0 then
27: Solve SCP as in (16) using Z1,Z2, ϑ

′ to obtain margin η∗s ;
28: if η∗s > 0 then
29: Decrease radius: δ′cert ← δ′cert − dδ;
30: (Optional: Increase N);
31: else
32: δ′∗cert ← δ′cert;
33: B∗φ ← Bφ;

34: Compute ϵ from N̂ =
⌈

ln(β)
ln(1−ϵ)

⌉
;

35: break
36: end if
37: end if
38: end while
39: end while
40: return B∗φ, δ′∗cert, ϵ

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTS

Additional results. Figure 5 plots certified accuracy g∗p versus the perturbation radius δ across
attacks, models, and datasets, for both train- and test-time settings. In most configurations, the certi-
fied robust radius δ∗cert closely tracks the empirical radius δ∗emp (especially when accuracy degrades
smoothly) highlighting the tightness of BaRC’s certificates in those regimes. In addition, a quantita-
tive comparison with RAB under clean-label backdoor attacks (Table 5) shows that BaRC achieves
similarly strong certified radii and more tightly aligns with the empirical robustness. NNBC Bφ are
trained with Adam using the multi-term loss in equaion (10). To balance penalties across constraint
sets, we normalize the weights by set size: cI = 1

NI
, cU = 1

NU
, cZ = 1

NZ
, where NI , NU , NZ

are the cardinalities of the initial, unsafe, and feasible sublevel sets, respectively. This compensates
for variations induced by the choice of the gap threshold α.

Configurations. All experiments were implemented in PyTorch (Python 3.11) and run on two en-
vironments: (A) a MacBook Pro with Apple M3 Pro (12-core CPU), 36 GB RAM, macOS Sonoma
14.4; (B) 4× NVIDIA H100 GPUs with a 16-core CPU, and 64 GB RAM. Hardware configurations
are denoted abstractly as A and B in the tables. Full experimental settings appear in Table 3, with
corresponding figures in the last column; model architectures are listed in Table 4.

Table 3: Experimental configurations across datasets, attacks, optimizers, models, and NNBC set-
tings. The Attack block lists the poisoning method (PGD, BPA, BDA, AA), perturbation norm
(p-norm), poisoning ratio, and step size. ML Setup specifies the baseline model, optimizer, and
learning rate used for training. The Certificate block highlights how robustness guarantees are con-
structed: a neural barrier certificate (NNBC) is learned directly from the parameters of the trained
ML model and then validated via a PAC bound, which provides a formal generalization guarantee on
unseen data by bounding the violation probability ϵ (confidence 99.99%). Execution Setup records
hardware abstraction (HW) and runtime (minutes).

Dataset
Attack ML Setup Certificate Execution Setup

Fig.
Type p-norm ρ Step Model Optimizer (lr) Type NNBC PAC HW Run time

N Layer Optimizer (lr) N̂ ϵ (min)

MNIST PGD ∞ 1 40 CNN SGD (0.01) Train-Time 4000 5 Adam (0.001) 1800 0.005 A 53 5a
MNIST BPA ∞ 0.3 30 MLP GD (0.10) Train-Time 5000 7 Adam (0.001) 2500 0.003 A 36 5d
MNIST PGD 2 1 40 CNN Adam (0.001) Train-Time 3000 5 Adam (0.01) 1500 0.006 A 19 5g
MNIST PGD ∞ 1 40 MLP SGD (0.01) Train-Time 4000 5 Adam (0.001) 2000 0.004 A 31 5h
MNIST BDA ∞ 0.1 40 CNN SGD (0.01) Test-Time 3000 5 Adam (0.001) 1500 0.006 A 18 5k
MNIST AA 2 1 100 MLP Adam (0.001) Test-Time 4000 7 Adam (0.10) 2500 0.003 A 26 5n

SVHN PGD ∞ 0.9 40 CNN Adam (0.001) Train-Time 2000 4 Adam (0.001) 800 0.011 A 39 5b
SVHN BDA ∞ 0.1 30 MLP GD (0.10) Train-Time 4000 5 Adam (0.001) 1500 0.006 B 13 5e
SVHN PGD 2 0.9 30 MLP SGD (0.01) Train-Time 4000 5 Adam (0.001) 1500 0.006 B 27 5f
SVHN PGD 2 0.9 40 CNN SGD (0.01) Train-Time 2000 4 Adam (0.001) 800 0.011 A 73 5i
SVHN BDA 2 0.9 40 CNN SGD (0.10) Test-Time 2500 4 Adam (0.001) 600 0.015 A 25 5j
SVHN AA 2 0.8 100 CNN SGD (0.01) Test-Time 3000 4 Adam (0.001) 1000 0.009 A 81 5m
SVHN AA 2 0.8 100 MLP GD (0.10) Test-Time 4000 5 Adam (0.001) 2000 0.004 A 63 5o
SVHN BPA ∞ 0.2 30 ResNet Adam (0.10) Train-Time 4000 4 Adam (0.001) 1000 0.009 B 72 5p
SVHN PGD 2 0.9 40 ResNet Adam (0.01) Train-Time 3000 5 Adam (0.001) 700 0.015 B 84 5s

CIFAR10 PGD ∞ 0.8 40 CNN Adam (0.001) Train-Time 1500 4 Adam (0.001) 200 0.045 A 138 5c
CIFAR10 BDA ∞ 0.1 40 CNN Adam (0.10) Test-Time 1500 4 Adam (0.001) 200 0.045 B 66 5l
CIFAR10 BPA 2 0.2 30 ResNet Adam (0.01) Train-Time 2000 4 Adam (0.001) 600 0.015 B 81 5q
CIFAR10 BDA ∞ 0.2 100 ResNet Adam (0.10) Train-Time 3000 4 Adam (0.001) 600 0.015 B 76 5r
CIFAR10 AA 2 0.3 30 ResNet Adam (0.01) Test-Time 2000 4 Adam (0.001) 400 0.022 B 98 5t

Table 4: Architectural specifications of models used across datasets. Conv Layers reports the num-
ber of convolutional layers and their output channels. Pooling specifies the type and frequency of
downsampling. FC Layers denotes the fully connected layers with hidden dimensions up to the
output layer. Params (M) provides the approximate number of trainable parameters (in millions).

Dataset Model Conv Layers Pooling FC Layers Params (M)

MNIST
CNN 3 conv (32, 64, 128) 3× MaxPool (2×2) 3 FC (256, 128, 10) ∼1.2M
MLP – – 4 FC (512, 256, 128, 10) ∼0.6M
LeNet 2 conv (16, 32) 2× AvgPool (2×2) 3 FC (240, 120, 10) ∼0.1M

SVHN
CNN 2 conv (64, 128) 2× MaxPool (2×2) 3 FC (256, 128, 10) ∼1.5M
MLP – – 4 FC (1024, 512, 256, 10) ∼3.2M

ResNet18 18 conv (standard) Global AvgPool 1 FC (10) ∼11M

CIFAR-10 CNN 3 conv (64, 128, 256) 3× MaxPool (2×2) 3 FC (512, 256, 10) ∼4.5M
ResNet18 18 conv (standard) Global AvgPool 1 FC (10) ∼11M

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) MNIST, CNN, PGD
Train-Time

(b) SVHN, CNN, PGD
Train-Time

(c) CIFAR-10, CNN, PGD
Train-Time

(d) MNIST, MLP, BPA
Train-Time

(e) SVHN, MLP, BDA
Train-Time

(f) SVHN, MLP, PGD
Train-Time

(g) MNIST, CNN, PGD
Train-Time

(h) MNIST, MLP, PGD
Train-Time

(i) SVHN, CNN, PGD
Train-Time

(j) SVHN, CNN, BDA
Test-Time

(k) MNIST, CNN, BDA
Test-Time

(l) CIFAR-10, CNN, BDA
Test-Time

(m) SVHN, CNN, AA
Test-Time

(n) MNIST, MLP, AA
Test-Time

(o) SVHN, MLP, AA
Test-Time

(p) SVHN, ResNet, BPA
Train-Time

(q) CIFAR-10, ResNet, BPA
Train-Time

(r) CIFAR-10, ResNet, BDA
Train-Time

(s) SVHN, ResNet, PGD
Train-Time

(t) CIFAR-10, ResNet, AA
Test-Time

Figure 5: Certified accuracy versus perturbation magnitude δ under different poisoning scenarios
and datasets. Each subplot shows the test accuracy g, empirical robust radius δemp, and certified
robust radius δ∗cert under the proposed BaRC framework. The confidence level is fixed at 1−β with
β = 10−4. Violation probabilities are: ϵ = (a) 0.005, (b) 0.011, (c) 0.045, (d) 0.003, (e) 0.006, (f)
0.006, (g) 0.006, (h) 0.004, (i) 0.011, (j) 0.015, (k) 0.006, (l) 0.045, (m) 0.009, (n) 0.003, (o) 0.004,
(p) 0.009, (q) 0.015, (r) 0.015, (s) 0.015, (t) 0.022.

Dataset Optimizer A ρ-ratio p-norm g∗
p δemp δ∗cert (RAB) δ∗cert (BaRC)

MNIST SGD BDA 0.15 ∞
0.90 0.08 NA 0.08
0.80 0.16 0.10 0.15
0.60 0.22 0.14 0.19

SVHN SGD BDA 0.1 2
0.80 0.09 NA 0.06
0.60 0.12 0.07 0.11
0.40 0.16 0.08 0.14

CIFAR-10 Adam BDA 0.1 ∞
0.50 0.05 NA 0.04
0.40 0.09 NA 0.07
0.30 0.15 0.05 0.12

Table 5: Comparison of certified robust radii obtained by BaRC and RAB under identical poisoning
settings and CNN architecture. While RAB is the only directly comparable baseline available, it is
limited to test-time certification and supports only a narrow class of attacks, specifically, Backdoor
Attacks (BDA). In contrast, BaRC has no such restriction and produces certified radii that closely
match empirical robustness, even in cases where RAB fails to certify the target test accuracy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E ADDITIONAL DISCUSSION

How BaRC is fully agnostic? BaRC models gradient-based training as a dt-SD, and reasons
purely in parameter space. The certificate uses only (i) observed parameter trajectories {θ(t)} from
training runs under admissible perturbations and (ii) a terminal safety predicate G(θ) ≤ α. It as-
sumes no white-box access to the attack (strategy, trigger, poisoning ratio), the network architecture,
the loss landscape, or the optimizer/scheduler; all of these are subsumed into the realized update
map f and are reflected only through the trajectories (the empirical reachable set) on which the BC
B(θ) is trained and verified. Consequently, the same construction applies to both train-time and
test-time perturbations (only the terminal labels change) and to arbitrary model classes and training
pipelines without threat-model tuning. As qualitative support, Figure 6 contrasts training trajectories
of 20,000 parameters of the same CNN on clean SVHN (left) yields compact, near-stationary tra-
jectories, whereas a BDA-poisoned SVHN (right) exhibits early drift and dispersion. Configuration
details are immaterial, the point is that poisoning reshapes the empirical reachable set, and BaRC’s
barrier exploits this separability to carve a safe sublevel set that retains clean runs while excluding
poisoned ones.

Figure 6: Training trajectories of 20,000 parameters from a CNN on SVHN. Left: CNN trained
on clean data. Right: The same CNN trained on SVHN with BDA poisoning. The clear visual
separation between the two regimes illustrates the core intuition behind BaRC’s framework.

If the model is initially safe, why do we still need to train it? In BaRC, an initial parameter
assumed as safe state because it lies inside the certified region, but this is not a judgment of model
utility. At initialization the network is untrained; any apparent accuracy can be incidental to a
particular split and is not a reliable indicator of quality. The purpose of training the ML model
is to optimize the learning objective on the training data, drive the empirical loss to a target level,
and satisfy a clear convergence or stopping criterion (for example, a gradient-norm threshold or a
fixed training horizon). Until this optimization occurs, discussing accuracy is largely uninformative,
since the training loss remains high even if it satisfies the safety criterion. The barrier certificate
reconciles safe initialization with the need to learn. Being safe at the start only authorizes us to
begin from an allowed region. The forward-invariance condition ensures that, while we minimize
the loss, the optimization trajectory remains within the safe set and the terminal parameters meet
the prescribed robustness tolerance. In short, safe-at-start does not equal trained-or-useful; training
is indispensable for reducing loss and achieving acceptable performance, and BaRC guarantees that
this learning process remains within certified safety at convergence.

Gap vs. certified accuracy. Based on definition 4, we can fix the certified accuracy under poison-
ing as well, that is, choose the minimum test accuracy level we want to guarantee for gp(θ(t∞)) and
find the corresponding robust radius. This is exactly equivalent to fixing the gap threshold α, because
the relation G(θ) = gc(θ)−gp(θ) is linear. Once the clean accuracy at the terminal model gc(θ(t∞))
is a number, setting a target for gp(θ(t∞)) is the same as setting α via α = gc(θ(t∞))− g∗p(θ(t∞)),
and conversely a fixed α immediately implies the certified gp(θ(t∞)) = gc(θ(t∞))− α. We report
certified accuracy for readability, but reporting the gap is interchangeable; both lead to the same
safe/unsafe split and the same certified radius.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 7: Violation rate ϵ vs the
number of scenarios N̂ used for
solving the SCP at different confi-
dence level.

Challenging settings sometimes yield tighter certificates!
We occasionally observe that more challenging configurations
(harder datasets or larger architectures) produce certified radii
δ∗cert that track the empirical radii δ∗emp more tightly. The pri-
mary driver is not the dataset difficulty per se, but the stronger
models these settings necessitate (e.g., ResNet in place of
MLP/CNN). Such architectures typically achieve higher clean
accuracy and, more importantly for certification, induce a
smoother degradation of test accuracy as the perturbation ra-
dius δ increases. Because our barrier separates safe from un-
safe based on this accuracy–radius curve, smoother trajectories
in parameter space and more regular accuracy decline make
the safe set easier to approximate, yielding tighter certificates. That benefit comes with a statisti-
cal trade-off in our PAC check. Harder settings are computationally heavier. Since the PAC bound
scales with N̂ , a smaller N̂ directly increases the certified violation probability ϵ (See Figure 7).
Consequently, on configurations like CIFAR-10 with a ResNet, one may see a tight δ∗cert (thanks
to the smoother accuracy–radius behavior of the stronger model) but a higher ϵ than in easier set-
tings. In short: stronger models can improve tightness of the certified radius, while computational
constraints in challenging regimes can worsen the PAC violation rate.

On seemingly extreme poisoning ratios. In several figures we intentionally show very large cor-
ruption ratios (e.g., 0.5 − 1). This is by design and reflects what BaRC certifies: a bound on the
perturbation magnitude per sample (the robust radius) without assuming any fixed fraction of cor-
rupted points. The fraction (how many samples the adversary touches) is treated as unknown and
can range anywhere in [0, 1]; the statement of our certificate does not include this ratio. Why, then,
display large ratios? Two reasons: (i) to stress, test the method with challenging scenarios and illus-
trate that the guarantee is decoupled from the corruption fraction; and (ii) to provide a clear contrast
with prior works that typically fix the ratio and certify how many points can be corrupted. BaRC
makes the opposite design choice: we place a hard limit on the size of admissible perturbations and
certify robustness regardless of how many points the attacker modifies.

Role of RCP, CCP, SCP, and PAC. Achieving robustness certification for all possible poisoning
trajectories is unfeasible due to the requirement to address an infinite number of perturbation sce-
narios and to know the closed form of the map f . BaRC navigates this complexity by employing
the RCP⇒ CCP⇒ SCP⇒ PAC approach: it avoids comprehensive safety verification (RCP) by
tolerating a minor probability of violation (CCP), verify the validity of the certificate in a limited set
of scenarios (SCP), and apply PAC bounds to ensure that the learned barrier is broadly applicable
with some level of confidence. This method allows BaRC to resolve a complex robustness issue via
a manageable data-centric method with assured formal guarantees derived from statistical learning
theory.

Effect of margin η∗
s . The SCP margin η∗s measures how well the trained barrier certificate Bϑ

satisfies the safety constraints over the sampled scenarios. Specifically, η∗s < 0 implies that all
constraints are strictly satisfied, confirming that the NNBC is valid under the given certified radius
and the scenarios sampled. Thus, the more negative the margin, the more robust the barrier appears
against the sampled violations. If η∗s > 0, the barrier does not satisfy at least one constraint, implying
that the NNBC must be retrained or the certified radius must be reduced. Once η∗s ≤ 0, the learned
certificate is accepted with confidence 1− β and the probability of violation at most ϵ, according to
the PAC guarantee.

Empty sets and robust radius adjustment. The empirical labeling of models as safe or un-
safe, defined in equation (9), depends on a fixed threshold α ∈ [0, 1] applied to the test accuracy
g(θi(t∞)). If α exceeds the clean accuracy at δ = 0, all models are labeled unsafe and S = ∅; if it
falls below the worst-case accuracy at δ = δmax, all are labeled safe and U = ∅. These degenerate
cases invalidate the empirical margin η∗s required by the SCP. To ensure feasibility, we adopt the
following convention: if S = ∅, we set the certified robust radius δcert (or δ′cert for test-time) to zero.
If U = ∅, we increase α until the dataset becomes non-empty and SCP verification succeeds. The
smallest such threshold is then used as the effective certified α. This explains a recurring pattern

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

in our evaluation plots, such as Figure 2, where the final certified radius often equals the previous
one despite being computed at a lower α. In these cases, certification at the lower threshold fails
(either due to infeasibility or lack of data) and we conservatively reuse the last valid radius to avoid
overstating robustness.

Effect of sampling density on robust radius curves. In certain cases, the test-accuracy curve
appears to drop below the robust-radius curves, which should not occur from a theoretical standpoint.
This discrepancy arises from insufficient sampling of α values when computing δcert, leading to
interpolation errors. The fidelity of both certified and empirical robust-radius curves depends on the
density of these evaluation points: increasing the number of sampled α thresholds produces curves
that more accurately reflect the true robustness profile. In Figure 8, we increase the sampling density
from 10 α points in (a) to 20 in (b). The resulting curves in (b) are smoother and more accurate, and
no longer exhibit anomalous crossing. This confirms that denser sampling yields more precise and
theoretically consistent robust-radius estimates in both empirical and certified settings.

(a) (b)
Figure 8: MNIST, MLP, PGD, Train-Time

Why we report attack parameters despite being attack-agnostic? Although BaRC is inherently
attack-agnostic, we still present details such as attack types, poisoning ratios, datasets, and model
architectures. These specifications are not required by the framework itself, which certifies robust-
ness solely from training trajectories, independent of adversarial strategy, corruption level, or model
family. Rather, they are reported to provide clarity and to illustrate the scope and strength of BaRC
when subjected to a wide range of adversarial conditions.

On the limitations of trajectory separability Our certification framework implicitly relies on
the assumption that training trajectories under clean and poisoned data remain sufficiently separable
in parameter space, allowing the NNBC to distinguish safe from unsafe regions. One might ask
whether an advanced adversary could engineer a poisoning strategy whose trajectory stays arbitrarily
close to the clean one, thereby making the learning of a separating certificate infeasible. Indeed,
in cases where the perturbation is extremely weak, the resulting degradation in test accuracy is
negligible, so that clean and poisoned trajectories are effectively indistinguishable. In such regimes,
however, the model is not meaningfully threatened: the attack has little practical impact, and a
robustness certificate is not required in the first place. Thus, the difficulty of separating nearly
identical trajectories is directly aligned with the lack of adversarial effect, reinforcing that BaRC is
most relevant in regimes where poisoning causes non-trivial accuracy degradation.

Related Work. While there has been limited progress in computing a certified ℓp-norm poisoning
radius for a desired model accuracy, the general literature on formal certificates for data poisoning
robustness remains even more nascent. Different data poisoning certification approaches include: (i)
Ensemble-based methods that partition the training dataset and train base classifiers independently.
A final ensemble classifier aggregates its predictions (e.g., via majority voting, run-off election), and
robustness is certified by analyzing the clean sample majority needed to withstand poisoning (Levine
& Feizi, 2021; Jia et al., 2021; Cohen et al., 2019; Wang et al., 2022; Rezaei et al., 2023). These
methods generally assume independence among base classifiers and allow unbounded perturbation
budgets. (ii) Randomized Smoothing is a technique inspired by test-time probabilistic certificates
(Cohen et al., 2019). Several works adapt this idea by introducing randomness into the training
process. These approaches guarantee robustness by assuming a fixed bounded perturbation through

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

averaging model behavior over perturbed training datasets to certify label corruption (Rosenfeld
et al., 2020), specific backdoor patterns (Weber et al., 2023; Wang et al., 2020), and both data
feature and label corruptions (Zhang et al., 2022). (iii) Differential Privacy based approaches
leverage theoretical connections between privacy and robustness to certify the models (Ma et al.,
2019; Xie et al., 2023). (iv) Model-specific methods usually assume bounded perturbation budgets
and a bounded number of poisoned samples. For instance, in the case of graph neural networks,
Gosch et al. (2025) leverages the kernel equivalence of neural networks and develops mixed integer
linear programming-based certificates using graph neural tangents (Sabanayagam et al., 2023) for
ℓp norm based feature corruption. (Sabanayagam et al., 2025) extends the framework developed in
Gosch et al. (2025) to label corruptions. Sosnin et al. (2025) proposes a gradient-based certification
method for neural networks using convex overapproximations of parameter trajectories. However,
their relaxations tend to be loose, especially as the training progresses, and their method is tightly
coupled to specific architectures, making generalization to broader model classes difficult.

In contrast to prior work, BaRC provides the first general-purpose framework for certifying the
robust radius in the case of poisoning based on training dynamics. By modeling training as a
discrete-time dynamical system and leveraging barrier certificates from control theory, BaRC en-
ables formal certification across both train- and test-time poisoning settings. Crucially, BaRC does
not require model-specific assumptions, adversary knowledge, or white-box access, and can be ap-
plied to a wide class of models trained via (stochastic) gradient descent optimization, including
Adam or momentum-based methods.

25

	Introduction
	Preliminaries
	Setup formulation
	Methodology

	 Data-driven robustness certification
	Probabilistic robustness guarantee for NNBC
	Experimental Results
	Discussion and Conclusion
	Ethics Statement
	Reproducibility Statement
	Notation
	Proofs
	Proof of theorem 10
	Proof of theorem 11

	Algorithms
	Additional Experiments
	Additional Discussion

