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Abstract

Interpretability is essential for machine learning algorithms in high-stakes application fields
such as medical image analysis. However, high-performing black-box neural networks do
not provide explanations for their predictions, which can lead to mistrust and suboptimal
human-ML collaboration. Post-hoc explanation techniques, which are widely used in prac-
tice, have been shown to suffer from severe conceptual problems. Furthermore, as we show
in this paper, current explanation techniques do not perform adequately in the multi-label
scenario, in which multiple medical findings may co-occur in a single image. We propose
Attri-Net1, an inherently interpretable model for multi-label classification. Attri-Net is
a powerful classifier that provides transparent, trustworthy, and human-understandable
explanations. The model first generates class-specific attribution maps based on counter-
factuals to identify which image regions correspond to certain medical findings. Then a
simple logistic regression classifier is used to make predictions based solely on these at-
tribution maps. We compare Attri-Net to five post-hoc explanation techniques and one
inherently interpretable classifier on three chest X-ray datasets. We find that Attri-Net
produces high-quality multi-label explanations consistent with clinical knowledge and has
comparable classification performance to state-of-the-art classification models.

Keywords: Interpretable Machine Learning, Visual Feature Attribution, Multi-label Clas-
sification.

1. Introduction

The clinical adoption of machine learning (ML) technology is hindered by the black-box
nature of deep learning models. Their inscrutability may lead to a lack of trust (Dietvorst
et al., 2015), or blind trust among clinicians (Tschandl et al., 2020; Gaube et al., 2021),
and may result in ethical as well as legal problems (Grote and Berens, 2020). Therefore,
transparency has been identified as one of the key properties for deploying machine learning
technology in high-stakes application areas such as medicine (Rudin, 2019).

1. The code for Attri-Net is available at https://github.com/ss-sun/Attri-Net

© 2023 CC-BY 4.0, S. Sun, S. Woerner, A. Maier, L.M. Koch & C.F. Baumgartner.

https://github.com/ss-sun/Attri-Net
https://creativecommons.org/licenses/by/4.0/


Sun Woerner Maier Koch Baumgartner

The most commonly used category of techniques for understanding the decision mech-
anisms of ML models are post-hoc methods which apply a heuristic to a trained model
trying to understand the decision mechanism retrospectively after the prediction is made.
Gradient-based techniques such as Guided Backpropagation (Springenberg et al., 2014) per-
form local function approximation of the black-box model by differentiating the prediction
with respect to the input pixels. The faithfulness of such methods to the decision mecha-
nisms has recently been put into question by Adebayo et al. (2018) and Arun et al. (2021)
who showed that explanations remain unchanged despite randomisation of network weights.
Perturbation-based methods such as LIME (Ribeiro et al., 2016), or SHAP (Lundberg and
Lee, 2017) also approximate the local decision function. These methods cannot currently
produce explanations at the pixel level and are computationally demanding. Another line of
work including Class Activation Mappings (CAM) (Zhou et al., 2016) and GradCAM (Sel-
varaju et al., 2017) attempts to construct neural network architectures from which the
decision mechanism can be directly inferred. However, these techniques are limited by the
spatial resolution of their explanations and do not explain the reasoning mechanism on a
pixel-level. BagNet (Brendel and Bethge, 2019) addresses this issue by severely restricting
the global receptive field of the network which can negatively affect classification perfor-
mance. Placing attention modules at different depths throughout the network can also
provide a measure of interpretability to individual feature maps (Schlemper et al., 2019;
Yan et al., 2019). A category of approaches highly related to our proposed method are
counterfactual explanations which either try to answer the question “What would the im-
age look like if it belonged to a different class?” (Schutte et al., 2021; Joshi et al., 2018),
or exaggerate the features of the predicted class (Cohen et al., 2021; Singla et al., 2019).
Other approaches in this category derive classifications from an intermediate representa-
tion of the counterfactual generator (Bass et al., 2020; Cetin et al., 2022). We also note
that some techniques attempt to generate counterfactuals without the aim of explaining a
classifier (Baumgartner et al., 2018; Nemirovsky et al., 2020).

While post-hoc explanations may appear reasonable, there is no guarantee that they
explain what the classifier actually does, and there is, in fact, growing evidence that they
are not faithful to the actual decision mechanism (Adebayo et al., 2018; Han et al., 2022;
White and Garcez, 2019). In contrast, inherently interpretable methods use prediction
systems for which the decision mechanism is directly revealed to the user. These models
are by definition faithful to the decision mechanism because the explanation is the decision
mechanism. Prior work includes methods in which the final predictions are directly based
on human-interpretable concepts (Alvarez Melis and Jaakkola, 2018; Chen et al., 2020;
Koh et al., 2020), prototypical representations of classes (Chen et al., 2019; Barnett et al.,
2021), or direct attribution to image patches (Javed et al., 2022). The recently proposed
Convolutional Dynamic Alignment Networks (CoDA-Nets) (Bohle et al., 2021) is, to our
knowledge, the only existing model providing inherently interpretable visual explanations
on the pixel-level. The method expresses network weights as a function of the input image
in a way that allows them to formulate the networks’ decision for a specific input image
as a linear classifier. We note that there are to our knowledge no inherently interpretable
methods based on counterfactual explanations.

The majority of visual explanation techniques were developed for binary or multi-class
problems. Many clinical tasks, however, are multi-label problems, where multiple classes
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Figure 1: Attri-Net Framework. Given an input image and a task, our visual feature attri-
bution generator (a) produces counterfactual attribution maps. Based on these
maps a logistic regression classifier (b) produces the final prediction for each class.

can apply simultaneously. For example, in chest X-ray diagnosis, which we study in this
work, an image often contains multiple findings. In our experiments, we found that existing
visual explanation techniques are not well-suited to this important type of decision problem.
In particular, the explanations are not specific to the class and tend to highlight similar
regions for all classes, in some cases even when the class is not present in the image.

In this paper, we propose Attri-Net, an inherently interpretable visual explanation tech-
nique designed specifically for the multi-label scenario. Our model predicts class-specific
counterfactual attribution maps as intermediate representations. The attribution maps,
which are conceptually based on the visual feature attribution GAN (VA-GAN) approach
introduced by Baumgartner et al. (2018), represent residual images that contain all existing
evidence of a class in an input image. Attri-Net then uses these class-specific attribution
maps as input features in a final linear classification layer.

We evaluate Attri-Net on three widely used chest X-ray datasets and demonstrate that
the method produces high-quality inherently interpretable explanations with a high class
sensitivity while retaining classification performance comparable to state-of-the-art models.

2. Methods

In this paper, we address the multi-label classification scenario with C classes, where each
class c with label yc ∈ {0, 1} can independently occur in an image, i.e. multiple co-existing
medical findings are possible. In the following, we first introduce our method for generating
counterfactual class attribution maps for each class c (see Fig. 1a). Then, we show how a
logistic regression classifier is used to obtain the final predictions based on those attribution
maps (see Fig. 1b). Lastly, we explain how these two components are trained end-to-end in
our proposed Attri-Net framework.
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2.1. Counterfactual class attribution map generation

The core of our method is an image-to-image network Mc(x) : Rh×w 7→ Rh×w which gen-
erates residual counterfactual class attribution maps for an input image x. Intuitively, the
output of Mc represents how each pixel in the input should change in order to remove
the effect of class c from the image. Like Baumgartner et al. (2018), we learn an additive
mapping Mc that makes the output image appear to come from the opposite class, that is

x̂ = x+Mc(x) ,

such that the generated counterfactual image x̂ is indistinguishable from images sampled
from the distribution p(x|yc = 0) of real images not containing class c. To ensure the
correct behavior of Mc, we simultaneously train a class-specific discriminator network Dc to
distinguish between real and fake images with yc = 0. Specifically, we use the Wasserstein
GAN loss (Arjovsky et al., 2017; Baumgartner et al., 2018). Details on the optimisation of
Dc are given in Appendix B.1. Given a discriminator function Dc we can write the following
adversarial loss term ensuring that x̂ is a realistic counterfactual not containing class c and,
by extension, that Mc outputs realistic residual class attribution maps:

L(c)
adv = E

x∼p(x|yc=1)
[−Dc(x+Mc(x))] . (1)

Some examples of generated counterfactuals x̂ are shown in Appendix A.1.
To discourage the network from attributing superfluous pixels not belonging to a given

class, we additionally encourage the class attribution maps to be sparse using an L1 regu-
larization term similar to Baumgartner et al. (2018). To further encourage the generator to
produce smaller effects when the class is present in an image than when it is not present, we
divide the loss into two differently weighted terms with a larger weight α0 for class-negative,
and a smaller weight α1 class-positive examples, i.e.,

L(c)
reg = α0 E

x∼p(x|yc=0)
[∥Mc(x)∥1] + α1 E

x∼p(x|yc=1)
[∥Mc(x)∥1] . (2)

We use α0 = 2, α1 = 1 for all experiments in this paper.

The functions Mc, and Dc are implemented as neural networks building on the StarGAN
architecture (Choi et al., 2018) which produced superior results to alternative options we
explored such as the original VA-GAN architecture. Although it is feasible to design a
network M to produce class attribution maps for all labels as multiple output channels in
a single forward pass, preliminary experiments revealed inadequate class attribution in the
multi-label scenario. Instead, we build on the recently proposed task switching network (Sun
et al., 2021) where adaptive instance norm (AdaIN) layers are used to switch between related
tasks. In our work, tasks correspond to the generation of attribution maps for different
classes. Each task is represented as a task vector tc which is a one-hot encoding spatially
upsampled by a factor of 20 as in (Sun et al., 2021). This encoding is then converted
into a task embedding via a small fully connected network and fed to AdaIN layers which
are placed throughout the network (as shown in Fig. 1a). The AdaIN layers then toggle
the behaviour of the network. To combine this paradigm with the StarGAN architecture,
we replaced all instance normalization layers of the original generator and discriminator
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networks with AdaIN layers. The architecture is described in greater detail in Appendix B.2.
The mask generator and discriminator can now be expressed as Mc(x) = M(x, tc), and
Dc(x) = D(x, tc), respectively. The class attribution maps for all labels can be obtained by
repeated forward passes through M while iterating through the tc vectors of all classes.

2.2. Classification using a logistic regression classifier

Given a class-specific counterfactual attribution map obtained using M(x, tc), we want to
predict the presence of class c in an image. To achieve this, the respective attribution map
is downsampled and used as input to a logistic regression classifier. That is,

p(yc|x) = σ
(∑

i,j

w
(c)
ij · Sγ(M(x, tc))ij

)
, (3)

where Sγ is a 2D average pooling operator that downsamples by a factor of γ, w
(c)
ij denotes

the weights associated with each pixel of the down-sampled attribution map for class c, and
σ is the sigmoid function. In preliminary experiments, we found γ = 32 to perform robustly
and we use this value for all experiments.

The classifier is trained using a standard binary classification loss L(c)
cls , i.e. binary cross

entropy loss for each class. Note that, since our framework is trained end-to-end, M also
receives gradients from that loss and is thereby encouraged to create class attribution maps
that are linearly classifiable.

To further encourage the attribution maps to be discriminative for positive and negative
examples of each class, we apply the center loss proposed by Wen et al. (2016), which has
been shown to lead to more discriminative feature representations. Extending the idea, here,
we define class centers vyc=0,vyc=1 ∈ Rh×w which are learnable and converge to prototypical
representations of attribution maps corresponding to positive and negative instances of each
class c. The center loss draws the class attribution maps closer to their respective class
centers, resulting in a more clustered feature space where positive and negative samples are
better linearly separable. The overall center loss can be written as

L(c)
ctr =

1

2

(
E

x∼p(x|yc=0)

[
∥M(x, tc)− vyc=0∥22

]
+ E

x∼p(x|yc=1)

[
∥M(x, tc)− vyc=1∥22

])
. (4)

The class center images are updated for each mini-batch in a separate gradient update
interleaved with the updates of the network parameters as described by Wen et al. (2016).

The final class center images as well as the logistic regression weights w
(c)
ij may be used to

further interpret the model’s behaviour on a global level. Examples of both are shown in
Appendix A.2. However, we leave the exploration of global interpretability to future work.

2.3. Training

Our Attri-Net framework can be trained end-to-end with four loss terms enforcing our
essential requirements: Firstly, the attribution map should preserve sufficient class relevant
information such that a satisfactory classification result can be obtained. Secondly, the
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Table 1: Classification performance measured by area under the ROC curve (AUC).
Model CheXpert ChestX-ray8 VindrCXR

ResNet50 (Azizi et al., 2021) 0.7687 - -
SimCLR (Azizi et al., 2021) 0.7702 - -
LSE (Ye et al., 2020) - 0.7554 -
ChestNet (Ye et al., 2020) - 0.7896 -
ResNet50 0.7727 0.7445 0.8986
CoDA-Nets 0.7659 0.7727 0.9322
ours 0.7405 0.7762 0.9405

Table 2: Comparison of class sensitivity scores.
Model CheXpert ChestX-ray8 VindrCXR

ResNet + GB 0.3183 0.3028 0.1727
ResNet + GCam 0.1434 0.1570 0.1931
ResNet + LIME 0.2347 0.2609 0.2422
ResNet + SHAP 0.4745 0.4122 0.3714
ResNet + Gifsplan. 0.2748 0.5817 0.4396
CoDA-Nets 0.3576 0.4138 0.4464
ours 0.4880 0.6160 0.5509

attribution maps should be human-interpretable. The overall training objective for the
class attribution generator M with weight parameters φ is given by

min
φ

∑
c

λclsL
(c)
cls + λadvL

(c)
adv + λregL(c)

reg + λctrL(c)
ctr , (5)

where we use the hyperparameters λ∗ to balance the losses. We chose λcls = 100, λadv =
1, λreg = 100, λctr = 0.01 for our experiments. An ablation study on the effect of the dif-
ferent losses can be found in Appendix A.3. During training, we repeatedly iterate through
the different classes c and, for each, sample two mini-batches, one containing positive ex-
amples of the current class and the other negative examples. We iteratively update M , D
and classifiers, and additionally train discriminator D and classifiers more steps to ensure
good feedback to mask generator M . We use the ADAM optimizer (Kingma and Ba, 2014)
with a learning rate of 10−4 and a batch size of 4 to optimize our model. Furthermore,
following Wen et al. (2016), we use stochastic gradient descent for updating the center loss
parameters. Training converges within 72 hours on an Nvidia V100 GPU. After training we
select the decision threshold which maximises the Youden-index (sensitivity + specificity -
1) for each class on the validation set. We also perform this step for the baseline methods.

3. Experiments and Results

Data. We evaluated our proposed Attri-Net on the three widely used chest X-ray datasets
CheXpert (Irvin et al., 2019), ChestX-ray8 (Wang et al., 2017), and VinDrCXR (Nguyen
et al., 2020). Following (Irvin et al., 2019) and (Azizi et al., 2021) for the CheXpert and
ChestX-ray8 datasets we used the classes “Atelectasis”, “Cardiomegaly”, “Consolidation”,
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Figure 2: Visual comparison of explanations for an example image from the CheXpert
dataset. Predicted class probabilities are indicated in the lower left corner of
each attribution map with the respective decision threshold in parentheses.

“Edema”, and “Pleural Effusion”. For the VinDr-CXR dataset, we selected the five patholo-
gies with the highest number of samples, which were “Aortic enlargement”, “Cardiomegaly”,
“Pulmonary fibrosis”, “Pleural thickening”, and “Pleural effusion”. We split all datasets
into a training (80%), testing (10%) and validation (10%) fold. Since the test set of Chex-
pert was not publicly available and the official validation set was small, we adopted the
method used in (Azizi et al., 2021) to split the official train set into train, validation, and
test sets.

Classification performance. To assess the classification performance, we compared our
model with the state-of-the-art inherently interpretable model CoDA-Nets (Bohle et al.,
2021) as well as a standard black-box ResNet50 model. We also report the results of Azizi
et al. (2021) and Ye et al. (2020) on CheXpert and ChestX-ray8, respectively. Attri-Net
overall performed comparable to the state-of-the-art (see Tab. 1), with an area under the
ROC curve that was slightly lower on CheXpert, similar to other methods on ChestX-ray8,
and slightly better on VindrCXR.

Interpretability. Khakzar et al. (2021) argue that if different areas of an image are
responsible for predicting different classes, then also the explanations should be different.
They coin this property “class sensitivity”. In the context of multi-label classification, the
explanation for an image containing a class should have higher attribution than an image
where the class is absent. We measured class sensitivity following Bohle et al. (2021) and
created a series of 2× 2 grids of explanations, where each grid contained only one positive
example of a given class (see Appendix A.4 for example grids). We then represented class
sensitivity by the sum of attributions in the positive example divided by the sum of all
attributions in the grid. The optimal scenario where only the disease positive map contains
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Figure 3: Attribution maps for samples from ChestX-ray8 and VindrCXR with GT bound-
ing boxes. Decision thresholds are given in parentheses.

any attributions, and disease negative attribution maps are blank, yields a sensitivity of 1.
We computed the average sensitivity over 200 grids for each class c.

Our method led to a substantially and consistently higher class sensitivity than the
inherently interpretable baseline, CoDA-Nets, across all datasets (see Tab. 2). For the
black-box ResNet, we compared five post-hoc explanations techniques, i.e. Guided Back-
propagation (Springenberg et al., 2014), GradCAM (Selvaraju et al., 2017), LIME (Ribeiro
et al., 2016), SHAP (Lundberg and Lee, 2017) and the recently proposed Gifsplanation (Co-
hen et al., 2021). The post-hoc methods varied considerably with SHAP and Gifsplanation
performing comparably to CoDA-Nets, but substantially worse than our Attri-Net.

Qualitative examination of example explanations supported these results. Our proposed
Attri-Net produced class attribution maps that clearly highlight the parts of the underly-
ing anatomy that support the respective classes (see Fig. 2 for a representative example
from the CheXpert dataset). Moreover, the attributions for different classes were clearly
distinct from each other, each one focusing on different anatomical areas. Examples from
the ChestX-ray8 and VinDr-CXR datasets can be found in Appendix A.5. In contrast, the
inherently interpretable baseline, CoDA-Nets, produced visually similar attributions for all
classes (rightmost column in Fig. 2). We further observed that the baseline techniques were
mostly not useful for identifying which parts of the anatomy contributed to a prediction.
While Guided Backpropagation qualitatively provided the most useful explanations of the
baselines, its attributions were very noisy as is typical for this technique. We further ex-
amined Attri-Net explanations on example images of each class where pathology bounding
boxes were available (Fig. 3). Attri-Net generally highlighted regions associated with the re-
spective pathologies, with particularly sensitive attribution maps when the final prediction
was highly confident (i.e. the examples with atelectasis, effusion, and cardiomegaly). We
also observed some relatively strong attributions in regions outside the bounding boxes. As
our class attribution maps were based on counterfactuals that were designed to realistically
remove all effects of a pathology, we hypothesise they may have uncovered additional effects
correlated with the classes which were not part of the clinical grading protocol.
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4. Discussion and Conclusion

We proposed Attri-Net, a novel inherently interpretable multi-label classifier and showed
that it produces high-quality explanations substantially outperforming all baselines in terms
of class sensitivity while retaining classification performance comparable to state-of-the-art
black-box models. Explanations of the black-box model were highly dependent on the post-
hoc technique, and fundamentally differed from each other even on the same image. This
erodes trust in their capacity to provide necessary transparency in high-stakes applications
and shows the need for inherently interpretable models such as ours, where the predictions
are formed directly and linearly from visually interpretable class attribution maps.

The qualitative and quantitative assessments in this paper suggest that our method pro-
vides useful explanations, but there remain important avenues for future work. We believe
a crucial step towards clinical impact is the evaluation of interpretable models in actual
human-ML collaboration setting to test their usefulness with clinically relevant endpoints.
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vae: Attribute-based interpretable representations of medical images with variational
autoencoders. Computerized Medical Imaging and Graphics, page 102158, 2022.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: deep learning for interpretable image recognition. Advances in neural
information processing systems, 32, 2019.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recog-
nition. Nature Machine Intelligence, 2(12):772–782, 2020.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.
Stargan: Unified generative adversarial networks for multi-domain image-to-image trans-
lation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8789–8797, 2018.

Joseph Paul Cohen, Rupert Brooks, Sovann En, Evan Zucker, Anuj Pareek, Matthew P
Lungren, and Akshay Chaudhari. Gifsplanation via latent shift: a simple autoencoder
approach to counterfactual generation for chest x-rays. In Medical Imaging with Deep
Learning, pages 74–104. PMLR, 2021.

Berkeley J Dietvorst, Joseph P Simmons, and Cade Massey. Algorithm aversion: people
erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology:
General, 144(1):114, 2015.

Susanne Gaube, Harini Suresh, Martina Raue, Alexander Merritt, Seth J Berkowitz, Eva
Lermer, Joseph F Coughlin, John V Guttag, Errol Colak, and Marzyeh Ghassemi. Do as
ai say: susceptibility in deployment of clinical decision-aids. NPJ digital medicine, 4(1):
1–8, 2021.

10



Attri-Net

Thomas Grote and Philipp Berens. On the ethics of algorithmic decision-making in health-
care. Journal of medical ethics, 46(3):205–211, 2020.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. Advances in neural information
processing systems, 30, 2017.

Tessa Han, Suraj Srinivas, and Himabindu Lakkaraju. Which explanation should i choose?
a function approximation perspective to characterizing post hoc explanations. arXiv
preprint arXiv:2206.01254, 2022.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert:
A large chest radiograph dataset with uncertainty labels and expert comparison. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 590–597,
2019.

Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, and
Aaditya Prakash. Additive mil: Intrinsic interpretability for pathology. arXiv preprint
arXiv:2206.01794, 2022.

Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, and Joydeep Ghosh. xgems: Generating
examplars to explain black-box models. arXiv preprint arXiv:1806.08867, 2018.

Ashkan Khakzar, Yang Zhang, Wejdene Mansour, Yuezhi Cai, Yawei Li, Yucheng Zhang,
Seong Tae Kim, and Nassir Navab. Explaining covid-19 and thoracic pathology model
predictions by identifying informative input features. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 391–401. Springer,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In International Conference on
Machine Learning, pages 5338–5348. PMLR, 2020.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. Countergan: Gener-
ating realistic counterfactuals with residual generative adversarial nets. arXiv preprint
arXiv:2009.05199, 2020.

Ha Q Nguyen, Khanh Lam, Linh T Le, Hieu H Pham, Dat Q Tran, Dung B Nguyen, Dung D
Le, Chi M Pham, Hang TT Tong, Diep H Dinh, et al. Vindr-cxr: An open dataset of
chest x-rays with radiologist’s annotations. arXiv preprint arXiv:2012.15029, 2020.

11



Sun Woerner Maier Koch Baumgartner

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Jo Schlemper, Ozan Oktay, Michiel Schaap, Mattias Heinrich, Bernhard Kainz, Ben
Glocker, and Daniel Rueckert. Attention gated networks: Learning to leverage salient
regions in medical images. Medical image analysis, 53:197–207, 2019.
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Appendix A. Additional evaluations

A.1. Examples of counterfactual generations

Examples of counterfactual images obtained by adding the class-specific visual attribution
map to the input image, i.e. x̂ = x+Mc(x), are shown in Fig. 4.

Positive
samples

𝒙

𝑴𝒄(𝒙)

Atelectasis EffusionCardiomegaly Consolidation Edema

Negative
samples

𝒙

𝒙 +𝑴𝒄(𝒙)

𝑴𝒄(𝒙)

𝒙 +𝑴𝒄(𝒙)

Figure 4: Counterfactual image generation. The examples in the top group of rows show
input images containing evidence for different classes c. For those, the evidence
for class c is removed by adding Mc(x). The bottom group of rows contains
images with no evidence for class c. Those images remain mostly unchanged by
adding the output of Mc(x).
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A.2. Global interpretability

A distinction is often made between local explanations, which explain the prediction for a
specific input image, and global explanations, which explain the decision mechanisms of the
ML algorithm as a whole (i.e. for all input images). While the primary focus of our paper
was on local interpretability, we may gain some global insights about the decision mechanism
of the classifier through interpretation of the positive and negative class centers introduced
in Section 2.2, as well as the class specific weights of the logistic regression classifier. The
class centers capture some prototypical aspects of the respective classes, while the classifier
weights can tell us which areas of the images the classifier is paying attention to for each
class. Fig. 5 shows the class centers for five diseases and the weights of the corresponding
classifiers trained on the ChestX-ray8 dataset.

Atelectasis EffusionCardiomegaly Consolidation Edema

Positive
center

Negative
center

Classifier
weights

Figure 5: Attribution centers of disease and corresponding classifiers’ weights provide a
global explanation of Attri-Net.

A.3. Ablation study of the loss terms

An ablation study on the effects of the losses used for training Attri-Net can be found
in Tab. 3. Example attributions for all combinations for an image from the ChestX-ray8
dataset are shown in Fig. 6.
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Table 3: Ablation study on the four losses. Evaluated on the Vindr-CXR dataset.

Model Loss terms Classification AUCs Class sensitivity

Attri-Netcls Lcls 0.9339 0.2516
Attri-Netcls adv Lcls + Ladv 0.9444 0.1602
Attri-Netcls adv reg Lcls + Ladv + Lreg 0.9397 0.5259
Attri-Netall Lcls + Ladv + Lreg+ Lctr 0.9405 0.5509

Pos

Neg

Input Attri-Netcls Attri-Netcls_adv Attri-Netcls_adv_reg Attri-Netall

Figure 6: Examples of attribution maps obtained for positive and negative samples of the
disease cardiomegaly on ChestX-ray8 for different subsets of our losses.
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A.4. Class sensitivity image grids

The class sensitivity evaluation in Section 3 is based on class sensitivity grids as proposed
by Bohle et al. (2021). In Fig. 7, Fig. 8, and Fig. 9 we show examples of such grids for
all studied classes on the CheXpert dataset, for Attri-Net, CoDA-Nets and Gifsplanation,
respectively.

Atelectasis EffusionCardiomegaly Consolidation Edema

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

P N

NN

Figure 7: Class sensitivity image grids obtained using Attri-Net. The first row shows image
grids, the second row shows the respective attribution maps. P and N denote
class-positive and class-negative examples, respectively.
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Figure 8: Class sensitivity image grids obtained using CoDA-Nets. The first row shows
image grids, the second row shows the respective attribution maps. P and N
denote class-positive and class-negative examples, respectively.
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Atelectasis EffusionCardiomegaly Consolidation Edema
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Figure 9: Class sensitivity image grids obtained using Gifsplanation. The first row shows
image grids, and the second row shows the respective attribution maps. P and N
denote class-positive and class-negative examples, respectively.

A.5. Example explanations for ChestX-ray8 and Vindr-CXR

Fig. 10 and Fig. 11 contain additional examples of visual attributions using all compared
methods derived from the ChestX-ray8 and Vindr-CXR datasets, respectively.
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Figure 10: Explanations for an example image from the ChestX-ray8 dataset.
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Figure 11: Explanations for an example image from the VindrCXR dataset.

Appendix B. Additional training details

B.1. Discriminator training

The Attri-Net framework requires training a discriminator function D in parallel to the class
attribution generator M . The weight parameters θ of the discriminator are computed in
separate gradient update steps using the Wasserstein GAN (Arjovsky et al., 2017) objective.
The full discriminator optimisation objective is then given by

min
θ

∑
c

E
x∼p(x|yc=0)

[Dc(x|θ)] + E
x∼p(x|yc=1)

[Dc(x+Mc(x)|θ)] ,

where we omitted the gradient penalty loss which ensures the discriminator fulfills the
Lipschitz-1 constraint dictated by the Wasserstein GAN objective (Gulrajani et al., 2017).

B.2. Network architecture

The network architecture of the attribution map generator and the discriminator of the
Attri-Net framework are shown in Tab. 4 and Tab. 5, respectively. L refers to the length of
input/output features, N is the number of output channels, and K is the kernel size.
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Table 4: Attri-Net class attribution generator network architecture.
Layers Input → Output Layer information

Task embedding layer Task code tc → Task embedding t′c 8 × FC(L100,L100)

Ada Conv: CONV(N64, K7x7), AdaIN, ReLU
Down-sampling (Input image x, t′c) → outdown Ada Conv: CONV(N128, K4x4), AdaIN, ReLU

Ada Conv: CONV(N256, K4x4), AdaIN, ReLU

Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU

Bottlenecks (outdown , t′c) → outbn Ada ResBlock: CONV(N256, K3x3,), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU

Ada DECONV(N128, K4x4), AdaIN, ReLU
Up-sampling (outbn , t′c) → outup Ada DECONV(N64, K4x4), AdaIN, ReLU

CONV(N1, K7x7)

Output layer (x, outup) → Mc(x) Mc(x) = tanh(x+ outup)− x

Table 5: Attri-Net discriminator network architecture.
Layers Input → Output Layer information

Task embedding layer Task code tc → Task embedding t′c 8 × FC(L100,L100)

Input layer Ada Conv: CONV(N64, K4x4), AdaIN, ReLU
Ada Conv: CONV(N128, K4x4), AdaIN, ReLU
Ada Conv: CONV(N256, K4x4), AdaIN, ReLU

Hidden layers (x/x̂ , t′c) → outhid Ada Conv: CONV(N512, K4x4), AdaIN, ReLU
Ada Conv: CONV(N1024, K4x4), AdaIN, ReLU
Ada Conv: CONV(N2048, K4x4), AdaIN, ReLU

Output layer outhid → L(c)
adv CONV(N1, K3x3)
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