
Published as a conference paper at ICLR 2022

METAMORPH: LEARNING UNIVERSAL CONTROLLERS
WITH TRANSFORMERS

Agrim Gupta1, Linxi Fan1,3, Surya Ganguli1,2, Li Fei-Fei1,2
1Stanford University, 2Stanford Institute for Human-Centered Artificial Intelligence
3NVIDIA Corporation
{agrim,sganguli,feifeili}@stanford.edu, linxif@nvidia.com

ABSTRACT

Multiple domains like vision, natural language, and audio are witnessing tremen-
dous progress by leveraging Transformers for large scale pre-training followed by
task specific fine tuning. In contrast, in robotics we primarily train a single robot
for a single task. However, modular robot systems now allow for the flexible com-
bination of general-purpose building blocks into task optimized morphologies.
However, given the exponentially large number of possible robot morphologies,
training a controller for each new design is impractical. In this work, we pro-
pose MetaMorph, a Transformer based approach to learn a universal controller
over a modular robot design space. MetaMorph is based on the insight that robot
morphology is just another modality on which we can condition the output of a
Transformer. Through extensive experiments we demonstrate that large scale pre-
training on a variety of robot morphologies results in policies with combinato-
rial generalization capabilities, including zero shot generalization to unseen robot
morphologies. We further demonstrate that our pre-trained policy can be used for
sample-efficient transfer to completely new robot morphologies and tasks.

1 INTRODUCTION

The field of embodied intelligence posits that intelligent behaviours can be rapidly learned by agents
whose morphologies are well adapted to their environment (Brooks, 1991; Pfeifer & Scheier, 2001;
Bongard, 2014; Gupta et al., 2021). Based on this insight, a robot designer is faced with a predica-
ment: should the robot design be task specific or general? However, the sample inefficiency of
tabula rasa deep reinforcement learning and the challenge of designing a single robot which can
perform a wide variety of tasks has led to the current dominant paradigm of ‘one robot one task’. In
stark contrast, domains like vision (Girshick et al., 2014; He et al., 2020) and language (Dai & Le,
2015; Radford et al., 2018), which are not plagued by the challenges of physical embodiment, have
witnessed tremendous progress especially by leveraging large scale pre-training followed by trans-
fer learning to many tasks through limited task-specific fine-tuning. Moreover, multiple domains
are witnessing a confluence, with domain specific architectures being replaced by Transformers
(Vaswani et al., 2017), a general-purpose architecture with no domain-specific inductive biases.

How can we bring to bear the advances in large-scale pre-training, transfer learning and general-
purpose Transformer architectures, to the field of robotics? We believe that modular robot systems
provide a natural opportunity by affording the flexibility of combining a small set of general-purpose
building blocks into a task-optimized morphology. Indeed, modularity at the level of hardware is a
motif which is extensively utilized by evolution in biological systems (Hartwell et al., 1999; Kashtan
& Alon, 2005) and by humans in many modern engineered systems. However, prior works (Wang
et al., 2018; Chen et al., 2018; Sanchez-Gonzalez et al., 2018) on learning policies that can generalize
across different robot morphologies have been limited to: (1) manually constructed variations of a
single or few base morphologies, i.e. little diversity in the kinematic structure; (2) low complexity
of control (≤ 7 degrees of freedom); (3) using Graph Neural Networks (Scarselli et al., 2008) based
on the assumption that kinematic structure of the robot is the correct inductive bias.

In this work, we take a step towards a more challenging setting (Fig. 1) of learning a universal
controller for a modular robot design space which has the following properties: (a) generalization

1

Published as a conference paper at ICLR 2022

!"#$%&
'()%(*#$#$+

,"-./*(&0"1"%&2)3#+$&45*6) 7)("849"%&:
)$)(*/#;*%#"$

,)%*,"(59
<#$)=*%#63
>*(#*%#"$3

?*3@3

2A$*=#63
>*(#*%#"$3

!"#!$%"&'(
#!$&")!*(
+",+&"$)&-'(
.&!"(&$/0

1,2-'(3&4(
#,"+5,*,.)&-'(
#,6%*&(
+!"!#&$&"-

Figure 1: Learning universal controllers. Given a modular robot design space, our goal is to
learn a controller policy, which can generalize to unseen variations in dynamics, kinematics, new
morphologies and tasks. Video available at this project page.

to unseen variations in dynamics (e.g. joint damping, armature, module mass) and kinematics (e.g.
degree of freedom, morphology, module shape parameters) and (b) sample-efficient transfer to new
morphologies and tasks. We instantiate the exploration of this general setting in the UNIMAL design
space introduced by Gupta et al. (2021). We choose the UNIMAL design space as it contains a
challenging (15−20 DoFs) distribution of robots that can learn locomotion and mobile manipulation
in complex stochastic environments. Learning a single universal controller for a huge variety of
robot morphologies is difficult due to: (1) differences in action space, sensory input, morphology,
dynamics, etc. (2) given a modular design space, not all robots are equally adept at learning a task,
e.g. some robots might inherently be less sample-efficient (Gupta et al., 2021).

To this end, we propose MetaMorph, a method to learn a universal controller for a modular robot
design space. MetaMorph is based on the insight that robot morphology is just another modal-
ity on which we can condition the output of a Transformer. MetaMorph tackles the challenge of
differences in embodiment by leveraging a Transformer based architecture which takes as input a
sequence of tokens corresponding to the number of modules in the robot. Each input token is created
by combining proprioceptive and morphology information at the level of constituent modules. The
combination of proprioceptive and embodiment modalities and large scale joint pre-training leads
to policies which exhibit zero-shot generalization to unseen variations in dynamics and kinemat-
ics parameters and sample-efficient transfer to new morphologies and tasks. Finally, to tackle the
differences in learning speeds of different robots, we propose dynamic replay buffer balancing to
dynamically balance the amount of experience collection for a robot based on its performance.

In sum, our key contributions are: (1) we introduce MetaMorph to learn a universal controller for a
modular design space consisting of robots with high control complexity for challenging 3D locomo-
tion tasks in stochastic environments; (2) we showcase that our learned policy is able to zero-shot
generalize to unseen variations in dynamics, kinematics, new morphologies and tasks, which is par-
ticularly useful in real-world settings where controllers need to be robust to hardware failures; (3)
we analyze the learned attention mask and discover the emergence of motor synergies (Bernstein,
1966), which partially explains how MetaMorph is able to control a large number of robots.

2 RELATED WORK

Prior works on learning control policies which can generalize across robot morphologies have pri-
marily focused on parametric variations of a single (Chen et al., 2018) or few (2 − 3) robot types
(Wang et al., 2018; Sanchez-Gonzalez et al., 2018; Huang et al., 2020; Kurin et al., 2021). For gener-
alizing across parametric variations of a single morphology, various approaches have been proposed
like using a learned hardware embedding (Chen et al., 2018), meta-learning for policy adaptation
(Al-Shedivat et al., 2017; Ghadirzadeh et al., 2021), kinematics randomization (Exarchos et al.,
2020), and dynamics randomization (Peng et al., 2018). In case of multiple different morpholo-
gies, one approach to tackle the challenge of differences in action and state spaces is to leverage
Graph Neural Networks (Scarselli et al., 2008; Kipf & Welling, 2017; Battaglia et al., 2018). Wang
et al. (2018); Huang et al. (2020) use GNNs to learn joint controllers for planar agents (≤ 7 DoFs).
Blake et al. (2021) propose freezing selected parts of networks to enable training GNNs for a single
morphology but with higher control complexity. The usage of GNNs is based on the assumption
that the robot morphology is a good inductive bias to incorporate into neural controllers, which can
be naturally modelled by GNNs. Recently, Kurin et al. (2021) also proposed using Transformers
for training planar agents. Our work differs from Kurin et al. (2021) in the diversity and scale of

2

https://metamorph-iclr.github.io/site/

Published as a conference paper at ICLR 2022

training robots, complexity of the environments, conditioning the Transformer on morphological
information, and showcasing strong generalization to unseen morphologies and tasks (see § B.1).

Another closely related line of work is the design of modular robot design spaces and developing al-
gorithms for co-optimizing morphology and control (Sims, 1994) within a design space to find task-
optimized combinations of controller and robot morphology. When the control complexity is low,
evolutionary strategies have been successfully applied to find diverse morphologies in expressive
soft robot design spaces (Cheney et al., 2014; 2018). In the case of rigid bodies, Ha (2019); Schaff
et al. (2019); Liao et al. (2019) have proposed using RL for finding optimal module parameters of
fixed hand-designed morphology for rigid body robots. For more expressive design spaces, GNNs
have been leveraged to share controller parameters (Wang et al., 2019) across generations or develop
novel heuristic search methods for efficient exploration of the design space (Zhao et al., 2020). In
contrast to task specific morphology optimization, III et al. (2021) propose evolving morphologies
without any task or reward specification. Finally, for self reconfigurable modular robots (Fukuda &
Nakagawa, 1988; Yim et al., 2007), modular control has been utilized in both real (Rubenstein et al.,
2014; Mathews et al., 2017) and simulated (Pathak et al., 2019) systems.

3 LEARNING A UNIVERSAL CONTROLLER

We begin by reviewing the UNIMAL design space and formulating the problem of learning a uni-
versal controller for a modular robot design space as a multi-task reinforcement learning problem.

3.1 THE UNIMAL DESIGN SPACE

An agent morphology can be naturally represented as a kinematic tree, or a directed acyclic graph,
corresponding to a hierarchy of articulated 3D rigid parts connected via motor actuated hinge joints.
The graph G := (V, E) consists of vertices V = {v1, ..., vn} corresponding to modules of the design
space, and edges eij ∈ E corresponding to joints between vi and vj . Concretely, in the UNIMAL
(Gupta et al., 2021) design space, each node represents a component which can be one of two types:
(1) a sphere parameterized by radius and density to represent the head of the agent and form the root
of the tree; (2) cylinders parameterized by length, radius, and density to represent the limbs of the
robot. Two nodes of the graph can be connected via at most two motor-actuated hinge joints (i.e. G
is a multi-graph), parameterized by joint axis, joint limits and a motor gear ratio.

3.2 JOINT POLICY OPTIMIZATION

The problem of learning a universal controller for a set of K robots drawn from a modular robot de-
sign space is a multi-task RL problem. Specifically, the control problem for each robot is an infinite-
horizon discounted Markov decision process (MDP) represented by a tuple (S,A, T,R,H, γ),
where S represents the set of states, A represents the set of available actions, T (st+1|st, at) rep-
resents the transition dynamics, R(s, a) is a reward function, H is the horizon and γ is the discount
factor. At each time step, the robot k receives an observation skt , takes an action akt , and is given a
reward rkt . A policy πθ(akt |skt) models the conditional distribution over action akt ∈ A given state
skt ∈ S. The goal is to find policy parameters θ which maximize the average expected return across
all tasks: R = 1

K

∑K
k=0

∑H
t=0 γ

trkt . We use Proximal Policy Optimization (PPO) (Schulman et al.,
2017), a popular policy gradient (Williams, 1992) method for optimizing this objective.

4 METAMORPH

Progress in model-free reinforcement learning algorithms has made it possible to train locomotion
policies for complex high-dimensional agents from scratch, albeit with tedious hyperparamter tun-
ing. However, this approach is not suitable for modular design spaces containing exponentially many
robot morphologies. Indeed, Gupta et al. (2021) estimates that the UNIMAL design space contains
more than 1018 robots. Hence, learning a separate policy for each robot is infeasible. However, the
modular nature of the design space implies that while each robot morphology is unique, it is still
constructed from the same set of modules and potentially shares subgraphs of the kinematic tree
with other morphologies. We describe how MetaMorph exploits this structure to meet the challenge
of learning a universal controller for different morphologies.

3

Published as a conference paper at ICLR 2022

Per joint controller output

Linear Projection

+
+

+
+

+
+

+
+

+

M
orphology Aw

are
Transform

er

D
ecoder

MLP

+

Norm

Norm

Multi-Head
Attention

+L	×

Module
Embeddings

Transformer
Encoder

Per m
odule token

Learnt Position
Embeddings

MLP

Exteroceptive Obs.

Figure 2: MetaMorph. We first process an arbitrary robot by creating a 1D sequence of tokens
corresponding to depth first traversal of its kinematic tree. We then linearly embed each token which
consists of proprioceptive and morphological information, add learned position embeddings and
encode the resulting sequence of vectors via a Transformer encoder. The output of the Transformer
is concatenated with a linear embedding of exteroceptive observation before passing them through
a decoder to output per joint controller outputs.

4.1 FUSING PROPRIOCEPTIVE STATES AND MORPHOLOGY REPRESENTATIONS

To learn policies that can generalize across morphologies, we must encode not only proprioceptive
states essential for controlling a single robot, but also morphological information. From a multi-task
RL perspective, this information can be viewed as a task identifier, where each task corresponds to
a different robot morphology, all drawn from the same modular design space. Hence, instead of
learning a policy which is agnostic to the robot morphology, we need to learn a policy conditioned
on the robot morphology. Consequently, at each time step t (we drop the time subscript for brevity),
the robot receives an observation sk = (skm, s

k
p, s

k
g) which is composed of the morphology repre-

sentation (skm), the proprioceptive states (skp), and additional global sensory information (skg). See
§ A.1 for a detailed description of each observation type.

4.2 MORPHOLOGY AWARE TRANSFORMER

The robot chooses its action via a stochastic policy πθ(akt |skt) where θ are the parameters of a pair
of deep neural networks: a policy network that produces an action distribution (Fig. 2), and a critic
network that predicts discounted future returns. We use Transformers (Vaswani et al., 2017) to
parametrize both policy and critic networks as described in detail below.

Encode. We make a distinction between how we process local and global state information. Con-
cretely, let sk = (skl , s

k
g) where skl = (skm, s

k
p). Since the number of joints between two modules can

vary, we zero pad skli to ensure that input observation vectors are of the same size, i.e. skl ∈ RN×M .
In order to provide an arbitrary robot morphology as input to the Transformer, we first create a 1D
sequence of local observation vectors by traversing the kinematic tree in depth first order starting at
the root node (torso in case of the UNIMAL design space). We then apply a single layer MLP inde-
pendently to skli to create a D dimensional module embedding. We also add learnable 1D position
embeddings to the module embeddings to automatically learn positional information:

m0 = [φ(skl1 ;We); · · · ; φ(sklN ;We)] + Wpos, (1)

where φ(·) is the embedding function, We ∈ RM×D are the embedding weights, and Wpos ∈
RN×D are the learned positional embeddings. Note that in practice we zero pad the input sequence
of local observation vectors for efficient batch processing of multiple morphologies.

Process. From the module embeddings described above, we obtain the output feature vectors as:

m′` = MSA(LN(m`−1)) + m`−1, ` = 1 . . . L (2)

m` = MLP(LN(m′`)) + m′`, ` = 1 . . . L (3)

where MSA is multi-head attention (Vaswani et al., 2017) and LN is Layernorm (Lei Ba et al., 2016).

Decode. We integrate the global state information skg consisting of high-dimensional sensory input
from camera or depth sensors. Naively concatenating skg and skl in the encoder has two downsides:
(1) it dilutes the importance of low-dimensional local sensory and morphological information; (2)

4

Published as a conference paper at ICLR 2022

Variable terrainFlat terrain Obstacles

Figure 3: Environments. We evaluate our method on 3 locomotion tasks: Flat terrain, Variable
terrain: consists of three stochastically generated obstacles: hills, steps and rubble, and Obstacles:
cuboid shaped obstacles of varying sizes.

it increases the number of Transformer parameters due to an increase in the dimensionality of the
input embedding (D). Instead, we obtain the outputs of policy network as follows:

g = γ(skg ;Wg), µ(sk) = φ(mli ,g;Wd), πθ(a
k|sk) = N ({µ(ski)}Ni ,Σ), (4)

where γ(·) is a 2-layer MLP with parameters Wg , φ(·) is an embedding function with Wd as the
embedding weights. The action distribution is modeled as a Gaussian distribution with a state-
dependent mean µ(ski) and a fixed diagonal covariance matrix Σ. Similarly, for the critic network,
we estimate value for the whole morphology by averaging the value per limb.

4.3 DYNAMIC REPLAY BUFFER BALANCING

Joint training of diverse morphologies is challenging as different morphologies are adept at per-
forming different tasks. Consequently, some morphologies might be inherently better suited for the
pre-training task. Let us consider two robots: (A) Robot A locomotes in a falling forward manner,
i.e., robot A is not passively stable; (B) Robot B is passively stable. Especially with early termina-
tion, robot A will keep falling during the initial phases of training, which results in shorter episode
lengths, whereas robot B will have longer episode lengths. Hence, more data will be collected for
robot B in the earlier phases of training, and in turn will lead to robot B learning even faster, thereby
resulting in a ‘rich gets richer’ training dynamic. However, our goal is to ensure that all morpholo-
gies have a similar level of performance at the end of training as we want to generalize across the
entire distribution of morphologies.

To address this issue, we propose a simple dynamic replay buffer balancing scheme. On-policy
algorithms like PPO (Schulman et al., 2017) proceed in iterations that alternate between experience
collection and policy parameter update. Let Ek be any performance metric of choice, e.g. normalized
reward, episode length, success ratio, etc. Let τ be the training iteration number. At each iteration,
we sample the kth robot with probability Pk, given by:

Pk =
Eβk∑
Eβi

Eτk = αEτk + (1− α)E(τ−1)k , (5)

where α ∈ [0, 1] is the discount factor and the exponent β determines the degree of dynamic pri-
oritization, with β = 0 corresponding to the uniform case. In practice, we use episode length as
our performance metric. We determine Pk by replacing Ei with 1000

Ei , where the numerator is the
maximum episode length.

5 EXPERIMENTS

In this section, we evaluate our method MetaMorph in different environments, perform extensive ab-
lation studies of different design choices, test zero-shot generalization to variations in dynamics and
kinematics parameters, and demonstrate sample efficient transfer to new morphologies and tasks.
For qualitative results, please refer to the video on our project website 1.

1https://metamorph-iclr.github.io/site/

5

https://metamorph-iclr.github.io/site/

Published as a conference paper at ICLR 2022

0 2 4 6 8 10
0

1000

2000

3000
Re

wa
rd

Flat terrain

0 2 4 6 8 10
0

500

1000

1500

Variable terrain

0 2 4 6 8 10
0

1000

2000
Obstacles

MetaMorph MetaMorph-NPE MetaMorph-NM GNN MLP

0.0 0.2 0.4 0.6 0.8 1.0
Iterations (×107)

0.00

0.25

0.50

0.75

1.00

Figure 4: Joint pre-training of modular robots. Mean reward progression of 100 robots from the
UNIMAL design space averaged over 3 runs in different environments for baselines and ablations
described in § 5.2. Shaded regions denote standard deviation. Across all 3 environments, Meta-
Morph consistently outperforms GNN, and is able to match the average reward achieved by per
morphology MLP baseline, an approximate upper bound of performance.

5.1 EXPERIMENTAL SETUP

We create a training set of 100 robots from the UNIMAL design space (Gupta et al., 2021) (see
§ A.2). We evaluate MetaMorph on three different environments (Fig. 3) using the MuJoCo sim-
ulator (Todorov et al., 2012). In all 3 environments the goal of the agent is to maximize forward
displacement over the course of an episode which lasts 1000 timesteps. The 3 environments are: (1)
Flat terrain (FT); (2) Variable terrain (VT): VT is an extremely challenging environment as during
each episode a new terrain is generated by randomly sampling a sequence of terrain types and inter-
leaving them with flat terrain. We consider 3 types of terrains: hills, steps, and rubble; (3) Obstacles:
cuboid shaped obstacles of varying sizes on flat terrain.

We use a dense morphology independent reward function for all our tasks as it is not feasible to
design a reward function tailored to each morphology. In all tasks, our reward function promotes
forward movement using small joint torques (the latter obtained via a small energy usage penalty).
In addition, as described in §4.3, we use early termination across all environments when we detect a
fall (i.e. if the torso height drops below 50% (FT, Obstacles) or 30% (VT) of its initial height).

5.2 BASELINES AND ABLATIONS

60

75

90

%
 o

f r
ob

ot
s

Flat
 terrain

60

70

80

Variable
 terrain

60

80

100
Obstacles

MetaMorph w/o balancing

Figure 5: Importance of dynamic
replay buffer balancing. We com-
pare the percentage of robots with fi-
nal performance greater than 75% of
the MLP baseline performance when
trained jointly. Across all 3 environ-
ments, on average for 10− 15% robots,
MetaMorph w/o balancing is unable to
learn a good control policy.

Baselines: We compare against the following baselines:

(1) GNN: We modify the NerveNet model proposed by
Wang et al. (2018) to learn control policies for complex
3D morphologies with variable number of joints. Specif-
ically, we replace how the NerveNet model receives in-
put and produces output by our encode and decode steps
respectively (§4.2). In addition, the model receives the
same observation as MetaMorph i.e. sk = (skm, s

k
p, s

k
g)

and is trained with dynamic replay buffer sampling. Thus,
the only difference is in the process step. This helps test if
the domain-specific inductive bias of the robot kinematic
tree in the GNN is necessary.

(2) MLP: We train all 100 robots separately with a 2-layer
MLP and report the average performance. This baseline
serves as an approximate upper bound for our method.

Ablations: We also do an ablation study of different de-
sign choices involved in our method. We refer our full
method as MetaMorph and consider the following abla-
tions: (1) MetaMorph-NPE: no learned position embeddings; (2) MetaMorph-NM: we only provide

6

Published as a conference paper at ICLR 2022

0

2000

Re
wa

rd

Flat terrain

0

1000

Re
wa

rd
Variable terrain

Armature Density Damping Gear Module param. Joint angle
0

1000

Re
wa

rd

Obstacles

MetaMorph MetaMorph-NPE MetaMorph-NM GNN

Figure 6: Zero-shot generalization. We create 400 new robots for each type of variation in dynam-
ics parameters (armature, density, damping, gear) and kinematics parameters (module shape, joint
angle). Bars indicate average zero-shot reward over 10 trials for 400 robots and error bars denote
95% bootstrapped confidence interval. Across all types of variations, and environments we find that
MetaMorph considerably outperforms GNN, and MetaMorph-NM.

sk = (skp, s
k
g) as inputs, i.e. the model does not have access to information about the robot morphol-

ogy.

Fig. 4 shows learning curves across 3 environments for training 100 morphologies. In all environ-
ments MetaMorph can successfully match the average reward achieved via the per morphology MLP
baseline on both FT, and obstacle environment. While MetaMorph performance in VT is slightly
below the MLP baseline, we note that it has not saturated and we stopped training at 108 iterations
across all three environments. Moreover, MetaMorph is significantly more sample-efficient (5×)
than training independent MLPs (5 × 106 iterations per robot). The GNN baseline saturates at a
level 2 to 3 times below MetaMorph. In GNN based models, locality and neighborhood connectiv-
ity is explicitly baked into the model. Interestingly, just like ViT (Dosovitskiy et al., 2021) sparingly
utilizes the 2D neighborhood structure of images at the beginning of the model by cutting the image
into patches, MetaMorph uses the graph structure of the robot in the beginning by creating a 1D
sequence corresponding to the kinematic tree by traversing the graph in depth first order. More-
over, the position embeddings carry no information about the graph structure and are learned from
scratch. We highlight that the learned position embeddings significantly improve the performance
of MetaMorph, just as they do in Transformer based image classification. Finally, without access
to the morphological information, MetaMorph-NM fails to learn a policy that can control diverse
robot morphologies. All of this substantiates our central claim that morphological state information
is necessary to learn successful control policies, although the kinematic graph need not be explicitly
baked into neural architectures to learn policies capable of controlling diverse robot morphologies.
Finally, we test the importance of dynamic replay buffer balancing in Fig. 5, and find that balancing
is necessary to learn a good control policy in 10− 15% of robots across all 3 environments.

5.3 ZERO-SHOT GENERALIZATION

Our focus in this work is to learn policies that can generalize to unseen robots drawn from a modular
robot design space. In this section, we demonstrate that MetaMorph shows favorable generalization
properties across many different kinematic and dynamic variations.

Experimental Setup. For each of the 100 training robots, we create a dedicated test set to test zero-
shot transfer performance across two types of variations: dynamics (armature, density, damping, and
motor gear) and kinematics (module shape parameters like radius, and length of cylindrical limbs,
and joint angles). For each training robot, we randomly create 4 different variants for each property,
i.e. 400 robots with armature variations, and so on. While creating a new variant, we change the

7

Published as a conference paper at ICLR 2022

0 1 2 3 4

0

1000

2000

3000

5e
w

ar
d

)Oat terrain

0 2 4 6

0

500

1000

1500
VariabOe terrain

0 1 2 3 4

0

500

1000

1500

2bVtaFOeV

)inetune 6FratFh

0.0 0.2 0.4 0.6 0.8 1.0
IteratiRnV (×107)

0.00

0.25

0.50

0.75

1.00 2x 2x3x

0 1 2 3 4

0

1000

2000

3000

5e
w

ar
d

)Oat terrain

0 2 4 6

0

500

1000

1500
VariabOe terrain

0 1 2 3 4

0

500

1000

1500

2bVtaFOeV

)inetune 6FratFh

0.0 0.2 0.4 0.6 0.8 1.0
IteratiRnV (×107)

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4

0

1000

2000

3000

5e
w

ar
d

)Oat terrain

0 2 4 6

0

500

1000

1500
VariabOe terrain

0 1 2 3 4

0

500

1000

1500

2bVtaFOeV

)inetune 6FratFh

0.0 0.2 0.4 0.6 0.8 1.0
IteratiRnV (×107)

0.00

0.25

0.50

0.75

1.00

Figure 7: Fine tuning: New robot morphologies. Comparison of reward progression of 100 new
robot morphologies averaged over 3 runs for pre-trained MetaMorph in the same environment vs
from scratch. Shaded regions denotes standard deviation. Across all environments pre-training
leads to strong zero-shot performance and 2− 3× more sample efficiency.

0 2 4 6

50

100

150

5e
w

ar
d

(sFaSe

0 1 2 3 4
0

500

1000

1500

2000
2EstaFOes (FyOinders)

)inetune 6FratFh

0.000.00 0.2 0.460.46 0.600.60 0.820.82 1.041.04
IteratiRns (×107)

0.00

0.25500.2550
0.50

0.75

1.001501.00150
!"#$%&'(#)*&+',-.(/#01#&%2(

!"#"

0 2 4 6

50

100

150

5e
w

ar
d

(sFaSe

0 1 2 3 4
0

500

1000

1500

2000
2EstaFOes (FyOinders)

)inetune 6FratFh

IteratiRns (×107)

0 2 4 6

50

100

150

5e
w

ar
d

(sFaSe

0 1 2 3 4
0

500

1000

1500

2000
2EstaFOes (FyOinders)

)inetune 6FratFh

IteratiRns (×107)

Figure 8: Fine tuning: New robot morphologies and tasks. Left: Test environments. Right:
Comparison of reward progression of 100 test robots averaged over 3 runs for pre-trained Meta-
Morph (VT→ Escape, Obstacles→ Obstacles (cylinders)) vs from scratch. Shaded regions denotes
standard deviation. Across all environments pre-training leads to strong zero-shot performance and
2− 3× savings in training iterations to achieve the same level of average reward.

relevant property of all modules or joints. See Table 2 for sampling ranges. We then compare
zero-shot performance averaged over 10 trials.

Generalization: Dynamics. First, we consider generalization to different dynamics (Fig. 6). We
find consistently that MetaMorph performs significantly better than MetaMorph-NM and GNN
across all types of dynamic variations and all environments. In fact, the difference is more pro-
nounced for harder tasks like VT and Obstacles. We note that this result is surprising as we do not
do dynamics randomization during training, i.e., all robots in the training set have the same armature
and damping parameters. Despite this, we see strong generalization performance.

Generalization: Kinematics. Next, we consider generalization to different kinematics parameters
(Fig. 6). This is a significantly more challenging setting as the model has to generalize to unseen
variations in module shape parameters and changes to joint angle ranges. In fact, changes to joint
angles can significantly alter the range of possible motion and might necessitate a different gait
for successful locomotion. Consequently, we find that even though MetaMorph exhibits strong
generalization performance compared to MetaMorph-NM and GNN in all 3 environments, there
is indeed a performance drop for the challenging setting of variations in joint angles. However, the
zero-shot performance is encouraging and motivates our next set of experiments on transfer learning.

5.4 SAMPLE EFFICIENT TRANSFER LEARNING

Experimental Setup. Here we create 100 robots from the UNIMAL design space which were
not part of the training set, and we demonstrate that MetaMorph shows favorable sample efficient
transfer to unseen morphologies, and even unseen morphologies performing novel tasks.

Different morphologies. We first consider sample efficient learning of controllers for new mor-
phologies on the same task by taking a pre-trained MetaMorph model on an environment, and then
fine tuning it to learn to control morphologies in the test set. In Fig. 7 we compare the number of
training iterations required to achieve a particular performance level when we fine tune MetaMorph

8

Published as a conference paper at ICLR 2022

300 350 400 450 500
7imesteps

1.25

1.50

1.75

sr
(A
3)

300 350 400 450 500
Timesteps

1.5

2.0

sr
(A
2)

to
rs
o

lim
b0

lim
b1

lim
b2

lim
b3

lim
b4

lim
b5

lim
b6

lim
b7

torso

limb0

limb1

limb2

limb3

limb4

limb5

limb6

limb7

to
rs
o

lim
b0

lim
b1

lim
b2

lim
b3

lim
b4

lim
b5

lim
b6

lim
b7

0.0

0.2

0.4

0.6

0.8

to
rs
o

lim
b0

lim
b1

lim
b2

lim
b3

lim
b4

lim
b5

lim
b6

lim
b7

torso

limb0

limb1

limb2

limb3

limb4

limb5

limb6

limb7

to
rs
o

lim
b0

lim
b1

lim
b2

lim
b3

lim
b4

lim
b5

lim
b6

lim
b7

0.0

0.2

0.4

0.6

0.8

Figure 9: Emergent motor synergies. We plot the stable rank of the attention matrix (sr(Al)) for
two agents performing locomotion on a flat terrain. sr(Al) is small and oscillates between two values
which correspond to attention maps where groups of limbs are activated simultaneously (denoted by
dark columns), a characteristic signature of motor synergies.

vs training from scratch on the test set. Across all 3 environments we not only find strong zero-shot
performance , but also 2 to 3 times higher sample efficiency compared to training from scratch.

Different morphologies and novel tasks. Finally, we consider the most realistic and general setting
mimicking the promise of modular robots, where we are faced with a novel task and want to use a
new robot morphology which may be suited for this task. We consider the same set of 100 test
robots on two new tasks (Fig. 8): (1) Escape: The agent starts at the center of a bowl shaped terrain
surrounded by small hills (bumps), and has to maximize the geodesic distance from the start location
(escape the hilly region). (2) Obstacles (cylinders): cylinder shaped obstacles of varying sizes (the
size distribution is also different from the train task i.e. cuboid shapes). We transfer the learned
policy from VT and Obstacles to Escape and Obstacles-Cylinders respectively. Again, we find that
there is a strong zero-shot performance across all 3 environments and fine-tuning is 2 to 3 times
more sample efficient than training from scratch.

5.5 EMERGENT MOTOR SYNERGIES

We next search for a potential explanation for how MetaMorph can coordinate the large number of
DoFs (∼ 16 × 100) across several agents. Our hypothesis is inspired by Bernstein (1966), which
proposed the existence of muscle synergies as a neural strategy to simplify the control of multiple
DoFs by the central nervous system. A muscle synergy corresponds to the constrained movements of
sets of joints (or muscles) through co-activation by a single neural signal. Such synergies obviate the
need to control all joints independently, by coupling sets of joints into adaptive functional groups.

Although the definition of synergies (Bruton & O’Dwyer, 2018) vary in the literature, dimension-
ality reduction is generally accepted as a signature of synergistic control (Todorov & Ghahramani,
2004; Todorov, 2004). Consequently, to test this hypothesis, in Fig. 9 we plot the stable rank of
the attention matrix. For attention matrix Al ∈ Rm×m for layer l, the stable rank is defined as:
sr(Al) =

‖Al‖2F
‖Al‖2 =

∑
σ2
i

σ2
max

, where σi are the singular values of Al. We note that sr(Al) is small
and oscillates between two values which correspond to attention maps where groups of limbs are
activated simultaneously (denoted by dark columns), a characteristic signature of motor synergies.
Hence, MetaMorph simplifies the control problem by learning to activate different motor synergies
depending on both skm and skp .

6 CONCLUSION

In this work, we explored how we can learn a universal controller for a large modular robot design
space. To this end, we proposed MetaMorph, a Transformer approach based on the insight that robot
morphology is just another modality on which we can condition the output of a Transformer. We
showcased that pre-training on a large collection of diverse morphologies leads to policies which can
generalize to unseen variations in kinematics, dynamics, new morphologies, and tasks. We hope that
our work serves as a step towards realizing the potential of large-scale pre-training and fine-tuning
in the field of robotics, a paradigm that has seen tremendous success in vision and language.

9

Published as a conference paper at ICLR 2022

7 ACKNOWLEDGEMENT

We gratefully acknowledge the support by Department of Navy awards (N00014-16-1-2127,
N00014-19-1-2477) issued by the Office of Naval Research.

8 REPRODUCIBILITY STATEMENT

We have released a PyTorch (Paszke et al., 2019) implementation of MetaMorph on GitHub
(https://github.com/agrimgupta92/metamorph). In addition, the repository also in-
cludes all the robots and environments used for benchmarking.

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Nikolai Bernstein. The co-ordination and regulation of movements. The co-ordination and regula-
tion of movements, 1966.

Charlie Blake, Vitaly Kurin, Maximilian Igl, and Shimon Whiteson. Snowflake: Scaling gnns to
high-dimensional continuous control via parameter freezing. arXiv preprint arXiv:2103.01009,
2021.

Josh Bongard. Why morphology matters. The horizons of evolutionary robotics, 6:125–152, 2014.

Rodney A Brooks. New approaches to robotics. Science, 253(5025):1227–1232, 1991.

Michaela Bruton and Nicholas O’Dwyer. Synergies in coordination: A comprehensive overview
of neural, computational, and behavioral approaches. Journal of Neurophysiology, 120(6):2761–
2774, 2018.

Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies for multi-
robot transfer learning. In NIPS, 2018.

Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: Evolving
soft robots with multiple materials and a powerful generative encoding. SIGEVOlution, 7(1):
11–23, August 2014. doi: 10.1145/2661735.2661737. URL https://doi.org/10.1145/
2661735.2661737.

Nick Cheney, Josh Bongard, Vytas SunSpiral, and Hod Lipson. Scalable co-optimization of mor-
phology and control in embodied machines. Journal of The Royal Society Interface, 15(143):
20170937, 2018.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. Advances in neural information
processing systems, 28:3079–3087, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Ioannis Exarchos, Yifeng Jiang, Wenhao Yu, and C Karen Liu. Policy transfer via kinematic domain
randomization and adaptation. arXiv preprint arXiv:2011.01891, 2020.

Toshio Fukuda and Seiya Nakagawa. Dynamically reconfigurable robotic system. In ICRA, pp.
1581–1586. IEEE, 1988.

10

https://github.com/agrimgupta92/metamorph
https://doi.org/10.1145/2661735.2661737
https://doi.org/10.1145/2661735.2661737

Published as a conference paper at ICLR 2022

Ali Ghadirzadeh, Xi Chen, Petra Poklukar, Chelsea Finn, Mårten Björkman, and Danica Kragic.
Bayesian meta-learning for few-shot policy adaptation across robotic platforms. arXiv preprint
arXiv:2103.03697, 2021.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580–587, 2014.

Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intelligence via learning
and evolution. Nature communications, 12(1):5721, 2021.

David Ha. Reinforcement learning for improving agent design. Artificial life, 25(4):352–365, 2019.

Leland H Hartwell, John J Hopfield, Stanislas Leibler, and Andrew W Murray. From molecular to
modular cell biology. Nature, 402(6761):C47–C52, 1999.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, pp. 9729–9738, 2020.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intel-
ligence, 2018.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In ICML, pp. 4455–4464. PMLR, 2020.

Donald Joseph Hejna III, Pieter Abbeel, and Lerrel Pinto. Task-agnostic morphology evolution. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=CGQ6ENUMX6.

Nadav Kashtan and Uri Alon. Spontaneous evolution of modularity and network motifs. Proceed-
ings of the National Academy of Sciences, 102(39):13773–13778, 2005.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ArXiv, abs/1609.02907, 2017.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My
body is a cage: the role of morphology in graph-based incompatible control. In ICLR, 2021.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47), 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv e-prints,
art. arXiv:1607.06450, July 2016.

T. Liao, G. Wang, B. Yang, R. Lee, K. Pister, S. Levine, and R. Calandra. Data-efficient learning of
morphology and controller for a microrobot. In 2019 International Conference on Robotics and
Automation (ICRA), pp. 2488–2494, 2019. doi: 10.1109/ICRA.2019.8793802.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=JrsfBJtDFdI.

Nithin Mathews, Anders Lyhne Christensen, Rehan O’Grady, Francesco Mondada, and Marco
Dorigo. Mergeable nervous systems for robots. Nature communications, 8(1):1–7, 2017.

11

https://openreview.net/forum?id=CGQ6ENUMX6
https://openreview.net/forum?id=CGQ6ENUMX6
https://openreview.net/forum?id=JrsfBJtDFdI

Published as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to
control self-assembling morphologies: A study of generalization via modularity. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Rolf Pfeifer and Christian Scheier. Understanding intelligence. MIT press, 2001.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training (2018), 2018.

Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in a
thousand-robot swarm. Science, 345(6198):795–799, 2014.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In ICML, pp. 4470–4479. PMLR, 2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly learning to construct
and control agents using deep reinforcement learning. In ICRA, pp. 9798–9805. IEEE, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv e-prints, art. arXiv:1707.06347, July 2017.

Karl Sims. Evolving 3d morphology and behavior by competition. Artificial life, 1(4):353–372,
1994.

Emanuel Todorov. Optimality principles in sensorimotor control. Nature neuroscience, 7(9):907–
915, 2004.

Emanuel Todorov and Zoubin Ghahramani. Analysis of the synergies underlying complex hand
manipulation. In The 26th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, volume 2, pp. 4637–4640. IEEE, 2004.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In ICLR, 2018.

Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Automatic robot
design. In ICLR, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

12

Published as a conference paper at ICLR 2022

Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric Klavins, and
Gregory S Chirikjian. Modular self-reconfigurable robot systems [grand challenges of robotics].
IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spielberg, Daniela Rus,
and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. ACM
Transactions on Graphics (TOG), 39(6):1–16, 2020.

13

Published as a conference paper at ICLR 2022

A IMPLEMENTATION DETAILS

In this section, we provide additional implementation details for our method.

A.1 INPUT OBSERVATIONS

In our setup, at each time step t (we drop the time subscript for brevity) the robot receives an
observation sk = (skm, s

k
p, s

k
g) which is composed of the morphology representation (skm), the pro-

prioceptive states (skp) and additional global sensory information (skg). We note that prior work
(Kurin et al., 2021; Huang et al., 2020) has defined morphology as the connectivity of the limbs.
However, connectivity is only one aspect of morphology, and in general a substantial amount of
additional information may be required to adequately describe the morphology. Consider a modular
robot composed of n ∈ 1...Nk modules. For each module skmi

consists of: (1) Module Parame-
ters: Module shape parameters (e.g. radius, height), material information (e.g. density), and local
geometric orientation and position of the child module with respect to the parent module. (2) Joint
Parameters: This consists of information about joint type (e.g. hinge) and its properties (e.g. joint
range and axis), and actuator type (e.g. motor) and its properties (e.g. gear). All this information can
be found for example, in the Universal Robot Description Format (URDF) or in simulator specific
kinematic trees (e.g. MuJoCo XML (Todorov et al., 2012)).

Similarly for each module skpi consists of the instantaneous state of the system: (1) Module Pro-
prioception: 3D Cartesian position, 4D quaternion orientation, 3D linear velocity, and 3D angular
velocity. (2) Joint Proprioception: Position and velocity in the generalized coordinates. Except the
root node, each module will be connected to its parent module via a set of joints. We adopt the con-
vention of providing joint parameters and proprioception information to the child node. We note that
the importance of proprioceptive observations has also been observed in learning good locomotion
(Lee et al., 2020; Kumar et al., 2021) and manipulation policies (Mandlekar et al., 2021).

In general, additional global sensory information (skg) can be camera or depth sensor images. To
save computation, we provide the information about the terrain as 2D heightmap sampled on a non-
uniform grid. The grid is created by decreasing the sampling density as the distance from the root of
the body increases. All heights are expressed relative to the height of the ground immediately under
the root of the agent. The sampling points range from 1m behind the agent to 4m ahead of it along
the direction of motion, as well as 4m to the left and right.

A.2 ENVIRONMENTS

All our training and testing environments are implemented in MuJoCo (Todorov et al., 2012). For
a detailed description about the environments and reward functions please refer Gupta et al. (2021).
Gupta et al. (2021) evolved UNIMALS in 3 different environments: flat terrain, variable terrain
and manipulation in variable terrain. For each environment at the end of evolution, they had 100
task optimized robots. Out of these 300, we choose a subset of 100 UNIMALS as our train set. We
ensure that no robot has the exact same kinematic tree or kinematic parameters. Similarly, we created
a test set of 100 UNIMALS. Finally, for zero shot evaluation experiments we created the variants as
described in § 5.3. For creating kinematic variations for joint angles, we randomly selected a joint
range for each joint from Table 2 which had alteast 50% overlap with the original joint angle range.
This helped in preventing robot variants which could not be trained.

A.3 TRAINING HYPERPARAMETERS

We use Transformers (Vaswani et al., 2017) to parametrize both policy and critic networks. Global
sensory information is encoded using a 2-layer MLP with hidden dimensions [64, 64]. We use
Proximal Policy Optimization (Schulman et al., 2017) for joint training of agents in all environments.
All hyperparameters for Transformer and PPO are listed in Table 1. In addition, we use dynamic
replay buffer sampling with α = 0.1 and β = 1.0. For all our ablations and baselines, we use the
same hyperparameters. For MLP baseline we use a 2-layer MLP with hidden dimensions [64, 64]
and for GNN baseline we use a 5-layer MLP with hidden dimension 512. The details of the joint
training of modular robots are shown in Algorithm 1. We ensure that all baselines and ablations
have approximately the same number of parameters (∼ 3.3 Million).

14

Published as a conference paper at ICLR 2022

A.4 EVALUATION METHODOLOGY

In general, the performance of RL algorithms is known to be strongly dependent on the choice of
seed for random number generators (Henderson et al., 2018). Hence, we run all our baseline and
ablation experiments for 3 random seeds. We found that the training curves were robust to the choice
of seeds as indicated by small standard deviation (Fig. 4, 10). Consequently, we evaluate the zero
shot performance using pre-trained model corresponding to a single seed (Fig. 6). For our transfer
learning experiments (Fig. 7, 8), we fine tune the model with the random seed corresponding to the
one used for pre-training (for all 3 seeds).

B ADDITIONAL EXPERIMENTS

B.1 BASELINES AND ABLATIONS

Baselines: We compare against the following baselines:

(1) MetaMorph-AO: Direct comparison to Amorpheus (Kurin et al., 2021) is not feasible due to the
following reasons: (1) does not work with 3D morphologies with variable number of joints between
limbs; (2) does not incorporate exteroceptive observations; (3) Amorpheus ensures a balanced col-
lection of experience by sequentially collecting data on each morphology and maintaining a separate
replay buffer per morphology. Further, updates to policy parameters are also performed sequentially.
This sequential nature of the algorithm is not amenable to scaling, and would require ∼ 30 GPU
days to train for 100 million iterations on Nvidia RTX 2080, while our method only needs 1.5 GPU
days (∼ 20x training speedup).

Hence, we compare with MetaMorph-AO (Amorpheus Observation) as the closest variant to Amor-
pheus, where we provide the same input observations as described in Kurin et al. (2021). Specifi-
cally, we provide the following input observations: one hot encoding of unique limb ID, 3D Carte-
sian position, 4D quaternion orientation, 3D linear velocity, and 3D angular velocity, position in
generalized coordinates, and normalized joint angle ranges. Note that although both MetaMorph
and Amorpheus don’t explicitly incorporate the graph structure as input to the policy, our input ob-
servations include additional morphology information (see § B.1). In contrast, except for joint angle
ranges, Amorpheus does not incorporate morphology information.

0 2 4 6 8 10
0

1000

2000

3000

Re
wa

rd

Flat Terrain

GNN
MT-MLP
MetaMorph
MetaMorph-AO
MetaMorph-NPE
MetaMorph-HPE
MetaMorph-NM
MetaMorph-NMT

0.00 0.25 0.50 0.75 1.00
Iterations (×107)

0.00

0.25

0.50

0.75

1.00

Figure 10: Baselines and ablations. Mean reward progres-
sion of 100 robots from the UNIMAL design space aver-
aged over 3 runs in flat terrain for baselines and ablations
described in § 5.2 and § B.1. Shaded regions denote stan-
dard deviation.

(2) Multi-Task MLP: We train a 6-
layer MLP with a hidden dimension
of 512. The MLP receives the same
observations as MetaMorph, and has
the same number of parameters.

Ablations: We perform additional
ablation studies to understand the im-
portance of learnt position embed-
dings and morphology information
in input observation. We refer our
full method as MetaMorph and con-
sider the following additional ab-
lations: (1) MetaMorph-NMT (No
Morphology information + Task en-
coding): we only provide sk =
(skp, s

k
g) as inputs, i.e. the model does

not have access to information about
the robot morphology. In addition, we provide a context token with binary encoding to iden-
tify the morphology; (2) MetaMorph-HPE (Hand-designed Position Encoding): we provide sk =
(skm, s

k
p, s

k
g) as inputs, with skm containing a per limb unique ID.

Fig. 10 shows the learning curves for joint training in the flat terrain environment for 100 training
morphologies. Multi-task MLP baseline struggles to learn a good policy, which we attribute to the
difficulty of the task due to the rich diversity of morphologies. We next investigate the role of learnt
position embeddings and morphological information. MetaMorph-HPE performs slightly better than
MetaMorph-NPE, indicating that adding unique limb ids improves performance. However, there is

15

Published as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

6
7

8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Position embeddings. Cosine similarity of position embeddings of MetaMorph for 3
different seeds in flat terrain environment.

still a large gap between MetaMorph and MetaMorph-HPE, suggesting that learnt position embed-
dings capture additional information. Although MetaMorph-AO performs better than MetaMorph-
NM due to the addition of unique limb ids and joint angle ranges, it is still significantly worse than
MetaMorph as it does not incorporate morphological information. Finally, MetaMorph-NMT also
performs poorly due to the lack of morphological information.

B.2 POSITION EMBEDDING

To better understand the information captured by position embeddings we visualize their cosine
similarity. We found that across all seeds and in all environments (we only show flat terrain for
brevity) a diagonal pattern emerged (Fig 11). Although, this might suggest that learnt position
embeddings are capturing a unique position identifier, we found that manually specifying a unique
limb identifier to perform much worse (see MetaMorph-HPE in Fig. 10). Thus, indicating that these
embeddings are capturing additional useful information. We believe that further investigation is
needed to better understand the information captured by position embeddings and defer it to future
work.

B.3 KINEMATIC TREE TRAVERSAL ORDER

We first process an arbitrary robot by creating a 1D sequence of tokens corresponding to the depth
first traversal of its kinematic tree. We note that the DFS ordering is not unique, and for nodes
with similar depth, we adopted the convention of visiting the nodes which come first in the MuJoCo
XML. This convention is also adopted by MuJoCo when parsing the XML. We found that zero-shot
transfer of the learnt policy was not robust to an opposite ordering of nodes and the performance
dropped by ∼ 75%. However, we found that the policy could be made robust to variations in the
DFS ordering by training the model with a simple data augmentation strategy of randomizing the
visitation order of nodes at the same depth.

C LIMITATIONS AND FUTURE WORK

In this work, we explored how we can learn a universal controller for a large modular robot design
space. We make a key assumption that we already had access to a large collection of robots which
were optimized for the task of locomotion. Hence, currently we require a two stage pipeline where
we first create robots and then pre-train them jointly. An important direction of future work would be
to combine these two phases in an efficient manner. Moreover, although we found that MetaMorph
has strong zero-shot generalization to unseen variations in kinematics and dynamics, there is indeed
a performance drop on zero-shot generalization to new morphologies. Hence, an important avenue
of exploration is creating algorithms for sample efficient transfer learning. Finally, our current suite
of tasks focuses primarily on locomotion skills. An important line of future work will involve
designing general purpose controllers which could perform multiple skills.

16

Published as a conference paper at ICLR 2022

Algorithm 1 MetaMorph: Joint Training of Modular Robots
1: Input:
πθ: policy function
Vφ: value function
R: replay buffer
K: training pool of robots
Pk: probability of sampling robot k

2: Initialize: Learnable parameters θ for πθ, φ for Vφ, P uniform distribution
3: for i=1,2,..Niter do
4: # Collect robot experience in parallel
5: for j=1,2,..Nworkers do
6: Sample a robot k ∈ K, according to Equation 5
7: # Collect one episode of experience
8: τj ≡ {st, at, st+1, rt+1}j ∼ πθ
9: # Add data to the buffer

10: R← R ∪ τj
11: end for
12: # Update policy and value functions
13: for j=1,2,..Nepochs do
14: Sample a minibatch of data r from R
15: πθ ← PPOUpdate(πθ, r)
16: Vφ← PPOUpdate(Vφ, r)
17: end for
18: # Sample all robots uniformly at random initially
19: if i >= Nwarmup then
20: P ← samplingProbUpdate(R), according to Equation 5
21: end if
22: end for

17

Published as a conference paper at ICLR 2022

Hyperparameter Value

PPO

Discount γ .99
GAE parameter λ 0.95
PPO clipping parameter ε 0.2
Policy epochs 8
Batch size 5120
Entropy coefficient 0.01
Reward normalization Yes
Reward clipping [−10, 10]
Observation normalization Yes
Observation clipping [−10, 10]
Timesteps per rollout 2560
Workers 16
Environments 32
Total timesteps 1× 108

Optimizer Adam
Initial learning rate 0.0003
Learning rate schedule Linear warmup and cosine decay
Warmup Iterations 5
Gradient clipping (l2 norm) 0.5
Clipped value function Yes
Value loss coefficient 0.5

Transformer

Number of layers 5
Number of attention heads 1
Embedding dimension 128
Feedforward dimension 1024
Non linearity function ReLU
Dropout 0.1

Table 1: Training hyperparameters.

Kinematics
Variation type Value
Limb radius [0.03, 0.05]
Limb height [0.15, 0.45]

Joint angles

[(−30, 0), (0, 30), (−30, 30),
(−45, 45), (−45, 0), (0, 45),
(−60, 0), (0, 60), (−60, 60)

(−90, 0), (0, 90), (−60, 30)(−30, 60)]

Dynamics
Armature [0.1, 2]
Density [0.8, 1.2]× limb density
Damping [0.01, 5.0]
Gear [0.8, 1.2]× motor gear

Table 2: Dynamics and kinematics variation parameters.

18

