
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EEG SEIZURE DETECTION AND TRAFFIC FORECASTING
WITH SPACE-TIME SELF-ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

This work introduces a Transformer-based approach for graph signal processing
that leverages a novel task-specific attention mechanism, namely NTAttention.
Unlike conventional self-attention mechanisms, our method attends to all nodes
across multiple time steps, enabling the model to effectively capture dependencies
between nodes over extended time periods. This addresses a key limitation faced by
traditional methods. Additionally, we propose geometry-aware masking (GMask),
which incorporates the graph topology into the sparsification of the self-attention
matrix. This enhances efficiency while preserving the rich temporal information
conveyed by the nodes. We demonstrate the effectiveness of our approach on two
critical applications: EEG seizure detection and traffic forecasting. Both tasks
involve data collected from fixed sensors, such as electrodes or road sensors, where
data from one sensor can influence others temporally and spatially. Our model
enhances sensitivity in fast seizure detection by 20 percentage points compared to
state-of-the-art and significantly outperforms current methods in traffic forecasting.

1 INTRODUCTION

A significant portion of the time series data we utilize in various machine learning applications is
gathered thanks to fixed located sensors (Tang et al., 2021; Li et al., 2018). These sensors play a
crucial role in collecting information for different applications such as healthcare and time-series
forecasting (Jasper, 1958; Li et al., 2018). One notable application of these sensors is in neural
recordings, such as electroencephalography (EEG) signals, where electrodes are placed on a patient’s
scalp (Jasper, 1958). Similarly, the deployment of traffic sensors along roadways for monitoring
traffic flow is another significant example, greatly impacting our daily routines (Shao et al., 2022).

While these sensors remain fixed in their respective locations, it is crucial to recognize that the
data flow from one sensor can influence others both temporally and spatially (Tang et al., 2021;
Li et al., 2018). For example, effective EEG seizure detection require learning both (i) long-range
spatial dependencies, as seizure activity may originate at a focal electrode and then spread to other
brain regions, and (ii) long-range temporal dependencies, as if a seizure occurs at the beginning
of the window with no subsequent activity, the model need to classify based on this brief episode.
In the context of traffic data, successful traffic forecasting needs to capture both (i) long-range
spatial dependencies, as congestion at a major nodes can create ripple effects, and (ii) long-range
temporal dependencies, where forecasting typically operates with a 5-minute window resolution
and forecasting 1 or 2 hours ahead involves processing 12 or 24 data windows, which is considered
long-range for this task (Li et al., 2018; Yu et al., 2018; Shang et al., 2021; Zheng et al., 2020).

Motivated by these observations, data recorded from various fixed sensors or electrodes is often
framed as a temporal graph representation, where the topology remains fixed over time. Several
studies have leveraged different combinations of Graph Neural Network (GNN) and Recurrent Neural
Network (RNN) to capture the spatio-temporal dynamics inherent in such data (Yu et al., 2018;
zot; Song et al., 2020; Tang et al., 2021; Li et al., 2022; Ho & Armanfard, 2023). Two crucial
applications, EEG-based seizure detection and traffic prediction, have received considerable attention
in prior research (Tang et al., 2021; Ho & Armanfard, 2023; Li et al., 2018; Song et al., 2020). In
this study, we focus on these applications due to their significant impact and relevance. Over 50
million worldwide suffer from epilepsy (WHO; Begley et al., 2022), highlighting the critical need
for effective seizure detection and prevention methods (Shoaran et al., 2016). Traffic congestion
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Figure 1: An illustration of our proposed temporal and spatial encoding, space-time self attention,
and geometry-aware mask in NTAttention.

significantly impacts daily life, emphasizing the critical need for accurate forecasting to enhance
transportation efficiency (Song et al., 2020).

While previous studies have modeled the spatio-temporal dynamics of temporal graphs using GNNs
and RNNs (Li et al., 2018; Yu et al., 2018; Tang et al., 2021; Ho & Armanfard, 2023; Shao et al.,
2022), they often struggle to account for long-range dependencies among distant nodes over extended
periods, affecting their accuracy in capturing long-range space-time dependencies (Tang et al., 2021;
Ho & Armanfard, 2023; Song et al., 2020). Attempts have been made to use attention for graphs,
e.g., Graphormer (Ying et al., 2021) or Graph Attention Networks (GAT) (Velickovic et al., 2017),
but they have not been investigated for graph signal representation with fixed nodes. While some
approaches, such as (Guo et al., 2019), have integrated transformers to capture long-range temporal
dependencies, they solely rely on node embeddings and graph convolutions for graph representation
(Morris et al., 2019). This reliance can lead to decreased accuracy, especially for graphs with a large
number of nodes, as it may struggle to effectively detect long-range space-time dependencies.

In this study, we propose a new, simple yet highly effective self-attention module, namely NTAttention,
which attends to all graph nodes over extended time periods for learning spatio-temporal dynamics in
temporal graphs. Furthermore, to enhance efficiency in the spatial domain, we propose a geometry-
aware attention mask that ensures spatially distant nodes do not attend to each other. We illustrate
our method in Fig. 1. We evaluate our model on two key applications in graph signal processing:
EEG-based seizure detection and traffic forecasting. Our main contributions are as follows:

• We introduce a new self-attention mechanism, termed NTAttention, for graph signal pro-
cessing, which effectively attends to all nodes across multiple time steps. Our Transformer
design is easy to implement and strongly motivated by the characteristics of temporal graph
signals. Our architecture excels at addressing long-range space-time dynamics, a challenge
that previous methods in graph signal processing have struggled to overcome.

• We introduce Geometry-Aware Masking (GMask) for NTAttention, which significantly
enhances the computational efficiency of our proposed attention mechanism, while simulta-
neously improving the model’s generalization performance.

• Our model sets a new standard in both seizure detection and traffic forecasting. Specifically,
it improves sensitivity for long-term seizure detection by 20 percentage points compared to
previous methods, which is crucial for ensuring that seizure events are not missed. Addition-
ally, it achieves an impressive MAE of 2.94 for 1-hour traffic forecasting, outperforming all
other benchmarks while maintaining similar memory and computational requirements.
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2 RELATED WORK

We concentrate on two key applications of graph signal processing: 1) EEG-based seizure analysis,
and 2) Traffic forecasting. Accordingly, this section is divided into two parts to comprehensively
review the related work and advancements of various baseline methods in each area.

EEG-based Seizure Detection Various studies have attempted to develop machine learning and
deep learning models for EEG-based seizure detection (Asif et al., 2020; O’Shea et al., 2020; Ho
& Armanfard, 2023; Shoaran et al., 2016; Tang et al., 2021; Yan et al., 2022). For instance, (Asif
et al., 2020; Saab et al., 2020) used CNN-based architectures, either utilizing spectral features or
treating EEG data as multi-channel images, which neglects the time-series structure of EEG signals.
Furthermore, (Ahmedt-Aristizabal et al., 2020) employed a CNN-LSTM architecture that captures
both spatial and temporal dependencies in EEG signals. However, these approaches overlook the
non-Euclidean geometry inherent in EEG signals (Tang et al., 2021; Ho & Armanfard, 2023).

To address this, different variations of GNNs have been applied to the seizure detection task. For
example, (Tang et al., 2021) employed two versions of the diffusion convolution recurrent neural
network (DCRNN): one using a distance-based graph and the other a correlation-based graph. These
approaches leverage GNNs to capture spatial information considering non-Euclidean geometry
and RNNs for temporal dependencies. However, these models still face challenges in capturing
long-range node and time dependencies within the EEG structure (Yan et al., 2022; Li et al., 2022).
This limitation arises because RNNs and GNNs are adept at capturing local spatial and temporal
information but struggle with long-range space-time dependencies (Vaswani et al., 2017). A detailed
comparison of different models, highlighting their strengths and weaknesses, is provided in Table 1
and dataset description provided in Table 3.

Traffic Forecasting Traditional methods such as support vector regression (SVR) (Hong, 2011) and
Vector Auto-regressive (VAR) (Ermagun & Levinson, 2018) have been utilized for traffic forecasting.
These models, however, do not capture the information flow between different sensors and predict the
traffic flow for each sensor solely based on the data available for that sensor (Tang et al., 2021). Deep
fully connected neural networks have been employed for traffic forecasting tasks (Zhang et al., 2016),
leveraging data from all sensors to predict traffic flow. However, these models do not account for the
locality of sensor placement, which is crucial for capturing the spatial dependencies and variations in
traffic patterns. Recurrent neural network (RNN) based models, such as Long Short-Term Memory
(LSTM), have also been utilized for capturing the temporal information of traffic data but similarly
overlook the locality of sensors (Hochreiter & Schmidhuber, 1997; Laptev et al., 2017). To better
capture spatial information, convolutional neural network (CNN) architectures have been used to
model the information flow between traffic sensors (Huang et al., 2022; Zhang et al., 2017).

Recent research has shown a growing interest in leveraging graph neural networks (GNNs) to address
traffic forecasting challenges (Tang et al., 2021; Yu et al., 2018; Song et al., 2020; Zheng et al.,
2020; Shang et al., 2021). However, existing GNN-based models struggle to effectively capture
long space-time dependencies (Song et al., 2020; Wu et al., 2020). Inspired by developments in
language models, some studies have integrated attention mechanisms with convolutional layers for
this task (Guo et al., 2019), or introduced separate attention mechanisms for spatial and temporal
representation (Zheng et al., 2020). Despite these advancements, existing models still exhibit low
accuracy, particularly with long window sizes, and fail to incorporate long space-time correlations,
such as how distant nodes affect each other over time. In Table 2, we summarize the advantages and
disadvantages of current traffic forecasting models and in Table 4 we presented dataset description.
Additionally, since the connection and similarity between seizure detection and traffic forecasting
tasks have been established in Tang et al. (2021), but most models primarily focus on a single
application, NTAttention has been specifically designed as a unified model capable of effectively
handling both tasks.

3 NTATTENTION

In this section, we present NTAttention, a new model for graph signal processing tasks. We begin in
Section 3.1 by formalizing the problem setting and establishing the notations of signal processing on
graphs. In Section 3.2, we enhance each node’s features with spatial and temporal encoding based on
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Table 1: Comparison among seizure detection models: A) Capturing Non-Euclidean geometry of
EEG B) Capturing temporal nature of EEG C) Capturing long range time dependency D) Capturing
long range electrode dependency E) Capturing long range electrode-time dependency

Method A B C D E
SeizureNet (Asif et al., 2020) ✗ ✔ ✗ ✗ ✗
LSTM (Hochreiter & Schmidhuber, 1997) ✗ ✔ ✗ ✗ ✗
Dense-CNN (Saab et al., 2020) ✗ ✗ ✗ ✗ ✗
CNN-LSTM (Ahmedt-Aristizabal et al., 2020) ✗ ✔ ✗ ✗ ✗
DCRNN (Tang et al., 2021) ✔ ✔ ✔ ✔ ✗
Transformer (Vaswani et al., 2017) ✔ ✔ ✔ ✗ ✗
REST (Afzal et al., 2024) ✔ ✔ ✗ ✗ ✗
NTAttention ✔ ✔ ✔ ✔ ✔

Table 2: Comparison among traffic forecasting models: A) Capturing spatial dependency of traffic
data B) Considering the graph geometry C) Capturing long range time dependency D) Capturing
long range node dependency E) Capturing long range space-time dependency

Method A B C D E
HA ✗ ✗ ✗ ✗ ✗
VAR ✗ ✗ ✗ ✗ ✗
SVR ✗ ✗ ✗ ✗ ✗
FNN ✔ ✗ ✗ ✗ ✗
LSTM (Hochreiter & Schmidhuber, 1997) ✔ ✗ ✗ ✗ ✗
STGCN (Yu et al., 2018) ✔ ✔ ✗ ✗ ✗
DCRNN (Li et al., 2018) ✔ ✔ ✗ ✗ ✗
GTS (Shang et al., 2021) ✔ ✔ ✔ ✗ ✗
ASTGN (Guo et al., 2019) ✔ ✔ ✔ ✗ ✗
GMAN (Zheng et al., 2020) ✔ ✔ ✔ ✔ ✗
STAEFormer (Liu et al., 2023) ✔ ✔ ✔ ✔ ✗
PM-MemNET (Lee et al., 2021) ✔ ✔ ✔ ✔ ✗
NTAttention ✔ ✔ ✔ ✔ ✔

Table 3: TUSZ data description

EEG-Files Patients
Data split (% Seizures) (% Patents with Seizures)
Training 4664 (5.34%) 579(36%)
Evaluation 881(5.82%) 43(79%)
Total 5545 (5.41%) 622 (39%)

Table 4: METR-LA data description

Data split Samples # Node Time Span
Training 23990 207 2.8 month
Evaluation 6855 207 0.4 month
Testing 3427 207 0.8 month

its position in the graph and the relative time point at which data was collected. Then, in Section 3.3
we introduce our new attention mechanism tailored for temporal graphs. Finally, in Section 3.4 we
introduce the geometry-aware masking of the attention matrix to enhance model performance and
efficiency.

3.1 PROBLEM SETTING AND FORMULATION

We represent the sensor network as a graph G = {V, E ,P} with V = {v1, ..., vN} as the nodes, E
representing the edges, and P = {p1, . . . , pn} being a set of vectors pi ∈ R2 representing node
coordinates in space. We denote the data observed at time point t on graph G as a graph signal
X(t) ∈ RN×M with M being the number of features per node. We present the sequence of T
observations of graph signal as a three-dimensional tensor X ∈ RT×N×M s.t.

Xt = [X(t), X(t+1), ..., X(t+T−1)], (1)

where t is the initial time point of T consecutive observations of graph signal. The problem of
seizure detection is formulated as a binary classification task predicting the label y ∈ {0, 1} for a
corresponding tensor Xt. The traffic forecasting problem is formulated as predicting the next tensor
of T consecutive observations of graph signal Xt+T from a given tensor Xt.
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3.2 SPATIAL AND TEMPORAL ENCODING

Let the input sequence in space and time be xt
n ∈ RM , n = 1, . . . , N, t = 1, . . . , T , i.e., the

M -dimensional feature vector for node n of G at time step t. In Transformers terminology, we
call xt

n the input token. We add spatial encoding to each token of the graph signal and we use the
relative temporal encoding between two tokens at different time points t, t′. This allows the model to
utilize both the position of the node in the graph and the time of the observation. The encodings are
integrated into token xt

n after linear mapping as follows:

ht
n = Wex

t
n + zspatial

n , ztemporal
tt′ = Ttt′(h

t
n, h

t′

n′) (2)

where ht
n ∈ RP is the output feature after applying the spatial encoding and We ∈ RP×M is a linear

mapping that transforms the input from M features per node to P features per node. The terms zspatial
n

is the spatial encoding, which are applied to the input token xt
n. ztemporal

tt′ is the relative temporal
encoding which is applied relatively for two different observations of the graph at time point t and t′.

Temporal Encoding To provide temporal encoding, we use relative temporal encoding as in (Wu
et al., 2021). We encode the relative positions between input elements ht

n and ht′

n into trainable
vectors rVtt′ , r

Q
t′t, r

K
tt′ ∈ RP . rVtt′ , r

Q
t′t, r

K
tt′ are learnable vectors which are added to the attention

matrix as relative temporal encoding and they are learned during training.

Importantly, the temporal embedding for all graph nodes at a given pair of time points t, t′ is uniform,
as it is determined solely by the times of observation and not by the specific position of the node.

Spatial Encoding In order to capture the spatial information of node n we define the spatial
encoding as below:

zspatial
n = Upn. (3)

Here, pn ∈ R2 is the vector containing the positional information of node n in the graph (comprising
its x and y coordinates) and U ∈ RP×2 is the learnable weight matrix, zspatial

n ∈ RP is a vector of
dimension P , which, along with temporal encoding, is added to the projected input. However, unlike
the temporal encoding, the spatial encoding only carries information about the position of the node in
the graph and does not depend on the time of the observation.

By combining the two encodings as shown in Equation (2), each token receives a unique spatial and
relative temporal encoding that reflects both its spatial position in the graph and the time at which the
signal was observed in relation to other time points. Ablation on the choice of spatial and temporal
encodings, comparing them with other methods such as (Fuchs et al., 2020), are given in Appendix K.
Our findings demonstrate that incorporating these spatial and temporal encodings significantly boosts
performance, proving to be effective compared to scenarios where they are not used, as detailed in
Appendix L. The motivation behind using zspatial

n is that in our settings the sensor locations are fixed,
e.g., electrodes in EEG.

3.3 NTATTENTION FORMULATION

After adding the encodings to each token we extract the key, query and value:

qtn = Wqh
t
n, ktn = Wkh

t
n, vtn = Wvh

t
n. (4)

Here, Wq,Wk,Wv ∈ RP×P are weight matrices generating the query (qtn), key (ktn), and value (vtn)
from ht

n, where P is the dimension of query, key, and values.

Definition 3.1 (NTAttention). The attention score in NTAttention between the input tokens xt
n (the

graph signal observation at node n at time point t) and xt′

n′ (the graph signal observation at node n′ at
time point t′) is computed as

At,t′

n,n′ = softmax(
(qtn + rQtt′)

⊤(kt
′

n′ + rKtt′)√
P

). (5)
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From the equation above we compute the output otn ∈ RP of node n at time t, based on its attention
to all other tokens:

otn =

N∑
n′=1

T∑
t′=1

At,t′

n,n′(v
t′

n′ + rVtt′). (6)

Gathering all nodes and time steps, the output of the NTAttention module can therefore be represented
as the tensor O ∈ RT×N×P with Otn = otn. Unlike standard self-attention, our specific design
allows all nodes of the graph at each time point to attend to each other (see Fig. 1). As commonly done
in Transformers (Vaswani et al., 2017), we apply multiple heads of NTAttention by concatenating
them.

3.4 GEOMETRY-AWARE ATTENTION MASKING (GMASK)

Masking the attention matrix can significantly enhance efficiency by skipping unnecessary compu-
tations and improving performance (Zaheer et al., 2020; Zhang et al., 2020). In this section, we
introduce a geometry-aware masking approach, namely GMask, that aligns with the graph topology.
We use the node positions in space characterized by P to create the following attention mask:

Gij =

{
exp

(
−∥pi−pj∥2

σ2

)
if ∥pi − pj∥ ≤ k,

0 otherwise.

Here, σ is set to the standard deviation of the distances, and k is the threshold for the Gaussian kernel
(Shuman et al., 2013). We mask the attention by omitting the attention between two nodes i and j
in all time points if Gij = 0. This ensures that spatially distant nodes do not attend to each other,
thereby improving the computational efficiency and accuracy of the model. Specifically, by masking
the attention between nodes i and j, T 2 entries in the attention matrix are set to zero because the
model masks all the attention scores for all time points involving nodes i and j . Therefore, let N0 be
the number of non-zero entries of G, GMask avoids (N2 −N0)T

2 floating point computations. We
have also adapted dynamic GMask with correlation based edges (dynamic graph) in Appendix M.
The structured sparsity induced by GMask aligns with the graph topology, focusing attention on
relevant nodes and further enhancing optimization towards a solution that respects the underlying
graph structure.

4 EMPIRICAL RESULTS

We evaluate NTAttention on two publicly available datasets for seizure detection and traffic fore-
casting. Capturing dependencies on both the spatial and temporal axes is crucial in these tasks, as
detailed in Appendix H. Below we describe the results and data processing steps used for each task.

4.1 EEG-BASED SEIZURE DETECTION

Dataset Preparation We use the Temple University Hospital EEG Seizure Corpus (EEG) v.2.0.0
(Obeid & Picone, 2016; Shah et al., 2018), the largest publicly available EEG seizure database, which
contains 5,545 EEG files for training, testing, and evaluation. These files are recorded using 19
EEG electrodes according to the standard 10-20 system (Jasper, 1958). Following previous studies
(Ho & Armanfard, 2023; Tang et al., 2021; Asif et al., 2020), we segment the EEG signals into
1-second non-overlapping windows. For each window, we apply the Fourier transform and extract
the log-amplitude of the frequency components, resulting in a graph signal X(t) ∈ RN×M , where
N = 19 represents the EEG electrodes (nodes), and M = 100 represents the features per node. We
then select T consecutive observations to create an input EEG clip X ∈ RT×N×M . Each clip is
labeled y = 1 if it contains at least one seizure event and y = 0 if it does not. Dataset descriptions
and additional preprocessing details are provided in Table 3 and Appendix A, respectively.
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Table 5: Seizure detection results. Mean and standard deviations are from five random runs. Best
mean results are highlighted in bold. All metrics are averaged using binary averaging.

Clip Size Model AUROC Weighted F1-Score Sensitivity Specificity

12-s

Dense-CNN 0.812±0.014 0.326±0.019 0.293±0.021 0.938±0.014

LSTM 0.786±0.014 0.376±0.021 0.357±0.045 0.934±0.015

Transformer 0.800±0.011 0.390±0.090 0.455±0.052 0.921±0.002

CNN-LSTM 0.749±0.006 0.337±0.009 0.333±0.028 0.920±0.021

Corr-DCRNN 0.812±0.012 0.392±0.027 0.373±0.035 0.935±0.012

Dist-DCRNN 0.824±0.020 0.437±0.029 0.411±0.038 0.943±0.006
REST 0.834±0.012 0.437±0.22 0.391±0.04 0.912±0.08

NTAttention + GMask 0.827±0.026 0.434±0.088 0.612±0.098 0.922±0.067

NTAttention 0.842±0.021 0.451±0.032 0.638±0.081 0.904±0.033

60-s

Dense-CNN 0.796±0.014 0.404±0.022 0.451±0.134 0.869±0.071

LSTM 0.715±0.016 0.365±0.009 0.463±0.060 0.814±0.053

Transformer 0.781±0.100 0.372±0.092 0.442±0.001 0.878±0.055

CNN-LSTM 0.682±0.003 0.330±0.016 0.363±0.044 0.857±0.023

Corr-DCRNN 0.804±0.015 0.448±0.029 0.440±0.021 0.900±0.028

Dist-DCRNN 0.793±0.022 0.341±0.170 0.326±0.183 0.932±0.058

REST 0.782±0.123 0.441±0.072 0.388±0.01 0.924±0.702

NTAttention + GMask 0.791±0.03 0.475±0.08 0.410±0.23 0.920±0.058

NTAttention 0.810±0.021 0.500±0.051 0.489±0.102 0.945±0.007

Time Window Following (Saab et al., 2020; Tang et al., 2021), we evaluate the performance of our
model and baselines for fast and slow seizure detection using T = 12 seconds and T = 60 seconds,
respectively, as named in (Tang et al., 2021). Notably, time windows appear only in one EEG clip,
and different clips do not share the same time window.

Baselines We use the following models as baselines for the seizure detection task: LSTM (Hochre-
iter & Schmidhuber, 1997), Dense-CNN (Saab et al., 2020), CNN-LSTM (Ahmedt-Aristizabal et al.,
2020), two variations of DCRNN (Tang et al., 2021), REST (Afzal et al., 2024), and Transformer
(Vaswani et al., 2017). Details of the baselines and their implementation are provided in Appendix C.

Results We evaluate the performance of NTAttention and various baselines using different metrics,
including Area Under the Receiver Operating Characteristic Curve (AUROC), F1-Score, Sensitivity,
and Specificity (Table 5). NTAttention demonstrates superior performance across all metrics, achiev-
ing particularly notable results in terms of Sensitivity. Specifically, NTAttention outperforms other
benchmarks by around 5% points in F1-Score for slow detection and by 2% points in AUROC for
fast seizure detection (T = 12s). Additionally, NTAttention is the only model to achieve a sensitivity
above 50%, outperforming other benchmarks by about 20% points, a significant improvement for
fast seizure detection. This high sensitivity is crucial for seizure detection tasks, as missing any
seizure event can lead to potentially life-threatening situations for patients. Despite its high sensitivity,
NTAttention also maintains competitive specificity, ensuring a balanced and effective detection per-
formance. Furthermore, the vanilla transformer exhibits lower performance compared to the DCRNN
baseline, suggesting its inability to effectively capture geometrical information. This highlights a key
advantage of our model: the task-specific attention mechanism allows NTAttention to achieve high
accuracy where the vanilla transformer falls short. Fig. 2 b visualizes the average attention scores
over time for different EEG electrodes, applying various thresholds for GMask.

4.2 TRAFFIC FORECASTING

Dataset Preparation We used the METR-LA dataset (Jagadish et al., 2014), which contains traffic
information collected from loop detectors on highways in Los Angeles County. This dataset provides
a valuable resource for evaluating traffic forecasting models. Following previous studies (Li et al.,
2018; Zheng et al., 2020; Shang et al., 2021), traffic speed data from 207 sensors was aggregated
into 5-minute intervals and normalized using Z-score normalization. The data was split into 70%
for training, 10% for evaluation, and 20% for testing (details provided in Table 4). Performance was
measured across three forecasting horizons: 15 minutes (horizon 3), 30 minutes (horizon 6), and 1
hour (horizon 12) (Tang et al., 2021; Shang et al., 2021).
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Figure 2: Visualization of attention scores between each pair of nodes, averaged over all time point
pairs, for a traffic forecasting, and b seizure detection. For traffic forecasting, attention scores are
shown with Gaussian kernel thresholds of a1) k = 0.9, a2) k = 0.8, and a3) k = 0.5. For seizure
detection, b1) k = 0.9, b2) k = 0.7, and b3) k = 0 (no mask). The intensity of the attention scores
is displayed within the range of 0 to 0.2 for seizure detection. For traffic forecasting, only attention
scores higher than zero are visualized for better clarity given the large number of nodes.

Baselines We benchmarked NTAttention against several well-known traffic forecasting models,
including HA (Historical Average), VAR (Hamilton, 2020), Support Vector Regression (SVR), Feed
Forward Neural Network (FNN), LSTM (Hochreiter & Schmidhuber, 1997), DCRNN (Li et al.,
2018), STGCN (Yu et al., 2018), GTS (Chen et al., 2021), ASTGN (Guo et al., 2019), PM-MemNet
(Lee et al., 2021), STAEFormer (Liu et al., 2023), STDMAE (Gao et al., 2024) and GMAN (Zheng
et al., 2020). Further details about baseline implementations are provided in the Appendix C.

Results As shown in Table 6, NTAttention achieves state-of-the-art performance with the lowest
errors under both Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Interestingly,
unlike the seizure detection task, the accuracy of NTAttention increases with GMask, suggesting that
in a larger network it is beneficial to exactly nullify the attention scores of spatially distant nodes.

Fig. 2 a visualizes the attention between different nodes for traffic forecasting task, highlighting
how attention varies with and without masking. Notably, for longer forecasting horizons, such as the
12-step horizon, our model achieves a significant improvement with an MAE of 2.93 and an RMSE
of 5.82, which is considerably lower than all other baselines for traffic forecasting. This demonstrates
the effectiveness of NTAttention in capturing long-range space and time dependencies and improving
predictive accuracy over extended periods.

4.3 COMPARISON BETWEEN DIFFERENT MASKING STRATEGIES

We also compare Geometry Aware Masking (GMask) with other well-known masking strategies,
including Random Masking (Peng et al., 2021), Window Masking (Beltagy et al., 2020), and BGBIRD
(Zaheer et al., 2020), on the traffic forecasting task for Horizon 3 as shown in Table 7. Figure 3
visualizes the different masking strategies. Our observations indicate that GMask achieves the highest
accuracy among all other types of masking. This superiority is attributed to GMask’s design, which
aligns with the graph geometry, ensuring that node connections are respected. In contrast, other
types of masking either neglect node connections by masking randomly or focus too closely on the
diagonal, resulting in lower accuracy. Random Masking, for instance, can lead to spatially distant

8
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Table 6: Trafic forecasting results. Lowest MAE and RMSE errors are highlighted in bold.

Model
Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAE RMSE MAE RMSE
HA 4.79 10.00 5.47 11.45 6.99 13.89
VAR 4.42 7.8 5.41 9.13 6.52 10.11
SVR 3.39 8.45 5.05 10.87 6.72 13.76
FNN 3.99 8.45 4.23 8.17 4.49 8.69
LSTM 3.44 6.3 3.77 7.23 4.37 8.69
DCRNN 2.77 5.38 3.47 7.24 4.59 9.4
GTS 2.67 5.27 3.04 6.25 3.46 7.31
ASTGN 4.86 9.27 5.43 10.61 6.51 12.52
GMAN 2.8 5.55 3.12 6.49 3.44 7.35
STAEFormer 2.65 5.11 2.97 6.00 3.34 7.62
STDMAE 2.62 5.62 2.99 7.47 3.4 7.07
PM-MemNet 2.66 5.28 3.02 6.28 3.4 7.24
STGCN 2.88 5.47 3.07 6.22 3.53 7.37

NTAttention 2.92 5.63 2.68 6.04 3.21 6.44
NTAttention + GMask 2.64 4.34 2.50 4.37 2.93 5.82

nodes attending to one another, while GMask effectively captures the graph structure, resulting in
the lowest MAE and RMSE among all strategies. In Appendix J, we theoretically examine various
masking strategies and models used for the theoretical complexity of traffic forecasting. Additionally,
details about the masking implementation are provided in Appendix E.

Figure 3: Illustration of different masking strategies a) Random with r = 2 b) Window attention with
w = 3 c) BIGBIRD d) GMask (ours). White color indicate absence of attention.

Table 7: Comparison of our proposed GMask to
other masking strategies for NTAttention on traf-
fic forecasting for Horizon 3. Lowest MAE and
RMSE errors are highlighted in bold.

Model MAE RMSE
No Mask 2.9 5.6
RandomMask 7.4 14.5
WindowMask 5.3 9.67
BIGBIRD 4.32 8.02
GMask 2.64 4.34

Table 8: Training time for one epoch of
NTAttention with and without GMask on the
TUSZ and METR-LA datasets. Lowest train-
ing time are highlighted in bold.

Model Dataset Training time
W/O Mask METR-LA 10 min - 30 sec
W/O Mask TUSZ 1min -5 sec

W/ + GMask METR-LA 7 min - 20sec
W/ + GMask TUSZ 20 sec

4.4 EFFICIENCY ANALYSIS

We compare the computational efficiency of various methods for seizure detection and traffic fore-
casting tasks. NTAttention has complexity of O(N2T 2), where after applying GMask, scalability
with respect to the number of nodes becomes linear, with O(α(N)NT 2), where α(N) is the number
of nonzero neighbors for each node. Details of training time for NTAttention with and without
masking are provided in Appendix D, where we show that GMask dramatically improves efficiency
while maintaining a similar level of performance. In Figure 4, we compare number of parameters,
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FLOPS, and model size. NTAttention + GMask achieves competitive number of FLOPs maintaining
low number of parameters and small model size, at the same time achieving SOTA accuracy. This
advantage arises from the specific attention mechanism used in NTAttention, which enables rich
information to flow through all time steps and nodes, allowing for effective decoding of graph
signals with considerably fewer parameters than other benchmarks, particularly RNN-based models.
The application of GMask effectively sparsifies the attention matrix and significantly reduces the
number of FLOPs, as demonstrated in Figure 4, and achieving notably higher accuracy. Numerical
comparisons are reported in Appendix F. More details on the efficiency improvements through the
sparsification via GMask in Appendix G.

Figure 4: Comparison of Model Efficiency Across Tasks: (1) Number of Parameters, (2) FLOPs, and
(3) Model Size for (a) Traffic Forecasting and (b) Seizure Detection Tasks.

Effect of GMask on Seizure Detection vs. Traffic Forecasting: We observed that GMask improves
both efficiency and performance in traffic forecasting, while in seizure detection, it enhances efficiency
but may slightly reduce performance. This difference arises because the EEG graph in seizure
detection consists of only 19 nodes, as shown in Fig. 2 b. Sparsifying with GMask can lead to
imbalanced masking (b2, b1), and with so few nodes, the attention mechanism can effectively capture
dynamics without additional masking. Additionally, as shown in Fig. 4, the efficiency benefits of
GMask are less significant in this case. In contrast, for larger graphs like those in traffic forecasting,
GMask reduces computational complexity and filters out unwanted attention between distant nodes,
leading to both improved accuracy and efficiency. This highlights the effectiveness of GMask in
scenarios with larger graphs.

5 CONCLUSION

In this study, we proposed NTAttention for graph signal processing tasks, specifically targeting
seizure detection and traffic forecasting. By incorporating spatial encoding into each node’s features
and relative temporal encoding into the attention matrix, we effectively utilized the positional and
temporal information inherent in the data. Our space-time attention mechanism, enhanced with
geometry-aware masking based on graph topology, further improved model performance by focusing
attention on relevant nodes. We evaluated NTAttention on the TUH EEG seizure dataset and
the METR-LA traffic dataset, benchmarking it against several well-known models. For seizure
detection, NTAttention demonstrated superior performance, achieving significantly higher F1-scores
and sensitivity than other baselines, emphasizing its ability to reliably detect seizure events. In traffic
forecasting, NTAttention achieved the lowest RMSE and MAE, particularly excelling in long-term
forecasting horizons. NTAttention requires similar memory and computations as the baselines, where
efficiency can be further boosted with GMask while maintaining a similar level of performance.
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6 ETHICAL STATEMENT FOR TUSZ DATASET

The EEG Seizure Corpus from Temple University Hospital, utilized in our research, is anonymized
and publicly accessible with IRB approval Obeid & Picone (2016); Shah et al. (2018). The authors
declare no conflicts of interest, and the seizure detection models presented in this study do not provide
any harmful insights. Also, dataset is publicly available anonymously for all patients.
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A DETAILS OF DATA PROCESSING

A.1 EEG BASED SEIZURE DETECTION

Due to varying sampling frequencies in the Temple University EEG Seizure Corpus (TUSZ), we
standardize the signals to a uniform frequency of 200 Hz. We then preprocess the data to generate
EEG clips in the frequency domain along with their corresponding labels. For seizure detection,
we utilize both seizure and non-seizure EEGs. EEG clips are created by sliding a 12-second (or
60-second) window over the signals with no overlap, discarding the last window if it is shorter than
the clip length. Each clip is labeled as y = 1 if it contains at least one seizure event, and y = 0
if no seizure event is present. For each 1-second window, we applied FFT to extract frequency
domain features and selected the log-amplitude of non-negative frequency samples, resulting in
X(t) ∈ RN×M matrices for each 1-second window, with N = 19 EEG channels and M = 100
frequency features (Tang et al., 2021; Ho & Armanfard, 2023). We then applied Z-score normalization
to each window. For the seizure detection task, we used T = 12-second (or 60-second) consecutive
windows, resulting in an EEG clip tensor X ∈ RT×N×M for each input, with a corresponding label
y. Due to the imbalance between the number of seizure and normal samples, we down sampled
the normal samples during training to ensure an equal number of seizure and non-seizure samples.
However, all samples were used for testing. Additionally, following the methodology in (Tang et al.,
2021), we divided the TUSZ dataset’s training set into a 90-10 ratio for training and validation.

A.2 TRAFFIC FORECASTING

Following previous studies (Li et al., 2018; Zheng et al., 2020; Shang et al., 2021; Guo et al., 2019), we
processed the METR-LA (Tang et al., 2021) dataset by selecting 207 traffic sensors and aggregating
the traffic sensor readings into 5-minute windows, resulting in X(t) ∈ RN×M tensors with N = 207
nodes and M = 2 features per node for each input sample. We then selected T = 3 consecutive
windows for 15-minute forecasting (Horizon 3), T = 6 for 30-minute forecasting (Horizon 6), and
T = 12 for one-hour forecasting (Horizon 12), resulting in an input tensor X ∈ RT×N×M .

We split the data into 70% for training, 20% for testing, and 10% for evaluation. Z-score normalization
was applied to each 5-minute window of data. Additionally, each input tensor X overlaps with
the previous input tensor for T − 1 time windows, with only one new window differing between
consecutive input tensors. During training, teacher-forcing was applied for all models, while during
testing, the models were forced to predict based on their previous predictions.

B NTATTENTION CONFIGURATION DETAILS

As depicted in Fig. 1, our model employs multi-head attention and a fully connected network, similar
to the vanilla Transformer architecture (Vaswani et al., 2017). The fully connected network is defined
as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (7)

Here, x is the input, W1 and W2 are weight matrices, b1 and b2 are bias vectors, and max(0, ·)
denotes the ReLU activation function. The full configuration of NTAttention model for both tasks is
provided in Tables 9.

C BASELINES

C.1 SEIZURE DETECTION

DCRNN We adhered to the hyperparameter tuning strategy from the original paper (Tang et al.,
2021) for both standard DCRNN and the self-supervised variant. The hyperparameter search on the
validation set included: a) Initial learning rate in the range [5e-5, 1e-3]; b) Number of Diffusion
Convolutional Gated Recurrent Units (DCGRU) layers in the range {2, 3, 4, 5} and hidden units in
the range {32, 64, 128}; c) Maximum diffusion step K in {2, 3, 4}; d) Dropout probability in the
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Table 9: Model Configurations and Hyper-parameters of NTAttention.

Seizure detection Traffic Forecasting
# Total param 21.3K 275K
#Layers 2 2
Hidden Dimension P 32 32
FFN Inner-layer Dimension 32 32
Input projection dimension 32 32
#Attention Heads 16 16
Hidden Dimension of Each Head 32 32
FFN Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Max Epochs 30 20
Geometry-aware mask threshold 0.0 (best result with no mask) 0.5
Peak Learning Rate 1e-3 1e-3
Batch Size 128 64
Learning Rate Decay Cosine (Loshchilov & Hutter, 2016) Cosine (Loshchilov & Hutter, 2016)
Adam ϵ 1e-8 1e-8
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999)
Weight Decay 0.0 0.0
Last layer dimension 1 207

final fully connected layer. e) Two variations of the model, one utilizing a correlation-based graph
and the other a distance-based graph, were implemented as described in (Tang et al., 2021). Models
were trained for 50 epochs with an initial learning rate of 5e-4, using a maximum diffusion step of 1
and 64 hidden units in both the encoder and decoder. Additionally, we employed a cosine annealing
learning rate scheduler (Loshchilov & Hutter, 2016).

CNN-LSTM: For the CNN-LSTM baseline, we used the model architecture specified in (Ahmedt-
Aristizabal et al., 2020). This configuration includes two stacked convolutional layers with 32 kernels
of size 3×3, one max-pooling layer of size 2×2, one fully connected layer with 512 output neurons,
two stacked LSTM layers with a hidden size of 128, and an additional fully connected layer.

Dense-CNN: Dense-CNN, we employ the same model architecture as that described in (Saab et al.,
2020).

LSTM: We used two stacked RNN layers, each with 64 hidden units, followed by a fully connected
layer for the final prediction.

Transformer: We used two layer transformer with original positional encoding for different time
points.

REST: A graph-based RNN using residual update for updating its state designed for seizure detection
and classification task. Implementation are followed by Afzal et al. (2024) which includes 2 layers of
update cell with 32 neourons for projection.

C.2 TRAFFIC FORECASTING

HA: The Historical Average (HA) model, as described in (Tang et al., 2021), predicts traffic flow
by averaging historical data over a one-week period, providing stable performance regardless of
short-term changes in the forecasting horizon.

VAR: Implemented using the statsmodel python package, the Vector Auto-regressive model (Hamil-
ton, 2020) sets the number of lags to 3.

SVR: Utilizing Linear Support Vector Regression with a penalty term C of 0.1, this model considers
the 5 most recent historical observations.

FNN: A Feed forward neural network with two hidden layers, each containing 256 units. It employs
an initial learning rate of 1e-3, reducing to 1/10 every 20 epochs after the 50th epoch. Dropout with a
ratio of 0.5 and L2 weight decay of 1e-2 are applied to all hidden layers, with training using batch
size 64 and MAE as the loss function. Early stopping is triggered by monitoring the validation error
(Tang et al., 2021; Shang et al., 2021).
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FC-LSTM: This Encoder-decoder framework utilizes LSTM with peephole (Sutskever et al., 2014),
incorporating two recurrent layers in both the encoder and decoder. Each layer consists of 256 LSTM
units, with L1 weight decay set to 2e-5 and L2 weight decay to 5e-4. Training involves batch size 64
and MAE as the loss function, with an initial learning rate of 1e-4, reducing to 1/10 every 10 epochs
after the 20th epoch. Early stopping is implemented based on the validation error (Tang et al., 2021;
Zheng et al., 2020).

DCRNN: The Diffusion Convolutional Recurrent Neural Network comprises two recurrent layers in
both the encoder and decoder, each with 64 units. Model description and details of implementation is
followed by original paper (Tang et al., 2021).

ASTGCN: ASTGCN integrates the spatial-temporal attention mechanism to capture dynamic spatial-
temporal characteristics simultaneously (Guo et al., 2019).

GMAN: GMAN is an attention-based model that employs spatial, temporal, and transform attentions
in stacked layers (Zheng et al., 2020).

STGCN: STGCN is a type of GNN leveraging graph-based convolution structures to capture com-
prehensive spatio-temporal correlations in traffic flow data (Yu et al., 2018).

GTS: GTS learns a graph structure among multiple time series and simultaneously forecasts them
using DCRNN (Shang et al., 2021).

PM-MemNet: Pattern-Matching Memory Networks (PM-MemNet) learn to match input data to
representative patterns using a key-value memory structure (Lee et al., 2021).

STAForemr: A spatial and temporal attention mechanism that provides separate attention for each
domain, implemented as described in Liu et al. (2023).

STDMAE: Self-supervised pre-training framework STD-MAE uses two decoupled masked autoen-
coders to reconstruct spatiotemporal series along spatial and temporal dimensions. the implementation
followed by Gao et al. (2024).

All models for both tasks were trained on single NVIDIA A100 GPU.

D TRAINING TIME

Table 10: Training time for one epoch of NTAttention with and without GMask on the TUSZ and
METR-LA datasets. Lowest training time are highlighted in bold.

Model Dataset Batch Widow size - Clip length # Nodes Training time
NTAttention METR-LA 64 T = 3 (Horizon 3) 207 10 min - 30 sec
NTAttention TUSZ 128 T = 12 (Fast detection) 19 1min -5 sec

NTAttention + GMask METR-LA 64 T = 3 (Horizon 3) 207 7 min - 20sec
NTAttention + GMask TUSZ 128 T = 12 (Fast detection) 19 20 sec

E MASKING DETAILS

All the hyperparameters for different masking strategies used in seizure detection and traffic forecast-
ing tasks were tuned on the validation set. The specific hyperparameters for each masking strategy
are as follows:

Random Mask: The parameter r was tuned within the interval {5, 10, 15} for seizure detection and
{10, 30, 50, 100, 150} for traffic forecasting.

Window Attention: The parameter w was tuned within the interval {1, 3, 5} for seizure detection
and {5, 10, 20} for traffic forecasting.

BIGBIRD: Parameters w and r were tuned similarly, with g tokens attending all parts of the sequence
lying in {3, 5, 10} for both tasks.
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GMask: The threshold parameter k was tuned within {0.5, 0.7, 0.9}.

Additionally, all the masks were applied to the nodes in the same manner as described in Section 3.4
for GMask, and they were not used for masking temporal information.

F DETAILED EFFICIENCY AND ACCURACY COMPARISON

Table 11: Comparison of Efficiency and Training Time for Models in the Traffic Forecasting Task
(First and Second best are bold)

Model #Parameters #FLOPs Model Size (MB) Train-Time/Epoch (s) Average MAE

FNN 2.8× 109 5.6× 109 30.1 180.43 5.25
LSTM 695,808 5,700,608 2.80 31.3 3.86
STGCN 454,000 19,347,840 18.2 284.5 3.16
DCRNN 297,339 27,278,592 1.20 691.32 3.61
GTS 32,291 19,289,088 0.13 105 5.14
ASTGN 705,315 14,386,176 2.83 303.2 5.6
NTAtt 141,800 79,541,504 0.584 633.5 3.13
NTAtt+GMask 141,800 19,951,488 0.368 442.3 2.73

Table 12: Comparison of Efficiency and Training Time for Models in the Seizure Detection Task
(First and Second best are bold)

Model #Parameters #FLOPs Model Size (MB) Train-Time/Epoch (s) Average AUROC
LSTM 536,000 10,976,522 2.147 4.2 75.1
CNNLSTM 6,000,000 89,762,122 27.6 6 71.5
Transformer 123,000 78,654,123 0.8 12 79.05
DistDCRNN 126,000 27,278,592 0.884 30 80.8
CorrDCRNN 264,000 40,557,184 1.2 35 80.2
NTAtt 21,300 79,541,504 0.083 45 80.2
NTAtt+GMask 21,300 12,366,021 0.273 20 82.4

G SCALABILITY AND SPARSITY OF GMASK

We conducted an ablation study to examine the effect of the threshold parameter k on the number
of FLOPs for NTAttention + GMask. Our findings indicate that, in graphs with a larger number
of nodes, such as traffic sensors, the threshold parameter exponentially decreases the number of
connections, resulting in a sparser attention matrix and reduced computational requirements for the
model (Figure 5 b). Additionally, we observed a significant reduction in the number of FLOPs for
EEG signals, although this reduction is more linear compared to larger graphs. This demonstrates
how NTAttention + GMask achieves comparable model size and efficiency to other benchmarks, as
the attention matrix becomes increasingly sparse.

H MOTIVATION FOR LONG-RANGE INTERACTIONS

We provide detailed examples from two key tasks:

Seizure Detection:

• Long-range spatial dependency: Seizures exhibit significant variability in their character-
istics. For example, focal seizures may manifest at a single electrode while other electrodes
show normal rhythms. For effective detection, a model must enable message passing across
distant nodes. Without this capability, such seizures might be missed if they occur in isola-
tion or detected too late, as traditional graph neural networks often require multiple time
windows to propagate messages across the network.

• Long-range temporal dependency: In 60-second, 250Hz windows, if a seizure occurs
at the beginning with no subsequent activity, the model must utilize long-range temporal
reasoning to accurately classify the window based on this brief episode.
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Figure 5: Number of FLOPs of NTAttention +GMask for (Left) Seizure detection task with 19 nodes
and (Right) Traffic forecasting task with 207 nodes, based on the Gaussian threshold chosen for
GMask (representing the sparsity of the mask).

Traffic Forecasting:

• Long-range temporal dependency: Traffic forecasting typically operates with a 5-minute
window resolution. Forecasting 1 or 2 hours ahead involves processing 12 or 24 data
windows, which is considered long-range for this task. Even forecasting for 1 hour with
short windows necessitates managing long sequences of data.

• Long-range spatial dependency: Congestion at a major node can create ripple effects,
impacting distant secondary nodes due to rerouted vehicles, changes in traffic signals, and
altered driver behavior. Understanding these long-range spatial dynamics can significantly
enhance forecasting performance.

I EXTENSION OF NTATTENTION TO GNNS

The spatial-temporal nature of the data we are using requires both spatial and temporal dependencies,
which cannot be handled by traditional GNNs alone. This is why the community is adapting methods
like GMAN (Zheng et al., 2020), and GTS (Shang et al., 2021) for such tasks.

We would like to emphasize that NTAttention can be viewed as an extension of current GNNs,
particularly graph transformers like Graphormer (Ying et al., 2021), to temporal graphs. Traditional
GNNs lack the capability to handle time-series based features, making them unsuitable for the type
of temporal data and tasks we address.

In contrast, models such as DCRNN Tang et al. (2021); Li et al. (2018) have been adapted to this
setting, utilizing a combination of GConv (Morris et al., 2019) and GRU to capture spatio-temporal
dependencies. NTAttention extends these ideas by integrating temporal features directly into the
graph-based model, enhancing its ability to process and analyze temporal graph data effectively.

J THEORETICAL COMPLEXITY OF MODELS

We compare the theoretical complexities of different methods and their capabilities w.r.t. space and
time learning in Table 13. Naive NTAttention scales quadratically with the addition of new nodes
and time steps, having a complexity of O(N2T 2). However, after applying GMask, scalability with
respect to the number of nodes becomes linear, with a complexity of O(α(N)NT 2). Here, α(N) is
the number of non-zerod neighbour nodes and depends graph topology. Figure 5 shows that applying
GMask, even with small k values, exponentially reduces computational complexity, especially for
large graphs like traffic data.
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Table 13: Comparison of theoretical complexity of models

Model Complexity Spatial Temporal

Naive Transformer O(T 2) ✗ ✔
Graph Transformer, GNN O(N2) ✔ ✗
STTN/ATGCN O(N2 + T 2) ✔ ✔
BigBird O(r · T ) ✗ ✔
Window Attention O(w · T ) ✗ ✔
NTAttention O(N2T 2) ✔ ✔
NTAttention +GMask O(α(N)NT 2) ✔ ✔

K ABLATION ON CHOICE OF SPATIAL AND TEMPORAL ENCODING

Tables 14 and 15 present a comparison of various spatial and temporal encoding methods for
seizure detection and traffic forecasting, examining their impact on performance metrics. The
methods evaluated include Fixed Temporal Encoding (Fixed-TE), Rotational Spatial Encoding (Rot-
SE), Relative Temporal Encoding (Rel-TE), and Fixed Spatial Encoding (Fixed-SE). These results
highlight the contribution of the components in NTAttention.

Table 14: Evaluation of various encodings for seizure detection, including Fixed Temporal Encoding
(Fixed-TE), Rotational Spatial Encoding (Rot-SE), Relative Temporal Encoding (Rel-TE), and Fixed
Spatial Encoding (Fixed-SE).

Clip Size Model AUROC F1-Score Sensitivity Specificity
12-s Fixed-TE + Fixed-SE 0.84 0.450 0.633 0.902

Rot-SE + Rel-TE 0.83 0.461 0.667 0.812
Fixed-TE+Rot-SE 0.84 0.444 0.630 0.870
Fixed-TE+Rot-SE+GMask 0.84 0.444 0.630 0.870
NTAttention + GMask 0.827 0.434 0.612 0.922
NTAttention 0.842 0.451 0.638 0.904

60-s Fixed-TE + Fixed-SE 0.782 0.471 0.421 0.921
Rot-SE + Rel-TE 0.771 0.500 0.410 0.782
Fixed-TE+Rot-SE 0.784 0.541 0.400 0.927
Fixed-TE+Rot-SE+GMask 0.782 0.613 0.511 0.843
NTAttention + GMask 0.791 0.475 0.410 0.920
NTAttention 0.810 0.671 0.489 0.945

Table 15: Evaluation of various encodings for traffic forecasting, including Fixed Temporal Encoding
(Fixed-TE), Rotational Spatial Encoding (Rot-SE), Relative Temporal Encoding (Rel-TE), and Fixed
Spatial Encoding (Fixed-SE).

Model H3 MAE H3 RMSE H6 MAE H6 RMSE H12 MAE H12 RMSE
Fixed-TE + Fixed-SE 2.90 5.60 2.70 6.00 3.80 7.21
Rot-SE + Rel-TE 2.8 5.3 2.78 4.84 3.1 6.32
Fixed-TE+Rot-SE 3.00 5.76 3.22 6.00 3.67 7.78
Fixed-TE+Rot-SE+GMask 2.63 4.35 2.6 4.52 2.98 5.80
NTAttention 2.92 5.63 2.68 6.04 3.21 6.44
NTAttention + GMask 2.64 4.34 2.50 4.37 2.93 5.82

L ABLATION REMOVING THE SPATIO-TEMPORAL ENCODINGS

Table 16 presents the traffic forecasting performance when spatial and temporal encodings are
removed from the model in various configurations. The impact of NTAttention and its enhanced
version with GMask is also highlighted, showing the best performance across all metrics.
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Table 16: Traffic forecasting results without spatial and temporal encodings.

Model H3 MAE H3 RMSE H6 MAE H6 RMSE H12 MAE H12 RMSE
W/O TE 3.56 7.54 4.21 9.12 6.80 12.70
W/O SE 3.78 7.66 4.50 9.50 6.52 13.02
W/O SE+TE 3.89 7.78 4.56 9.89 6.99 13.89
NTAttention 2.92 5.63 2.68 6.04 3.21 6.44
NTAttention + GMask 2.64 4.34 2.50 4.37 2.93 5.82

M NTATTENTION WITH DYNAMIC GRAPH

Extending NTAttention to handle dynamic edges involves adapting the GMask based on temporal
correlations between nodes, which aligns better with the data and is less computationally intensive
as node positions remain unchanged. Instead of spatial distances, GMask can be generated using
node feature correlations over time, as explored in studies like Tang et al. (2021). This approach is
formulated as:

Gij = corr(xt
i, x

t
j)

where xt
i and xt

j are the feature vectors of nodes i and j at time t, and corr(xt
i, x

t
j) is the correlation

coefficient between them.

We have conducted an ablation study to explore how dynamic GMask impacts traffic forecasting
results as shown below:

Table 17: Impact of Dynamic GMask on Traffic Forecasting Results

Model H3 MAE H3 RMSE H6 MAE H6 RMSE H12 MAE H12 RMSE
NTAttention 2.92 5.63 2.68 6.04 3.21 6.44
NTAttention +Dynamic GMask 2.64 5.53 2.67 5.87 3.40 6.50
NTAttention + GMask 2.64 4.34 2.50 4.37 2.93 5.82

N RATIO OF GMASK VS RANDOM MASK

We have analyses the performance of GMask vs the random Mask strategy on different k thresholds
which shows that GMask is superior and more aligned with the graph nature of data compared to
Random Mask in all different thresholds.

Table 18: GMask vs Random Performance

Mask k = 0.1 k = 0.5 k = 0.9
GMask 5.45 4.34 5.21
Random 17.2 14.5 12.22
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