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Abstract

In this work, we investigate the influence of dif-
ferent types of natural language explanations on
LLMs’ predictions, focusing on four different
datasets presenting tasks that involve leveraging
implicit knowledge. We conduct experiments
with three SOTA LLMs on five types of expla-
nations, either written by humans or machine-
generated, through three generation methods: ex-
plain given the correct label (label-aware), ex-
plain and predict the label contextually (label-
agnostic), and support the falseness of the correct
label (label-contradicting). Our results demon-
strate that providing explanations consistently
improves the accuracy of LLM predictions, even
when the models are not explicitly trained to take
explanations as input, and pave the way to a study
of the relationship between implicit content de-
livered by the explanation and its effectiveness.'

1 Introduction

Large Language Models (LLMs) excel at numerous
language processing tasks, including text generation,
translation, and question answering (Touvron et al.,
2023; OpenAl, 2023). Still, understanding their rea-
soning is challenging, hindering trust and adoption in
high-stakes domains (Hase et al., 2020; Kaneko and
Okazaki, 2023; Kotonya and Toni, 2020; Atanasova
et al., 2020). One approach towards “intrinsic ex-
plainability” is to have LLMs generate explanations
for their predictions. Existing methods, like pipeline
models (Wiegreffe et al., 2020) and self-rationalizing
models (Lei et al., 2016), often focus on extractive
rationales suitable for information extraction (Jacovi
et al., 2021). However, complex reasoning tasks
require free-text explanations, especially when im-
plicit knowledge is involved (Wiegreffe et al., 2021).

'Code and data will be distributed upon acceptance.

Also, generating explanations raises concerns about
their faithfulness, as LLMs might produce plausible-
sounding explanations with no genuine connection
to their reasoning (Narang et al., 2020). This is par-
ticularly problematic for implicit knowledge, which
relies on the model’s internal representations of the
world (McClelland et al., 2020).

With the rise of retrieval-augmented generation
(RAG, Lewis et al. (2020)), language models are
increasingly supplemented with external informa-
tion, such as explanations, retrieved from knowl-
edge bases or provided via in-context learning (ICL).
The effectiveness of these approaches depends on
the quality of the retrieved or injected text, which
serves as additional context for the model’s reason-
ing. While traditional RAG studies focus on improv-
ing retrieval mechanisms (e.g., optimizing factual
correctness), less attention has been paid to evaluat-
ing the quality of explanations used in these frame-
works. Recent work by He et al. (2024) shows that
augmenting ICL with natural language explanations
(NLEs) improves model robustness. However, their
study focuses on performance benefits rather than
the quality of different explanation types, and their
evaluation is limited to downstream accuracy with-
out assessing what makes an explanation effective in
guiding a model’s decision.

Our work addresses this gap by providing a prin-
cipled evaluation of explanation quality, particu-
larly in sentence pair reasoning tasks. We inves-
tigate the impact of different natural language ex-
planations on LLM predictions, focusing on the
role of implicit knowledge. We analyze human-
written and LLM-generated explanations across three
generation modes (label-aware, label-agnostic, and
label-contradicting) and four tasks requiring implicit
knowledge. We hypothesize that explanation effec-



tiveness, measured by downstream task performance,
correlates with their degree of implicit content, i.e.,
novel yet relevant information they provide. Sec-
tion 4 explores this hypothesis by examining the rela-
tionship between explanation effectiveness and met-
rics approximating novelty and relevance. This in-
sight is crucial for RAG settings, where explanations
serve as intermediate reasoning steps to enhance fac-
tual accuracy and robustness. If explanations merely
rephrase retrieved evidence or fail to introduce new
insights, they may be redundant or misleading rather
than helpful.

The main contributions of this paper are the fol-
lowing: (i) we propose GEISER, a standardized
pipeline to evaluate the effectiveness of different
types of explanations using LLM relation predictions
on tasks involving varying degrees of implicit reason-
ing and external knowledge; (ii) using the proposed
pipeline, we report extensive experimental results on
different kinds of explanations (human- and machine-
generated), across three LLMs, four tasks and two
languages; (iii) through our analysis, we introduce
“implicit knowledge” as a key factor of explanation
quality, and propose a metric to estimate it showing
its correlation with explanation effectiveness.

2 Related Work

The role of explanations in NLP has been ex-
tensively studied. Cambria et al. (2023), for in-
stance, surveys natural language explanation gen-
eration, while Hartmann and Sonntag (2022) ex-
plores their benefits for NLP models. Paranjape
et al. (2021) focuses on template-based explanations,
while Lampinen et al. (2022) and Ye and Durrett
(2022) highlight the advantages of in-context expla-
nations for complex reasoning tasks.

Traditionally, explanation quality has been as-
sessed using automated metrics like BLEU (Papineni
et al., 2002), ROUGE (ROUGE, 2004), or BERT-
Score (Zhang et al., 2019), which compare outputs
to human-written references. However, these metrics
may not fully capture explanation quality or align
with human judgment, and collecting human refer-
ences is often costly. More recently, human simu-
latability scores have emerged as an alternative to
overlap metrics, based on the idea that explanation
quality can be defined as the "utility to an end-user"

(Kim et al., 2016). This approach evaluates how ex-
planations improve predictive performance on down-
stream tasks rather than overlap with ground truth
explanations and, while humans were initially the
predictors (Wiegreffe et al., 2021), trained models
now automate this process, showing strong corre-
lations with human judgments (Hase et al., 2020).
For example, Pruthi et al. (2022) measures explana-
tion quality by training a student model on teacher-
generated explanations for downstream tasks.

As for the types of explanations used in NLP, a
comprehensive characterization of explanations is
provided by Jansen et al. (2016), each with different
insights into model behavior from different perspec-
tives. For instance, local explanations focus on in-
dividual predictions (Ribeiro et al., 2016; Lundberg
and Lee, 2017) to estimate feature importance. These
methods help understand model decisions at the in-
stance level but may not fully capture the overall
implicit model knowledge. Feature importance ex-
planations generalize this idea by identifying which
input features contribute most to a model’s predic-
tions. In contrast, global explanations aim to de-
scribe the model’s overall decision-making behavior
across all inputs, with early foundational work by
Friedman (2001) providing key insights into ensem-
ble models, while attention-based explanations have
gained popularity since the introduction of the Trans-
former model (Vaswani et al., 2017). However, the
effectiveness of attention as a faithful explanation,
and its correlation with model decisions, is debated
(Jain and Wallace, 2019; Wiegreffe and Pinter, 2019).
In our work, we focus on natural language explana-
tions and their impact on downstream performance
rather than inspecting model behavior by analyzing
its inner computations.

Finally, to the best of our knowledge, there are no
previous works addressing implicit content mea-
sures directly. However, in the context of infor-
mation retrieval, relevance and novelty have been
recognized as key aspects of novelty detection tasks
(Ghosal et al., 2022, 2018), and similarly to us ex-
ploit Textual Entailment (Bentivogli et al., 2011) for
sentence level novelty mining.



3 Methodology

We address the problem of explaining the seman-
tic relationship between two textual fragments un-
der the assumption that the relationship involves im-
plicit knowledge, and the hypothesis that explana-
tions eliciting more implicit knowledge represent
higher-quality explanations.

3.1 Explanatory task

Given a pair of sentences < sy, s2 >, and a seman-
tic relation r between s; and so (e.g., s temporally
precedes sg, s1 is caused by s2, s1 contradicts sa,
etc.). The task consists in a model M; generating an
explanation e; for the relation r and then in a model
M5 using the explanation e; to predict the relation
r for the same sentence pair, when r is not given.
The goal is to support the hypothesis that using ex-
planations results in better predictions, and that an
increase in prediction accuracy corresponds to higher
explanation effectiveness, as well as investigate the
correlation between explanation quality, implicit in-
formation elicitation, and relation prediction.

3.2 The GEISER Pipeline

To estimate the quality of the explanations, we pro-
pose GEISER (Generation and evaluation of Expla-
nations for Implicit SEmantic Relations) a three-step
methodology inspired by work on human simulata-
bility scores.

Step 1: Generate Explanations with M1 Given
an explanatory task, we ask a model M to generate
a set of possible explanations E for the semantic rela-
tion 7 for the sentence pair < s1, so >. We assume
ground truth relations R, from human annotators,
as they guarantee explanations consistent with the
actual semantic relations of the sentence pair.

Ml(Sl,SQ,T‘C) = F

As we are interested in comparing different explana-
tions £ = {eq, ea, ... e, } for the same sentence pair
and the same relation 7. (e.g., a counterfactual expla-
nation vs. a why-explanation) each explanation e;
is generated independently, prompting a generative
model for each specific explanation type. In Section
6 we define in detail the set E of explanation types.”

2To keep under control our experimental setting, we assume
only one semantic relation 7. for a given sentence pair.

Step 2: Predict Relation with M2 Here, model
My is asked to predict a semantic relation r, between
s1 and s2 given one individual explanation e; in E,
injected into the input along with the sentence pair.
Adding one explanation e; is meant to potentially
add new information, implicit in s; and s9, that can
help the model M, predict the correct relation 7.

Ms(s1,52,€;) = 1p

The two models used in step 1 and step 2, M and
My, might be the same model, in which case the goal
is to assess the self-consistency of the model (gen-
erate the explanation and then use it for prediction),
or two different models, in which case the goal is to
have an independent assessment of the explanation
quality. M; must be a generative model, as it has
to produce the set of explanations F, while M5 is a
generative model performing a classification task.

Step 3: Evaluate M1’s Explanations through M2’s
performance Our final goal is to assess the quality
of the explanations in F generated by M;. Intu-
itively, the quality of an explanation e; depends on
its ability to provide useful content to solve a re-
lation prediction task: the more e; is useful to the
model M5 to predict the correct relation r., the bet-
ter its effectiveness, taken as a proxy of the quality
of e;. Accordingly, here we assume that the M
performance is an indicator of the explanation effec-
tiveness, such that better explanations are those that
contribute to better prediction accuracy. Given an
explanation e; in the set F, its effectiveness relative
to a model M5 is given by the ability of the model
to predict a relation r,, that approximates the correct
relation r, for a given sentence pair.

Ef fectivness(e;, Ma) =1, = rc

Therefore, accuracy of the model M5 on a relation
prediction task is used as a proxy metric of explana-
tion effectiveness.

There are two interesting aspects to be considered.
First, the delta between the relation prediction of the
M5 model without and with e;: this is an indicator
of the absolute effectiveness of a certain explanation.
Second, as an aggregation metric, the relative rank-
ing of all explanations in F; € E given by the M
accuracy according to their type and how they were



generated: this will give us an indication of whether
an explanation type or a generative model is better
(i.e., more effective) than another.

4 Measuring Implicit Content

We want to explore whether better explanations are
those that are able to introduce highly relevant im-
plicit knowledge, i.e., not present in the sentence pair
< 81,82 >, that the M> model can use for predict-
ing 7. Intuitively, a good explanation for an implicit
knowledge-based relationship should maximize both
its novelty, i.e., it has to bring new, implicit content
with respect to < s1,s2 >, and its relevance with
respect to < s1,s9 >, i.e., it has to be grounded
to entities and events mentioned in the sentences
(Ghosal et al., 2018).

As a first step towards validating this hypothesis,
we define the amount of implicitness of an explana-
tion e; as the combination of relevance and novelty
of e; with respect to a sentence pair < s1, Sy >.

Impl(s1, s2,e;) = Rel(e;, s1,52) * Nov(e;, 1, $2)

We define four metrics to assess explanation rele-
vance and novelty:

Relevance (REL)

1. Semantic Similarity (A): Measures cosine sim-
ilarity between sentence embeddings of the in-
put (text + hypothesis) and the explanation.

2. NLI-based Relevance (B): Uses a pre-trained
NLI model to determine whether the expla-
nation entails the input (s; + s2), assuming
stronger entailment indicates higher relevance.

Novelty (NOV)

1. Probability of Not-Entailment (A): Measures
(1 — prob_entailment) between input (s; + s2)
and explanation, assuming higher values indi-
cate novelty.

2. Probability of Neutral (B): Uses a 3-label NLI
model to detect whether the explanation is neu-
tral (neither entailed nor contradictory) with
respect to the input, suggesting the presence of
new, non-redundant information.

Both aspects should be balanced since novelty does
not necessarily imply relevance.

5 Tasks and Datasets

We use four datasets that propose tasks involving
different kinds of reasoning and eliciting implicit or
external knowledge to various extents. All datasets
provide either human-generated or human-collected
and curated explanations (which we use as the gol1d
explanation type, see Section 6.1).

e-RTE-3-it (Recognizing Textual Entailment) A
dataset in Italian for Recognizing Textual Entail-
ment (RTE), featuring pairs of texts-hypotheses and
human-written explanations for the entailment re-
lation (Zaninello et al., 2023). It consists of 1,600
sentence pairs (which we use as s; and sg, respec-
tively) and is annotated for three entailment classes:

“entailment”, “contradiction”, and ‘““’neutrality.

e-SNLI (Natural Language Inference) A version
of the Stanford Natural Language Inference (SNLI)
corpus, includes 570k sentence pairs labeled for the
same three entailment classes as e-RTE-3-it enriched
with 3 human-written, natural language explanations
(Camburu et al., 2018), which we use in concatena-
tion as our “gold” explanation.

e-CARE (Causality) A dataset focused on causal
reasoning, featuring human-annotated explanations
for the causal questions, The dataset consists of 21k
causal reasoning questions with both correct and in-
correct answers (Du et al., 2022). We accommodate
this dataset into our experimental setup by pairing
both input sentences as s; and, for each pair, ask the
question (s3) whether the first sentence is the cause
of the second (label “yes”) or not (label “no”).

StrategyQA (Multi-hop Question Answering)
A question-answering dataset designed to re-
quire multiple-step strategic reasoningandor implicit
knowledge to answer a question. The dataset (Geva
et al., 2021) comprises 2,780 strategy questions
(which we use as s9) with answer “yes” or “no” (la-
bels), its decomposition into multi-step reasoning
paths (which we use in combination as gold explana-
tions) and evidence paragraphs giving the context of
the question (which we use as s1).

6 Generation Modes and Explanation types

In this section we present the generation strategies
and the types of explanations generated by model M;



and used by model M, with different characteristics.

To reproduce a real-world scenario, we group dif-
ferent types of explanations based on whether, when
they are generated, the model is given knowledge
of the true relation between the two sentences. We
consider three different modes:

* the correct relationship between s; and s is known
at generation explanation time (label-aware)

* the correct relationship is not known at the time of
generation, and has to be predicted and explained
contextually (label-agnostic)

* the correct relationship is known but is said to be
incorrect at the time of generation, so a counterfac-
tual explanation is required (label-contradicting).

The latter type of explanation has the aim of test-
ing the consistency of a model to inputs that can
potentially mislead the correct prediction.

6.1 Label-aware Explanations

In the label-aware approach, the generation process
is driven by the correct relation r. holding between
s1 and so. We include both human generated (gold)
and model generated explanations (why) in this
setup.

Gold explanations. These explanations (called
gold in our experiments) are the explanations pro-
vided in the original dataset, either directly generated
or manually checked by humans given the correct
relation 7.

While the quality of human generated explana-
tions is generally considered high (e.g., we expect
that they point out relevant and implicit information),
there is no guarantee that, when used by a model M5,
they perform better than model generated explana-
tions. Therefore, for the purposes of this study, we
evaluate them along with the generated ones rather
than consider them a target or reference explanation.

Why explanations. This kind of explanation
(why) is the most typical way to provide an expla-
nation, i.e., the answer to a “why” question. In our
setting, a why explanation is an answer to Why is r.
the relation holding between sy and s2?.

6.2 Label-agnostic Explanations

In Section 6.1 we have assumed that explanations
are generated knowing the correct relation 7. hold-
ing between s; and s9, i.e., referred as label-aware.
However, to simulate a more realistic world scenario,
we are also interested in experimenting on relation-
agnostic explanations, where a model M7 generates
an explanation contextually predicts the relation. We
call this modality label agnostic generation.

This kind of explanation does not assume knowl-
edge of r., and asks to either (i) explain the reasoning
then predict 7. (cot), or (i1) first predict 7. then ex-
plain the prediction (phr).

Chain-of-Thought Explanations. This kind of ex-
planation, inspired by “explain-then-predict” strate-
gies such as chain-of-thought in-context learning
(Wei et al., 2022), does not assume knowledge of 7,
and asks to first provide the reasoning to get to the
final answer, then predict the correct relation (cot).

Post-hoc Rationalizations. inspired by the
“predict-then-explain™ strategies using post-hoc
self-rationalizations (Lei et al., 2016) asks the model
to first predict the correct relation, then explain its
prediction (phr).

6.3 Label-contradicting Explanations

In this final setup (label-contradicting), we use
counterfactual explanations (c—factual)(Wachter
et al., 2017; Verma et al., 2022), explicitly contra-
dicting the golden label.

Counterfactual explanations. In our setting, a
counterfactual (c-factual) explanation originates
from the following question: What are the conditions
in which relation r. may not hold for s and s3?. The
aim of these explanations is to test the robustness of
models to potentially false or misleading informa-
tion, as well as highlight how different models may
be differently sensitive to explanation injection.

7 Experiments

7.1 Models

We utilized three open-access language models of
comparable size to assess the quality of explana-
tions: Llama-3-8B-Instruct (Team Llama et al.,
2024), Gemma-7b-it (Gemma et al., 2024) and



DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al et al.,
2025; Qwen et al., 2025). Llama 3-8B-Instruct, de-
veloped by Meta, is an 8 billion-parameter model
designed for instruction-following tasks. It features
a context window of 8,000 tokens and has demon-
strated strong performance across various bench-
marks, including a 68.4% accuracy on MMLU (Hen-
dricks et al., 2016). Gemma-7b-it is a 7-billion-
parameter model fine-tuned for instruction tasks.
Built upon the research and technology of Google’s
Gemini models (Team, 2023), Gemma models have
shown strong performance across academic bench-
marks for language understanding, reasoning, and
safety. DeepSeek-R1-Distill-Qwen-7B is a 7-billion-
parameter model distilled from the larger DeepSeek-
R1, focusing on enhancing reasoning capabilities. It
has shown competitive performance on benchmarks
such as the American Invitational Mathematics Ex-
amination 2024, achieving a pass@1 score of 55.5.

To compute inference scores for novelty and rele-
vance (Section 4), we use a pre-trained NLI model.
A sigmoid function is applied to the entailment score
Pent Of the NLI model. In its classical formulation,
higher scores indicate stronger entailment relation
between combined a text and a hypothesis, while in
our setting we take it as a proxy of the degree of
relatedness between the concatenation of sentence s1
and sy and their corresponding explanation e, sug-
gesting that the explanation is likely to be relevant to
the input. For calculations, we use the deberta-large
model (Liu et al., 2019), fine-tuned on the Multi-
Genre NLI dataset (Williams et al., 2018).

7.2 Experiment setups

Prompting and Inference Details Our imple-
mentation leveraged the HuggingFace’s 1m_eval
harness library to ensure consistent and repro-
ducible evaluation across tasks, with output type
generate_until and multiple_choice for M and Mo,
respectively. Due to computational constraints, we
used the first 800 examples from the test sets of each
dataset to keep generation within our capacity lim-
its. This approach allowed us to maintain a balance
between comprehensive evaluation and practical fea-
sibility. We employed greedy decoding for all exper-
iments, and all prompts were constructed in English
(so all explanations were returned in English, regard-
less of input). To make generated explanations com-

parable to gold explanations, we ask M to explain
in approx. 3 sentences, To include the explanations
in Step 2, we prompt M> to use a “hint” to give its
answer, represented by the explanation.

Anonymization to Prevent Label Leakage To en-
sure that the explanations do not simply suggest the
right answer without genuinely being informative,
we “anonimize” them by substituting each explicit
reference to the labels with a placeholder using reg-
ular expressions. Moreover, we explicitly ask the
M7 model to avoid stating the answer directly when
generating the explanation.

Baselines We use three baselines in our experi-
ments: no-explanation (no—exp), where the model
My performs O-shot relation 7, prediction; dummy
explanation (dummy), where we use a copy of so as
the explanation, to ensure virtually zero new infor-
mation given, and that results may not be due simply
to data augmentation/larger contexts; we also set the
hint given to the M2 model as a copy of the right
label, to set an upperbound baseline (obvious) to
check whether the model is sensitive to label leakage
regardless of the explanatory form of the hint.

7.3 Performance Measures

GEISER We calculate the accuracy (acc) of the
M2 models using either the explanations generated
by the same model (Table 1), or by another model
(Table 2), which we report along with the accuracy
obtained by the gold and the baseline explanations.

Implicitness Here, we analyze the correlation both
with the accuracy obtained by M» using the expla-
nations (acc), as well as their potential to change
a prediction from wrong to right (acc_change),
which we set = 0 if the same label is predicted with
and without explanation, 1 if the prediction becomes
right using the explanation, -1 if it becomes wrong.

8 Results and Discussion

8.1 GEISER results

In Table 1 we report the performance on the GEISER
experiments with My = M, and Table 2 for M #
M5 of the three models the across four datasets under
different explanation types.

The figures show that, providing LLMs with expla-
nations, even if they have not been explicitly trained



for this, can significantly boost their accuracy in pre-
dicting semantic relations between sentences. The
improvement is consistent across different models,
datasets, and explanation types, with label-aware ex-
planations with the most significant gains.

The performance of models varies significantly
across datasets. The e-RTE-3-it dataset has lower
accuracy scores across all explanation types, while
ESNLI and ECARE show higher accuracy, particu-
larly with why explanations. The StrategyQA dataset
exhibits mixed results, with why and cot explana-
tions performing well in different scenarios. This
variability suggests that the effectiveness of explana-
tion types may depend on the specific characteristics
and language of the dataset (Italian), even though in
some cases (M1: Llama - M2: Gemma on e-RTE-3-
it) gold explanations, written in Italian, outperform
why explanations (written in English).

As for Same-Model vs. Cross-Model scenarios,
models generally achieve higher accuracy when gen-
erating and using their own explanations (M1 =
M?2), indicating better alignment between explana-
tion style and internal reasoning. However, certain
cross-model combinations (e.g., M1: Qwen - M2:
Llama on ECARE) outperform same-model scenar-
ios, highlighting the potential for leveraging comple-
mentary strengths in cross-model setups.

Label-aware explanations, particularly why, con-
sistently outperform other types. Label-agnostic
explanations (cot, phr) generally underperform but
show occasional utility in cross-model scenarios on
the StrategyQA dataset. Label-contradicting expla-
nations (cf) consistently yield the lowest accuracy,
emphasizing the detrimental impact of misleading
information on model performance. However, it is
interesting to notice that in a few cases, for example
the ECARE dataset with M1=Qwen, cf explanations
are still outperforming the noexp and dummy base-
lines. Another interesting observation is that in some
cases (e.g. on ESNLI with LLama and Qwen as M>)
the obvious (upper bound), expected to outperform
all types as it is a direct suggestion of the correct
label, is lower than the best performing explanation
type. These facts seem to indicate that input in an ex-
planatory form is indeed influencing the “reasoning”
of the model, leading it to better predictions.

8.2 Implicitness Results

Implicitness measures show limited predictive power
across datasets, with the highest correlation at 0.574
for anon-gold in Qwen + Gemma on ERTEIT.
Dataset-specific trends reveal weak correlations in
SQA (R? < 0.02) but stronger effects in ERTEIT
and ESNLI, particularly for entailment-based fea-
tures. For example, REL (2) achieves 0.434 for
gold in Qwen + Gemma on ERTEIT, and 0.530
for dummy in ESNLI, highlighting the role of nov-
elty and explicit entailment.

Gold explanations consistently show the
strongest correlations, while dummy explanations
occasionally influence model behavior. Label-
agnostic (cot, phr) and label-contradicting (cf)
explanations underperform, with cf showing
negative or negligible correlations. Qwen + Gemma
exhibits stronger sensitivity to implicitness features
than Owen + Llama, suggesting Gemma benefits
more from structured explanations.

In summary, implicitness measures influence ac-
curacy changes but are not definitive, with stronger
effects in reasoning-heavy datasets like ERTEIT and
ESNLI

9 Conclusion

In this study, we tested the effects of explanations
on LLMs, showing that they can significantly im-
prove their accuracy in predicting relations between
sentences. This improvement is consistent across
different models, datasets, and explanation types.
Our experiments also show a correlation between
explanation effectiveness and the degree of implicit
knowledge conveyed by the explanations, suggesting
that explanations that introduce novel and relevant in-
formation are more likely to be helpful to LLMs. Fur-
thermore, our analysis reveals that different LLMs
exhibit varying sensitivity to different explanation
types. Our findings contribute to research on the role
of explanations in enhancing LLM performance. By
understanding the nuances of model sensitivity to
different explanation types and the ways in which
explanations contribute to implicit knowledge acqui-
sition, we can develop more effective techniques for
explaining and improving the reasoning capabilities
of LLMs.



GEISER Results (M1 = M2)

MODEL | moexp dummy obvious | gold why cot phr cf
e-RTE-3-it (3 labels)
MI1: Llama - M2: Llama 0.4862  0.4987 0.5725 | 0.5362 0.5637 0.4837 0.4900 0.1725
M1: Gemma - M2: Gemma | 0.4400  0.4700 0.5725 04962 0.505 0.4700 0.4550 0.16125
MI1: Qwen - M2: Qwen 0.4850  0.4850 0.4950 | 0.4850 0.5512 0.4725 04787 0.1150
ESNLI (3 labels)
MI1: Llama - M2: Llama 0.5437  0.5975 0.6762 | 0.7162 0.7075 0.3563 0.3850  0.3450
MI1: Gemma - M2: Gemma | 0.6100 0.535 0.9962 | 0.7975 0.8762 0.4363 0.4275 0.4575
MI1: Qwen - M2: Qwen 03412 0.3412 0.6250 | 0.3425 0.9400 0.4550 0.4087 0.6287
ECARE (2 labels)
MI1: Llama - M2: Llama 0.5350  0.5450 0.9062 | 0.5613 0.7975 0.5475 0.5525 0.5137
MI1: Gemma - M2: Gemma | 0.4887  0.5037 1.0000 | 0.7125 0.8050 0.5775 0.5375 0.5562
M1: Qwen - M2: Qwen 0.4887  0.4900 0.9500 | 0.4987 0.8625 0.5487 0.4925 0.5750
StrategyQA (2 labels)
MI1: Llama - M2: Llama 0.6450  0.6837 0.5660 | 0.7870 0.7587 0.6420 0.6462  0.5887
MI1: Gemma - M2: Gemma | 0.6275  0.6237 0.9812 | 0.6850 0.7875 0.5825 0.5937  0.5800
MI1: Qwen - M2: Qwen 0.4575  0.4550 0.7575 | 0.4550 0.7512 0.5775 0.5612  0.5100

Table 1: Accuracy of models across the four datasets and explanation types, using explanations generated by the same
model (M1 = M2). Explanations marked as noexp and dummy represent the baselines, obvious represents the upper
bound, remaining columns represent label-aware (gold, why), label-agnostic (cot, phr) and label-contradicting (cf)
explanations. Values are reported as accuracy scores of My models, with standard errors omitted for brevity. The
best-performing explanation type for each model-dataset combination is boldfaced.

GEISER Results (M1 # M2)

MODEL noexp dummy obvious ‘ gold why cot phr of
e-RTE-3-it (3 1abels)
M1: Llama - M2: Gemma 0.4387 0.4700 0.5725 0.4950 0.5575 0.3375 0.4850 0.1462
M1: Llama - M2: Qwen 0.4850 0.4850 0.4950 0.4850 0.5075 0.4825 0.4975 0.4762
M1: Gemma - M2: Llama 0.4863 0.4987 0.5725 0.5325 0.5287 0.4637 0.4625 0.1837
M1: Gemma - M2: Qwen 0.4850 0.4850 0.4938 0.4850 0.495 0.4762 0.4675 0.3700
M1: Qwen - M2: Llama 0.4862 0.4987 0.5725 0.5362 0.5487 0.4525 0.4750 0.1025
M1: Qwen - M2: Gemma 0.4387 0.4700 0.5725 0.4950 0.5462 0.4150 0.4737 0.1112
ESNLI (3 labels)
M1: Llama - M2: Gemma 0.6100 0.5350 0.9962 0.7975 0.7587 0.3688 0.3875 0.5213
M1: Llama - M2: Qwen 0.3412 0.3412 0.6250 0.3425 0.4362 0.3862 0.3850 0.3762
M1: Gemma - M2: Llama 0.5437 0.5975 0.6762 0.7162 0.885 0.4550 0.5200 0.4375
M1: Gemma - M2: Qwen 0.3412 0.3412 0.6250 0.3425 0.6725 0.4663 0.3775 0.3625
M1: Qwen - M2: Llama 0.5438 0.5975 0.6765 0.7162 0.9550 0.5487 0.4312 0.6150
M1: Qwen - M2: Gemma 0.6100 0.5350 0.9962 0.7975 0.9575 0.4987 0.4362 0.6287
ECARE (2 labels)
M1: Llama - M2: Gemma 0.4887 0.5037 1.0000 0.7125 0.8962 0.5512 0.5700 0.5325
M1: Llama - M2: Qwen 0.4862 0.4987 0.5725 0.5362 0.5637 0.4837 0.4900 0.1725
M1: Gemma - M2: Llama 0.5350 0.5450 0.9062 0.5612 0.7500 0.5887 0.5875 0.5687
M1: Gemma - M2: Qwen 0.4887 0.4900 0.9500 0.4987 0.5287 0.5212 0.5150 0.4750
MI1: Qwen - M2: Llama 0.5350 0.5450 0.9062 0.5613 0.9337 0.5750 0.5062 0.5825
M1: Qwen - M2: Gemma 0.4887 0.5037 1.0000 0.7125 0.9450 0.5662 0.4912 0.5850
StrategyQA (2 labels)

M1: Llama - M2: Gemma 0.6275 0.62375 0.9812 0.6850 0.8637 0.6112 0.6787 0.5762
M1: Llama - M2: Qwen 0.4575 0.4550 0.7575 0.4550 0.4537 0.5287 0.4675 0.4500
M1: Gemma - M2: Llama 0.6450 0.6837 0.5663 0.7875 0.7662 0.6025 0.6162 0.6487
M1: Gemma - M2: Qwen 0.4575 0.4550 0.7575 0.4550 0.4775 0.5562 0.4650 0.4300
M1: Qwen - M2: Llama 0.6450 0.6837 0.5662 0.7875 0.8762 0.6375 0.5862 0.5150
M1: Qwen - M2: Gemma 0.6275 0.6237 0.9812 0.6850 0.8487 0.6037 0.5750 0.5050

Table 2: Accuracy of models across the four datasets and explanation types, using explanations generated by the another
model (M; # Ms). The best-performing explanation type for each model-dataset combination is boldfaced.



Limitations

The limitations of our studies include the following.

We focus on a specific type of NLP task involving
implicit knowledge and investigate the impact of
explanations on relation prediction. Further research
is needed to extend these findings to a broader range
of NLP tasks and model architectures.

Our measurement of implicitness relies on basic
metrics like cosine similarity and novelty, which
may not fully capture the nuanced nature of implicit
knowledge in language. More sophisticated tech-
niques are needed for a comprehensive evaluation of
implicitness. Future work should explore additional
features, such as explanation length and syntactic
complexity, to better understand their interplay with
model performance.

Finally, we utilize a controlled experimental setup,
where explanations are provided in a specific for-
mat and injected into the model during inference.
Real-world applications might involve more com-
plex scenarios with less controlled input and output
formats.
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Correlation of Implicitness measures
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Implicitness Correlation Results with ACCURACY using Explanation

Dataset Model 1 Model 2 Explanation Corr. REL (1) Corr. REL (2) Corr. NOV (1) Corr. NOV (2) R-squared

SQA qwen 1lama dummy 0.106 -0.010 0.019 0.007 0.014
SQA qwen llama gold 0.002 0.091 -0.040 -0.067 0.011
SQA qwen llama why 0.057 0.040 -0.063 -0.065 0.005
SQA qwen llama cot 0.027 0.019 0.035 0.039 0.004
SQA qwen llama phr -0.014 0.025 -0.043 -0.052 0.004
SQA qwen llama cf 0.015 0.032 -0.034 -0.035 0.002
SQA qwen gemma dummy 0.097 0.078 0.054 0.056 0.020
SQA qwen gemma gold 0.018 -0.019 -0.089 0.012 0.011
SQA qwen gemma why 0.083 0.035 -0.109 -0.105 0.014
SQA qwen gemma cot 0.008 0.028 -0.030 -0.026 0.002
SQA qwen gemma phr 0.017 0.087 -0.076 -0.077 0.010
SQA qwen gemma cf 0.021 0.040 -0.043 -0.043 0.002
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.117
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.462
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.033
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.035
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.031
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.042
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.113
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.574
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.036
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.059
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.032
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.027
ESNLI qwen llama dummy 0.119 0.456 -0.269 0.006 0.289
ESNLI qwen llama gold 0.044 0.157 -0.299 -0.330 0.156
ESNLI qwen llama why 0.095 0.037 -0.177 -0.125 0.041
ESNLI qwen llama cot -0.191 0.069 -0.109 -0.117 0.046
ESNLI qwen llama phr -0.128 0.179 -0.213 -0.252 0.093
ESNLI qwen Illama cf 0.088 -0.302 0.163 0.247 0.123
ESNLI qwen gemma dummy 0.266 0.530 -0.164 -0.038 0.294
ESNLI qwen gemma gold 0.185 0.209 -0.063 -0.262 0.084
ESNLI qwen gemma why 0.059 0.057 -0.119 -0.085 0.016
ESNLI qwen gemma cot -0.166 0.126 -0.080 -0.147 0.053
ESNLI qwen gemma phr -0.115 0.185 -0.202 -0.220 0.079
ESNLI qwen gemma cf 0.053 -0.274 0.212 0.268 0.107
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.117
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.462
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.033
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.035
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.031
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.042
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.113
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.574
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.036
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.059
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.032
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.027

Table 3: Correlation of implicit measures with accuracy change using the explanation across the four datasets and
explanation types, using explanations generated by Gwen and predictions of all three models.
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Dataset Model 1 Model 2 Explanation Corr. REL (1) Corr. REL (2) Corr. NOV (1) Corr. NOV (2) R-squared

SQA qwen llama dummy 0.106 -0.010 0.019 0.007 0.015
SQA qwen llama gold 0.002 0.091 -0.040 -0.067 0.009
SQA qwen llama why 0.057 0.040 -0.063 -0.065 0.010
SQA qwen llama cot 0.027 0.019 0.035 0.039 0.011
SQA qwen llama phr -0.014 0.025 -0.043 -0.052 0.003
SQA qwen llama cf 0.015 0.032 -0.034 -0.035 0.006
SQA qwen gemma dummy 0.097 0.078 0.054 0.056 0.004
SQA qwen gemma gold 0.018 -0.019 -0.089 0.012 0.002
SQA qwen gemma why 0.083 0.035 -0.109 -0.105 0.013
SQA qwen gemma cot 0.008 0.028 -0.030 -0.026 0.003
SQA qwen gemma phr 0.017 0.087 -0.076 -0.077 0.017
SQA qwen gemma cf 0.021 0.040 -0.043 -0.043 0.005
ERTEIT qwen Illama dummy 0.132 0.337 -0.139 -0.071 0.009
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.129
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.044
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.023
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.009
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.032
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.004
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.078
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.005
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.037
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.009
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.022
ESNLI qwen llama dummy 0.119 0.456 -0.269 0.006 0.032
ESNLI qwen llama gold 0.044 0.157 -0.299 -0.330 0.079
ESNLI qwen llama why 0.095 0.037 -0.177 -0.125 0.096
ESNLI qwen llama cot -0.191 0.069 -0.109 -0.117 0.031
ESNLI qwen llama phr -0.128 0.179 -0.213 -0.252 0.078
ESNLI qwen Illama cf 0.088 -0.302 0.163 0.247 0.110
ESNLI qwen gemma dummy 0.266 0.530 -0.164 -0.038 0.103
ESNLI qwen gemma gold 0.185 0.209 -0.063 -0.262 0.002
ESNLI qwen gemma why 0.059 0.057 -0.119 -0.085 0.017
ESNLI qwen gemma cot -0.166 0.126 -0.080 -0.147 0.038
ESNLI qwen gemma phr -0.115 0.185 -0.202 -0.220 0.047
ESNLI qwen gemma cf 0.053 -0.274 0.212 0.268 0.061
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.009
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.129
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.044
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.023
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.009
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.032
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.004
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.078
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.005
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.037
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.009
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.022

Table 4: Correlation of implicit measures with accuracy change (from acc. without using the explanation to acc. using
the explanation) across the four datasets and explanation types, using explanations generated by Gwen and predictions
of all three models.
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