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Abstract

In this work, we investigate the influence of dif-001
ferent types of natural language explanations on002
LLMs’ predictions, focusing on four different003
datasets presenting tasks that involve leveraging004
implicit knowledge. We conduct experiments005
with three SOTA LLMs on five types of expla-006
nations, either written by humans or machine-007
generated, through three generation methods: ex-008
plain given the correct label (label-aware), ex-009
plain and predict the label contextually (label-010
agnostic), and support the falseness of the correct011
label (label-contradicting). Our results demon-012
strate that providing explanations consistently013
improves the accuracy of LLM predictions, even014
when the models are not explicitly trained to take015
explanations as input, and pave the way to a study016
of the relationship between implicit content de-017
livered by the explanation and its effectiveness.1018

1 Introduction019

Large Language Models (LLMs) excel at numerous020

language processing tasks, including text generation,021

translation, and question answering (Touvron et al.,022

2023; OpenAI, 2023). Still, understanding their rea-023

soning is challenging, hindering trust and adoption in024

high-stakes domains (Hase et al., 2020; Kaneko and025

Okazaki, 2023; Kotonya and Toni, 2020; Atanasova026

et al., 2020). One approach towards “intrinsic ex-027

plainability” is to have LLMs generate explanations028

for their predictions. Existing methods, like pipeline029

models (Wiegreffe et al., 2020) and self-rationalizing030

models (Lei et al., 2016), often focus on extractive031

rationales suitable for information extraction (Jacovi032

et al., 2021). However, complex reasoning tasks033

require free-text explanations, especially when im-034

plicit knowledge is involved (Wiegreffe et al., 2021).035

1Code and data will be distributed upon acceptance.

Also, generating explanations raises concerns about 036

their faithfulness, as LLMs might produce plausible- 037

sounding explanations with no genuine connection 038

to their reasoning (Narang et al., 2020). This is par- 039

ticularly problematic for implicit knowledge, which 040

relies on the model’s internal representations of the 041

world (McClelland et al., 2020). 042

With the rise of retrieval-augmented generation 043

(RAG, Lewis et al. (2020)), language models are 044

increasingly supplemented with external informa- 045

tion, such as explanations, retrieved from knowl- 046

edge bases or provided via in-context learning (ICL). 047

The effectiveness of these approaches depends on 048

the quality of the retrieved or injected text, which 049

serves as additional context for the model’s reason- 050

ing. While traditional RAG studies focus on improv- 051

ing retrieval mechanisms (e.g., optimizing factual 052

correctness), less attention has been paid to evaluat- 053

ing the quality of explanations used in these frame- 054

works. Recent work by He et al. (2024) shows that 055

augmenting ICL with natural language explanations 056

(NLEs) improves model robustness. However, their 057

study focuses on performance benefits rather than 058

the quality of different explanation types, and their 059

evaluation is limited to downstream accuracy with- 060

out assessing what makes an explanation effective in 061

guiding a model’s decision. 062

Our work addresses this gap by providing a prin- 063

cipled evaluation of explanation quality, particu- 064

larly in sentence pair reasoning tasks. We inves- 065

tigate the impact of different natural language ex- 066

planations on LLM predictions, focusing on the 067

role of implicit knowledge. We analyze human- 068

written and LLM-generated explanations across three 069

generation modes (label-aware, label-agnostic, and 070

label-contradicting) and four tasks requiring implicit 071

knowledge. We hypothesize that explanation effec- 072
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tiveness, measured by downstream task performance,073

correlates with their degree of implicit content, i.e.,074

novel yet relevant information they provide. Sec-075

tion 4 explores this hypothesis by examining the rela-076

tionship between explanation effectiveness and met-077

rics approximating novelty and relevance. This in-078

sight is crucial for RAG settings, where explanations079

serve as intermediate reasoning steps to enhance fac-080

tual accuracy and robustness. If explanations merely081

rephrase retrieved evidence or fail to introduce new082

insights, they may be redundant or misleading rather083

than helpful.084

The main contributions of this paper are the fol-085

lowing: (i) we propose GEISER, a standardized086

pipeline to evaluate the effectiveness of different087

types of explanations using LLM relation predictions088

on tasks involving varying degrees of implicit reason-089

ing and external knowledge; (ii) using the proposed090

pipeline, we report extensive experimental results on091

different kinds of explanations (human- and machine-092

generated), across three LLMs, four tasks and two093

languages; (iii) through our analysis, we introduce094

“implicit knowledge” as a key factor of explanation095

quality, and propose a metric to estimate it showing096

its correlation with explanation effectiveness.097

2 Related Work098

The role of explanations in NLP has been ex-099

tensively studied. Cambria et al. (2023), for in-100

stance, surveys natural language explanation gen-101

eration, while Hartmann and Sonntag (2022) ex-102

plores their benefits for NLP models. Paranjape103

et al. (2021) focuses on template-based explanations,104

while Lampinen et al. (2022) and Ye and Durrett105

(2022) highlight the advantages of in-context expla-106

nations for complex reasoning tasks.107

Traditionally, explanation quality has been as-108

sessed using automated metrics like BLEU (Papineni109

et al., 2002), ROUGE (ROUGE, 2004), or BERT-110

Score (Zhang et al., 2019), which compare outputs111

to human-written references. However, these metrics112

may not fully capture explanation quality or align113

with human judgment, and collecting human refer-114

ences is often costly. More recently, human simu-115

latability scores have emerged as an alternative to116

overlap metrics, based on the idea that explanation117

quality can be defined as the "utility to an end-user"118

(Kim et al., 2016). This approach evaluates how ex- 119

planations improve predictive performance on down- 120

stream tasks rather than overlap with ground truth 121

explanations and, while humans were initially the 122

predictors (Wiegreffe et al., 2021), trained models 123

now automate this process, showing strong corre- 124

lations with human judgments (Hase et al., 2020). 125

For example, Pruthi et al. (2022) measures explana- 126

tion quality by training a student model on teacher- 127

generated explanations for downstream tasks. 128

As for the types of explanations used in NLP, a 129

comprehensive characterization of explanations is 130

provided by Jansen et al. (2016), each with different 131

insights into model behavior from different perspec- 132

tives. For instance, local explanations focus on in- 133

dividual predictions (Ribeiro et al., 2016; Lundberg 134

and Lee, 2017) to estimate feature importance. These 135

methods help understand model decisions at the in- 136

stance level but may not fully capture the overall 137

implicit model knowledge. Feature importance ex- 138

planations generalize this idea by identifying which 139

input features contribute most to a model’s predic- 140

tions. In contrast, global explanations aim to de- 141

scribe the model’s overall decision-making behavior 142

across all inputs, with early foundational work by 143

Friedman (2001) providing key insights into ensem- 144

ble models, while attention-based explanations have 145

gained popularity since the introduction of the Trans- 146

former model (Vaswani et al., 2017). However, the 147

effectiveness of attention as a faithful explanation, 148

and its correlation with model decisions, is debated 149

(Jain and Wallace, 2019; Wiegreffe and Pinter, 2019). 150

In our work, we focus on natural language explana- 151

tions and their impact on downstream performance 152

rather than inspecting model behavior by analyzing 153

its inner computations. 154

Finally, to the best of our knowledge, there are no 155

previous works addressing implicit content mea- 156

sures directly. However, in the context of infor- 157

mation retrieval, relevance and novelty have been 158

recognized as key aspects of novelty detection tasks 159

(Ghosal et al., 2022, 2018), and similarly to us ex- 160

ploit Textual Entailment (Bentivogli et al., 2011) for 161

sentence level novelty mining. 162
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3 Methodology163

We address the problem of explaining the seman-164

tic relationship between two textual fragments un-165

der the assumption that the relationship involves im-166

plicit knowledge, and the hypothesis that explana-167

tions eliciting more implicit knowledge represent168

higher-quality explanations.169

3.1 Explanatory task170

Given a pair of sentences < s1, s2 >, and a seman-171

tic relation r between s1 and s2 (e.g., s1 temporally172

precedes s2, s1 is caused by s2, s1 contradicts s2,173

etc.). The task consists in a model M1 generating an174

explanation ei for the relation r and then in a model175

M2 using the explanation ei to predict the relation176

r for the same sentence pair, when r is not given.177

The goal is to support the hypothesis that using ex-178

planations results in better predictions, and that an179

increase in prediction accuracy corresponds to higher180

explanation effectiveness, as well as investigate the181

correlation between explanation quality, implicit in-182

formation elicitation, and relation prediction.183

3.2 The GEISER Pipeline184

To estimate the quality of the explanations, we pro-185

pose GEISER (Generation and evaluation of Expla-186

nations for Implicit SEmantic Relations) a three-step187

methodology inspired by work on human simulata-188

bility scores.189

Step 1: Generate Explanations with M1 Given
an explanatory task, we ask a model M1 to generate
a set of possible explanations E for the semantic rela-
tion rc for the sentence pair < s1, s2 >. We assume
ground truth relations Rc from human annotators,
as they guarantee explanations consistent with the
actual semantic relations of the sentence pair.

M1(s1, s2, rc) ⇒ E

As we are interested in comparing different explana-190

tions E = {e1, e2, . . . en} for the same sentence pair191

and the same relation rc (e.g., a counterfactual expla-192

nation vs. a why-explanation) each explanation ei193

is generated independently, prompting a generative194

model for each specific explanation type. In Section195

6 we define in detail the set E of explanation types.2196

2To keep under control our experimental setting, we assume
only one semantic relation rc for a given sentence pair.

Step 2: Predict Relation with M2 Here, model
M2 is asked to predict a semantic relation rp between
s1 and s2 given one individual explanation ei in E,
injected into the input along with the sentence pair.
Adding one explanation ei is meant to potentially
add new information, implicit in s1 and s2, that can
help the model M2 predict the correct relation rc.

M2(s1, s2, ei) ⇒ rp

The two models used in step 1 and step 2, M1 and 197

M2, might be the same model, in which case the goal 198

is to assess the self-consistency of the model (gen- 199

erate the explanation and then use it for prediction), 200

or two different models, in which case the goal is to 201

have an independent assessment of the explanation 202

quality. M1 must be a generative model, as it has 203

to produce the set of explanations E, while M2 is a 204

generative model performing a classification task. 205

Step 3: Evaluate M1’s Explanations through M2’s 206

performance Our final goal is to assess the quality 207

of the explanations in E generated by M1. Intu- 208

itively, the quality of an explanation ei depends on 209

its ability to provide useful content to solve a re- 210

lation prediction task: the more ei is useful to the 211

model M2 to predict the correct relation rc, the bet- 212

ter its effectiveness, taken as a proxy of the quality 213

of ei. Accordingly, here we assume that the M2 214

performance is an indicator of the explanation effec- 215

tiveness, such that better explanations are those that 216

contribute to better prediction accuracy. Given an 217

explanation ei in the set E, its effectiveness relative 218

to a model M2 is given by the ability of the model 219

to predict a relation rp that approximates the correct 220

relation rc for a given sentence pair. 221

Effectivness(ei,M2) = rp ≈ rc

Therefore, accuracy of the model M2 on a relation 222

prediction task is used as a proxy metric of explana- 223

tion effectiveness. 224

There are two interesting aspects to be considered. 225

First, the delta between the relation prediction of the 226

M2 model without and with ei: this is an indicator 227

of the absolute effectiveness of a certain explanation. 228

Second, as an aggregation metric, the relative rank- 229

ing of all explanations in Et ∈ E given by the M2 230

accuracy according to their type and how they were 231
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generated: this will give us an indication of whether232

an explanation type or a generative model is better233

(i.e., more effective) than another.234

4 Measuring Implicit Content235

We want to explore whether better explanations are236

those that are able to introduce highly relevant im-237

plicit knowledge, i.e., not present in the sentence pair238

< s1, s2 >, that the M2 model can use for predict-239

ing rp. Intuitively, a good explanation for an implicit240

knowledge-based relationship should maximize both241

its novelty, i.e., it has to bring new, implicit content242

with respect to < s1, s2 >, and its relevance with243

respect to < s1, s2 >, i.e., it has to be grounded244

to entities and events mentioned in the sentences245

(Ghosal et al., 2018).246

As a first step towards validating this hypothesis,247

we define the amount of implicitness of an explana-248

tion ei as the combination of relevance and novelty249

of ei with respect to a sentence pair < s1, s2 >.250

Impl(s1, s2, ei) = Rel(ei, s1, s2) ∗Nov(ei, s1, s2)

We define four metrics to assess explanation rele-251

vance and novelty:252

Relevance (REL)253

1. Semantic Similarity (A): Measures cosine sim-254

ilarity between sentence embeddings of the in-255

put (text + hypothesis) and the explanation.256

2. NLI-based Relevance (B): Uses a pre-trained257

NLI model to determine whether the expla-258

nation entails the input (s1 + s2), assuming259

stronger entailment indicates higher relevance.260

Novelty (NOV)261

1. Probability of Not-Entailment (A): Measures262

(1− prob_entailment) between input (s1 + s2)263

and explanation, assuming higher values indi-264

cate novelty.265

2. Probability of Neutral (B): Uses a 3-label NLI266

model to detect whether the explanation is neu-267

tral (neither entailed nor contradictory) with268

respect to the input, suggesting the presence of269

new, non-redundant information.270

Both aspects should be balanced since novelty does271

not necessarily imply relevance.272

5 Tasks and Datasets 273

We use four datasets that propose tasks involving 274

different kinds of reasoning and eliciting implicit or 275

external knowledge to various extents. All datasets 276

provide either human-generated or human-collected 277

and curated explanations (which we use as the gold 278

explanation type, see Section 6.1). 279

e-RTE-3-it (Recognizing Textual Entailment) A 280

dataset in Italian for Recognizing Textual Entail- 281

ment (RTE), featuring pairs of texts-hypotheses and 282

human-written explanations for the entailment re- 283

lation (Zaninello et al., 2023). It consists of 1,600 284

sentence pairs (which we use as s1 and s2, respec- 285

tively) and is annotated for three entailment classes: 286

“entailment”, “contradiction”, and “”neutrality. 287

e-SNLI (Natural Language Inference) A version 288

of the Stanford Natural Language Inference (SNLI) 289

corpus, includes 570k sentence pairs labeled for the 290

same three entailment classes as e-RTE-3-it enriched 291

with 3 human-written, natural language explanations 292

(Camburu et al., 2018), which we use in concatena- 293

tion as our “gold” explanation. 294

e-CARE (Causality) A dataset focused on causal 295

reasoning, featuring human-annotated explanations 296

for the causal questions, The dataset consists of 21k 297

causal reasoning questions with both correct and in- 298

correct answers (Du et al., 2022). We accommodate 299

this dataset into our experimental setup by pairing 300

both input sentences as s1 and, for each pair, ask the 301

question (s2) whether the first sentence is the cause 302

of the second (label “yes”) or not (label “no”). 303

StrategyQA (Multi-hop Question Answering) 304

A question-answering dataset designed to re- 305

quire multiple-step strategic reasoningandor implicit 306

knowledge to answer a question. The dataset (Geva 307

et al., 2021) comprises 2,780 strategy questions 308

(which we use as s2) with answer “yes” or “no” (la- 309

bels), its decomposition into multi-step reasoning 310

paths (which we use in combination as gold explana- 311

tions) and evidence paragraphs giving the context of 312

the question (which we use as s1). 313

6 Generation Modes and Explanation types 314

In this section we present the generation strategies 315

and the types of explanations generated by model M1 316

4



and used by model M2 with different characteristics.317

To reproduce a real-world scenario, we group dif-318

ferent types of explanations based on whether, when319

they are generated, the model is given knowledge320

of the true relation between the two sentences. We321

consider three different modes:322

• the correct relationship between s1 and s2 is known323

at generation explanation time (label-aware)324

• the correct relationship is not known at the time of325

generation, and has to be predicted and explained326

contextually (label-agnostic)327

• the correct relationship is known but is said to be328

incorrect at the time of generation, so a counterfac-329

tual explanation is required (label-contradicting).330

The latter type of explanation has the aim of test-331

ing the consistency of a model to inputs that can332

potentially mislead the correct prediction.333

6.1 Label-aware Explanations334

In the label-aware approach, the generation process335

is driven by the correct relation rc holding between336

s1 and s2. We include both human generated (gold)337

and model generated explanations (why) in this338

setup.339

Gold explanations. These explanations (called340

gold in our experiments) are the explanations pro-341

vided in the original dataset, either directly generated342

or manually checked by humans given the correct343

relation rc.344

While the quality of human generated explana-345

tions is generally considered high (e.g., we expect346

that they point out relevant and implicit information),347

there is no guarantee that, when used by a model M2,348

they perform better than model generated explana-349

tions. Therefore, for the purposes of this study, we350

evaluate them along with the generated ones rather351

than consider them a target or reference explanation.352

Why explanations. This kind of explanation353

(why) is the most typical way to provide an expla-354

nation, i.e., the answer to a “why” question. In our355

setting, a why explanation is an answer to Why is rc356

the relation holding between s1 and s2?.357

6.2 Label-agnostic Explanations 358

In Section 6.1 we have assumed that explanations 359

are generated knowing the correct relation rc hold- 360

ing between s1 and s2, i.e., referred as label-aware. 361

However, to simulate a more realistic world scenario, 362

we are also interested in experimenting on relation- 363

agnostic explanations, where a model M1 generates 364

an explanation contextually predicts the relation. We 365

call this modality label agnostic generation. 366

This kind of explanation does not assume knowl- 367

edge of rc, and asks to either (i) explain the reasoning 368

then predict rc (cot), or (ii) first predict rc then ex- 369

plain the prediction (phr). 370

Chain-of-Thought Explanations. This kind of ex- 371

planation, inspired by “explain-then-predict” strate- 372

gies such as chain-of-thought in-context learning 373

(Wei et al., 2022), does not assume knowledge of rc, 374

and asks to first provide the reasoning to get to the 375

final answer, then predict the correct relation (cot). 376

Post-hoc Rationalizations. inspired by the 377

“predict-then-explain” strategies using post-hoc 378

self-rationalizations (Lei et al., 2016) asks the model 379

to first predict the correct relation, then explain its 380

prediction (phr). 381

6.3 Label-contradicting Explanations 382

In this final setup (label-contradicting), we use 383

counterfactual explanations (c-factual)(Wachter 384

et al., 2017; Verma et al., 2022), explicitly contra- 385

dicting the golden label. 386

Counterfactual explanations. In our setting, a 387

counterfactual (c-factual) explanation originates 388

from the following question: What are the conditions 389

in which relation rc may not hold for s1 and s2?. The 390

aim of these explanations is to test the robustness of 391

models to potentially false or misleading informa- 392

tion, as well as highlight how different models may 393

be differently sensitive to explanation injection. 394

7 Experiments 395

7.1 Models 396

We utilized three open-access language models of 397

comparable size to assess the quality of explana- 398

tions: Llama-3-8B-Instruct (Team Llama et al., 399

2024), Gemma-7b-it (Gemma et al., 2024) and 400
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DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI et al.,401

2025; Qwen et al., 2025). Llama 3-8B-Instruct, de-402

veloped by Meta, is an 8 billion-parameter model403

designed for instruction-following tasks. It features404

a context window of 8,000 tokens and has demon-405

strated strong performance across various bench-406

marks, including a 68.4% accuracy on MMLU (Hen-407

dricks et al., 2016). Gemma-7b-it is a 7-billion-408

parameter model fine-tuned for instruction tasks.409

Built upon the research and technology of Google’s410

Gemini models (Team, 2023), Gemma models have411

shown strong performance across academic bench-412

marks for language understanding, reasoning, and413

safety. DeepSeek-R1-Distill-Qwen-7B is a 7-billion-414

parameter model distilled from the larger DeepSeek-415

R1, focusing on enhancing reasoning capabilities. It416

has shown competitive performance on benchmarks417

such as the American Invitational Mathematics Ex-418

amination 2024, achieving a pass@1 score of 55.5.419

To compute inference scores for novelty and rele-420

vance (Section 4), we use a pre-trained NLI model.421

A sigmoid function is applied to the entailment score422

pent of the NLI model. In its classical formulation,423

higher scores indicate stronger entailment relation424

between combined a text and a hypothesis, while in425

our setting we take it as a proxy of the degree of426

relatedness between the concatenation of sentence s1427

and s2 and their corresponding explanation e, sug-428

gesting that the explanation is likely to be relevant to429

the input. For calculations, we use the deberta-large430

model (Liu et al., 2019), fine-tuned on the Multi-431

Genre NLI dataset (Williams et al., 2018).432

7.2 Experiment setups433

Prompting and Inference Details Our imple-434

mentation leveraged the HuggingFace’s lm_eval435

harness library to ensure consistent and repro-436

ducible evaluation across tasks, with output type437

generate_until and multiple_choice for M1 and M2,438

respectively. Due to computational constraints, we439

used the first 800 examples from the test sets of each440

dataset to keep generation within our capacity lim-441

its. This approach allowed us to maintain a balance442

between comprehensive evaluation and practical fea-443

sibility. We employed greedy decoding for all exper-444

iments, and all prompts were constructed in English445

(so all explanations were returned in English, regard-446

less of input). To make generated explanations com-447

parable to gold explanations, we ask M1 to explain 448

in approx. 3 sentences, To include the explanations 449

in Step 2, we prompt M2 to use a “hint” to give its 450

answer, represented by the explanation. 451

Anonymization to Prevent Label Leakage To en- 452

sure that the explanations do not simply suggest the 453

right answer without genuinely being informative, 454

we “anonimize” them by substituting each explicit 455

reference to the labels with a placeholder using reg- 456

ular expressions. Moreover, we explicitly ask the 457

M1 model to avoid stating the answer directly when 458

generating the explanation. 459

Baselines We use three baselines in our experi- 460

ments: no-explanation (no-exp), where the model 461

M2 performs 0-shot relation rp prediction; dummy 462

explanation (dummy), where we use a copy of s2 as 463

the explanation, to ensure virtually zero new infor- 464

mation given, and that results may not be due simply 465

to data augmentation/larger contexts; we also set the 466

hint given to the M2 model as a copy of the right 467

label, to set an upperbound baseline (obvious) to 468

check whether the model is sensitive to label leakage 469

regardless of the explanatory form of the hint. 470

7.3 Performance Measures 471

GEISER We calculate the accuracy (acc) of the 472

M2 models using either the explanations generated 473

by the same model (Table 1), or by another model 474

(Table 2), which we report along with the accuracy 475

obtained by the gold and the baseline explanations. 476

Implicitness Here, we analyze the correlation both 477

with the accuracy obtained by M2 using the expla- 478

nations (acc), as well as their potential to change 479

a prediction from wrong to right (acc_change), 480

which we set = 0 if the same label is predicted with 481

and without explanation, 1 if the prediction becomes 482

right using the explanation, -1 if it becomes wrong. 483

8 Results and Discussion 484

8.1 GEISER results 485

In Table 1 we report the performance on the GEISER 486

experiments with M1 = M2 and Table 2 for M1 ̸= 487

M2 of the three models the across four datasets under 488

different explanation types. 489

The figures show that, providing LLMs with expla- 490

nations, even if they have not been explicitly trained 491
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for this, can significantly boost their accuracy in pre-492

dicting semantic relations between sentences. The493

improvement is consistent across different models,494

datasets, and explanation types, with label-aware ex-495

planations with the most significant gains.496

The performance of models varies significantly497

across datasets. The e-RTE-3-it dataset has lower498

accuracy scores across all explanation types, while499

ESNLI and ECARE show higher accuracy, particu-500

larly with why explanations. The StrategyQA dataset501

exhibits mixed results, with why and cot explana-502

tions performing well in different scenarios. This503

variability suggests that the effectiveness of explana-504

tion types may depend on the specific characteristics505

and language of the dataset (Italian), even though in506

some cases (M1: Llama - M2: Gemma on e-RTE-3-507

it) gold explanations, written in Italian, outperform508

why explanations (written in English).509

As for Same-Model vs. Cross-Model scenarios,510

models generally achieve higher accuracy when gen-511

erating and using their own explanations (M1 =512

M2), indicating better alignment between explana-513

tion style and internal reasoning. However, certain514

cross-model combinations (e.g., M1: Qwen - M2:515

Llama on ECARE) outperform same-model scenar-516

ios, highlighting the potential for leveraging comple-517

mentary strengths in cross-model setups.518

Label-aware explanations, particularly why, con-519

sistently outperform other types. Label-agnostic520

explanations (cot, phr) generally underperform but521

show occasional utility in cross-model scenarios on522

the StrategyQA dataset. Label-contradicting expla-523

nations (cf) consistently yield the lowest accuracy,524

emphasizing the detrimental impact of misleading525

information on model performance. However, it is526

interesting to notice that in a few cases, for example527

the ECARE dataset with M1=Qwen, cf explanations528

are still outperforming the noexp and dummy base-529

lines. Another interesting observation is that in some530

cases (e.g. on ESNLI with LLama and Qwen as M2)531

the obvious (upper bound), expected to outperform532

all types as it is a direct suggestion of the correct533

label, is lower than the best performing explanation534

type. These facts seem to indicate that input in an ex-535

planatory form is indeed influencing the “reasoning”536

of the model, leading it to better predictions.537

8.2 Implicitness Results 538

Implicitness measures show limited predictive power 539

across datasets, with the highest correlation at 0.574 540

for anon-gold in Qwen + Gemma on ERTEIT. 541

Dataset-specific trends reveal weak correlations in 542

SQA (R2 < 0.02) but stronger effects in ERTEIT 543

and ESNLI, particularly for entailment-based fea- 544

tures. For example, REL (2) achieves 0.434 for 545

gold in Qwen + Gemma on ERTEIT, and 0.530 546

for dummy in ESNLI, highlighting the role of nov- 547

elty and explicit entailment. 548

Gold explanations consistently show the 549

strongest correlations, while dummy explanations 550

occasionally influence model behavior. Label- 551

agnostic (cot, phr) and label-contradicting (cf) 552

explanations underperform, with cf showing 553

negative or negligible correlations. Qwen + Gemma 554

exhibits stronger sensitivity to implicitness features 555

than Qwen + Llama, suggesting Gemma benefits 556

more from structured explanations. 557

In summary, implicitness measures influence ac- 558

curacy changes but are not definitive, with stronger 559

effects in reasoning-heavy datasets like ERTEIT and 560

ESNLI. 561

9 Conclusion 562

In this study, we tested the effects of explanations 563

on LLMs, showing that they can significantly im- 564

prove their accuracy in predicting relations between 565

sentences. This improvement is consistent across 566

different models, datasets, and explanation types. 567

Our experiments also show a correlation between 568

explanation effectiveness and the degree of implicit 569

knowledge conveyed by the explanations, suggesting 570

that explanations that introduce novel and relevant in- 571

formation are more likely to be helpful to LLMs. Fur- 572

thermore, our analysis reveals that different LLMs 573

exhibit varying sensitivity to different explanation 574

types. Our findings contribute to research on the role 575

of explanations in enhancing LLM performance. By 576

understanding the nuances of model sensitivity to 577

different explanation types and the ways in which 578

explanations contribute to implicit knowledge acqui- 579

sition, we can develop more effective techniques for 580

explaining and improving the reasoning capabilities 581

of LLMs. 582
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GEISER Results (M1 = M2)

MODEL noexp dummy obvious gold why cot phr cf

e-RTE-3-it (3 labels)

M1: Llama - M2: Llama 0.4862 0.4987 0.5725 0.5362 0.5637 0.4837 0.4900 0.1725
M1: Gemma - M2: Gemma 0.4400 0.4700 0.5725 0.4962 0.505 0.4700 0.4550 0.16125
M1: Qwen - M2: Qwen 0.4850 0.4850 0.4950 0.4850 0.5512 0.4725 0.4787 0.1150

ESNLI (3 labels)

M1: Llama - M2: Llama 0.5437 0.5975 0.6762 0.7162 0.7075 0.3563 0.3850 0.3450
M1: Gemma - M2: Gemma 0.6100 0.535 0.9962 0.7975 0.8762 0.4363 0.4275 0.4575
M1: Qwen - M2: Qwen 0.3412 0.3412 0.6250 0.3425 0.9400 0.4550 0.4087 0.6287

ECARE (2 labels)

M1: Llama - M2: Llama 0.5350 0.5450 0.9062 0.5613 0.7975 0.5475 0.5525 0.5137
M1: Gemma - M2: Gemma 0.4887 0.5037 1.0000 0.7125 0.8050 0.5775 0.5375 0.5562
M1: Qwen - M2: Qwen 0.4887 0.4900 0.9500 0.4987 0.8625 0.5487 0.4925 0.5750

StrategyQA (2 labels)

M1: Llama - M2: Llama 0.6450 0.6837 0.5660 0.7870 0.7587 0.6420 0.6462 0.5887
M1: Gemma - M2: Gemma 0.6275 0.6237 0.9812 0.6850 0.7875 0.5825 0.5937 0.5800
M1: Qwen - M2: Qwen 0.4575 0.4550 0.7575 0.4550 0.7512 0.5775 0.5612 0.5100

Table 1: Accuracy of models across the four datasets and explanation types, using explanations generated by the same
model (M1 = M2). Explanations marked as noexp and dummy represent the baselines, obvious represents the upper
bound, remaining columns represent label-aware (gold, why), label-agnostic (cot, phr) and label-contradicting (cf )
explanations. Values are reported as accuracy scores of M2 models, with standard errors omitted for brevity. The
best-performing explanation type for each model-dataset combination is boldfaced.

GEISER Results (M1 ̸= M2)

MODEL noexp dummy obvious gold why cot phr cf

e-RTE-3-it (3 labels)

M1: Llama - M2: Gemma 0.4387 0.4700 0.5725 0.4950 0.5575 0.3375 0.4850 0.1462
M1: Llama - M2: Qwen 0.4850 0.4850 0.4950 0.4850 0.5075 0.4825 0.4975 0.4762
M1: Gemma - M2: Llama 0.4863 0.4987 0.5725 0.5325 0.5287 0.4637 0.4625 0.1837
M1: Gemma - M2: Qwen 0.4850 0.4850 0.4938 0.4850 0.495 0.4762 0.4675 0.3700
M1: Qwen - M2: Llama 0.4862 0.4987 0.5725 0.5362 0.5487 0.4525 0.4750 0.1025
M1: Qwen - M2: Gemma 0.4387 0.4700 0.5725 0.4950 0.5462 0.4150 0.4737 0.1112

ESNLI (3 labels)

M1: Llama - M2: Gemma 0.6100 0.5350 0.9962 0.7975 0.7587 0.3688 0.3875 0.5213
M1: Llama - M2: Qwen 0.3412 0.3412 0.6250 0.3425 0.4362 0.3862 0.3850 0.3762
M1: Gemma - M2: Llama 0.5437 0.5975 0.6762 0.7162 0.885 0.4550 0.5200 0.4375
M1: Gemma - M2: Qwen 0.3412 0.3412 0.6250 0.3425 0.6725 0.4663 0.3775 0.3625
M1: Qwen - M2: Llama 0.5438 0.5975 0.6765 0.7162 0.9550 0.5487 0.4312 0.6150
M1: Qwen - M2: Gemma 0.6100 0.5350 0.9962 0.7975 0.9575 0.4987 0.4362 0.6287

ECARE (2 labels)

M1: Llama - M2: Gemma 0.4887 0.5037 1.0000 0.7125 0.8962 0.5512 0.5700 0.5325
M1: Llama - M2: Qwen 0.4862 0.4987 0.5725 0.5362 0.5637 0.4837 0.4900 0.1725
M1: Gemma - M2: Llama 0.5350 0.5450 0.9062 0.5612 0.7500 0.5887 0.5875 0.5687
M1: Gemma - M2: Qwen 0.4887 0.4900 0.9500 0.4987 0.5287 0.5212 0.5150 0.4750
M1: Qwen - M2: Llama 0.5350 0.5450 0.9062 0.5613 0.9337 0.5750 0.5062 0.5825
M1: Qwen - M2: Gemma 0.4887 0.5037 1.0000 0.7125 0.9450 0.5662 0.4912 0.5850

StrategyQA (2 labels)

M1: Llama - M2: Gemma 0.6275 0.62375 0.9812 0.6850 0.8637 0.6112 0.6787 0.5762
M1: Llama - M2: Qwen 0.4575 0.4550 0.7575 0.4550 0.4537 0.5287 0.4675 0.4500
M1: Gemma - M2: Llama 0.6450 0.6837 0.5663 0.7875 0.7662 0.6025 0.6162 0.6487
M1: Gemma - M2: Qwen 0.4575 0.4550 0.7575 0.4550 0.4775 0.5562 0.4650 0.4300
M1: Qwen - M2: Llama 0.6450 0.6837 0.5662 0.7875 0.8762 0.6375 0.5862 0.5150
M1: Qwen - M2: Gemma 0.6275 0.6237 0.9812 0.6850 0.8487 0.6037 0.5750 0.5050

Table 2: Accuracy of models across the four datasets and explanation types, using explanations generated by the another
model (M1 ̸= M2). The best-performing explanation type for each model-dataset combination is boldfaced.
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Limitations583

The limitations of our studies include the following.584

We focus on a specific type of NLP task involving585

implicit knowledge and investigate the impact of586

explanations on relation prediction. Further research587

is needed to extend these findings to a broader range588

of NLP tasks and model architectures.589

Our measurement of implicitness relies on basic590

metrics like cosine similarity and novelty, which591

may not fully capture the nuanced nature of implicit592

knowledge in language. More sophisticated tech-593

niques are needed for a comprehensive evaluation of594

implicitness. Future work should explore additional595

features, such as explanation length and syntactic596

complexity, to better understand their interplay with597

model performance.598

Finally, we utilize a controlled experimental setup,599

where explanations are provided in a specific for-600

mat and injected into the model during inference.601

Real-world applications might involve more com-602

plex scenarios with less controlled input and output603

formats.604
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Implicitness Correlation Results with ACCURACY using Explanation

Dataset Model 1 Model 2 Explanation Corr. REL (1) Corr. REL (2) Corr. NOV (1) Corr. NOV (2) R-squared

SQA qwen llama dummy 0.106 -0.010 0.019 0.007 0.014
SQA qwen llama gold 0.002 0.091 -0.040 -0.067 0.011
SQA qwen llama why 0.057 0.040 -0.063 -0.065 0.005
SQA qwen llama cot 0.027 0.019 0.035 0.039 0.004
SQA qwen llama phr -0.014 0.025 -0.043 -0.052 0.004
SQA qwen llama cf 0.015 0.032 -0.034 -0.035 0.002
SQA qwen gemma dummy 0.097 0.078 0.054 0.056 0.020
SQA qwen gemma gold 0.018 -0.019 -0.089 0.012 0.011
SQA qwen gemma why 0.083 0.035 -0.109 -0.105 0.014
SQA qwen gemma cot 0.008 0.028 -0.030 -0.026 0.002
SQA qwen gemma phr 0.017 0.087 -0.076 -0.077 0.010
SQA qwen gemma cf 0.021 0.040 -0.043 -0.043 0.002
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.117
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.462
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.033
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.035
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.031
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.042
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.113
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.574
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.036
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.059
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.032
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.027
ESNLI qwen llama dummy 0.119 0.456 -0.269 0.006 0.289
ESNLI qwen llama gold 0.044 0.157 -0.299 -0.330 0.156
ESNLI qwen llama why 0.095 0.037 -0.177 -0.125 0.041
ESNLI qwen llama cot -0.191 0.069 -0.109 -0.117 0.046
ESNLI qwen llama phr -0.128 0.179 -0.213 -0.252 0.093
ESNLI qwen llama cf 0.088 -0.302 0.163 0.247 0.123
ESNLI qwen gemma dummy 0.266 0.530 -0.164 -0.038 0.294
ESNLI qwen gemma gold 0.185 0.209 -0.063 -0.262 0.084
ESNLI qwen gemma why 0.059 0.057 -0.119 -0.085 0.016
ESNLI qwen gemma cot -0.166 0.126 -0.080 -0.147 0.053
ESNLI qwen gemma phr -0.115 0.185 -0.202 -0.220 0.079
ESNLI qwen gemma cf 0.053 -0.274 0.212 0.268 0.107
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.117
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.462
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.033
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.035
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.031
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.042
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.113
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.574
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.036
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.059
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.032
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.027

Table 3: Correlation of implicit measures with accuracy change using the explanation across the four datasets and
explanation types, using explanations generated by Gwen and predictions of all three models.
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Dataset Model 1 Model 2 Explanation Corr. REL (1) Corr. REL (2) Corr. NOV (1) Corr. NOV (2) R-squared

SQA qwen llama dummy 0.106 -0.010 0.019 0.007 0.015
SQA qwen llama gold 0.002 0.091 -0.040 -0.067 0.009
SQA qwen llama why 0.057 0.040 -0.063 -0.065 0.010
SQA qwen llama cot 0.027 0.019 0.035 0.039 0.011
SQA qwen llama phr -0.014 0.025 -0.043 -0.052 0.003
SQA qwen llama cf 0.015 0.032 -0.034 -0.035 0.006
SQA qwen gemma dummy 0.097 0.078 0.054 0.056 0.004
SQA qwen gemma gold 0.018 -0.019 -0.089 0.012 0.002
SQA qwen gemma why 0.083 0.035 -0.109 -0.105 0.013
SQA qwen gemma cot 0.008 0.028 -0.030 -0.026 0.003
SQA qwen gemma phr 0.017 0.087 -0.076 -0.077 0.017
SQA qwen gemma cf 0.021 0.040 -0.043 -0.043 0.005
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.009
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.129
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.044
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.023
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.009
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.032
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.004
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.078
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.005
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.037
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.009
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.022
ESNLI qwen llama dummy 0.119 0.456 -0.269 0.006 0.032
ESNLI qwen llama gold 0.044 0.157 -0.299 -0.330 0.079
ESNLI qwen llama why 0.095 0.037 -0.177 -0.125 0.096
ESNLI qwen llama cot -0.191 0.069 -0.109 -0.117 0.031
ESNLI qwen llama phr -0.128 0.179 -0.213 -0.252 0.078
ESNLI qwen llama cf 0.088 -0.302 0.163 0.247 0.110
ESNLI qwen gemma dummy 0.266 0.530 -0.164 -0.038 0.103
ESNLI qwen gemma gold 0.185 0.209 -0.063 -0.262 0.002
ESNLI qwen gemma why 0.059 0.057 -0.119 -0.085 0.017
ESNLI qwen gemma cot -0.166 0.126 -0.080 -0.147 0.038
ESNLI qwen gemma phr -0.115 0.185 -0.202 -0.220 0.047
ESNLI qwen gemma cf 0.053 -0.274 0.212 0.268 0.061
ERTEIT qwen llama dummy 0.132 0.337 -0.139 -0.071 0.009
ERTEIT qwen llama gold 0.298 0.339 -0.103 -0.666 0.129
ERTEIT qwen llama why 0.143 0.121 -0.134 -0.127 0.044
ERTEIT qwen llama cot -0.037 0.161 -0.140 -0.181 0.023
ERTEIT qwen llama phr 0.008 0.124 -0.022 -0.137 0.009
ERTEIT qwen llama cf 0.071 -0.075 -0.028 0.096 0.032
ERTEIT qwen gemma dummy 0.123 0.333 -0.158 -0.061 0.004
ERTEIT qwen gemma gold 0.254 0.434 -0.051 -0.740 0.078
ERTEIT qwen gemma why 0.148 0.130 -0.141 -0.133 0.005
ERTEIT qwen gemma cot -0.027 0.213 -0.184 -0.239 0.037
ERTEIT qwen gemma phr 0.001 0.135 -0.019 -0.137 0.009
ERTEIT qwen gemma cf 0.044 -0.038 -0.041 0.064 0.022

Table 4: Correlation of implicit measures with accuracy change (from acc. without using the explanation to acc. using
the explanation) across the four datasets and explanation types, using explanations generated by Gwen and predictions
of all three models.
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