

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ADA MUON: ADAPTIVE MUON OPTIMIZER

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose AdaMuon, a novel optimizer that combines element-wise adaptivity with orthogonal updates for large-scale neural network training. AdaMuon incorporates two tightly coupled mechanisms: (1) an element-wise second momentum estimator applied to orthogonalized update directions, and (2) a sign-stabilized orthogonal update, where the momentum is first sign-transformed before orthogonalization. These two components jointly enable variance-adaptive scaling while maintaining stable update geometry. In addition, AdaMuon employs an RMS-aligned rescaling strategy to match the root-mean-square update magnitude to Adam, allowing direct reuse of existing learning rate schedules without extra tuning. Experiments demonstrate that AdaMuon not only maintains stability but can surpass Adam by more than 40% training efficiency in large-scale scenarios.

1 INTRODUCTION

Optimization algorithms are a cornerstone of modern deep learning, directly shaping training dynamics and influencing both convergence speed and generalization performance. As model scales have grown to billions or even trillions of parameters (Brown et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023; Liu et al., 2024b; Moonshot, 2025), optimizers face increasingly heterogeneous gradient landscapes and complex parameter geometries. Adaptive methods (Duchi et al., 2011; Tieleman, 2012; Loshchilov & Hutter, 2017), exemplified by Adam (Kingma & Ba, 2014), have become the de facto choice for large-scale training owing to their variance-based step size control and ease of tuning. However, over a decade after its introduction, the field is witnessing a growing demand for a new generation of optimizers that are better aligned with the computational and statistical challenges of training modern large foundation models.

Muon (Jordan et al., 2024) has been introduced as a representative of this emerging direction. It applies polar decomposition to transform raw momentum matrices into spectrally normalized, direction-only updates. This orthogonalization yields improved stability for large-scale two-dimensional parameter blocks such as transformer weight matrices (Liu et al., 2025; Shah et al., 2025; Chen et al., 2025; Tveit et al., 2025), and has already been deployed in ultra-scale training, including GLM-4.5 (Zeng et al., 2025) with 355B parameters and KIMI Moonshot (Moonshot, 2025) with over 1T parameters. It is widely regarded as a strong candidate for the next-generation optimizer that could potentially replace Adam in large-scale model training.

Building on this momentum, we aim to push the boundary of optimizers toward a paradigm that not only preserves the well-conditioned, geometry-aware updates of Muon but also adapts to the diverse statistical characteristics of individual coordinates—combining the efficiency of first-order methods with the robustness of second-order adaptivity. This motivation leads us to propose AdaMuon, an initial step toward this vision. AdaMuon incorporates element-wise variance adaptation into orthogonal updates through two tightly coupled mechanisms: an element-wise second momentum estimator applied after orthogonalization, and a sign-stabilized orthogonal update. Together with an RMS-aligned rescaling strategy for seamless integration with existing learning rate schedules, these components enable AdaMuon to unify matrix-level stability and coordinate-wise adaptivity, offering a principled path toward the next generation of large-scale optimizers. Experiments show that AdaMuon not only achieves stable convergence but also improves training efficiency by more than 40% compared to Adam in large-scale scenarios.

In the remaining of this paper, Sec. 2 reviews Muon and its extensions, along with the necessity and challenges of incorporating second momentum estimation; Sec. 3 presents the AdaMuon algorithm

054 in detail; and Sec. 4 demonstrates that AdaMuon consistently outperforms other methods across a
 055 variety of models and datasets. Overall, we show that AdaMuon is a versatile algorithm that scales
 056 effectively to large-scale models.
 057

058 Algorithm 1 The AdaMuon Optimizer

059 **Input:** Initial 2D-weights $\mathbf{W}_0 \in \mathbb{R}^{n \times m}$, loss function \mathcal{L} , learning rate η , weight decay λ , mo-
 060 mentum β , Newton–Schulz steps T , small constant ε
 061 **Output:** Updated weights \mathbf{W}
 062 Initialize first momentum $\mathbf{M}_0 \leftarrow \mathbf{0}$, second momentum $\mathbf{V}_0 \leftarrow \mathbf{0}$
 063 **for** each iteration $t = 1, 2, \dots$ **do**
 064 Compute gradient: $\mathbf{G}_t = \nabla_{\mathbf{W}_t} \mathcal{L}(\mathbf{W}_t)$
 065 Update first momentum: $\mathbf{M}_t = \beta \cdot \mathbf{M}_{t-1} + \mathbf{G}_t$
 066 Compute sign-stabilized orthogonal direction: $\mathbf{O}_t = \text{Newton–Schulz}(\text{Sign}(\mathbf{M}_t), T)$
 067 Update second momentum: $\mathbf{V}_t = \beta \cdot \mathbf{V}_{t-1} + (1 - \beta) \cdot \mathbf{O}_t \odot \mathbf{O}_t$
 068 Apply second momentum update: $\hat{\mathbf{O}}_t = \mathbf{O}_t \oslash (\sqrt{\mathbf{V}_t} + \varepsilon \cdot \mathbf{1})$.
 069 RMS-aligned: $\gamma_t = 0.2 \cdot \sqrt{mn} / \|\hat{\mathbf{O}}_t\|_F$
 070 Update weights: $\mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\gamma_t \hat{\mathbf{O}}_t + \lambda \mathbf{W}_t)$
 071 **end for**

072
 073
074 2 PRELIMINARY

075
076 2.1 MUON OPTIMIZER

077 Muon (Jordan et al., 2024) is a recently proposed optimization method designed for parameter ten-
 078 sors that can be represented as matrices. At iteration t , given the current weight matrix $\mathbf{W}_t \in \mathbb{R}^{n \times m}$
 079 and its gradient \mathbf{G}_t , momentum β , and learning rate η , Muon updates parameters according to
 080

081
$$\begin{aligned} \mathbf{M}_t &= \beta \mathbf{M}_{t-1} + \mathbf{G}_t, \\ 082 \mathbf{O}_t &= \text{Newton–Schulz}(\mathbf{M}_t, T), \\ 083 \mathbf{W}_{t+1} &= \mathbf{W}_t - \eta \mathbf{O}_t. \end{aligned} \tag{1}$$

085 where \mathbf{M}_t denotes the momentum buffer at step t , initialized as a zero matrix for $t = 0$. The
 086 Newton–Schulz step (Bernstein & Newhouse, 2024) approximates the polar decomposition \mathbf{O}_t of
 087 \mathbf{M}_t , which corresponds to $\mathbf{O}_t = \mathbf{U}\mathbf{V}^\top$ in the singular value decomposition (SVD) $\mathbf{M}_t = \mathbf{U}\mathbf{S}\mathbf{V}^\top$. T
 088 in Eq. (1) denotes the number of iteration steps. This approximation avoids the high computational
 089 cost of a full SVD, and preserves the update direction while removing anisotropic scaling.
 090

091 Specifically, Newton–Schulz step begins by normalizing the momentum matrix: $\mathbf{X}_0 = \frac{\mathbf{M}_t}{\|\mathbf{M}_t\|_F}$.
 092 Then, for each iteration k , \mathbf{X}_k is updated from \mathbf{X}_{k-1} as

093
$$\mathbf{X}_k = a\mathbf{X}_{k-1} + b(\mathbf{X}_{k-1}\mathbf{X}_{k-1}^\top)\mathbf{X}_{k-1} + c(\mathbf{X}_{k-1}\mathbf{X}_{k-1}^\top)^2\mathbf{X}_{k-1}, \tag{2}$$

095 where a , b , and c are iteration coefficients, and \mathbf{X}_T is the output after T steps. Convergence requires
 096 tuning a , b , and c so that the polynomial $f(x) = ax + bx^3 + cx^5$ has a fixed point close to 1.
 097 Following Jordan et al. (2024), we adopt $a = 3.4445$, $b = -4.7750$, $c = 2.0315$, and $T = 5$, which
 098 accelerates convergence for small singular values while maintaining stability.

099
100 2.2 SCALING UP FOR MUON

101 In practice for scaling up, Muon faces two practical challenges. First, the root-mean-square (RMS)
 102 magnitude of the weight matrices can become excessively large, exceeding the high-precision range
 103 of bf16, which is harmful. Second, Muon is applied only to two-dimensional parameters (e.g.,
 104 weight matrices), while one-dimensional parameters (e.g., biases) are still optimized with Adam,
 105 necessitating separate learning rates and tuning complexity into existing pipelines.
 106

107 To address both issues, Liu et al. (2025) propose to control the RMS of Muon’s weights via
 108 weight decay, and introducing a scaling factor $\gamma = 0.2\sqrt{\max(m, n)}$ to match the RMS norm of

108 Muon’s updates to that of Adam, thereby enabling a unified learning rate schedule. The resulting
 109 update rule is

$$110 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta \cdot (\gamma \mathbf{O}_t + \lambda \mathbf{W}_t), \quad (3)$$

111 where λ is the weight decay coefficient. This simple yet effective adjustment stabilizes the training
 112 process while enabling Muon and Adam to share the same learning rate schedule, thereby allowing
 113 seamless integration into existing optimization pipelines.
 114

115 **2.3 SECOND-MOMENTUM IN MUON: NECESSITY AND CHALLENGES**

117 **2.3.1 NECESSITY**

119 Newton’s method leverages curvature via the inverse Hessian to obtain locally optimal update di-
 120 rections, but for large-scale models this is impractical. Adaptive optimizers such as Adam and RM-
 121 SProp approximate curvature through exponential moving averages of squared gradients, enabling
 122 variance-based step size adjustment. Similarly, Muon’s polar decomposition inherently captures
 123 matrix-level second-order structure. From

$$124 \quad \mathbf{O}_t = (\mathbf{M}_t \mathbf{M}_t^\top)^{-1/2} \mathbf{M}_t = \mathbf{M}_t (\mathbf{M}_t^\top \mathbf{M}_t)^{-1/2}, \quad (4)$$

125 it follows that Muon, like Shampoo (Gupta et al., 2018), encodes row–column second-order inter-
 126 actions without explicitly storing full covariance matrices.
 127

128 However, this global orthogonalization does not model the local variance structure of individual
 129 parameters. In real-world training, gradient distributions are often highly anisotropic at the element
 130 level—some entries exhibit large fluctuations, while others remain consistently stable. Applying a
 131 uniform update magnitude in such cases risks overshooting in noisy coordinates and under-updating
 132 informative but low-variance ones. This mismatch might slow convergence, reduce stability, and
 133 limit Muon’s effectiveness in tasks with heterogeneous gradient statistics.
 134

135 **2.3.2 CHALLENGES**

136 To this end, we consider integrating element-wise second-momentum estimation into Muon. The
 137 most straightforward idea is to extend Muon by directly appending a second momentum accumula-
 138 tor, and then scaling the orthogonal update \mathbf{O}_t with its variance estimate. However, this introduces
 139 two key design challenges:

- 140 • **First, determining which component to accumulate.** In Adam, the second momentum
 141 is naturally accumulated on the raw gradient \mathbf{G}_t , but in Muon the update direction \mathbf{O}_t is
 142 obtained through polar decomposition of the momentum buffer \mathbf{M}_t . It remains unclear
 143 whether variance tracking should be applied to \mathbf{G}_t , \mathbf{M}_t , or \mathbf{O}_t , since each choice leads to
 144 different stability and normalization behaviors.
- 145 • **Second, achieving a normalization effect comparable to Adam.** In Adam, both the first
 146 and second moments are computed from the same gradient signal, making their ratio an
 147 effective per-element normalization of step size. In Muon, however, \mathbf{M}_t may fluctuate
 148 substantially during the early and middle stages of training, causing the resulting \mathbf{O}_t to
 149 also vary dramatically across coordinates. Consequently, no matter whether the second
 150 momentum is accumulated on \mathbf{G}_t , \mathbf{M}_t , or \mathbf{O}_t , the resulting statistics remain unstable and
 151 fail to provide a reliable normalization effect, even potentially amplifying noise.

152 A careful resolution of these challenges is essential to seamlessly integrate variance adaptivity into
 153 Muon without undermining its orthogonalization benefits or its inherent scale-invariant properties.
 154

155 **3 ADAMUON**

158 To address the aforementioned challenges, in this section, we introduce **AdaMuon**, a novel opti-
 159 mizer that retains the advantages of Muon’s orthogonal updates while automatically adjusting the
 160 scaling of individual elements. AdaMuon integrates two complementary mechanisms, **element-
 161 wise second momentum estimation and sign-stabilized orthogonal updates**, to simultaneously
 162 capture accurate second momentum statistics and normalize the update magnitude.

162 3.1 ELEMENT-WISE SECOND MOMENTUM ESTIMATION
163

164 To address the first challenge, we choose to accumulate the second-momentum term on \mathbf{O}_t , rather
165 than on the raw gradient \mathbf{G}_t or the momentum buffer \mathbf{M}_t . This design is principled for two reasons.
166 First, the raw gradient \mathbf{G}_t carries ill-conditioned scaling and directional noise that Muon’s polar
167 decomposition is specifically designed to eliminate, making it unsuitable for stable variance tracking.
168 Second, while \mathbf{M}_t provides a temporally smoothed gradient, it remains unstable at the element level
169 during the early and middle stages of training. Moreover, since the final update direction is derived
170 from \mathbf{O}_t , accumulating variance on \mathbf{M}_t introduces a mismatch with the rescaling basis used in the
171 update. In contrast, \mathbf{O}_t provides a geometrically normalized and stable descent direction, offering a
172 cleaner basis for variance estimation.
173

174 Formally, let \mathbf{O}_t denote the orthogonalized update matrix obtained via Newton–Schulz iteration. We
175 maintain an exponential moving average of its element-wise squared values:

$$176 \mathbf{V}_t = \beta \cdot \mathbf{V}_{t-1} + (1 - \beta) \cdot \mathbf{O}_t \odot \mathbf{O}_t, \quad (5)$$

177 where \odot denotes Hadamard product. Here, \mathbf{V}_t serves as the second momentum buffer for the
178 orthogonalized update, analogous to the variance accumulator in Adam. The coefficient β is inherited
179 directly from Muon’s momentum parameter, ensuring that AdaMuon does not introduce any additional
180 hyper-parameters. The variance-normalized update direction is then obtained as

$$181 \hat{\mathbf{O}}_t = \mathbf{O}_t \oslash (\sqrt{\mathbf{V}_t} + \varepsilon \cdot \mathbf{1}), \quad (6)$$

182 where \oslash denotes element-wise division, $\sqrt{\mathbf{V}_t}$ represents the element-wise square root of the variance
183 estimates, $\mathbf{1}$ is an all-ones matrix of the same shape as \mathbf{O}_t , and ε is a small positive constant
184 added to prevent the denominator from being 0. This step adaptively reweights each element of the
185 orthogonalized direction according to its estimated variance, suppressing noisy coordinates while
186 preserving Muon’s globally coherent update geometry.
187

188 3.2 STABILIZING ORTHOGONAL UPDATES VIA SIGN TRANSFORMATION
189

190 While the element-wise second-momentum estimator effectively captures variance in principle, it
191 becomes less suitable during the early to mid stages of training. In this regime, gradients are unstable
192 and may undergo large fluctuations, causing the momentum buffer \mathbf{M}_t itself to vary substantially at
193 the element level. Consequently, the polar decomposition produces orthogonal updates \mathbf{O}_t that also
194 fluctuate dramatically across coordinates. Accumulating such unstable \mathbf{O}_t into a second momentum
195 term fails to yield meaningful normalization and may even introduce adverse effects by amplifying
196 noise rather than stabilizing it.

197 We hope that \mathbf{O}_t can be both utilized in second momentum scaling and stable enough for variance-
198 based normalization. To achieve this, we propose to first apply a transformation f to \mathbf{M}_t , so that

$$199 \mathbf{O}_t = g(f(\mathbf{M}_t)), \quad g(\cdot) = \text{polar}(\cdot). \quad (7)$$

200 Recall that $g(c\mathbf{M}_t) = g(\mathbf{M}_t)$ for $\forall c > 0$, which indicates that g is globally scale-invariant, preserving
201 only the overall directional information of \mathbf{M}_t . However, g alone does not stabilize element-wise
202 fluctuations. f is therefore designed to complement g : while g enforces global directionality, f operates
203 element-wise to preserve coordinate-level orientation while mitigating volatility.

204 **Theorem 1** (Characterization of admissible element-wise transformations). *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a
205 function applied element-wise to \mathbf{M}_t before the polar operator $g(\cdot) = \text{polar}(\cdot)$. Suppose f satisfies
206 the following conditions:*

- 207 1. (Scale invariance) $f(cx) = f(x)$ for all $x \in \mathbb{R}$ and $c > 0$.
- 208 2. (Sign consistency) For $x \neq 0$, $\text{sign}(f(x)) = \text{sign}(x)$.
- 209 3. (Odd symmetry) $f(-x) = -f(x)$.
- 210 4. (Bounded range) There exists $C < \infty$ such that $|f(x)| \leq C$ for all x .

211 Then f must be of the form $f(x) = c \cdot \text{sign}(x)$, $c > 0$. Moreover, since g is globally scale-invariant,
212 the multiplicative constant c is immaterial, and the unique canonical choice is $f(x) = \text{sign}(x)$.

216 The proof of Theorem 1 is shown in Appendix. A. Condition (1) ensures that per-coordinate mag-
 217 nitudes do not reintroduce instability when passed into g , aligning with g 's own scale-invariance
 218 at the global level. Conditions (2) and (3) constrain the directional behavior of f , while Condition
 219 (4) guarantees value stability. Taken together, $f(x) = \text{sign}(x)$, which satisfies all four desiderata.
 220 This yields a stabilized input to g , ensuring that \mathbf{O}_t remains both orthogonal and robust enough for
 221 variance-based normalization.

223 3.3 RMS-ALIGNED RESCALING

225 To maintain compatibility with Adam's learning rate schedules, we scale the RMS norm of
 226 AdaMuon's update $\hat{\mathbf{O}}_t$ (after second momentum estimation in Eq. (6)) to match Adam's empiri-
 227 cal RMS value of ≈ 0.2 (Liu et al., 2025), yielding

$$228 \quad \gamma_t = \frac{0.2}{\text{RMS}(\hat{\mathbf{O}}_t)} = \frac{0.2\sqrt{mn}}{\|\hat{\mathbf{O}}_t\|_F}. \quad (8)$$

231 Finally, the rescaled update is applied to the parameters as

$$232 \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta(\gamma_t \hat{\mathbf{O}}_t + \lambda \mathbf{W}_t), \quad (9)$$

234 The pseudo-code of AdaMuon is shown in Alg. 1. In addition, we provide further discussions on the
 235 omission of bias correction in the second momentum estimation (Appendix B), and the convergence
 236 analysis of AdaMuon (Appendix C).

238 4 EXPERIMENT

240 4.1 EXPERIMENTAL SETUP

242 **Baselines.** We compare AdaMuon against AdamW (Loshchilov & Hutter, 2017) and Muon (Jordan
 243 et al., 2024). Given Muon's strong performance in large-scale training, we consider these two
 244 baselines sufficient to demonstrate the effectiveness of AdaMuon. Muon here is specifically the
 245 Kimi-variant Liu et al. (2025). Since Muon operates only on matrices and applies a separate Adam
 246 optimizer for the remaining parameters, we set the learning rates of both optimizers to be the same.
 247 For AdamW, the first and second momentum coefficients are set to 0.9 and 0.95, respectively; Muon
 248 uses $\beta = 0.95$, and AdaMuon uses $\beta = 0.95$ and $\epsilon = 10^{-8}$. The weight decay λ for these optimizers
 249 are set to 0.1.

250 **Model Architectures.** We evaluate AdaMuon on two representative model families: GPT-2 and
 251 Qwen2.5 models. All GPT-2 experiments are based on the nanoGPT (Karpathy, 2022) implemen-
 252 tation of the GPT-2 architecture (Radford et al., 2019). We consider four scales—Small (125M),
 253 Medium (355M), Large (770M), and XL (1.5B). Following the default configurations in nanoGPT,
 254 we remove bias terms in all linear layers, use the GeLU activation function, and set the dropout
 255 rate to 0.0. Two modifications are applied: (1) replacing the original learned positional embed-
 256 ding (WPE) with Rotary Positional Embedding (RoPE) (Su et al., 2024), and (2) substituting the
 257 cosine learning rate schedule with the warmup-stable policy (i.e., the schdule that omits the decay
 258 phase in WSD (Hu et al., 2024) schedule entirely: after warmup, the learning rate is held constant).
 259 For Qwen2.5 (Qwen et al., 2025), we adopt the 1.5B and 7B dense model following the official
 260 architecture specifications.

261 **Datasets.** GPT-2 models are trained on the OpenWebText dataset (Gokaslan et al., 2019), which
 262 contains approximately 9B training tokens and 4.4M validation tokens, all tokenized with the stan-
 263 dard GPT-2 tokenizer. For Qwen2.5 models, the dataset is collected from online corpora, with low-
 264 quality content removed through a combination of manually filtering rules and LLM-based quality
 265 assessment. Beyond general text, it contains high-quality code, math, and multilingual content.

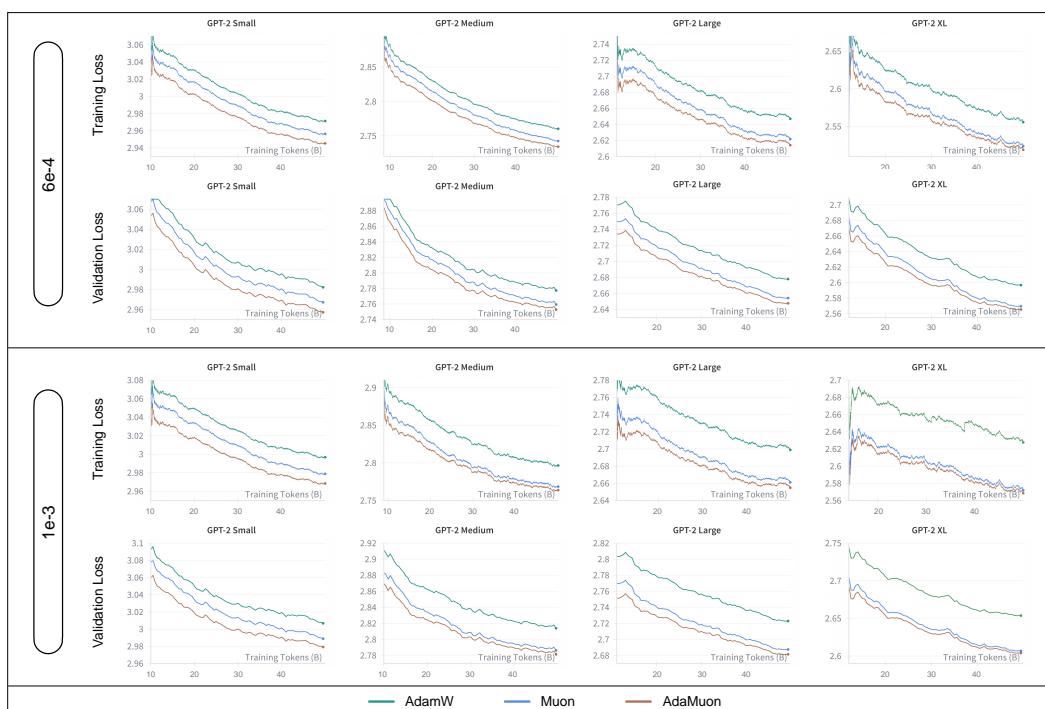
266 **Training Details.** We mainly focus on the pre-training of the model. For GPT-2 experiments, all
 267 models are trained on approximately 50B (49.2B) training tokens for 100K steps, with a context
 268 length of 1024 and a warmup period of 2K steps. For Qwen2.5 experiments, 1.5B model is trained
 269 on 100B tokens with a context length of 8196 with 6e-4 learning rate, and 7B model is trained

270 on 235B tokens. For 1.5B model, we use 8.4B tokens for warmup, and 16.8B for 7B model. All
 271 the other hyper-parameters follow the respective official configurations. All other training settings,
 272 unless otherwise specified, are kept consistent across methods.

273 For GPT runs, we fix the effective batch size (EBS) to 60 sequences. By model size (Small to XL),
 274 we use the following pairs (batch size (bs), gradient accumulate steps (gas)) so that $EBS = bs \times gas$
 275 = 60: (15, 4), (15, 4), (5, 12), (5, 12). For Qwen-1.5B, we use global batch size (gbs) = 512 with
 276 micro-batch size (mbs) = 2; for Qwen-7B, gbs = 1024, mbs = 2.

278
 279 Table 1: Training efficiency of Muon and AdaMuon over AdamW. All improvements are computed
 280 relative to the AdamW baseline (49.2B training tokens).

281 282 Method	283 LR	284 GPT-2 Small		285 GPT-2 Medium		286 GPT-2 Large		287 GPT-2 XL	
		288 Train	289 Val	290 Train	291 Val	292 Train	293 Val	294 Train	295 Val
Muon	6×10^{-4}	25.46%	21.57%	22.10%	23.34%	28.56%	24.71%	27.32%	28.24%
AdaMuon		34.25%	33.73%	30.63%	31.96%	37.33%	31.34%	35.82%	31.04%



311
 312 Figure 1: Training and validation loss comparisons of AdamW, Muon, and AdaMuon.
 313

314
 315 **Evaluation Metric.** We measure training efficiency improvement over Adam. For each method,
 316 we record the number of tokens required to reach the same training/validation loss achieved by
 317 Adam after training on a tokens. If Muon or AdaMuon requires b tokens to match this loss, the
 318 efficiency improvement is computed as $\frac{a-b}{a} \times 100\%$. This metric reflects the proportion of training
 319 tokens saved relative to Adam while achieving equivalent performance.

320
 321 **Evaluation Benchmark.** We evaluate the Qwen model on a broad spectrum of 15 benchmarks.
 322 For English language understanding and reasoning, we adopt MMLU (Hendrycks et al., 2020),
 323 MMLU-Pro (Wang et al., 2024), TriviQA (Joshi et al., 2017), ARC-C (Clark et al., 2018), GPQA
 (Rein et al., 2024), OBQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande

(Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), and CommonsenseQA (Talmor et al., 2018). For code generation, we evaluate on the MBPP (Austin et al., 2021). For mathematical reasoning, we use the GSM8k (Cobbe et al., 2021). For Chinese language understanding and reasoning, we include CHID (Zheng et al., 2019), CMMLU (Li et al., 2023), and CEval (Huang et al., 2023).

4.2 RESULT

GPT-2 Results. Table 1 summarizes the training efficiency of Muon and AdaMuon under two learning-rate settings, and Fig. 1 illustrates the corresponding loss–token curves of AdamW, Muon and AdaMuon. Across all four GPT-2 scales, both Muon and AdaMuon deliver significant efficiency gains over AdamW, validating the benefit of geometry-preserving updates. Notably, AdaMuon consistently achieves the highest efficiency, regardless of model size or learning rate, demonstrating the effectiveness of integrating second-moment scaling with RMS-norm alignment. We also note that for GPT-2 XL with a learning rate of 1×10^{-3} , the efficiency gap is particularly large: in this regime, AdamW exhibits unstable training with multiple loss spikes, whereas Muon and AdaMuon remain stable, enabling them to reach the target loss substantially faster

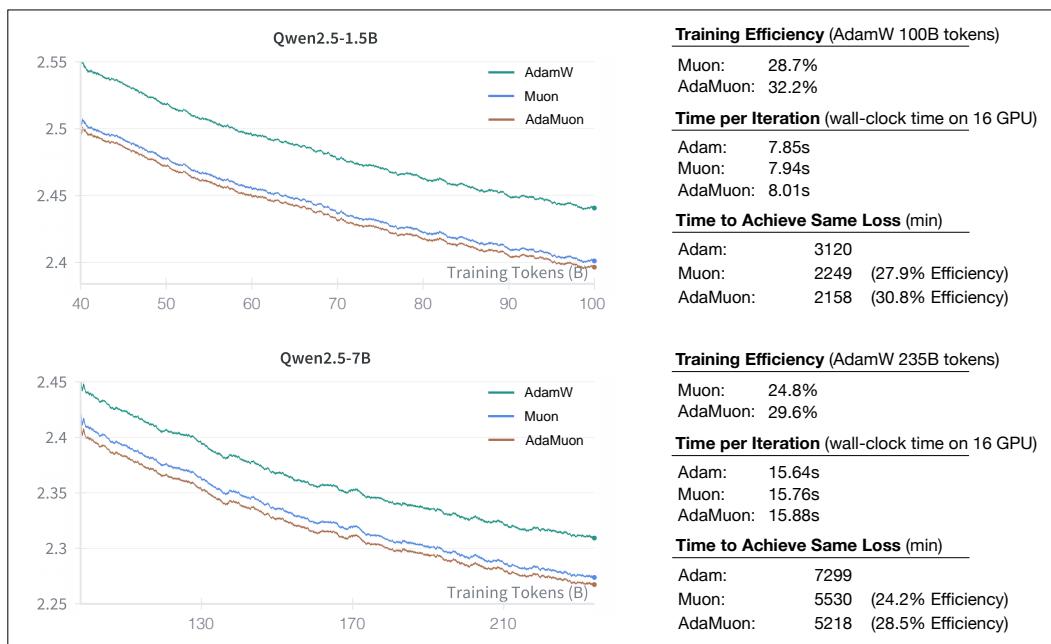


Figure 2: Results of AdamW, Muon, and AdaMuon when training Qwen2.5-1.5B and 7B dense models.

Qwen2.5 Results. Fig. 2 presents the training results of Qwen2.5. Consistent with the GPT-2 results, AdaMuon exhibits faster convergence than both Muon and AdamW across the entire training trajectory. In terms of time-to-target reduction, AdaMuon shortens the wall-clock time needed to reach the same loss by 30.8% compared to Adam and by 2.9% compared to Muon, translating into substantial savings in large-scale deployments. Moreover, we provide the evaluation results of Qwen2.5 after 100B-token training on 15 benchmark datasets. As reported in Table 2, models trained with AdaMuon consistently outperform those trained with Muon and Adam across all evaluation metrics, further confirming the effectiveness of our approach in both convergence efficiency and final task performance.

4.3 ABLATION STUDY

We conduct ablation experiments by selectively removing the `sign` operation and the second momentum term, with results summarized in Fig. 3. It can be observed that retaining only the `sign`

378
 379 Table 2: Evaluation of Qwen2.5 models trained by AdamW, Muon and AdaMuon. Abbreviations:
 380 ARC-C = ARC-Challenge, WinoG = WinoGrande, ComQA = CommonsenseQA.

Model	Optimizer	MMLU 5-shot	MMLU-Pro 5-shot	TriviaQA 5-shot	ARC-C 25-shot	GPQA 5-shot	OBQA 5-shot	HellaSwag 10-shot	WinoG 5-shot
1.5B	AdamW	30.67	5.14	20.96	24.40	19.70	37.80	47.69	54.38
	Muon	31.05	5.43	23.71	31.96	22.22	37.90	47.85	56.27
	AdaMuon	30.70	6.43	23.51	29.90	26.77	39.70	49.68	55.88
7B	AdamW	33.30	7.44	26.16	33.33	28.00	44.44	44.59	58.07
	Muon	34.63	6.73	30.42	24.32	28.00	56.35	43.31	58.49
	AdaMuon	34.98	10.87	30.22	42.32	32.00	53.70	46.50	58.20
Model	Optimizer	PIQA 5-shot	ComQA 7-shot	CHID 5-shot	CMMLU 5-shot	CEval 5-shot	MBPP 3-shot	GSM8k 4-shot	Avg.
1.5B	AdamW	71.16	22.28	43.96	29.34	31.30	4.80	2.88	29.76
	Muon	72.20	26.13	50.55	28.76	29.97	6.00	4.02	31.60
	AdaMuon	71.38	28.01	54.70	28.93	31.10	8.20	4.70	32.64
7B	AdamW	73.91	32.68	44.32	31.12	32.49	8.80	5.46	33.61
	Muon	76.52	34.15	60.91	32.34	35.05	11.20	10.16	36.17
	AdaMuon	72.90	29.25	58.26	32.31	35.86	13.20	10.08	37.38

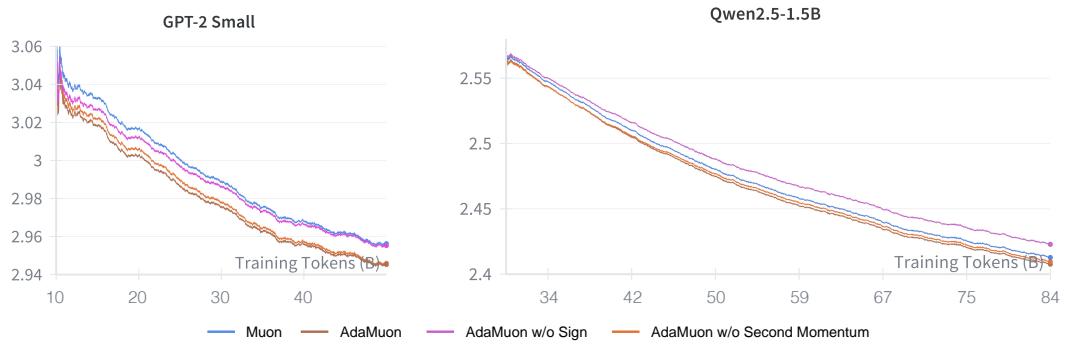


Figure 3: Ablation Study of AdaMuon. We present the training loss curve of GPT-2 Small and Qwen2.5-1.5B models.

operation still yields lower loss than the original Muon optimizer. This improvement stems from the fact that `sign` enhances the stability of the matrix obtained through polar decomposition, thereby stabilizing the update direction. In contrast, when only the second momentum term is added, the advantage disappears and Muon even outperforms this variant. This phenomenon is intuitive: directly accumulating second momentum can partly provide normalization, but since the orthogonal updates themselves remain unstable, the accumulated variance fails to stabilize training and may even harm optimization, leading to inferior loss reduction. Finally, when both `sign` and second momentum are retained, they complement each other: the former improves stability of the orthogonal update, while the latter provides effective element-wise normalization, resulting in the best overall performance.

4.4 TRAINING BEHAVIOR

In this subsection, we further analyze the training behavior of the three optimizers. All experiments are conducted on GPT-2 1.5B with a learning rate of 6×10^{-4} . We examine their gradient norms, parameter update norms, and the evolution of max attention logits across layers.

As shown in Fig. 4, the gradient norms of the three optimizers follow different trajectories. Muon exhibits a gradual upward drift, reflecting increasing gradient variance as training progresses. AdamW stabilizes quickly, maintaining a relatively flat trajectory with mild fluctuations, which indicates effective variance control. AdaMuon behaves similarly to AdamW but produces even smoother updates, highlighting its stronger capability in suppressing short-term oscillations.

The parameter norms further highlight their divergent behaviors. Both Muon and AdamW eventually converge to similar magnitudes, with Muon showing a sharper initial rise, consistent with its more aggressive gradient scaling. AdaMuon consistently produces smaller parameter norm, converging to a noticeably lower parameter norm. This restrained behavior helps stabilize training, although it may reduce the optimizer’s ability to fully exploit the model’s capacity compared to Muon or Adam.

Finally, the per-layer max attention logits reveal distinct adaptation patterns. In shallow layers (Layer 4), Muon steadily reduces the maximum attention logits, while AdamW maintains relatively high values, indicating stronger localized activations. In mid layers (Layer 25), all optimizers reduce logits, but AdaMuon stabilizes earlier, whereas Muon continues a slow decline. In deeper layers (Layer 45), AdamW sustains substantially higher logits than the others, while both Muon and AdaMuon settle at lower levels. These results suggest that AdamW encourages deeper specialization of attention heads, whereas Muon and AdaMuon promote a more uniform redistribution of attention across layers.

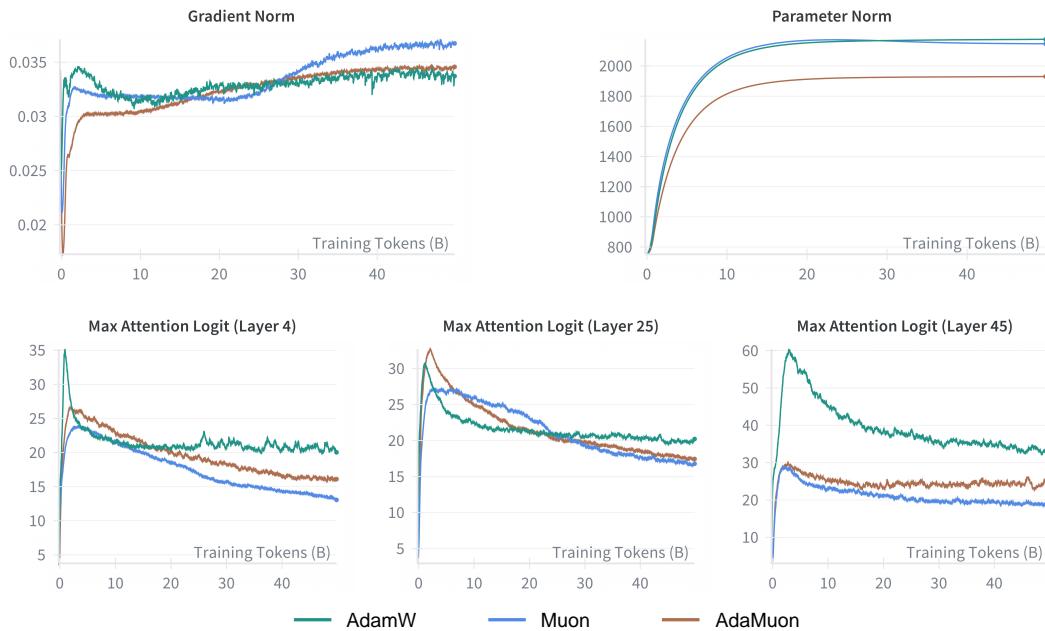


Figure 4: Training behavior of AdamW, Muon, and AdaMuon.

In addition, we note that prior work (Liu et al., 2025) reported that Muon tends to increase the maximum attention logits. Our findings differ: in the standard multi-head attention (MHA) setting, we do not observe excessively large logits under Muon. We argue that this discrepancy is not caused by the optimizer itself, but rather by the model architecture. Specifically, those studies employed variants with multi-latent attention (Liu et al., 2024a), where the structural design inherently amplifies logit magnitudes. By contrast, in conventional MHA layers, the effect of Muon on maximum logits remains moderate and comparable to other optimizers.

4.5 SENSITIVITY ANALYSIS

We evaluate AdaMuon’s sensitivity to the first- and second-momentum coefficient β on GPT-small with learning rate 6×10^{-4} . Varying β over a standard range, the final-step training losses are shown in Table 3, which cluster tightly, indicating low sensitivity as long as β remains in a reasonable band. Therefore, no special tuning is required—AdaMuon can directly reuse Muon’s default β (0.95).

Table 3: Final training loss of varied β on GPT2-small.

β	0.8	0.9	0.95	0.99
Loss	2.96107	2.95735	2.95521	2.95487

486

5 CONCLUSION

488 This work presented AdaMuon, a new optimization paradigm that unifies the geometry-aware sta-
 489 bility of Muon with the coordinate-wise adaptivity of variance-based scaling. By integrating a
 490 sign-stabilized orthogonal update, an element-wise second momentum estimator, and an RMS-
 491 aligned rescaling strategy, AdaMuon achieves both well-conditioned matrix-level updates and ro-
 492 bust coordinate-wise adaptation—bridging the gap between efficiency and robustness in large-scale
 493 model training. Extensive experiments on GPT-2 and Qwen2.5 across multiple scales demonstrate
 494 that AdaMuon delivers consistent improvements over Adam and Muon, achieving up to **40%** gains
 495 in training efficiency with even superior final performance.

496 Looking forward, as model sizes and training demands continue to escalate, AdaMuon represents a
 497 promising step toward the next generation of optimizers that can scale efficiently while preserving
 498 stability in increasingly complex optimization landscapes. At the same time, we close with an open
 499 question to the community: how far are we from realizing a truly practical and scalable second-order
 500 optimizer for modern large-scale deep learning?

502

6 LIMITATION

504 AdaMuon also has some limitations. First, one additional second-moment buffer introduces more
 505 computation and memory. Second, there is minor per-step runtime overhead from Newton–Schulz
 506 and variance EMA. How to effectively tackle these drawbacks is also interesting, leaving for the
 507 future work.

510

REFERENCES

511 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 512 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 513 models. *arXiv preprint arXiv:2108.07732*, 2021.

514 Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *arXiv preprint*
 515 *arXiv:2409.20325*, 2024.

517 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
 518 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 519 volume 34, pp. 7432–7439, 2020.

520 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 521 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 522 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

524 Lizhang Chen, Jonathan Li, and Qiang Liu. Muon optimizes under spectral norm constraints. *arXiv*
 525 *preprint arXiv:2506.15054*, 2025.

526 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 527 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
 528 *Advances in neural information processing systems*, 36:49205–49233, 2023.

530 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 531 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 532 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
 533 1–113, 2023.

534 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 535 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 536 *arXiv preprint arXiv:1803.05457*, 2018.

538 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 539 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

540 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

541

542

543 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and

544 stochastic optimization. *Journal of machine learning research*, 12(7), 2011.

545

546 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

547

548 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-

549 mization. In *International Conference on Machine Learning*, pp. 1842–1850. PMLR, 2018.

550

551 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and

552 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*

553 *arXiv:2009.03300*, 2020.

554

555 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,

556 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models

557 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

558

559 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,

560 Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-

561 uation suite for foundation models. *Advances in Neural Information Processing Systems*, 36:

562 62991–63010, 2023.

563

564 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy

565 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

566

567 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly

568 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

569

570 A Karpathy. Nanogpt, 2022. URL <https://github.com/karpathy/nanoGPT>.

571

572 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*

573 *arXiv:1412.6980*, 2014.

574

575 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timo-

576 thy Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. *arXiv*

577 *preprint arXiv:2306.09212*, 2023.

578

579 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong

580 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-

581 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

582

583 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,

584 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*

585 *arXiv:2412.19437*, 2024b.

586

587 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,

588 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint*

589 *arXiv:2502.16982*, 2025.

590

591 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*

592 *arXiv:1711.05101*, 2017.

593

594 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct

595 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

596

597 Team Moonshot. Kimi-k2, 2025. URL <https://moonshotai.github.io/Kimi-K2/>.

594 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 595 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 596 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 597 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 598 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 599 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 600 URL <https://arxiv.org/abs/2412.15115>.

601 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 602 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

603

604 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 605 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 606 mark. In *First Conference on Language Modeling*, 2024.

607 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 608 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

609

610 Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 611 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
 612 pretraining. *arXiv preprint arXiv:2505.02222*, 2025.

613 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 614 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

615

616 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 617 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

618 Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
 619 magnitude. *COURSERA: Neural networks for machine learning*, 4(2):26, 2012.

620

621 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 622 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 623 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

624 Amund Tveit, Bjørn Remseth, and Arve Skogvold. Muon optimizer accelerates grokking. *arXiv
 625 preprint arXiv:2504.16041*, 2025.

626

627 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 628 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 629 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 630 37:95266–95290, 2024.

631 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 632 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

633

634 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 635 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 636 models. *arXiv preprint arXiv:2508.06471*, 2025.

637 Chujie Zheng, Minlie Huang, and Aixin Sun. Chid: A large-scale chinese idiom dataset for cloze
 638 test. *arXiv preprint arXiv:1906.01265*, 2019.

639

640

641

642

643

644

645

646

647

648	Contents	
649		
650	1 Introduction	1
651		
652	2 Preliminary	2
653	2.1 Muon Optimizer	2
654	2.2 Scaling Up for Muon	2
655	2.3 Second-Momentum in Muon: Necessity and Challenges	3
656	2.3.1 Necessity	3
657	2.3.2 Challenges	3
658	3 AdaMuon	3
659	3.1 Element-Wise Second Momentum Estimation	4
660	3.2 Stabilizing Orthogonal Updates via Sign Transformation	4
661	3.3 RMS-Aligned Rescaling	5
662		
663	4 Experiment	5
664	4.1 Experimental Setup	5
665	4.2 Result	7
666	4.3 Ablation Study	7
667	4.4 Training Behavior	8
668	4.5 Sensitivity Analysis	9
669	5 Conclusion	10
670		
671	6 Limitation	10
672		
673	A Proof of Theorem 1	14
674	B Why Omitting Bias Correction in AdaMuon’s Second Momentum	14
675		
676	C Convergence Analysis	14
677	C.1 Algorithmic definitions and Preliminaries	14
678	C.2 One-step progress	15
679	C.3 PL-Based Convergence	16
680	C.4 Convergence speed (hitting time to the $O(\eta^2)$ neighborhood)	17
681	D More Experiments	17
682	D.1 MoE Architecture	17
683	D.2 More Baselines	18
684		
685		
686		
687		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		

702 A PROOF OF THEOREM 1
703

704 **Proof.** From Condition (2) and (3), f must preserve orientation while being odd, hence $f(x)$ takes
705 the same sign as x and satisfies $f(-x) = -f(x)$. This constrains f to functions of the form
706 $f(x) = h(|x|) \cdot \text{sign}(x)$ with $h : [0, \infty) \rightarrow [0, \infty)$. From (1), for any $c > 0$, $h(c|x|) = h(|x|)$.
707 Thus, h is constant on $(0, \infty)$, i.e. $h(r) = \kappa$ for all $r > 0$. From (4), κ must be finite. Therefore
708 $f(x) = \kappa \cdot \text{sign}(x)$.

709 Finally, since g is globally scale-invariant ($g(c\mathbf{M}_t) = g(\mathbf{M}_t)$), the multiplicative factor κ vanishes
710 in effect. Hence the canonical representative is $f(x) = \text{sign}(x)$.
711

712 B WHY OMITTING BIAS CORRECTION IN ADAMUON'S SECOND
713 MOMENTUM
714

715 Unlike Adam, AdaMuon does not perform bias correction on its second-momentum estimation \mathbf{V}_t
716 (line 8 in Algorithm 1). In Adam, the variance estimate is
717

$$718 \mathbf{V}_t = \beta \mathbf{V}_{t-1} + (1 - \beta) \mathbf{O}_t \odot \mathbf{O}_t, \quad (10)$$

719 which underestimates the true variance in early iterations. This bias must be corrected via
720

$$721 \widehat{\mathbf{V}}_t = \frac{\mathbf{V}_t}{1 - \beta^t} \quad (11)$$

723 to avoid shrinking the step size excessively. In AdaMuon, however, the variance-adaptive update
724

$$725 \widehat{\mathbf{O}}_t = \mathbf{O}_t \oslash (\mathbf{V}_t + \varepsilon \mathbf{1}) \quad (12)$$

726 is immediately followed by an RMS alignment step

$$727 \tilde{\mathbf{O}}_t = \gamma \widehat{\mathbf{O}}_t, \quad \gamma = \frac{0.2 \cdot \sqrt{mn}}{\|\widehat{\mathbf{O}}_t\|_F}, \quad (13)$$

729 which rescales the update to match a fixed target RMS magnitude (here, 0.2, matching Adam's
730 typical update norm). If \mathbf{V}_t is biased by a constant factor c (i.e., $\mathbf{V}_t \approx c \cdot \mathbf{V}_t^{\text{original}}$), then
731

$$732 \widehat{\mathbf{O}}_t \propto \frac{1}{\sqrt{c}}, \quad \gamma \propto \sqrt{c}, \quad (14)$$

734 and the scaling factor γ cancels the bias exactly. Thus, the RMS-alignment step inherently removes
735 any constant multiplicative bias in \mathbf{V}_t , making explicit bias correction unnecessary while keeping
736 the update magnitude consistent with Adam.

737 By the way, AdaMuon does not apply bias correction to its first-momentum buffer \mathbf{M}_t . Any constant
738 multiplicative factor c in \mathbf{M}_t has no effect on the normalized direction, because
739

$$740 \text{polar}(c \mathbf{M}_t) = \text{polar}(\mathbf{M}_t). \quad (15)$$

741 Thus, bias in the magnitude of \mathbf{M}_t is inherently removed by the orthogonalization step, making
742 explicit first-momentum bias correction unnecessary.
743

744 C CONVERGENCE ANALYSIS
745

746 We analyze AdaMuon under standard smooth nonconvex assumptions. Weight decay is omitted
747 ($\lambda = 0$) to focus on the core geometry; adding $\lambda > 0$ modifies constants in a routine way. All
748 expectations are with respect to the algorithmic randomness and the stochastic gradients.
749

750 C.1 ALGORITHMIC DEFINITIONS AND PRELIMINARIES
751

752 In the subsequent analysis, we will no longer use boldface for notation, but instead consistently
753 adopt lightface for convenience. At iteration t , with parameter $W_t \in \mathbb{R}^{n \times m}$, let $G_t = \nabla \mathcal{L}(W_t)$ and
754 let \widehat{G}_t be a stochastic gradient such that $\mathbb{E}[\widehat{G}_t | W_t] = G_t$. AdaMuon forms
755

$$M_t = \beta M_{t-1} + \widehat{G}_t, \quad S_t = \text{Sign}(M_t), \quad O_t = \text{polar}(S_t),$$

756 and the element-wise EMA
 757

$$758 \quad V_t = \beta V_{t-1} + (1 - \beta)(O_t \odot O_t), \quad V_0 = 0.$$

759 Define the normalized direction and RMS alignment factor
 760

$$761 \quad \hat{O}_t = O_t \oslash (\sqrt{V_t} + \varepsilon \mathbf{1}), \quad \gamma_t = \frac{c_{\text{rms}} \sqrt{mn}}{\|\hat{O}_t\|_F},$$

763 with a constant $c_{\text{rms}} = 0.2$ (any fixed positive constant works in the analysis). The update is
 764

$$765 \quad W_{t+1} = W_t - \eta_t \gamma_t \hat{O}_t.$$

767 Write $r = \min\{m, n\}$; then $\|O_t\|_2 = 1$ and $\|O_t\|_F^2 = r$.
 768

769 **Assumption 1** (Smoothness). \mathcal{L} is L -smooth: for all X, Y , $\mathcal{L}(Y) \leq \mathcal{L}(X) + \langle \nabla \mathcal{L}(X), Y - X \rangle +$
 770 $\frac{L}{2} \|Y - X\|_F^2$.
 771

772 **Assumption 2** (Unbiased stochastic gradients). $\mathbb{E}[\hat{G}_t | W_t] = G_t$.
 773

774 **Assumption 3** (Directional alignment after normalization). There exists $\alpha \in (0, 1]$ such that, for all
 775 t , $\langle G_t, \hat{O}_t \rangle \geq \alpha \|G_t\|_F$.
 776

777 **Discussion.** Assumption 3 expresses a positive cosine between the AdaMuon step direction and
 778 the true gradient. It accounts for (i) robustification by $\text{Sign}(\cdot)$, (ii) orthogonal Procrustes alignment
 779 via the polar factor, and (iii) element-wise normalization by $(\sqrt{V_t} + \varepsilon)^{-1}$. In practice, the Newton-
 780 Schulz approximation error can be absorbed into a slightly smaller α .
 781

782 Preliminaries on the preconditioner and RMS alignment

783 **Lemma 1** (Preconditioner bounds and consequences). Entrywise, $0 \leq (V_t)_{ij} \leq 1$ for all t . Hence
 784

$$785 \quad \varepsilon \leq (\sqrt{V_{t,ij}} + \varepsilon) \leq 1 + \varepsilon, \quad \frac{1}{1 + \varepsilon} \leq (\sqrt{V_t} + \varepsilon \mathbf{1})_{ij}^{-1} \leq \frac{1}{\varepsilon}.$$

786 Consequently,

$$787 \quad \|\hat{O}_t\|_F = \|O_t \oslash (\sqrt{V_t} + \varepsilon \mathbf{1})\|_F \leq \frac{1}{\varepsilon} \|O_t\|_F = \frac{\sqrt{r}}{\varepsilon},$$

788 and therefore

$$789 \quad \gamma_t = \frac{c_{\text{rms}} \sqrt{mn}}{\|\hat{O}_t\|_F} \geq c_{\text{rms}} \sqrt{\frac{mn}{r}} \varepsilon = \underline{\gamma}.$$

790 *Proof.* Since $O_t \odot O_t \in [0, 1]^{n \times m}$ and $V_0 = 0$, the recursion $V_t = \beta V_{t-1} + (1 - \beta)(O_t \odot O_t)$
 791 implies by induction $0 \leq V_t \leq \mathbf{1}$ entrywise. The stated bounds on $\sqrt{V_t} + \varepsilon$ and its inverse follow.
 792 Then $\|\hat{O}_t\|_F \leq \varepsilon^{-1} \|O_t\|_F = \sqrt{r}/\varepsilon$, implying the lower bound on γ_t . \square

793 **Lemma 2** (RMS alignment fixes the step norm). For all t , $\|\gamma_t \hat{O}_t\|_F = c_{\text{rms}} \sqrt{mn}$.
 794

795 *Proof.* Immediate from the definition of γ_t . \square

801 C.2 ONE-STEP PROGRESS

802 **Proposition 1** (One-step inequality). Under Assumption 1,

$$803 \quad \mathcal{L}(W_{t+1}) \leq \mathcal{L}(W_t) - \eta_t \gamma_t \langle G_t, \hat{O}_t \rangle + \frac{L}{2} \eta_t^2 \|\gamma_t \hat{O}_t\|_F^2. \quad (16)$$

804 If Assumption 3 holds, then

$$805 \quad \mathcal{L}(W_t) - \mathcal{L}(W_{t+1}) \geq \alpha \underline{\gamma} \eta_t \|G_t\|_F - \frac{L}{2} c_{\text{rms}}^2 mn \eta_t^2. \quad (17)$$

810 *Proof.* By L -smoothness with $Y = W_{t+1} = W_t - \eta_t \gamma_t \hat{O}_t$,

$$812 \quad \mathcal{L}(W_{t+1}) \leq \mathcal{L}(W_t) - \eta_t \gamma_t \langle \nabla \mathcal{L}(W_t), \hat{O}_t \rangle + \frac{L}{2} \eta_t^2 \|\gamma_t \hat{O}_t\|_F^2$$

814 Replace $\nabla \mathcal{L}(W_t)$ by G_t . Using Assumption 3 and Lemma 1, we obtain $-\eta_t \gamma_t \langle G_t, \hat{O}_t \rangle \leq$
 815 $-\alpha \underline{\gamma} \eta_t \|G_t\|_F$. Using Lemma 2 gives $\frac{L}{2} \eta_t^2 \|\gamma_t \hat{O}_t\|_F^2 = \frac{L}{2} c_{\text{rms}}^2 mn \eta_t^2$. \square
 816

817 Let $\Delta_0 = \mathcal{L}(W_1) - \mathcal{L}_*$, where $\mathcal{L}_* = \inf_W \mathcal{L}(W)$. Take expectations of Eq. (17) and sum over
 818 $t = 1, \dots, T$:

$$820 \quad \alpha \underline{\gamma} \sum_{t=1}^T \eta_t \mathbb{E} \|G_t\|_F \leq \mathbb{E}[\mathcal{L}(W_1) - \mathcal{L}(W_{T+1})] + \frac{L}{2} c_{\text{rms}}^2 mn \sum_{t=1}^T \eta_t^2 \leq \Delta_0 + K \sum_{t=1}^T \eta_t^2,$$

822 where $K = \frac{L}{2} c_{\text{rms}}^2 mn$.

824 **Theorem 2** (Diminishing steps $\eta_t = \eta_0/\sqrt{t}$). *With $\eta_t = \eta_0/\sqrt{t}$ and $\eta_0 > 0$,*

$$825 \quad \min_{1 \leq t \leq T} \mathbb{E} \|\nabla \mathcal{L}(W_t)\|_F \leq \frac{\Delta_0}{\alpha \underline{\gamma} \sum_{t=1}^T \eta_t} + \frac{K \sum_{t=1}^T \eta_t^2}{\alpha \underline{\gamma} \sum_{t=1}^T \eta_t} = O\left(\frac{\log T}{\sqrt{T}}\right),$$

828 since $\sum_{t=1}^T \eta_t \geq 2\eta_0(\sqrt{T} - 1)$ and $\sum_{t=1}^T \eta_t^2 \leq \eta_0^2(1 + \ln T)$.

829 **Theorem 3** (Constant steps $\eta_t \equiv \eta$). *With $\eta_t \equiv \eta > 0$,*

$$831 \quad \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla \mathcal{L}(W_t)\|_F \leq \frac{\Delta_0}{\alpha \underline{\gamma} T \eta} + \frac{K}{\alpha \underline{\gamma}} \eta \xrightarrow{T \rightarrow \infty} \frac{K}{\alpha \underline{\gamma}} \eta.$$

834 C.3 PL-BASED CONVERGENCE

836 Assume the Polyak-Lojasiewicz (PL) condition:

837 **Assumption 4 (PL).** *There exists $\mu > 0$ such that $\frac{1}{2} \|G_t\|_F^2 \geq \mu(\mathcal{L}(W_t) - \mathcal{L}_*)$ for all t .*

839 From Eq. (17) with constant step $\eta_t \equiv \eta$ and Lemma 1, we have

$$840 \quad \mathcal{L}(W_{t+1}) - \mathcal{L}_* \leq \mathcal{L}(W_t) - \mathcal{L}_* - \alpha \underline{\gamma} \eta \|G_t\|_F + K \eta^2.$$

842 Using PL, $\|G_t\|_F \geq \sqrt{2\mu} \sqrt{\mathcal{L}(W_t) - \mathcal{L}_*}$, hence

$$843 \quad x_{t+1} \leq x_t - a\sqrt{x_t} + b, \quad x_t = \mathcal{L}(W_t) - \mathcal{L}_*, \quad a = \alpha \underline{\gamma} \eta \sqrt{2\mu}, \quad b = K \eta^2. \quad (18)$$

845 **Lemma 3** (limit superior bound). *For any $\varepsilon > 0$, there exists T such that $x_t \leq (\frac{b}{a} + \varepsilon)^2$ for all
 846 $t \geq T$. In particular, $\limsup_{t \rightarrow \infty} x_t \leq \left(\frac{b}{a}\right)^2$.*

848 *Proof.* Fix $\varepsilon > 0$ and put $u = \frac{b}{a} + \varepsilon$. If $x_t \geq u^2$, then

$$850 \quad a\sqrt{x_t} - b \geq a u - b = a\varepsilon,$$

851 so

$$853 \quad x_{t+1} \leq x_t - (a\sqrt{x_t} - b) \geq a\varepsilon \leq x_t - a\varepsilon.$$

854 Thus whenever x_t lies above u^2 , it decreases by at least a fixed margin $a\varepsilon$. Hence this can only
 855 happen finitely many times: after some T , we must have $x_t < u^2$ for all $t \geq T$. Because $\varepsilon > 0$ is
 856 arbitrary, $\limsup_{t \rightarrow \infty} x_t \leq (b/a)^2$. \square

858 Based on Lemma 3, this recursion implies x_t decreases monotonically until it enters the interval
 859 $[0, (b/a)^2]$ and then remains there. In particular,

$$860 \quad \limsup_{t \rightarrow \infty} \mathbb{E}[\mathcal{L}(W_t) - \mathcal{L}_*] \leq \frac{K^2}{2\mu \alpha^2 \underline{\gamma}^2} \eta^2.$$

863 Thus, under PL and the cosine-alignment Assumption 3, **AdaMuon converges to an $O(\eta^2)$ neighborhood**.

864 C.4 CONVERGENCE SPEED (HITTING TIME TO THE $O(\eta^2)$ EIGHBORHOOD)
865866 Recall the recursion $x_{t+1} \leq x_t - a\sqrt{x_t} + b$ with $a = \alpha \underline{\gamma} \eta \sqrt{2\mu}$ and $b = K\eta^2$. For any $\delta \in (0, 1]$,
867 define the target radius

868
$$x_\delta = (1 + \delta)^2 \left(\frac{b}{a} \right)^2 = (1 + \delta)^2 \frac{K^2}{2\mu \alpha^2 \underline{\gamma}^2} \eta^2.$$

870

871 Choosing $\varepsilon = \delta \frac{b}{a}$ in Lemma 3, whenever $x_t \geq x_\delta$ we have $x_{t+1} \leq x_t - a\varepsilon = x_t - \delta b$, i.e. the loss
872 gap decreases by at least $\delta b = \delta K\eta^2$ per iteration. Hence the number of iterations needed to enter
873 the $(1 + \delta)$ -inflated $O(\eta^2)$ neighborhood satisfies

874
$$T_{\text{hit}}(\delta) \leq \max \left\{ 0, \left\lceil \frac{x_1 - x_\delta}{\delta b} \right\rceil \right\} = \mathcal{O} \left(\frac{1}{\delta \eta^2} \right),$$

875

876 where $x_1 = \mathcal{L}(W_1) - \mathcal{L}_*$. In particular, to enter the radius $4(b/a)^2$ (i.e. $\delta = 1$) we have $T_{\text{hit}}(1) \leq$
877 $(x_1 - 4(b/a)^2)/b = \mathcal{O}(1/\eta^2)$. Combining with $\limsup_{t \rightarrow \infty} x_t \leq (b/a)^2$ shows a standard trade-
878 off: **larger η reduces T_{hit} as $\mathcal{O}(1/\eta^2)$ but enlarges the asymptotic neighborhood as $\mathcal{O}(\eta^2)$.**879 **Optional: linear rate under a stronger alignment.** If, in addition to Assumption 3, there exists
880 $\kappa > 0$ such that

881
$$\langle G_t, \hat{O}_t \rangle \geq \kappa \|G_t\|_F^2 \quad \text{for all } t, \quad (19)$$

882

883 then the one-step bound becomes

884
$$\mathcal{L}(W_{t+1}) - \mathcal{L}_* \leq \mathcal{L}(W_t) - \mathcal{L}_* - \kappa \underline{\gamma} \eta \|G_t\|_F^2 + K\eta^2.$$

885

886 By PL, $\|G_t\|_F^2 \geq 2\mu(\mathcal{L}(W_t) - \mathcal{L}_*)$, so for any $\eta \in (0, \eta_{\max}]$, $\eta_{\max} = \frac{1}{2\mu \kappa \underline{\gamma}}$,

887
$$\mathbb{E}[\mathcal{L}(W_{t+1}) - \mathcal{L}_*] \leq (1 - \rho) \mathbb{E}[\mathcal{L}(W_t) - \mathcal{L}_*] + K\eta^2, \quad \rho := 2\kappa \underline{\gamma} \mu \eta \in (0, 1).$$

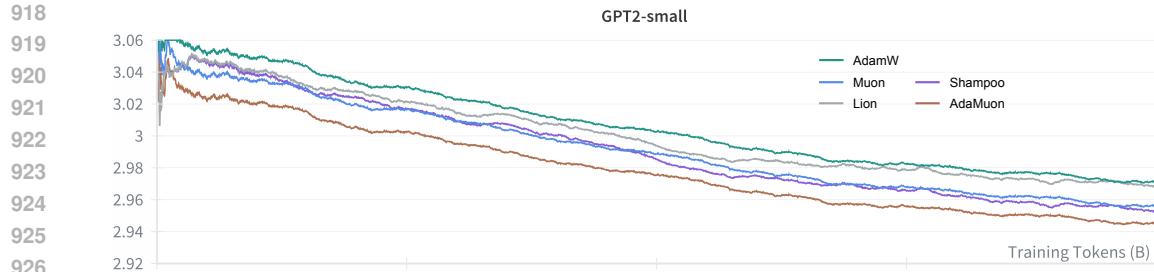
888

889 Therefore, AdaMuon enjoys *linear convergence* to an $\mathcal{O}(\eta^2)$ neighborhood:

890
$$\mathbb{E}[\mathcal{L}(W_t) - \mathcal{L}_*] \leq (1 - \rho)^t (\mathcal{L}(W_1) - \mathcal{L}_*) + \frac{K}{\rho} \eta^2.$$

891

892 If the stronger directional condition $\langle G_t, \hat{O}_t \rangle \geq \kappa \|G_t\|_F^2$ holds, then under PL we obtain a linear
893 contraction $\mathbb{E}[\mathcal{L}(W_{t+1}) - \mathcal{L}_*] \leq (1 - \rho) \mathbb{E}[\mathcal{L}(W_t) - \mathcal{L}_*] + K\eta^2$ with $\rho = 2\kappa \underline{\gamma} \mu \eta$, i.e. iteration
894 complexity $T = \mathcal{O}(\frac{1}{\eta} \log \frac{1}{\varepsilon})$ to reach an $\mathcal{O}(\eta^2)$ neighborhood.906 Figure 5: Results of AdamW and AdaMuon when training DeepSeek V3 models.
907908 D MORE EXPERIMENTS
909910 D.1 MOE ARCHITECTURE
911912 To further demonstrate the effectiveness of AdaMuon, we evaluate it on a DeepSeek V3 (DSv3)
913 (DeepSeek-AI, 2024) model. We modify the original configurations to obtain an MoE model of total
914 1.3B parameters, with 0.11B parameter activation. The training dataset used for DSv3 is the same
915 as that used for training Qwen models. The batch size is set to 1024, with the sequence length 8192.
916 The learning rate is set to 4.2×10^{-4} . We use 16.8B tokens for warmup, and continue train the model
917 with total 300B tokens. The training loss curve are shown in the Fig. 5. Obviously, AdaMuon also
918 performs well on MoE model.



918
919
920
921
922
923
924
925
926
927
928
929 Figure 6: Results of AdamW, Muon, Shampoo, Lion, and AdaMuon when training GPT2-Small
930 model.
931
932
933

D.2 MORE BASELINES

934 In the main text we compared Adam (a canonical baseline) and Muon (the Kimi implementation re-
935 garded as a current strong optimizer). To broaden the comparison, we additionally evaluate Shampoo
936 Gupta et al. (2018) and Lion Chen et al. (2023) under exactly the same training recipe on GPT2-
937 Small with learning rate 6×10^{-4} . For both added baselines we adopt the authors’ recommended
938 default hyper-parameters without bespoke tuning, mirroring our fairness protocol in the main ex-
939 periments. The resulting loss-vs-tokens and wall-clock-to-target curves are reported in Fig. 6. We
940 observe that Shampoo is slightly stronger than Muon in this regime—intuitively reasonable because
941 Muon can be viewed as Shampoo variant without explicit momentum accumulation. Nevertheless,
942 AdaMuon retains a clear margin over Shampoo and all other baselines clearly, which further shows
943 the effectiveness of AdaMuon.
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971