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ABSTRACT

We propose AdaMuon, a novel optimizer that combines element-wise adaptivity
with orthogonal updates for large-scale neural network training. AdaMuon incor-
porates two tightly coupled mechanisms: (1) an element-wise second momentum
estimator applied to orthogonalized update directions, and (2) a sign-stabilized
orthogonal update, where the momentum is first sign-transformed before orthogo-
nalization. These two components jointly enable variance-adaptive scaling while
maintaining stable update geometry. In addition, AdaMuon employs an RMS-
aligned rescaling strategy to match the root-mean-square update magnitude to
Adam, allowing direct reuse of existing learning rate schedules without extra tun-
ing. Experiments demonstrate that AdaMuon not only maintains stability but can
surpass Adam by more than 40% training efficiency in large-scale scenarios.

1 INTRODUCTION

Optimization algorithms are a cornerstone of modern deep learning, directly shaping training dy-
namics and influencing both convergence speed and generalization performance. As model scales
have grown to billions or even trillions of parameters (Brown et al., 2020; Chowdhery et al., 2023;
Touvron et al., 2023; Liu et al., 2024b; Moonshot, 2025), optimizers face increasingly heteroge-
neous gradient landscapes and complex parameter geometries. Adaptive methods (Duchi et al.,
2011; Tieleman, 2012; Loshchilov & Hutter, 2017), exemplified by Adam (Kingma & Ba, 2014),
have become the de facto choice for large-scale training owing to their variance-based step size
control and ease of tuning. However, over a decade after its introduction, the field is witnessing a
growing demand for a new generation of optimizers that are better aligned with the computational
and statistical challenges of training modern large foundation models.

Muon (Jordan et al., 2024) has been introduced as a representative of this emerging direction.
It applies polar decomposition to transform raw momentum matrices into spectrally normalized,
direction-only updates. This orthogonalization yields improved stability for large-scale two-
dimensional parameter blocks such as transformer weight matrices (Liu et al., 2025; Shah et al.,
2025; Chen et al., 2025; Tveit et al., 2025), and has already been deployed in ultra-scale train-
ing, including GLM-4.5 (Zeng et al., 2025) with 355B parameters and KIMI Moonshot (Moonshot,
2025) with over 1T parameters. It is widely regarded as a strong candidate for the next-generation
optimizer that could potentially replace Adam in large-scale model training.

Building on this momentum, we aim to push the boundary of optimizers toward a paradigm that not
only preserves the well-conditioned, geometry-aware updates of Muon but also adapts to the diverse
statistical characteristics of individual coordinates—combining the efficiency of first-order methods
with the robustness of second-order adaptivity. This motivation leads us to propose AdaMuon,
an initial step toward this vision. AdaMuon incorporates element-wise variance adaptation into
orthogonal updates through two tightly coupled mechanisms: an element-wise second momentum
estimator applied after orthogonalization, and a sign-stabilized orthogonal update. Together with
an RMS-aligned rescaling strategy for seamless integration with existing learning rate schedules,
these components enable AdaMuon to unify matrix-level stability and coordinate-wise adaptivity,
offering a principled path toward the next generation of large-scale optimizers. Experiments show
that AdaMuon not only achieves stable convergence but also improves training efficiency by more
than 40% compared to Adam in large-scale scenarios.

In the remaining of this paper, Sec. 2 reviews Muon and its extensions, along with the necessity and
challenges of incorporating second momentum estimation; Sec. 3 presents the AdaMuon algorithm
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in detail; and Sec. 4 demonstrates that AdaMuon consistently outperforms other methods across a
variety of models and datasets. Overall, we show that AdaMuon is a versatile algorithm that scales
effectively to large-scale models.

Algorithm 1 The AdaMuon Optimizer
Input: Initial 2D-weights W0 ∈ Rn×m, loss function L, learning rate η, weight decay λ, mo-
mentum β, Newton–Schulz steps T , small constant ε
Output: Updated weights W
Initialize first momentum M0 ← 0, second momentum V0 ← 0
for each iteration t = 1, 2, . . . do

Compute gradient: Gt = ∇WtL(Wt)
Update first momentum: Mt = β ·Mt−1 +Gt

Compute sign-stabilized orthogonal direction: Ot = Newton–Schulz(Sign(Mt), T )
Update second momentum: Vt = β ·Vt−1 + (1− β) ·Ot ⊙Ot

Apply second momentum update: Ôt = Ot ⊘ (
√
Vt + ε · 1).

RMS-aligned: γt = 0.2 ·
√
mn/∥Ôt∥F

Update weights: Wt+1 = Wt − η(γtÔt + λWt)
end for

2 PRELIMINARY

2.1 MUON OPTIMIZER

Muon (Jordan et al., 2024) is a recently proposed optimization method designed for parameter ten-
sors that can be represented as matrices. At iteration t, given the current weight matrix Wt ∈ Rn×m

and its gradient Gt, momentum β, and learning rate η, Muon updates parameters according to

Mt = βMt−1 +Gt,

Ot = Newton–Schulz(Mt, T ),

Wt+1 = Wt − ηOt.

(1)

where Mt denotes the momentum buffer at step t, initialized as a zero matrix for t = 0. The
Newton–Schulz step (Bernstein & Newhouse, 2024) approximates the polar decomposition Ot of
Mt, which corresponds to Ot = UVT in the singular value decomposition (SVD) Mt = USVT. T
in Eq. (1) denotes the number of iteration steps. This approximation avoids the high computational
cost of a full SVD, and preserves the update direction while removing anisotropic scaling.

Specifically, Newton-Schulz step begins by normalizing the momentum matrix: X0 = Mt

∥Mt∥F
.

Then, for each iteration k, Xk is updated from Xk−1 as

Xk = aXk−1 + b(Xk−1X
T
k−1)Xk−1 + c(Xk−1X

T
k−1)

2Xk−1, (2)

where a, b, and c are iteration coefficients, and XT is the output after T steps. Convergence requires
tuning a, b, and c so that the polynomial f(x) = ax + bx3 + cx5 has a fixed point close to 1.
Following Jordan et al. (2024), we adopt a = 3.4445, b = −4.7750, c = 2.0315, and T = 5, which
accelerate convergence for small singular values while maintaining stability.

2.2 SCALING UP FOR MUON

In practice for scaling up, Muon faces two practical challenges. First, the root-mean-square (RMS)
magnitude of the weight matrices can become excessively large, exceeding the high-precision range
of bf16, which is harmful. Second, Muon is applied only to two-dimensional parameters (e.g.,
weight matrices), while one-dimensional parameters (e.g., biases) are still optimized with Adam,
necessitating separate learning rates and tuning complexity into existing pipelines.

To address address both issues, Liu et al. (2025) propose to control the RMS of Muon’s weights via
weight decay, and introducing a scaling factor γ = 0.2

√
max(m,n) to match the RMS norm of

2
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Muon’s updates to that of Adam, thereby enabling a unified learning rate schedule. The resulting
update rule is

Wt+1 = Wt − η · (γOt + λWt), (3)

where λ is the weight decay coefficient. This simple yet effective adjustment stabilizes the training
process while enabling Muon and Adam to share the same learning rate schedule, thereby allowing
seamless integration into existing optimization pipelines.

2.3 SECOND-MOMENTUM IN MUON: NECESSITY AND CHALLENGES

2.3.1 NECESSITY

Newton’s method leverages curvature via the inverse Hessian to obtain locally optimal update di-
rections, but for large-scale models this is impractical. Adaptive optimizers such as Adam and RM-
SProp approximate curvature through exponential moving averages of squared gradients, enabling
variance-based step size adjustment. Similarly, Muon’s polar decomposition inherently captures
matrix-level second-order structure. From

Ot = (MtM
T
t )

−1/2Mt = Mt(M
T
t Mt)

−1/2, (4)

it follows that Muon, like Shampoo (Gupta et al., 2018), encodes row–column second-order inter-
actions without explicitly storing full covariance matrices.

However, this global orthogonalization does not model the local variance structure of individual
parameters. In real-world training, gradient distributions are often highly anisotropic at the element
level—some entries exhibit large fluctuations, while others remain consistently stable. Applying a
uniform update magnitude in such cases risks overshooting in noisy coordinates and under-updating
informative but low-variance ones. This mismatch might slow convergence, reduce stability, and
limit Muon’s effectiveness in tasks with heterogeneous gradient statistics.

2.3.2 CHALLENGES

To this end, we consider integrating element-wise second-momentum estimation into Muon. The
most straightforward idea is to extend Muon by directly appending a second momentum accumula-
tor, and then scaling the orthogonal update Ot with its variance estimate. However, this introduces
two key design challenges:

• First, determining which component to accumulate. In Adam, the second momentum
is naturally accumulated on the raw gradient Gt, but in Muon the update direction Ot is
obtained through polar decomposition of the momentum buffer Mt. It remains unclear
whether variance tracking should be applied to Gt, Mt, or Ot, since each choice leads to
different stability and normalization behaviors.

• Second, achieving a normalization effect comparable to Adam. In Adam, both the first
and second moments are computed from the same gradient signal, making their ratio an
effective per-element normalization of step size. In Muon, however, Mt may fluctuate
substantially during the early and middle stages of training, causing the resulting Ot to
also vary dramatically across coordinates. Consequently, no matter whether the second
momentum is accumulated on Gt, Mt, or Ot, the resulting statistics remain unstable and
fail to provide a reliable normalization effect, even potentially amplifying noise.

A careful resolution of these challenges is essential to seamlessly integrate variance adaptivity into
Muon without undermining its orthogonalization benefits or its inherent scale-invariant properties.

3 ADAMUON

To address the aforementioned challenges, in this section, we introduce AdaMuon, a novel opti-
mizer that retains the advantages of Muon’s orthogonal updates while automatically adjusting the
scaling of individual elements. AdaMuon integrates two complementary mechanisms, element-
wise second momentum estimation and sign-stabilized orthogonal updates, to simultaneously
capture accurate second momentum statistics and normalize the update magnitude.

3
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3.1 ELEMENT-WISE SECOND MOMENTUM ESTIMATION

To address the first challenge, we choose to accumulate the second-momentum term on Ot, rather
than on the raw gradient Gt or the momentum buffer Mt. This design is principled for two reasons.
First, the raw gradient Gt carries ill-conditioned scaling and directional noise that Muon’s polar de-
composition is specifically designed to eliminate, making it unsuitable for stable variance tracking.
Second, while Mt provides a temporally smoothed gradient, it remains unstable at the element level
during the early and middle stages of training. Moreover, since the final update direction is derived
from Ot, accumulating variance on Mt introduces a mismatch with the rescaling basis used in the
update. In contrast, Ot provides a geometrically normalized and stable descent direction, offering a
cleaner basis for variance estimation.

Formally, let Ot denote the orthogonalized update matrix obtained via Newton–Schulz iteration. We
maintain an exponential moving average of its element-wise squared values:

Vt = β ·Vt−1 + (1− β) ·Ot ⊙Ot, (5)

where ⊙ denotes Hadamard product. Here, Vt serves as the second momentum buffer for the or-
thogonalized update, analogous to the variance accumulator in Adam. The coefficient β is inherited
directly from Muon’s momentum parameter, ensuring that AdaMuon does not introduce any addi-
tional hyper-parameters. The variance-normalized update direction is then obtained as

Ôt = Ot ⊘ (
√

Vt + ε · 1), (6)

where ⊘ denotes element-wise division,
√
Vt represents the element-wise square root of the vari-

ance estimates, 1 is an all-ones matrix of the same shape as Ot, and ε is a small positive constant
added to prevent the denominator from being 0. This step adaptively reweighs each element of the
orthogonalized direction according to its estimated variance, suppressing noisy coordinates while
preserving Muon’s globally coherent update geometry.

3.2 STABILIZING ORTHOGONAL UPDATES VIA SIGN TRANSFORMATION

While the element-wise second-momentum estimator effectively captures variance in principle, it
becomes less suitable during the early to mid stages of training. In this regime, gradients are unstable
and may undergo large fluctuations, causing the momentum buffer Mt itself to vary substantially at
the element level. Consequently, the polar decomposition produces orthogonal updates Ot that also
fluctuate dramatically across coordinates. Accumulating such unstable Ot into a second momentum
term fails to yield meaningful normalization and may even introduce adverse effects by amplifying
noise rather than stabilizing it.

We hope that Ot can be both utilized in second momentum scaling and stable enough for variance-
based normalization. To achieve this, we propose to first apply a transformation f to Mt, so that

Ot = g(f(Mt)), g(·) = polar(·). (7)

Recall that g(cMt) = g(Mt) for ∀c > 0, which indicates that g is globally scale-invariant, preserv-
ing only the overall directional information of Mt. However, g alone does not stabilize element-wise
fluctuations. f is therefore designed to complement g: while g enforces global directionality, f op-
erates element-wise to preserve coordinate-level orientation while mitigating volatility.
Theorem 1 (Characterization of admissible element-wise transformations). Let f : R → R be a
function applied element-wise to Mt before the polar operator g(·) = polar(·). Suppose f satisfies
the following conditions:

1. (Scale invariance) f(cx) = f(x) for all x ∈ R and c > 0.

2. (Sign consistency) For x ̸= 0, sign(f(x)) = sign(x).

3. (Odd symmetry) f(−x) = −f(x).

4. (Bounded range) There exists C <∞ such that |f(x)| ≤ C for all x.

Then f must be of the form f(x) = c · sign(x), c > 0. Moreover, since g is globally scale-invariant,
the multiplicative constant c is immaterial, and the unique canonical choice is f(x) = sign(x).

4
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The proof of Theorem 1 is shown in Appendix. A. Condition (1) ensures that per-coordinate mag-
nitudes do not reintroduce instability when passed into g, aligning with g’s own scale-invariance
at the global level. Conditions (2) and (3) constrain the directional behavior of f , while Condition
(4) guarantees value stability. Taken together, f(x) = sign(x), which satisfies all four desiderata.
This yields a stabilized input to g, ensuring that Ot remains both orthogonal and robust enough for
variance-based normalization.

3.3 RMS-ALIGNED RESCALING

To maintain compatibility with Adam’s learning rate schedules, we scale the RMS norm of
AdaMuon’s update Ôt (after second momentum estimation in Eq. (6)) to match Adam’s empiri-
cal RMS value of ≈ 0.2 (Liu et al., 2025), yielding

γt =
0.2

RMS(Ôt)
=

0.2
√
mn

∥Ôt∥F
. (8)

Finally, the rescaled update is applied to the parameters as

Wt+1 = Wt − η
(
γtÔt + λWt

)
, (9)

The pseudo-code of AdaMuon is shown in Alg. 1. In addition, we provide further discussions on the
omission of bias correction in the second momentum estimation (Appendix B), and the convergence
analysis of AdaMuon (Appendix C).

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Baselines. We compare AdaMuon against AdamW (Loshchilov & Hutter, 2017) and Muon (Jor-
dan et al., 2024). Given Muon’s strong performance in large-scale training, we consider these two
baselines sufficient to demonstrate the effectiveness of AdaMuon. Muon here is specifically the
Kimi-variant Liu et al. (2025). Since Muon operates only on matrices and applies a separate Adam
optimizer for the remaining parameters, we set the learning rates of both optimizers to be the same.
For AdamW, the first and second momentum coefficients are set to 0.9 and 0.95, respectively; Muon
uses β = 0.95, and AdaMuon uses β = 0.95 and ϵ = 10−8. The weight decay λ for these optimizers
are set to 0.1.

Model Architectures. We evaluate AdaMuon on two representative model families: GPT-2 and
Qwen2.5 models. All GPT-2 experiments are based on the nanoGPT (Karpathy, 2022) implemen-
tation of the GPT-2 architecture (Radford et al., 2019). We consider four scales—Small (125M),
Medium (355M), Large (770M), and XL (1.5B). Following the default configurations in nanoGPT,
we remove bias terms in all linear layers, use the GeLU activation function, and set the dropout
rate to 0.0. Two modifications are applied: (1) replacing the original learned positional embed-
ding (WPE) with Rotary Positional Embedding (RoPE) (Su et al., 2024), and (2) substituting the
cosine learning rate schedule with the warmup-stable policy (i.e., the schdule that omits the decay
phase in WSD (Hu et al., 2024) schedule entirely: after warmup, the learning rate is held constant).
For Qwen2.5 (Qwen et al., 2025), we adopt the 1.5B and 7B dense model following the official
architecture specifications.

Datasets. GPT-2 models are trained on the OpenWebText dataset (Gokaslan et al., 2019), which
contains approximately 9B training tokens and 4.4M validation tokens, all tokenized with the stan-
dard GPT-2 tokenizer. For Qwen2.5 models, the dataset is collected from online corpora, with low-
quality content removed through a combination of manually filtering rules and LLM-based quality
assessment. Beyond general text, it contains high-quality code, math, and multilingual content.

Training Details. We mainly focus on the pre-training of the model. For GPT-2 experiments, all
models are trained on approximately 50B (49.2B) training tokens for 100K steps, with a context
length of 1024 and a warmup period of 2K steps. For Qwen2.5 experiments, 1.5B model is trained
on 100B tokens with a context length of 8196 with 6e-4 learning rate, and 7B model is trained

5
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on 235B tokens. For 1.5B model, we use 8.4B tokens for warmup, and 16.8B for 7B model. All
the other hyper-parameters follow the respective official configurations. All other training settings,
unless otherwise specified, are kept consistent across methods.

For GPT runs, we fix the effective batch size (EBS) to 60 sequences. By model size (Small to XL),
we use the following pairs (batch size (bs), gradient accumulate steps (gas)) so that EBS = bs× gas
= 60: (15, 4), (15, 4), (5, 12), (5, 12). For Qwen-1.5B, we use global batch size (gbs) = 512 with
micro-batch size (mbs) = 2; for Qwen-7B, gbs = 1024, mbs = 2.

Table 1: Training efficiency of Muon and AdaMuon over AdamW. All improvements are computed
relative to the AdamW baseline (49.2B training tokens).

Method LR GPT-2 Small GPT-2 Medium GPT-2 Large GPT-2 XL
Train Val Train Val Train Val Train Val

Muon
6× 10−4 25.46% 21.57% 22.10% 23.34% 28.56% 24.71% 27.32% 28.24%

AdaMuon 34.25% 33.73% 30.63% 31.96% 37.33% 31.34% 35.82% 31.04%

Muon
1× 10−3 27.65% 25.46% 34.11% 35.26% 42.14% 35.87% 49.60% 43.72%

AdaMuon 37.33% 38.81% 40.07% 39.84% 48.32% 42.22% 51.76% 46.36%
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Figure 1: Training and validation loss comparisons of AdamW, Muon, and AdaMuon.

Evaluation Metric. We measure training efficiency improvement over Adam. For each method,
we record the number of tokens required to reach the same training/validation loss achieved by
Adam after training on a tokens. If Muon or AdaMuon requires b tokens to match this loss, the
efficiency improvement is computed as a−b

a × 100%. This metric reflects the proportion of training
tokens saved relative to Adam while achieving equivalent performance.

Evaluation Benchmark. We evaluate the Qwen model on a broad spectrum of 15 benchmarks.
For English language understanding and reasoning, we adopt MMLU (Hendrycks et al., 2020),
MMLU-Pro (Wang et al., 2024), TriviQA (Joshi et al., 2017), ARC-C (Clark et al., 2018), GPQA
(Rein et al., 2024), OBQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande
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(Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), and CommomsenseQA (Talmor et al., 2018).
For code generation, we evaluate on the MBPP (Austin et al., 2021). For mathematical reasoning,
we use the GSM8k (Cobbe et al., 2021). For Chinese language understanding and reasoning, we
include CHID (Zheng et al., 2019), CMMLU (Li et al., 2023), and CEval (Huang et al., 2023).

4.2 RESULT

GPT-2 Results. Table 1 summarizes the training efficiency of Muon and AdaMuon under two
learning-rate settings, and Fig. 1 illustrates the corresponding loss–token curves of AdamW, Muon
and AdaMuon. Across all four GPT-2 scales, both Muon and AdaMuon deliver significant efficiency
gains over AdamW, validating the benefit of geometry-preserving updates. Notably, AdaMuon con-
sistently achieves the highest efficiency, regardless of model size or learning rate, demonstrating the
effectiveness of integrating second-moment scaling with RMS-norm alignment. We also note that
for GPT-2 XL with a learning rate of 1×10−3, the efficiency gap is particularly large: in this regime,
AdamW exhibits unstable training with multiple loss spikes, whereas Muon and AdaMuon remain
stable, enabling them to reach the target loss substantially faster

40 50 60 70 80 90 100

Training Efficiency (AdamW 100B tokens)

Time per Iteration (wall-clock time on 16 GPU)

Time to Achieve Same Loss (min)

Muon: 28.7%
AdaMuon: 32.2%

Adam: 7.85s
Muon: 7.94s
AdaMuon: 8.01s

Adam: 3120
Muon: 2249    (27.9% Efficiency)


SavingsAdaMuon: 2158    (30.8% Efficiency)

AdamW

Muon

AdaMuon

Training Efficiency (AdamW 235B tokens)

Time per Iteration (wall-clock time on 16 GPU)

Time to Achieve Same Loss (min)

Muon: 24.8%
AdaMuon: 29.6%

Adam: 15.64s
Muon: 15.76s
AdaMuon: 15.88s

Adam: 7299
Muon: 5530    (24.2% Efficiency)


SavingsAdaMuon: 5218    (28.5% Efficiency)

AdamW

Muon

AdaMuon

210170130

Figure 2: Results of AdamW, Muon, and AdaMuon when training Qwen2.5-1.5B and 7B dense
models.

Qwen2.5 Results. Fig. 2 presents the training results of Qwen2.5. Consistent with the GPT-2
results, AdaMuon exhibits faster convergence than both Muon and AdamW across the entire train-
ing trajectory. In terms of time-to-target reduction, AdaMuon shortens the wall-clock time needed
to reach the same loss by 30.8% compared to Adam and by 2.9% compared to Muon, translating
into substantial savings in large-scale deployments. Moreover, we provide the evaluation results
of Qwen2.5 after 100B-token training on 15 benchmark datasets. As reported in Table 2, models
trained with AdaMuon consistently outperform those trained with Muon and Adam across all eval-
uation metrics, further confirming the effectiveness of our approach in both convergence efficiency
and final task performance.

4.3 ABLATION STUDY

We conduct ablation experiments by selectively removing the sign operation and the second mo-
mentum term, with results summarized in Fig. 3. It can be observed that retaining only the sign

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation of Qwen2.5 models trained by AdamW, Muon and AdaMuon. Abbreviations:
ARC-C = ARC-Challenge, WinoG = WinoGrande, ComQA = CommonsenseQA.

Model Optimizer MMLU MMLU-Pro TriviaQA ARC-C GPQA OBQA HellaSwag WinoG
5-shot 5-shot 5-shot 25-shot 5-shot 5-shot 10-shot 5-shot

1.5B
AdamW 30.67 5.14 20.96 24.40 19.70 37.80 47.69 54.38
Muon 31.05 5.43 23.71 31.96 22.22 37.90 47.85 56.27

AdaMuon 30.70 6.43 23.51 29.90 26.77 39.70 49.68 55.88

7B
AdamW 33.30 7.44 26.16 33.33 28.00 44.44 44.59 58.07
Muon 34.63 6.73 30.42 24.32 28.00 56.35 43.31 58.49

AdaMuon 34.98 10.87 30.22 42.32 32.00 53.70 46.50 58.20

Model Optimizer PIQA ComQA CHID CMMLU CEval MBPP GSM8k Avg.
5-shot 7-shot 5-shot 5-shot 5-shot 3-shot 4-shot

1.5B
AdamW 71.16 22.28 43.96 29.34 31.30 4.80 2.88 29.76
Muon 72.20 26.13 50.55 28.76 29.97 6.00 4.02 31.60

AdaMuon 71.38 28.01 54.70 28.93 31.10 8.20 4.70 32.64

7B
AdamW 73.91 32.68 44.32 31.12 32.49 8.80 5.46 33.61
Muon 76.52 34.15 60.91 32.34 35.05 11.20 10.16 36.17

AdaMuon 72.90 29.25 58.26 32.31 35.86 13.20 10.08 37.38

Muon AdaMuon AdaMuon w/o Sign AdaMuon w/o Second Momentum

8475675950423410 20 30 40

Figure 3: Ablation Study of AdaMuon. We present the training loss curve of GPT-2 Small and
Qwen2.5-1.5B models.

operation still yields lower loss than the original Muon optimizer. This improvement stems from the
fact that sign enhances the stability of the matrix obtained through polar decomposition, thereby
stabilizing the update direction. In contrast, when only the second momentum term is added, the ad-
vantage disappears and Muon even outperforms this variant. This phenomenon is intuitive: directly
accumulating second momentum can partly provide normalization, but since the orthogonal updates
themselves remain unstable, the accumulated variance fails to stabilize training and may even harm
optimization, leading to inferior loss reduction. Finally, when both sign and second momentum are
retained, they complement each other: the former improves stability of the orthogonal update, while
the latter provides effective element-wise normalization, resulting in the best overall performance.

4.4 TRAINING BEHAVIOR

In this subsection, we further analyze the training behavior of the three optimizers. All experiments
are conducted on GPT-2 1.5B with a learning rate of 6 × 10−4. We examine their gradient norms,
parameter update norms, and the evolution of max attention logits across layers.

As shown in Fig. 4, the gradient norms of the three optimizers follow different trajectories. Muon ex-
hibits a gradual upward drift, reflecting increasing gradient variance as training progresses. AdamW
stabilizes quickly, maintaining a relatively flat trajectory with mild fluctuations, which indicates
effective variance control. AdaMuon behaves similarly to AdamW but produces even smoother
updates, highlighting its stronger capability in suppressing short-term oscillations.
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The parameter norms further highlight their divergent behaviors. Both Muon and AdamW eventually
converge to similar magnitudes, with Muon showing a sharper initial rise, consistent with its more
aggressive gradient scaling. AdaMuon consistently produces smaller parameter norm, converging
to a noticeably lower parameter norm. This restrained behavior helps stabilize training, although it
may reduce the optimizer’s ability to fully exploit the model’s capacity compared to Muon or Adam.

Finally, the per-layer max attention logits reveal distinct adaptation patterns. In shallow layers (
Layer 4), Muon steadily reduces the maximum attention logits, while AdamW maintains relatively
high values, indicating stronger localized activations. In mid layers (Layer 25), all optimizers re-
duce logits, but AdaMuon stabilizes earlier, whereas Muon continues a slow decline. In deeper
layers (Layer 45), AdamW sustains substantially higher logits than the others, while both Muon and
AdaMuon settle at lower levels. These results suggest that AdamW encourages deeper specialization
of attention heads, whereas Muon and AdaMuon promote a more uniform redistribution of attention
across layers.

AdamW Muon AdaMuon

Figure 4: Training behavior of AdamW, Muon, and AdaMuon.

In addition, we note that prior work (Liu et al., 2025) reported that Muon tends to increase the max-
imum attention logits. Our findings differ: in the standard multi-head attention (MHA) setting, we
do not observe excessively large logits under Muon. We argue that this discrepancy is not caused by
the optimizer itself, but rather by the model architecture. Specifically, those studies employed vari-
ants with multi-latent attention (Liu et al., 2024a), where the structural design inherently amplifies
logit magnitudes. By contrast, in conventional MHA layers, the effect of Muon on maximum logits
remains moderate and comparable to other optimizers.

4.5 SENSITIVITY ANALYSIS

Table 3: Final training loss of varied β on GPT2-small.
β 0.8 0.9 0.95 0.99

Loss 2.96107 2.95735 2.95521 2.95487

We evaluate AdaMuon’s sensitivity
to the first- and second-momentum
coefficient β on GPT-small with
learning rate 6 × 10−4. Varying β
over a standard range, the final-step
training losses are shown in Table 3,
which cluster tightly, indicating low sensitivity as long as β remains in a reasonable band. Therefore,
no special tuning is required—AdaMuon can directly reuse Muon’s default β (0.95).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

This work presented AdaMuon, a new optimization paradigm that unifies the geometry-aware sta-
bility of Muon with the coordinate-wise adaptivity of variance-based scaling. By integrating a
sign-stabilized orthogonal update, an element-wise second momentum estimator, and an RMS-
aligned rescaling strategy, AdaMuon achieves both well-conditioned matrix-level updates and ro-
bust coordinate-wise adaptation—bridging the gap between efficiency and robustness in large-scale
model training. Extensive experiments on GPT-2 and Qwen2.5 across multiple scales demonstrate
that AdaMuon delivers consistent improvements over Adam and Muon, achieving up to 40% gains
in training efficiency with even superior final performance.

Looking forward, as model sizes and training demands continue to escalate, AdaMuon represents a
promising step toward the next generation of optimizers that can scale efficiently while preserving
stability in increasingly complex optimization landscapes. At the same time, we close with an open
question to the community: how far are we from realizing a truly practical and scalable second-order
optimizer for modern large-scale deep learning?

6 LIMITATION

AdaMuon also has some limitations. First, one additional second-moment buffer introduces more
computation and memory. Second, there is minor per-step runtime overhead from Newton–Schulz
and variance EMA. How to effectively tackle these drawbacks is also interesting, leaving for the
future work.
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A PROOF OF THEOREM 1

Proof. From Condition (2) and (3), f must preserve orientation while being odd, hence f(x) takes
the same sign as x and satisfies f(−x) = −f(x). This constrains f to functions of the form
f(x) = h(|x|) · sign(x) with h : [0,∞) → [0,∞). From (1), for any c > 0, h(c|x|) = h(|x|).
Thus, h is constant on (0,∞), i.e. h(r) = κ for all r > 0. From (4), κ must be finite. Therefore
f(x) = κ · sign(x).
Finally, since g is globally scale-invariant (g(cMt) = g(Mt)), the multiplicative factor κ vanishes
in effect. Hence the canonical representative is f(x) = sign(x).

B WHY OMITTING BIAS CORRECTION IN ADAMUON’S SECOND
MOMENTUM

Unlike Adam, AdaMuon does not perform bias correction on its second-momentum estimation Vt

(line 8 in Algorithm 1). In Adam, the variance estimate is

Vt = βVt−1 + (1− β)Ot ⊙Ot, (10)

which underestimates the true variance in early iterations. This bias must be corrected via

V̂t =
Vt

1− βt
(11)

to avoid shrinking the step size excessively. In AdaMuon, however, the variance-adaptive update

Ôt = Ot ⊘ (Vt + ε1) (12)

is immediately followed by an RMS alignment step

Õt = γ Ôt, γ =
0.2 ·

√
mn

∥Ôt∥F
, (13)

which rescales the update to match a fixed target RMS magnitude (here, 0.2, matching Adam’s
typical update norm). If Vt is biased by a constant factor c (i.e., Vt ≈ c ·Voriginal

t ), then

Ôt ∝
1√
c
, γ ∝

√
c, (14)

and the scaling factor γ cancels the bias exactly. Thus, the RMS-alignment step inherently removes
any constant multiplicative bias in Vt, making explicit bias correction unnecessary while keeping
the update magnitude consistent with Adam.

By the way, AdaMuon does not apply bias correction to its first-momentum buffer Mt. Any constant
multiplicative factor c in Mt has no effect on the normalized direction, because

polar(cMt) = polar(Mt). (15)

Thus, bias in the magnitude of Mt is inherently removed by the orthogonalization step, making
explicit first-momentum bias correction unnecessary.

C CONVERGENCE ANALYSIS

We analyze AdaMuon under standard smooth nonconvex assumptions. Weight decay is omitted
(λ = 0) to focus on the core geometry; adding λ > 0 modifies constants in a routine way. All
expectations are with respect to the algorithmic randomness and the stochastic gradients.

C.1 ALGORITHMIC DEFINITIONS AND PRELIMINARIES

In the subsequent analysis, we will no longer use boldface for notation, but instead consistently
adopt lightface for convenience. At iteration t, with parameter Wt ∈ Rn×m, let Gt = ∇L(Wt) and
let Ĝt be a stochastic gradient such that E[Ĝt |Wt] = Gt. AdaMuon forms

Mt = βMt−1 + Ĝt, St = Sign(Mt), Ot = polar(St),

14
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and the element-wise EMA

Vt = βVt−1 + (1− β)(Ot ⊙Ot), V0 = 0.

Define the normalized direction and RMS alignment factor

Ôt = Ot ⊘
(√

Vt + ε1
)
, γt =

crms
√
mn

∥Ôt∥F
,

with a constant crms = 0.2 (any fixed positive constant works in the analysis). The update is

Wt+1 = Wt − ηt γt Ôt.

Write r = min{m,n}; then ∥Ot∥2 = 1 and ∥Ot∥2F = r.

Assumption 1 (Smoothness). L is L-smooth: for all X,Y , L(Y ) ≤ L(X) + ⟨∇L(X), Y −X⟩+
L
2 ∥Y −X∥2F .

Assumption 2 (Unbiased stochastic gradients). E[Ĝt |Wt] = Gt.

Assumption 3 (Directional alignment after normalization). There exists α ∈ (0, 1] such that, for all
t, ⟨Gt, Ôt⟩ ≥ α ∥Gt∥F .

Discussion. Assumption 3 expresses a positive cosine between the AdaMuon step direction and
the true gradient. It accounts for (i) robustification by Sign(·), (ii) orthogonal Procrustes alignment
via the polar factor, and (iii) element-wise normalization by (

√
Vt + ε)−1. In practice, the Newton–

Schulz approximation error can be absorbed into a slightly smaller α.

Preliminaries on the preconditioner and RMS alignment
Lemma 1 (Preconditioner bounds and consequences). Entrywise, 0 ≤ (Vt)ij ≤ 1 for all t. Hence

ε ≤ (
√

Vt,ij + ε) ≤ 1 + ε,
1

1 + ε
≤ (

√
Vt + ε1)−1

ij ≤ 1

ε
.

Consequently,

∥Ôt∥F =
∥∥Ot ⊘ (

√
Vt + ε1)

∥∥
F
≤ 1

ε
∥Ot∥F =

√
r

ε
,

and therefore

γt =
crms
√
mn

∥Ôt∥F
≥ crms

√
mn

r
ε = γ.

Proof. Since Ot ⊙ Ot ∈ [0, 1]n×m and V0 = 0, the recursion Vt = βVt−1 + (1 − β)(Ot ⊙ Ot)
implies by induction 0 ≤ Vt ≤ 1 entrywise. The stated bounds on

√
Vt + ε and its inverse follow.

Then ∥Ôt∥F ≤ ε−1∥Ot∥F =
√
r/ε, implying the lower bound on γt.

Lemma 2 (RMS alignment fixes the step norm). For all t, ∥γt Ôt∥F = crms
√
mn.

Proof. Immediate from the definition of γt.

C.2 ONE-STEP PROGRESS

Proposition 1 (One-step inequality). Under Assumption 1,

L(Wt+1) ≤ L(Wt) − ηt γt ⟨Gt, Ôt⟩ +
L

2
η2t ∥γtÔt∥2F . (16)

If Assumption 3 holds, then

L(Wt)− L(Wt+1) ≥ αγ ηt ∥Gt∥F −
L

2
c2rms mn η2t . (17)
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Proof. By L-smoothness with Y = Wt+1 = Wt − ηtγtÔt,

L(Wt+1) ≤ L(Wt)− ηtγt⟨∇L(Wt), Ôt⟩+
L

2
η2t ∥γtÔt∥2F

Replace ∇L(Wt) by Gt. Using Assumption 3 and Lemma 1, we obtain −ηtγt⟨Gt, Ôt⟩ ≤
−αγ ηt ∥Gt∥F . Using Lemma 2 gives L

2 η
2
t ∥γtÔt∥2F = L

2 c
2
rmsmnη2t .

Let ∆0 = L(W1) − L⋆, where L⋆ = infW L(W ). Take expectations of Eq. (17) and sum over
t = 1, . . . , T :

αγ

T∑
t=1

ηt E∥Gt∥F ≤ E[L(W1)− L(WT+1)] +
L

2
c2rmsmn

T∑
t=1

η2t ≤ ∆0 +K

T∑
t=1

η2t ,

where K = L
2 c

2
rmsmn.

Theorem 2 (Diminishing steps ηt = η0/
√
t). With ηt = η0/

√
t and η0 > 0,

min
1≤t≤T

E∥∇L(Wt)∥F ≤
∆0

αγ
∑T

t=1 ηt
+

K
∑T

t=1 η
2
t

αγ
∑T

t=1 ηt
= O

( log T√
T

)
,

since
∑T

t=1 ηt ≥ 2η0(
√
T − 1) and

∑T
t=1 η

2
t ≤ η20(1 + lnT ).

Theorem 3 (Constant steps ηt ≡ η). With ηt ≡ η > 0,

1

T

T∑
t=1

E∥∇L(Wt)∥F ≤
∆0

αγ T η
+

K

αγ
η −−−−→

T→∞

K

αγ
η.

C.3 PL-BASED CONVERGENCE

Assume the Polyak-Lojasiewicz (PL) condition:
Assumption 4 (PL). There exists µ > 0 such that 1

2∥Gt∥2F ≥ µ
(
L(Wt)− L⋆

)
for all t.

From Eq. (17) with constant step ηt ≡ η and Lemma 1, we have

L(Wt+1)− L⋆ ≤ L(Wt)− L⋆ − αγ η ∥Gt∥F + K η2.

Using PL, ∥Gt∥F ≥
√
2µ

√
L(Wt)− L⋆, hence

xt+1 ≤ xt − a
√
xt + b, xt = L(Wt)− L⋆, a = αγ η

√
2µ, b = K η2. (18)

Lemma 3 (limit superior bound). For any ε > 0, there exists T such that xt ≤ ( ba + ε)2 for all

t ≥ T . In particular, lim supt→∞ xt ≤
(

b
a

)2

.

Proof. Fix ε > 0 and put u = b
a + ε. If xt ≥ u2, then

a
√
xt − b ≥ a u− b = aε,

so

xt+1 ≤ xt −
(
a
√
xt − b

)
≥ aε ≤ xt − aε.

Thus whenever xt lies above u2, it decreases by at least a fixed margin aε. Hence this can only
happen finitely many times: after some T , we must have xt < u2 for all t ≥ T . Because ε > 0 is
arbitrary, lim supt→∞ xt ≤ (b/a)2.

Based on Lemma 3, this recursion implies xt decreases monotonically until it enters the interval
[0, (b/a)2] and then remains there. In particular,

lim sup
t→∞

E
[
L(Wt)− L⋆

]
≤ K2

2µα2 γ2
η2.

Thus, under PL and the cosine-alignment Assumption 3, AdaMuon converges to an O(η2) neigh-
borhood.
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C.4 CONVERGENCE SPEED (HITTING TIME TO THE O(η2)EIGHBORHOOD)

Recall the recursion xt+1 ≤ xt − a
√
xt + b with a = αγ η

√
2µ and b = Kη2. For any δ ∈ (0, 1],

define the target radius

xδ = (1 + δ)2
(

b
a

)2

= (1 + δ)2
K2

2µα2 γ2
η2.

Choosing ε = δ b
a in Lemma 3, whenever xt ≥ xδ we have xt+1 ≤ xt − aε = xt − δ b, i.e. the loss

gap decreases by at least δ b = δ Kη2 per iteration. Hence the number of iterations needed to enter
the (1 + δ)-inflated O(η2) neighborhood satisfies

Thit(δ) ≤ max

{
0,

⌈
x1 − xδ

δ b

⌉}
= O

( 1

δ η2

)
,

where x1 = L(W1)− L⋆. In particular, to enter the radius 4 (b/a)2 (i.e. δ = 1) we have Thit(1) ≤
(x1 − 4(b/a)2)/b = O(1/η2). Combining with lim supt→∞ xt ≤ (b/a)2 shows a standard trade-
off: larger η reduces Thit as O(1/η2) but enlarges the asymptotic neighborhood as O(η2).

Optional: linear rate under a stronger alignment. If, in addition to Assumption 3, there exists
κ > 0 such that

⟨Gt, Ôt⟩ ≥ κ ∥Gt∥2F for all t, (19)
then the one-step bound becomes

L(Wt+1)− L⋆ ≤ L(Wt)− L⋆ − κ γ η ∥Gt∥2F + K η2.

By PL, ∥Gt∥2F ≥ 2µ (L(Wt)− L⋆), so for any η ∈
(
0, ηmax

]
, ηmax = 1

2µκγ ,

E
[
L(Wt+1)− L⋆

]
≤ (1− ρ)E

[
L(Wt)− L⋆

]
+K η2, ρ := 2κ γ µ η ∈ (0, 1).

Therefore, AdaMuon enjoys linear convergence to an O(η2) neighborhood:

E
[
L(Wt)− L⋆

]
≤ (1− ρ)t

(
L(W1)− L⋆

)
+

K

ρ
η2.

If the stronger directional condition ⟨Gt, Ôt⟩ ≥ κ∥Gt∥2F holds, then under PL we obtain a linear
contraction E[L(Wt+1) − L⋆] ≤ (1 − ρ)E[L(Wt) − L⋆] + Kη2 with ρ = 2κ γ µ η, i.e. iteration
complexity T = O

(
1
η log 1

ε

)
to reach an O(η2) neighborhood.

AdamW
AdaMuon

285268251234

Figure 5: Results of AdamW and AdaMuon when training DeepSeek V3 models.

D MORE EXPERIMENTS

D.1 MOE ARCHITECTURE

To further demonstrate the effectiveness of AdaMuon, we evaluate it on a DeepSeek V3 (DSv3)
(DeepSeek-AI, 2024)model. We modify the original configurations to obtain an MoE model of total
1.3B parameters, with 0.11B parameter activation. The training dataset used for DSv3 is the same
as that used for training Qwen models. The batch size is set to 1024, with the sequence length 8192.
The learning rate is set to 4.2×10−4. We use 16.8B tokens for warmup, and continue train the model
with total 300B tokens. The training loss curve are shown in the Fig. 5. Obviously, AdaMuon also
performs well on MoE model.
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Figure 6: Results of AdamW, Muon, Shampoo, Lion, and AdaMuon when training GPT2-Small
model.

D.2 MORE BASELINES

In the main text we compared Adam (a canonical baseline) and Muon (the Kimi implementation re-
garded as a current strong optimizer). To broaden the comparison, we additionally evaluate Shampoo
Gupta et al. (2018) and Lion Chen et al. (2023) under exactly the same training recipe on GPT2-
Small with learning rate 6 × 10−4. For both added baselines we adopt the authors’ recommended
default hyper-parameters without bespoke tuning, mirroring our fairness protocol in the main ex-
periments. The resulting loss-vs-tokens and wall-clock-to-target curves are reported in Fig. 6. We
observe that Shampoo is slightly stronger than Muon in this regime—intuitively reasonable because
Muon can be viewed as Shampoo variant without explicit momentum accumulation. Nevertheless,
AdaMuon retains a clear margin over Shampoo and all other baselines clearly, which further shows
the effectiveness of AdaMuon.
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