
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Candidate Reranking Solution using Many Variant Features for
KDDCup2023, Team YAMALEX Solution

Hiroki Yamamoto

Acroquest Technology Co., Ltd.

Yokohama, Kanagawa, Japan

yamamoto@acroquest.co.jp

Takashi Sasaki

Acroquest Technology Co., Ltd.

Yokohama, Kanagawa, Japan

sasaki@acroquest.co.jp

Shin Higuchi

Acroquest Technology Co., Ltd.

Yokohama, Kanagawa, Japan

higuchi@acroquest.co.jp

Tomonori Fujiwara

Acroquest Technology Co., Ltd.

Yokohama, Kanagawa, Japan

fujiwara@acroquest.co.jp

Shun Yoshioka

Acroquest Technology Co., Ltd.

Yokohama, Kanagawa, Japan

s_yoshioka@acroquest.co.jp

ABSTRACT
It is essential for e-commerce stores to model customers’ shopping

intentions which directly lead to user experience and engagement.

Although there is an increasing interest in utilizing session data to

predict what the user will purchase next, there has not been many

studies on session-based recommendation using real-world multi-

lingual and imbalanced scenarios. In the Amazon KDD Cup 2023,

Amazon presented the "Multilingual Shopping Session Dataset"

with millions of user sessions from six different locales, namely:

English, German, Japanese, French, Italian, and Spanish. The dataset

introduces imbalance by having fewer data for French, Italian, and

Spanish compared to other locales. In this paper, we present our

approach to this challenge using two stage approach to generate

the candidates.

ACM Reference Format:
Hiroki Yamamoto, Takashi Sasaki, ShinHiguchi, Tomonori Fujiwara, and Shun

Yoshioka. 2023. Candidate Reranking Solution using Many Variant Features

for KDDCup2023, Team YAMALEX Solution. In Proceedings of ACM Confer-
ence (Conference’17). ACM, New York, NY, USA, 4 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
For e-commerce stores, giving personalized recommendations is

for user experience and engagement. However, there has not been

enough studies that used real-world session data with imbalance-

ment to test their session-based recommendation system. The Ama-

zon KDD Cup 2023[3], organized by Amazon, introduced a dataset

and standard evaluation metrics to be used to assess model perfor-

mance. The competition is expected to provide practical solutions

that benefit worldwide customers. The competition has three tasks.

The three tasks are set to tackle recommendation for imbalanced

data and cold-start data. The dataset contains millions of user ses-

sions from six different locales. The dataset is imbalanced among

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the locales, French, Italian, and Spanish having less data compared

to other locales, English, German and Japanese. The dataset is split

into three splits: train, phase-1 test, and phase-2 test. The same train

set is used for all the tasks. The test dataset is prepared specifically

for each task objectives. English, German, and Japanese test data

are used for Task1; French, Italian, and Spanish data for Task2. The

test data for Task3 contains products that do no appear in the train-

ing set. For Tasks1 and 2, participants should predict 100 product

IDs in descending confidence order. The output is evaluated using

Mean Reciprocal Rank. For Task3, participants need to generate

one title for each session. The generated title is evaluated using

BLUE. The structure of this paper is as follows. In Section 2 explains

the overview of our systems. Sections 3 and 4 explain the details

of each stage of our two-stage approach: candidate generation and

reranking, respectively. This paper is concluded in Section 5.

2 OVERVIEW
We built a Recommend system that generates candidates and then

reranks them in detail to produce the final recommendation. Fig.1

is our system overview. Our candidate generation method use

many variant features, simple candidate generation, co-matrix, BPR,

ProNE, GRU, amd MLP. Reranking that comes after candidate gen-

eration uses LightGBM and many useful features.

3 CANDIDATE GENERATION
3.1 Simple Method
In the three simple methods for candidate generation.First, we took

the top 100 products that were most frequently purchased in the

given locale. Second, given the last product in the session, the top

100 products that were purchased after the last product are added

to the candidates. This gives the locale-wide recommendations as

the candidates, as in, if it’s popular in the locale, users might want

it. Finally, we add same attribute items, same brand, same author,

same model that count within 100. it’s indicate similar item.

3.2 Co-Matrix
A CoMatrix represents the frequency or strength of co-occurrence

between elements in a dataset. In the context of recommendation

systems, it captures the co-occurrence patterns of items within user

interactions. Each row and column correspond to unique items,

and the matrix cells contain the count or strength of co-occurrence

1

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Hiroki Yamamoto, Takashi Sasaki, Shin Higuchi, Tomonori Fujiwara, and Shun Yoshioka

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Overview of our approach

between item pairs. CoMatrices provide insights into relationships

and associations between items based on their co-occurrence pat-

terns. In our approach the strength is calculated based on count

and inverse of distance. I use two type of Co-Matrix score, last5

and all items in session.

3.3 ProNE
ProNE (Proximity Network Embedding) is an algorithm for net-

work embedding that captures structural information by mapping

nodes into a low-dimensional vector space[7]. It estimates node

proximity based on network connectivity and co-occurrence pat-

terns. ProNE constructs a graph representation of the network and

applies an iterative optimization framework to generate meaningful

node representations. The algorithm leverages both topological and

contextual information to preserve proximity between nodes. It

has been shown effective in tasks such as node classification, link

prediction, and community detection. ProNE provides a scalable

and efficient approach for capturing network structure and proxim-

ity relationships. Comparing to other graph embedding algorithms

such as Node2Vec[2], ProNE is computationally inexpensive and fit

for large scale data. ProNE estimates item proximity by analyzing

both network connectivity and co-occurrence patterns. It considers

direct connections between items and their co-occurrence in local

neighborhoods. The algorithm assigns higher proximity values to

items with stronger connectivity and co-occurrence relationships.

Graph structure is well-suited for session-based recommendation

because it can express co-occurrence and sequential dependencies

with its nodes and edges.

In our approach, we first created bi-directional graph by con-

necting consecutive purchases in a session. Then, ProNE was used

to generate a embedded version of the graphs.Fig.2 is graph ex-

pression. The generated graphs can be used to predict the next

item given a session leading to that point. Getting embedding item

vectors from ProNE, after we find a top similarities from last item

and other items.

3.4 BPR
BPR (Bayesian Personalized Ranking)[6] is a collaborative filter-

ing algorithm designed for personalized ranking in recommender

systems. It addresses the challenge of item ranking by focusing

on pairwise preferences of users. Rather than predicting explicit

Figure 2: Overview of prone

ratings, BPR learns to model the relative ranking of items based on

user preferences. It employs matrix factorization to capture latent

factors for users and items. During training, BPR constructs pairs

of items using positive and negative user interactions and opti-

mizes model parameters using stochastic gradient descent. BPR’s

Bayesian framework maximizes the likelihood of ranking positive

interactions higher than negative ones. This algorithm is particu-

larly suited for implicit feedback data, where user preferences are

inferred from behavior. By considering pairwise preferences and

offering scalable recommendations, BPR has been successfully ap-

plied across domains such as e-commerce, social media, and content

streaming platforms.

3.5 GRU
Neural networks are also employed to generate recommendation

candidates. The Gated Recurrent Unit (GRU) is a variant of the

Recurrent Neural Network (RNN) architecture designed to cap-

ture long-term dependencies and address the vanishing gradient

problem[1]. It utilizes gating mechanisms to control information

flow. The update gate selectively integrates new information, while

the reset gate determines which past information to forget. The

candidate activation function combines input and reset gate-applied

previous hidden state to generate a candidate value for the current

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Candidate Reranking Solution using Many Variant Features for KDDCup2023, Team YAMALEX Solution Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

hidden state. The GRU effectively captures long-term dependen-

cies and exhibits computational efficiency with fewer parameters

compared to other RNN variants like LSTM. It finds applications in

natural language processing, speech recognition, machine transla-

tion, and time series analysis. The GRU’s gating mechanisms enable

it to retain relevant information, resulting in improved accuracy

and pattern recognition. In summary, the GRU is a powerful archi-

tecture for modeling sequential data, providing a solution to the

vanishing gradient problem and allowing for the capture of long-

term dependencies. For each models, TF-IDF score and embedding

of features of a product is used as their input. Input is TF-IDF and

each attributes. calculates the probability of the item purchased

after the last/second-last product in the history.

In our approach, we used two types of input to train and predict

with the model. our architecture show Fig.3 Type1 is used for Task1.

The model has three dense layers each connected to GRU unit. The

output of GRU is fed into another dense layer to get the result.

The first dense layers get inputs which are TF-IDF vectors and

embedded features.

First, Item convert to dense item vectors, Title TF-IDF feature is

used dense layer, other features are used embedding layers, then

concat these features. it input GRU architecture. GRU output apply

dense layer. it’s output is next item probability.

Type2 is used for Task2. it’s very similar. The basic structure is the

same with Type1. However, it uses TF-IDF output that is processed

with SVD for more efficiency. because Type1 vocabularies are very

wider, we can’t put on memory.

Moreover, we apply some data augmentation in session when

training GRU. it method help model regularization.

(1) swap last and second

(2) swap last and target, last two and target

(3) target swap, target t item and target t + 1

(4) item attribute dropout, our apply probability mask

(5) truncated item(before/after)

(6) item sequence shuffle

3.6 MLP
In MLP, vectors for TF-IDF and embedding of features are used to

train and predict with MLP. We have trained MLP models, MLP

inputs are second-to-last and last item in the session. both MLP pa-

rameters are same. The outputs from the twomodels are aggregated

using concat and dense layers. also we apply data augmentation to

MLP. it also help regularization.

4 RERANKING
After generating several recommendation candidates, we performed

reranking. This phase is crucial because there are no relationships

between scores of each candidate generation methods. Getting

high score with ProNE does not necessarily mean it has overall

high score. The reranking phase solves this problem by reordering

the generated candidates using the candidate generation method

scores and other additional features so that the final score reflects

the overall score. Our approach uses LightGBM[4] to perform the

reranking. In this phase, We use these features.

(1) Session features: session aggregation, e.g. mean price, ses-

sion size, max price, mean price.

(2) Diff Features: difference between last/last-two and candi-

date.

(3) Recall Scores: recall score calculated in recall methods and

rank of score in session.

(4) Item Features: candidate item price, candidate attribute

count encoding.

We used aggregation session statistics. session size, and aggre-

gation price(max, mean) as session features In addition, last5/10

percent of candidate attributes were used.

Diff features indicate similarity between last/last-two product

and the candidate. Our team use levenstain distance, jaro winkler,

title distance in title. word2vec[5], flag of same attribute, and differ-

ence price of last/last-two product and aggregation session price

statistics.

Recall Scores are recall method scores, namely, co-matrix score,

MLP/GRU output probability, ProNE similarity, and BPR Score. Item

features use price and count encoding of item attributes. We used

label encoding attribute when task2. However, the score went down

when we used it for task1.

Session have about 300 candidates per session on avarage. Be-

cause we cannot put all features on memory, we applies negative

down sampling. Negative down sampling is a method where we

pickup some negative items in session. our negative down-sampling

rate for Task1 is 7% and 70% for Task2.

Finally, our team achieved 15th in Task1(Table.1) and 9th in

Task2(Table.2) in KDDCup2023.

Rank Team Score
1 NVIDIA-Merlin 0.41188

2 MGTV-REC 0.41170

3 unirec 0.40477

4 gpt_bot 0.40476

5 LeaderboardCar 0.40339

6 AIDA 0.40317

7 piggy-po 0.40476

8 iCanary 0.39651

9 wxd1995 0.39592

10 xuy 0.39566

15 [Acroquest]YAMALEX(ours) 0.38957
Table 1: Comparison of task1 scores

5 CONCLUSION
In the research presented in this paper, we have employed a two-

stage approach that includes a candidate generation process and a

re-ranking framework. In the initial candidate generation phase, we

incorporated a multitude of algorithms encompassing graph-based

techniques, co-matrix models, BPR, neural networks, and a variety

of simple features. Following this, the candidates were subjected to

a re-ranking process. For this re-ranking, we used the LightGBM

model, leveraging the differences between the final and candidate

items’ characteristics (such as word associations, pricing, etc.), as

well as the scores obtained during the candidate generation stage.

Our framework achieved commendable placements in the tasks,

securing the 15th place in Task 1 and the 9th place in Task 2.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Hiroki Yamamoto, Takashi Sasaki, Shin Higuchi, Tomonori Fujiwara, and Shun Yoshioka

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) Type1 (b) Type2 (c) MLP

Figure 3: Overview of Neural Network

Rank Team Score
1 NVIDIA-Merlin 0.46845

2 MGTV-REC 0.46758

3 gpt_bot 0.46011

4 AIDA 0.45047

5 piggy-po 0.44914

6 chimuichimu 0.44798

7 iCanary 0.44747

8 QDU 0.44618

9 [Acroquest]YAMALEX(ours) 0.44380
10 DX2 0.44101

Table 2: Comparison of task2 scores

REFERENCES
[1] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. Learning phrase representations using rnn encoder-

decoder for statistical machine translation, 2014.

[2] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks.

CoRR abs/1607.00653 (2016).
[3] Jin, W., Mao, H., Li, Z., Jiang, H., Luo, C., Wen, H., Han, H., Lu, H., Wang, Z., Li,

R., Li, Z., Cheng, M. X., Goutam, R., Zhang, H., Subbian, K., Wang, S., Sun, Y.,

Tang, J., Yin, B., and Tang, X. Amazon-m2: A multilingual multi-locale shopping

session dataset for recommendation and text generation.

[4] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.

Lightgbm: A highly efficient gradient boosting decision tree. In Advances in
Neural Information Processing Systems (2017), I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran

Associates, Inc.

[5] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems (2013), C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Weinberger, Eds., vol. 26, Curran Associates, Inc.

[6] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. BPR:

bayesian personalized ranking from implicit feedback. CoRR abs/1205.2618 (2012).
[7] Zhang, J., Dong, Y., Wang, Y., Tang, J., and Ding, M. Prone: Fast and scalable

network representation learning. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19 (7 2019), International Joint

Conferences on Artificial Intelligence Organization, pp. 4278–4284.

4

	Abstract
	1 Introduction
	2 Overview
	3 Candidate Generation
	3.1 Simple Method
	3.2 Co-Matrix
	3.3 ProNE
	3.4 BPR
	3.5 GRU
	3.6 MLP

	4 Reranking
	5 Conclusion
	References

