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ABSTRACT
It is essential for e-commerce stores to model customers’ shopping

intentions which directly lead to user experience and engagement.

Although there is an increasing interest in utilizing session data to

predict what the user will purchase next, there has not been many

studies on session-based recommendation using real-world multi-

lingual and imbalanced scenarios. In the Amazon KDD Cup 2023,

Amazon presented the "Multilingual Shopping Session Dataset"

with millions of user sessions from six different locales, namely:

English, German, Japanese, French, Italian, and Spanish. The dataset

introduces imbalance by having fewer data for French, Italian, and

Spanish compared to other locales. In this paper, we present our

approach to this challenge using two stage approach to generate

the candidates.
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1 INTRODUCTION
For e-commerce stores, giving personalized recommendations is

for user experience and engagement. However, there has not been

enough studies that used real-world session data with imbalance-

ment to test their session-based recommendation system. The Ama-

zon KDD Cup 2023[3], organized by Amazon, introduced a dataset

and standard evaluation metrics to be used to assess model perfor-

mance. The competition is expected to provide practical solutions

that benefit worldwide customers. The competition has three tasks.

The three tasks are set to tackle recommendation for imbalanced

data and cold-start data. The dataset contains millions of user ses-

sions from six different locales. The dataset is imbalanced among
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the locales, French, Italian, and Spanish having less data compared

to other locales, English, German and Japanese. The dataset is split

into three splits: train, phase-1 test, and phase-2 test. The same train

set is used for all the tasks. The test dataset is prepared specifically

for each task objectives. English, German, and Japanese test data

are used for Task1; French, Italian, and Spanish data for Task2. The

test data for Task3 contains products that do no appear in the train-

ing set. For Tasks1 and 2, participants should predict 100 product

IDs in descending confidence order. The output is evaluated using

Mean Reciprocal Rank. For Task3, participants need to generate

one title for each session. The generated title is evaluated using

BLUE. The structure of this paper is as follows. In Section 2 explains

the overview of our systems. Sections 3 and 4 explain the details

of each stage of our two-stage approach: candidate generation and

reranking, respectively. This paper is concluded in Section 5.

2 OVERVIEW
We built a Recommend system that generates candidates and then

reranks them in detail to produce the final recommendation. Fig.1

is our system overview. Our candidate generation method use

many variant features, simple candidate generation, co-matrix, BPR,

ProNE, GRU, amd MLP. Reranking that comes after candidate gen-

eration uses LightGBM and many useful features.

3 CANDIDATE GENERATION
3.1 Simple Method
In the three simple methods for candidate generation.First, we took

the top 100 products that were most frequently purchased in the

given locale. Second, given the last product in the session, the top

100 products that were purchased after the last product are added

to the candidates. This gives the locale-wide recommendations as

the candidates, as in, if it’s popular in the locale, users might want

it. Finally, we add same attribute items, same brand, same author,

same model that count within 100. it’s indicate similar item.

3.2 Co-Matrix
A CoMatrix represents the frequency or strength of co-occurrence

between elements in a dataset. In the context of recommendation

systems, it captures the co-occurrence patterns of items within user

interactions. Each row and column correspond to unique items,

and the matrix cells contain the count or strength of co-occurrence

1
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Figure 1: Overview of our approach

between item pairs. CoMatrices provide insights into relationships

and associations between items based on their co-occurrence pat-

terns. In our approach the strength is calculated based on count

and inverse of distance. I use two type of Co-Matrix score, last5

and all items in session.

3.3 ProNE
ProNE (Proximity Network Embedding) is an algorithm for net-

work embedding that captures structural information by mapping

nodes into a low-dimensional vector space[7]. It estimates node

proximity based on network connectivity and co-occurrence pat-

terns. ProNE constructs a graph representation of the network and

applies an iterative optimization framework to generate meaningful

node representations. The algorithm leverages both topological and

contextual information to preserve proximity between nodes. It

has been shown effective in tasks such as node classification, link

prediction, and community detection. ProNE provides a scalable

and efficient approach for capturing network structure and proxim-

ity relationships. Comparing to other graph embedding algorithms

such as Node2Vec[2], ProNE is computationally inexpensive and fit

for large scale data. ProNE estimates item proximity by analyzing

both network connectivity and co-occurrence patterns. It considers

direct connections between items and their co-occurrence in local

neighborhoods. The algorithm assigns higher proximity values to

items with stronger connectivity and co-occurrence relationships.

Graph structure is well-suited for session-based recommendation

because it can express co-occurrence and sequential dependencies

with its nodes and edges.

In our approach, we first created bi-directional graph by con-

necting consecutive purchases in a session. Then, ProNE was used

to generate a embedded version of the graphs.Fig.2 is graph ex-

pression. The generated graphs can be used to predict the next

item given a session leading to that point. Getting embedding item

vectors from ProNE, after we find a top similarities from last item

and other items.

3.4 BPR
BPR (Bayesian Personalized Ranking)[6] is a collaborative filter-

ing algorithm designed for personalized ranking in recommender

systems. It addresses the challenge of item ranking by focusing

on pairwise preferences of users. Rather than predicting explicit

Figure 2: Overview of prone

ratings, BPR learns to model the relative ranking of items based on

user preferences. It employs matrix factorization to capture latent

factors for users and items. During training, BPR constructs pairs

of items using positive and negative user interactions and opti-

mizes model parameters using stochastic gradient descent. BPR’s

Bayesian framework maximizes the likelihood of ranking positive

interactions higher than negative ones. This algorithm is particu-

larly suited for implicit feedback data, where user preferences are

inferred from behavior. By considering pairwise preferences and

offering scalable recommendations, BPR has been successfully ap-

plied across domains such as e-commerce, social media, and content

streaming platforms.

3.5 GRU
Neural networks are also employed to generate recommendation

candidates. The Gated Recurrent Unit (GRU) is a variant of the

Recurrent Neural Network (RNN) architecture designed to cap-

ture long-term dependencies and address the vanishing gradient

problem[1]. It utilizes gating mechanisms to control information

flow. The update gate selectively integrates new information, while

the reset gate determines which past information to forget. The

candidate activation function combines input and reset gate-applied

previous hidden state to generate a candidate value for the current

2
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hidden state. The GRU effectively captures long-term dependen-

cies and exhibits computational efficiency with fewer parameters

compared to other RNN variants like LSTM. It finds applications in

natural language processing, speech recognition, machine transla-

tion, and time series analysis. The GRU’s gating mechanisms enable

it to retain relevant information, resulting in improved accuracy

and pattern recognition. In summary, the GRU is a powerful archi-

tecture for modeling sequential data, providing a solution to the

vanishing gradient problem and allowing for the capture of long-

term dependencies. For each models, TF-IDF score and embedding

of features of a product is used as their input. Input is TF-IDF and

each attributes. calculates the probability of the item purchased

after the last/second-last product in the history.

In our approach, we used two types of input to train and predict

with the model. our architecture show Fig.3 Type1 is used for Task1.

The model has three dense layers each connected to GRU unit. The

output of GRU is fed into another dense layer to get the result.

The first dense layers get inputs which are TF-IDF vectors and

embedded features.

First, Item convert to dense item vectors, Title TF-IDF feature is

used dense layer, other features are used embedding layers, then

concat these features. it input GRU architecture. GRU output apply

dense layer. it’s output is next item probability.

Type2 is used for Task2. it’s very similar. The basic structure is the

same with Type1. However, it uses TF-IDF output that is processed

with SVD for more efficiency. because Type1 vocabularies are very

wider, we can’t put on memory.

Moreover, we apply some data augmentation in session when

training GRU. it method help model regularization.

(1) swap last and second

(2) swap last and target, last two and target

(3) target swap, target t item and target t + 1

(4) item attribute dropout, our apply probability mask

(5) truncated item(before/after)

(6) item sequence shuffle

3.6 MLP
In MLP, vectors for TF-IDF and embedding of features are used to

train and predict with MLP. We have trained MLP models, MLP

inputs are second-to-last and last item in the session. both MLP pa-

rameters are same. The outputs from the twomodels are aggregated

using concat and dense layers. also we apply data augmentation to

MLP. it also help regularization.

4 RERANKING
After generating several recommendation candidates, we performed

reranking. This phase is crucial because there are no relationships

between scores of each candidate generation methods. Getting

high score with ProNE does not necessarily mean it has overall

high score. The reranking phase solves this problem by reordering

the generated candidates using the candidate generation method

scores and other additional features so that the final score reflects

the overall score. Our approach uses LightGBM[4] to perform the

reranking. In this phase, We use these features.

(1) Session features: session aggregation, e.g. mean price, ses-

sion size, max price, mean price.

(2) Diff Features: difference between last/last-two and candi-

date.

(3) Recall Scores: recall score calculated in recall methods and

rank of score in session.

(4) Item Features: candidate item price, candidate attribute

count encoding.

We used aggregation session statistics. session size, and aggre-

gation price(max, mean) as session features In addition, last5/10

percent of candidate attributes were used.

Diff features indicate similarity between last/last-two product

and the candidate. Our team use levenstain distance, jaro winkler,

title distance in title. word2vec[5], flag of same attribute, and differ-

ence price of last/last-two product and aggregation session price

statistics.

Recall Scores are recall method scores, namely, co-matrix score,

MLP/GRU output probability, ProNE similarity, and BPR Score. Item

features use price and count encoding of item attributes. We used

label encoding attribute when task2. However, the score went down

when we used it for task1.

Session have about 300 candidates per session on avarage. Be-

cause we cannot put all features on memory, we applies negative

down sampling. Negative down sampling is a method where we

pickup some negative items in session. our negative down-sampling

rate for Task1 is 7% and 70% for Task2.

Finally, our team achieved 15th in Task1(Table.1) and 9th in

Task2(Table.2) in KDDCup2023.

Rank Team Score
1 NVIDIA-Merlin 0.41188

2 MGTV-REC 0.41170

3 unirec 0.40477

4 gpt_bot 0.40476

5 LeaderboardCar 0.40339

6 AIDA 0.40317

7 piggy-po 0.40476

8 iCanary 0.39651

9 wxd1995 0.39592

10 xuy 0.39566

15 [Acroquest]YAMALEX(ours) 0.38957
Table 1: Comparison of task1 scores

5 CONCLUSION
In the research presented in this paper, we have employed a two-

stage approach that includes a candidate generation process and a

re-ranking framework. In the initial candidate generation phase, we

incorporated a multitude of algorithms encompassing graph-based

techniques, co-matrix models, BPR, neural networks, and a variety

of simple features. Following this, the candidates were subjected to

a re-ranking process. For this re-ranking, we used the LightGBM

model, leveraging the differences between the final and candidate

items’ characteristics (such as word associations, pricing, etc.), as

well as the scores obtained during the candidate generation stage.

Our framework achieved commendable placements in the tasks,

securing the 15th place in Task 1 and the 9th place in Task 2.

3
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Figure 3: Overview of Neural Network

Rank Team Score
1 NVIDIA-Merlin 0.46845

2 MGTV-REC 0.46758

3 gpt_bot 0.46011

4 AIDA 0.45047

5 piggy-po 0.44914

6 chimuichimu 0.44798

7 iCanary 0.44747

8 QDU 0.44618

9 [Acroquest]YAMALEX(ours) 0.44380
10 DX2 0.44101

Table 2: Comparison of task2 scores
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