
Under review as submission to TMLR

Best Possible Q-Learning

Anonymous authors
Paper under double-blind review

Abstract

Fully decentralized learning, where the global information, i.e., the actions of other agents,
is inaccessible, is a fundamental challenge in cooperative multi-agent reinforcement learn-
ing. However, the convergence and optimality of most decentralized algorithms are not
theoretically guaranteed, since the transition probabilities are non-stationary as all agents
are updating policies simultaneously. To tackle this challenge, we propose best possible op-
erator, a novel decentralized operator, and prove that the policies of cooperative agents
will converge to the optimal joint policy if each agent independently updates its individual
state-action value by the operator when there is only one optimal joint policy. Further,
to make the update more efficient and practical, we simplify the operator and prove that
the convergence and optimality still hold with the simplified one. By instantiating the sim-
plified operator, the derived fully decentralized algorithm, best possible Q-learning (BQL),
does not suffer from non-stationarity. Empirically, we show that BQL achieves remarkable
improvement over baselines in a variety of cooperative multi-agent tasks.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) trains a group of agents to maximize the cumulative
shared reward, which has great significance for real-world applications, including logistics (Li et al., 2019),
traffic signal control (Xu et al., 2021), power dispatch (Wang et al., 2021), and games (Vinyals et al., 2019).
Although most existing methods follow the paradigm of centralized training and decentralized execution
(CTDE), in many scenarios where the information of all agents is unavailable in the training period, each
agent has to learn independently without centralized information. Thus, fully decentralized learning, where
the agents can only use local experiences without the actions of other agents, is highly desirable (Jiang &
Lu, 2022).

However, in fully decentralized learning, as other agents are treated as a part of the environment and are
updating their policies simultaneously, the transition probabilities from the perspective of individual agents
will be non-stationary. Thus, the convergence of most decentralized algorithms, e.g., independent Q-learning
(IQL) (Tan, 1993), is not theoretically guaranteed. Multi-agent alternate Q-learning (MA2QL) (Su et al.,
2022) guarantees the convergence to a Nash equilibrium, but the converged equilibrium may not be the
optimal one when there are multiple equilibria (Zhang et al., 2021a). Distributed IQL (Lauer & Riedmiller,
2000) and I2Q (Jiang & Lu, 2022) can learn the optimal joint policy, yet are limited to deterministic
environments. How to guarantee the convergence of the optimal joint policy in stochastic environments
remains open.

To tackle this challenge, we propose best possible operator, a novel decentralized operator to update the
individual state-action value of each agent, and prove that the policies of agents converge to the optimal joint
policy under this operator when there is only one optimal joint policy. However, it is inefficient and thus
impractical to perform best possible operator, because at each update it needs to compute the expected values
of all possible transition probabilities and update the state-action value to be the maximal one. Therefore,
we further propose simplified best possible operator. At each update, the simplified operator only computes
the expected value of one of the possible transition probabilities and monotonically updates the state-action
value. We prove that the policies of agents also converge to the optimal joint policy under the simplified
operator. We respectively instantiate the simplified operator with Q-table for tabular cases and with neural

1

Under review as submission to TMLR

networks for complex environments. In the Q-table instantiation, non-stationarity is instinctively avoided,
and in the neural network instantiation, non-stationarity in the replay buffer is no longer a drawback, but a
necessary condition for convergence.

The proposed algorithm, best possible Q-learning (BQL), is fully decentralized, without using the in-
formation of other agents. We evaluate BQL on a variety of multi-agent cooperative tasks, i.e., stochastic
games, MPE-based differential games (Lowe et al., 2017), Multi-Agent MuJoCo (de Witt et al., 2020b),
SMAC (Samvelyan et al., 2019), and GRF (Kurach et al., 2020), covering fully and partially observable,
deterministic and stochastic, discrete and continuous environments. Empirically, BQL substantially outper-
forms baselines. To the best of our knowledge, BQL is the first decentralized algorithm that guarantees the
convergence to the global optimum in stochastic environments. More simplifications and instantiations of
best possible operator can be further explored. We believe BQL can be a new paradigm for fully decentralized
learning.

2 Method

2.1 Preliminaries

Consider N -agent MDP (Oliehoek et al., 2016) Menv =< S, O, A, R, Penv, γ > with the state space S and the
joint action space A. Each agent i chooses an individual action ai, and the environment transitions to the next
state s′ by taking the joint action a with the transition probabilities Penv (s′|s, a). For simplicity of theoretical
analysis, we assume all agents obtain the state s, though in practice each agent i can make decisions using
local observation oi ∈ O or trajectory. All agents obtain a shared reward r = R (s, s′) ∈ [rmin, rmax] and learn
to maximize the expected discounted return E

∑∞
t=0 γtrt. In fully decentralized setting, Menv is partially

observable, since each agent i only observes its own action ai instead of the joint action a. From the
perspective of each agent i, there is an MDP Mi =< S, Ai, R, Pi, γ > with the individual action space Ai

and the transition probabilities

Pi (s′|s, ai) =
∑

a−i

Penv (s′|s, ai, a−i) π−i(a−i|s) (1)

where π−i denotes the joint policy of all agents except agent i, similarly for a−i. According to (1), the tran-
sition probabilities Pi depend on the policies of other agents π−i. As other agents are updating their policies
continuously, Pi becomes non-stationary. On the non-stationary transition probabilities, the convergence of
independent Q-learning1

Qi(s, ai) = EPi(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
]

(2)

is not guaranteed, and how to learn the optimal joint policy in fully decentralized settings is quite a challenge.
In the next section, we propose best possible operator, a novel fully decentralized operator, which guarantees
the convergence to the optimal joint policy in stochastic environments.

2.2 Best Possible Operator

First, let us consider the optimal joint Q-value

Q(s, a) = EPenv(s′|s,a)

[
r + γmax

a′
Q(s′, a′)

]
, (3)

which is the expected return of the optimal joint policy π∗(s) = arg maxa Q(s, a). Based on the optimal
joint Q-value, for each agent i, we define maxa−i Q(s, ai, a−i), which follows the fixed point equation:

max
a−i

Q(s, ai, a−i) =max
a−i

EPenv(s′|s,a)

[
r + γmax

a′
i

max
a′

−i

Q(s, a′
i, a′

−i)

]
(4)

1For simplicity, we refer to the optimal value Q∗ as Q in this paper, unless stated otherwise.

2

Under review as submission to TMLR

=E
Penv
(

s′|s,ai,π∗
−i

(s,ai)
) [r + γmax

a′
i

max
a′

−i

Q(s, a′
i, a′

−i)

]
(5)

where π∗
−i(s, ai) = arg maxa−i

Q(s, ai, a−i) is the optimal conditional joint policy of other agents given ai.
(4) is from taking maxa−i on both sides of (3), and (5) is by folding π∗

−i(s, ai) into Penv. Then we have the
following lemma.
Lemma 1. If each agent i learns the independent value function Qi(s, ai) = maxa−i Q(s, ai, a−i), and takes
actions as arg maxai

Qi(s, ai), the agents will obtain the optimal joint policy when there is only one optimal
joint policy2.
Proof. As maxai

maxa−i
Q(s, ai, a−i) = maxa Q(s, a) and there is only one optimal joint policy,

arg maxai
Qi(s, ai) is the action of agent i in the optimal joint action a.

According to Lemma 1, to obtain the optimal joint policy is to let each agent i learn the value function
Qi(s, ai) = maxa−i

Q(s, ai, a−i). To this end, we propose a new operator to update Qi in a fully decentralized
way:

Qi(s, ai) = max
Pi(·|s,ai)

EPi(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
]

. (6)

Given s and ai, there will be numerous Pi(s′|s, ai) due to different other agents’ policies π−i. To reduce the
complexity, we only consider the deterministic policies, because when there is only one optimal joint policy,
the optimal joint policy must be deterministic (Puterman, 1994). So the operator (6) takes the maximum only
over the transition probabilities Pi(s′|s, ai) under deterministic π−i. Intuitively, the operator continuously
pursues the ‘best possible expected return’, until Qi reaches the optimal expected return maxa−i Q(s, ai, a−i),
so we name the operator (6) best possible operator . In the following, we theoretically prove that Qi(s, ai)
converges to maxa−i

Q(s, ai, a−i) under best possible operator, thus the agents learn the optimal joint
policy. Let Qk

i (s, ai) denote the value function in the update k and Qi(s, ai) := Q∞
i (s, ai). Then, we have

the following lemma.
Lemma 2. If Q0

i is initialized to be the minimal return rmin
1−γ , maxa−i

Q(s, ai, a−i) ≥ Qk
i (s, ai), ∀s, ai, ∀k,

under best possible operator.
Proof. We prove the lemma by induction. First, as Q0

i is initialized to be the minimal return,
maxa−i Q(s, ai, a−i) ≥ Q0

i (s, ai). Then, suppose maxa−i Q(s, ai, a−i) ≥ Qk−1
i (s, ai), ∀s, ai. By denoting

arg maxPi(s′|s,ai) EPi(s′|s,ai)

[
r + γ maxa′

i
Qk−1

i (s′, a′
i)
]

as P ∗
i (s′|s, ai), we have

max
a−i

Q(s, ai, a−i)−Qk
i (s, ai)

=max
a−i

∑
s′

Penv
(
s′|s, ai, a−i

)[
r + γ max

a′
i

max
a′

−i

Q(s′, a′
i, a′

−i)

]
−
∑

s′

P ∗
i (s′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)
]

≥
∑

s′

P ∗
i (s′|s, ai)

[
r + γ max

a′
i

max
a′

−i

Q(s′, a′
i, a′

−i)

]
−
∑

s′

P ∗
i (s′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)
]

=γ
∑

s′

P ∗
i (s′|s, ai)

(
max

a′
i

max
a′

−i

Q(s′, a′
i, a′

−i)−max
a′

i

Qk−1
i (s′, a′

i)

)

≥γ
∑

s′

P ∗
i (s′|s, ai)

(
max
a′

−i

Q(s′, a′∗
i , a′

−i)−Qk−1
i (s′, a′∗

i)

)
≥ 0,

where a′∗
i = arg maxa′

i
Qk−1

i (s′, a′
i). Thus, it holds in the update k. By the principle of induction, the lemma

holds for all updates.

Intuitively, maxa−i
Q(s, ai, a−i) is the optimal expected return after taking action ai, so it is the upper

bound of Qi(s, ai). Further, based on Lemma 2, we have the following lemma.
2We can use the simple solution proposed in I2Q to deal with the limitation of only one joint policy, which is included in

Appendix D.

3

Under review as submission to TMLR

Lemma 3. Qi(s, ai) converges to maxa−i
Q(s, ai, a−i) under best possible operator.

Proof. For clear presentation, we use Penv
(
s′|s, ai, π∗

−i

)
to denote Penv

(
s′|s, ai, π∗

−i(s, ai)
)
. From (5) and

(6), we have∥∥∥max
a−i

Q(s, ai, a−i)−Qk
i (s, ai)

∥∥∥
∞

= max
s,ai

(∑
s′

Penv
(
s′|s, ai, π∗

−i

)[
r + γ max

a′
i

max
a′

−i

Q(s′, a′
i, a′

−i)

]

−
∑

s′

P ∗
i (s′|s, ai)

[
r + γmax

a′
i

Qk−1
i (s′, a′

i)
])
← (Lemma 2)

≤max
s,ai

(∑
s′

Penv
(
s′|s, ai, π∗

−i

)[
r + γ max

a′
i

max
a′

−i

Q(s′, a′
i, a′

−i)

]

−
∑

s′

Penv
(
s′|s, ai, π∗

−i

) [
r + γmax

a′
i

Qk−1
i (s′, a′

i)
])

≤γmax
s′,a′

i

(
max
a′

−i

Q(s′, a′
i, a′

−i)−Qk−1
i (s′, a′

i)

)
=γ

∥∥∥max
a−i

Q(s, ai, a−i)−Qk−1
i (s, ai)

∥∥∥
∞

.

We have
∥∥maxa−i

Q(s, ai, a−i) − Qk
i (s, ai)

∥∥
∞ ≤ γk

∥∥maxa−i
Q(s, ai, a−i) − Q0

i (s, ai)
∥∥

∞. Let k → ∞, then
Qi(s, ai) → maxa−i

Q(s, ai, a−i), thus the lemma holds.

According to Lemma 1 and 3, we immediately have:
Theorem 1. The agents learn the optimal joint policy under best possible operator when there is only one
optimal joint policy.

2.3 Simplified Best Possible Operator

Best possible operator guarantees the convergence to the optimal joint policy. However, to perform (6),
every update, each agent i has to compute the expected values of all possible transition probabilities and
update Qi to be the maximal expected value, which is too costly. Therefore, we introduce an auxiliary value
function Qe

i (s, ai), and simplify (6) into two operators. First, at each update, we randomly select one of
possible transition probabilities P̃i for each (s, ai) and update Qe

i (s, ai) by

Qe
i (s, ai) = EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
]

. (7)

Qe
i (s, ai) represents the expected value of the selected transition probabilities. Then we monotonically update

Qi(s, ai) by
Qi(s, ai) = max (Qi(s, ai), Qe

i (s, ai)) . (8)

We define (7) and (8) together as simplified best possible operator. By performing simplified best possible
operator, Qi(s, ai) is efficiently updated towards the maximal expected value. And we have the following
lemma.
Lemma 4. Qi(s, ai) converges to maxa−i

Q(s, ai, a−i) under simplified best possible operator.

Proof. According to (8), as Qi(s, ai) is monotonically increased, Qk
i (s, ai) ≥ Qk−1

i (s, ai) in the update k.
Similar to the proof of Lemma 2, we can easily prove maxa−i

Q(s, ai, a−i) ≥ Qk
i (s, ai) under (7) and (8).

Thus, {Qk
i (s, ai)} is an increasing sequence and bounded above. According to the monotone convergence

theorem, {Qk
i (s, ai)} converges when k → ∞, and let Qi(s, ai) := Q∞

i (s, ai).

Then we prove that the converged value Qi(s, ai) is equal to maxa−i
Q(s, ai, a−i). Due to mono-

tonicity and convergence, ∀ϵ, s, ai, ∃K, when k > K, Qk
i (s, ai) − Qk−1

i (s, ai) ≤ ϵ, no matter which P̃i

4

Under review as submission to TMLR

is selected in the update k. Since each P̃i is possible to be selected, when selecting P̃i(s′|s, ai) =
arg maxPi(s′|s,ai) EPi(s′|s,ai)

[
r + γ maxa′

i
Qk−1

i (s′, a′
i)
]

= P ∗
i (s′|s, ai), by performing (7) and (8), we have

Qk−1
i (s, ai) + ϵ ≥ Qk

i (s, ai) ≥ Qe
i (s, ai) =

∑
s′

P ∗
i (s′|s, ai)

[
r(s, s′) + γmax

a′
i

Qk−1
i (s′, a′

i)
]

.

According to the proof of Lemma 3, we have

max
s,ai

(
max
a−i

Q(s, ai, a−i) − Qe
i (s, ai)

)
≤ γmax

s,ai

(
max
a−i

Q(s, ai, a−i) − Qk−1
i (s, ai)

)
.

Use s∗, a∗
i to denote

arg max
s,ai

(
max
a−i

Q(s, ai, a−i) − Qk−1
i (s, ai)

)
.

Since Qk−1
i (s, ai) + ϵ ≥ Qe

i (s, ai),

max
a−i

Q(s∗, a∗
i , a−i) − Qk−1

i (s∗, a∗
i) − ϵ ≤ γmax

a−i

Q(s∗, a∗
i , a−i) − γQk−1

i (s∗, a∗
i).

Then, we have ∥∥∥max
a−i

Q(s, ai, a−i) − Qk−1
i (s, ai)

∥∥∥
∞

≤ ϵ

1 − γ
.

Thus, Qi(s, ai) converges to maxa−i Q(s, ai, a−i).

According to Lemma 1 and 4, we also have:
Theorem 2. The agents learn the optimal joint policy under simplified best possible operator when there is
only one optimal joint policy.

2.4 Best Possible Q-Learning

Best possible Q-learning (BQL) is instantiated on simplified best possible operator. We first consider
learning Q-table for tabular cases. The key challenge is how to obtain all possible transition probabilities
under deterministic π−i during learning. To solve this issue, the whole training process is divided into M
epochs. At the epoch m, each agent i randomly and independently initializes a deterministic policy π̂m

i and
selects a subset of states Sm

i . Then each agent i interacts with the environment using the deterministic
policy {

arg maxai
Qi(s, ai) if s /∈ Sm

i ,
π̂m

i (s) else.

Each agent i stores independent experiences (s, ai, s′, r) in the replay buffer Dm
i . As Pi depends on π−i and

agents act deterministic policies, Dm
i contains one Pi under a deterministic π−i. Since Pi will change if other

agents modify their policies π−i, acting the randomly initialized policy π̂m
i on Sm

i in the epoch m not only
helps each agent i to explore state-action pairs, but also helps other agents to explore possible transition
probabilities. When M is sufficiently large, given any (s, ai) pair, any Pi(s, ai) can be found in a replay
buffer.

After interaction of the epoch m, each agent i has a buffer series {D1
i , · · · , Dm

i }, each of which has different
transition probabilities. At training period of the epoch m, each agent i randomly selects one replay buffer Dj

i

from {D1
i , · · · , Dm

i } and samples mini-batches {s, ai, s′, r} from Dj
i to update Q-table Qe

i (s, ai) by (7), and
then samples mini-batches from Dj

i to update Qi(s, ai) by (8). The Q-table implementation is summarized
in Algorithm 1.

The sample efficiency of collecting the buffer series seems to be a limitation of BQL, and we further analyze
it. Simplified best possible operator requires that any possible Pi(s, ai) of (s, ai) pair can be found in one
buffer, but does not care about the relationship between transition probabilities of different state-action pairs

5

Under review as submission to TMLR

Algorithm 1 BQL with Q-table for each agent i

1: Initialize tables Qi and Qe
i .

2: for m = 1, . . . , M do
3: Initialize the replay buffer Dm

i and the exploration policy π̂m
i .

4: All agents interact with the environment and store experiences (s, ai, s′, r) in Dm
i .

5: for t = 1, . . . , n_update do
6: Randomly select a buffer Dj

i from D1
i , · · · , Dm

i .
7: Update Qe

i according to (7) by sampling from Dj
i .

8: Update Qi according to (8) by sampling from Dj
i .

9: end for
10: end for

Algorithm 2 BQL with neural network for each agent i

1: Initialize neural networks Qi and Qe
i , and the target network Q̄e

i .
2: Initialize the replay buffer Di.
3: for t = 1, . . . , n_iteration do
4: All agents interact with the environment and store experiences (s, ai, s′, r) in Di.
5: Sample a mini-batch from Di.
6: Update Qe

i by minimizing (9).
7: Update Qi by minimizing (10).
8: Update the target networks Q̄e

i .
9: end for

in the same buffer. So BQL ideally needs only |Ai| × |A−i| = |A| small buffers to cover all possible Pi for
any (s, ai) pair, which is very efficient for experience collection. We give an intuitive illustration for this and
analyze that BQL has similar sample complexity to the joint Q-learning (3) in Appendix B.

In complex environments with large or continuous state-action space, it is inefficient and costly to follow the
experience collection in tabular cases, where the agents cannot update their policies during the interaction
of each epoch and each epoch requires adequate samples to accurately estimate the expectation (7). Thus,
in complex environments, same as IQL, each agent i only maintains one replay buffer Di, which contains all
historical experiences, and uses the same ϵ-greedy policy as IQL (without the randomly initialized determin-
istic policy π̂i). Then we instantiate simplified best possible operator with neural networks Qi and Qe

i . Qe
i

is updated by minimizing:

Es,ai,s′,r∼Di

[
(Qe

i (s, ai) − r − γQi(s′, a′∗
i))2

]
, a′∗

i = arg max
a′

i

Qi(s′, a′
i). (9)

And Qi is updated by minimizing:

Es,ai∼Di

[
w(s, ai)

(
Qi (s, ai) − Q̄e

i (s, ai)
)2]

, w(s, ai) =
{

1 if Q̄e
i (s, ai) > Qi (s, ai)

λ else.
(10)

Q̄e
i is the softly updated target network of Qe

i . When λ = 0, (10) is equivalent to (8). However, when
λ = 0, the positive random noise of Qi in the update can be continuously accumulated, which may cause
value overestimation. So we adopt the weighted max in (10) by setting 0 < λ < 1 to offset the positive
random noise. In continuous action space, following DDPG (Lillicrap et al., 2016), we train a policy network
πi(s) by maximizing Qi(s, πi(s)) as a substitute of arg maxai Qi(s, ai). The neural network implementation
is summarized in Algorithm 2.

Simplified best possible operator is meaningful for neural network implementation. As there is only one
buffer Di, we cannot perform (6) but can still perform (7) and (8) on Di. As other agents are updating
their policies, the transition probabilities in Di will continuously change. If Di sufficiently goes through all
possible transition probabilities, Qi(s, ai) converges to maxa−i

Q(s, ai, a−i) and the agents learn the optimal

6

Under review as submission to TMLR

joint policy. That is to say, non-stationarity in the replay buffer is no longer a drawback, but a necessary
condition for BQL.

3 Related Work

Most existing MARL methods (Lowe et al., 2017; Iqbal & Sha, 2019; Wang et al., 2020; Zhang et al., 2021b; Su
& Lu, 2022; Peng et al., 2021; Li et al., 2022; Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019) follow
centralized training and decentralized execution (CTDE), where the information of all agents can be accessed
in a centralized way during training. Unlike these methods, we focus on fully decentralized learning where
global information is not available. The most straightforward decentralized methods, i.e., independent Q-
learning (Tan, 1993) and independent PPO (IPPO) (de Witt et al., 2020a), cannot guarantee the convergence
of the learned policy, because the transition probabilities are non-stationary from the perspective of each
agent as all agents are learning policies simultaneously. Multi-agent alternate Q-learning (MA2QL) (Su
et al., 2022) guarantees the convergence to a Nash equilibrium, but the converged equilibrium may not be
the optimal one when there are multiple Nash equilibria. Moreover, to obtain the theoretical guarantee, it
has to be trained in an on-policy manner and cannot use replay buffers, which leads to poor sample efficiency.
Following the principle of optimistic estimation, Hysteretic IQL (Matignon et al., 2007) sets a slow learning
rate to the value punishment. Distributed IQL (Lauer & Riedmiller, 2000), a special case of Hysteretic IQL
with the slow learning rate being zero, guarantees the convergence to the optimum but only in deterministic
environments. I2Q (Jiang & Lu, 2022) lets each agent perform independent Q-learning on ideal transition
probabilities and could learn the optimal policy only in deterministic environments. Our BQL is the first
fully decentralized algorithm that converges to the optimal joint policy in stochastic environments.

In the next section, we compare BQL against these Q-learning variants (Distributed IQL is included in
Hysteretic IQL). Comparing with on-policy algorithms, e.g., IPPO, that are not sample-efficient especially
in fully decentralized settings, is out of focus and thus deferred to Appendix. Decentralized methods with
communication (Zhang et al., 2018; Konan et al., 2021; Li & He, 2020) allow information sharing with
neighboring agents according to a communication channel. However, they do not follow the fully decentralized
setting and thus are beyond the scope of this paper.

4 Experiments

We first test BQL with Q-table on randomly generated cooperative stochastic games to verify its convergence
and optimality. Then, to illustrate its performance on complex tasks, we compare BQL with neural networks
against Q-learning variants on MPE-version differential games (Jiang & Lu, 2022), Multi-Agent MuJoCo
(Peng et al., 2021), SMAC (Samvelyan et al., 2019), and GRF (Kurach et al., 2020). The experiments cover
both fully and partially observable, deterministic and stochastic, discrete and continuous environments. Since
we consider the fully decentralized setting, BQL and the baselines do not use parameter sharing. The results
are presented using mean and standard. More details about hyperparameters are available in Appendix E.

4.1 Stochastic Games

To support the theoretical analysis of BQL, we test the Q-table instantiation on stochastic games with
4 agents, 30 states, and infinite horizon. The action space of each agent is 4, so the joint action space
|A| = 256. The distribution of initial states is uniform. Each state will transition to any state given a joint
action according to transition probabilities. The transition probabilities and reward function are randomly
generated and fixed in each game. We randomly generate 20 games and train the agents for four different
seeds in each game.

The mean normalized return and std over the 20 games are shown in Figure 1a. IQL cannot learn the opti-
mal policies due to non-stationarity. Although using the optimistic update to remedy the non-stationarity,
Hysteretic IQL (H-IQL) still cannot solve this problem in stochastic environments and shows similar perfor-
mance to IQL. In Appendix A, we thoroughly analyze the difference and relationship between H-IQL and
BQL. I2Q performs Q-learning on the ideal transition function where the next state is deterministically the

7

Under review as submission to TMLR

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

BQL

BQL-

MA2QL

MA2QL-

I2Q

H-IQL

IQL

(a) Stochastic games
5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

|Dmi | = 200

|Dmi | = 1000

|Dmi | = 2000

|Dmi | = 5000

|Dmi | = 10000

(b) |Dm
i |

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

|Smi | = 12

|Smi | = 10

|Smi | = 8

|Smi | = 6

|Smi | = 4

(c) |Sm
i |

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

−12

−8

−4

0

4

8

re
w

ar
d

BQL

BQL-

MA2QL

MA2QL-

I2Q

H-IQL

IQL

(d) One-stage game
Figure 1: Learning curves on cooperative stochastic games (normalized by the optimal return).

one with the highest value, which however is impossible in stochastic tasks. So I2Q cannot guarantee the
optimal joint policy in stochastic environments. MA2QL guarantees the convergence to a Nash equilibrium,
but the converged one may not be the optimal one, thus there is a performance gap between MA2QL and
optimal policies. BQL could converge to the optimum, and the tiny gap is caused by the fitting error of
the Q-table update. This verifies our theoretical analysis. Note that, in Q-table instantiations, MA2QL
and BQL use different experience collection from IQL, i.e., exploration strategy and replay buffer. MA2QL
only uses on-policy experiences and BQL collects a series of small buffers. However, for sample efficiency,
the two methods have to use the same experience collection as IQL in complex tasks with neural networks.
MA2QL- and BQL- respectively denote the two methods with the same experience collection as IQL. Trained
on off-policy experiences, MA2QL- suffers from non-stationarity and achieves similar performance to IQL.
Even if using only one buffer, as we have analyzed in Section 2.4, if the non-stationary buffer sufficiently
goes through all possible transition probabilities, BQL agents can also converge to the optimum. Although
going through all possible transition probabilities by one buffer is inefficient, BQL- significantly outperforms
IQL, which implies the potential of BQL with one buffer in complex tasks.

Figure 1b shows the effect of the size of buffer Dm
i at the epoch m. If |Dm

i | is too small, i.e., 200, the
experiences in |Dm

i | are insufficient to accurately estimate the expected value (7). If |Dm
i | is too large, i.e.,

10000, the experiences in |Dm
i | are redundant, and the buffer series is difficult to cover all possible transition

probabilities given fixed total training timesteps. Figure 1c shows the effect of the number of states on which
the agents perform the randomly initialized deterministic policy π̂m

i for exploration. The larger |Sm
i | means

a stronger exploration for both state-action pairs and possible transition probabilities, which leads to better
performance.

We then consider a one-stage game that is wildly adopted in MARL (Son et al., 2019). There are 2 agents,
and the action space of each agent is 3. The reward matrix is∣∣∣∣∣∣∣

a1/a2 A(1) A(2) A(3)

A(1) 8 −12 −12
A(2) −12 0 0
A(3) −12 0 0

∣∣∣∣∣∣∣
where the reward 8 is the global optimum and the reward 0 is the sub-optimal Nash equilibrium. As shown
in Figure 1d, MA2QL converges to the sub-optimal Nash equilibrium when the initial policy of the second
agent selects A(2) or A(3). But BQL converges to the global optimum easily.

4.2 MPE

To evaluate the effectiveness of BQL with neural network implementation, we adopt the 3-agent MPE-based
differential game used in I2Q (Jiang & Lu, 2022), where 3 agents can move in the range [−1, 1]. Different
from the original deterministic version, we add stochasticity to it. In each timestep, agent i acts the action
ai ∈ [−1, 1], and the position of agent i will be updated as xi = clip(xi + 0.1 × ai, −1, 1) (i.e., the updated
position is clipped to [−1, 1]) with the probability 1 − β, or will be updated as −xi with the probability β.
β controls the stochasticity. The state is the vector of positions {x1, x2, x3}. The reward function of each

8

Under review as submission to TMLR

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

MA2QL

I2Q

H-IQL

IQL

(a) β = 0.2
2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

MA2QL

I2Q

H-IQL

IQL

(b) β = 0.3
2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

I2Q

MA2QL

H-IQL

IQL

(c) β = 0.4
2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL λ = 0.01

BQL λ = 0.1

BQL λ = 0.0

I2Q

MA2QL

H-IQL

IQL

(d) β = 0.5
Figure 2: Learning curves on MPE-based differential games with different β.

0 2.5× 105 5× 105

timestep

−150

−100

−50

0

50

100

150

200

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 2× 3 Swimmer
0 2.5× 105 5× 105

timestep

−200

0

200

400

600

800

1000
re

w
ar

d

BQL

MA2QL

I2Q

H-IQL

IQL

(b) 2× 4d Ant
0 2.5× 105 5× 105

timestep

−400

−200

0

200

400

600

800

1000

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(c) 6|2 Ant
0 0.5× 106 1.0× 106

timestep

0

1000

2000

3000

4000

re
w

ar
d

BQL

MA2QL

I2Q

H-IQL

IQL

(d) 17× 1 Humanoid
Figure 3: Learning curves on Multi-Agent MoJoCo.

timestep is

r =


0.5 cos(4lπ) + 0.5 if l ≤ 0.25
0 if 0.25 < l ≤ 0.6
0.15 cos(5π(l − 0.8)) + 0.15 if 0.6 < l ≤ 1.0
0 if l > 1.0

, l =
√

2
3(x2

1 + x2
2 + x2

3).

We visualize the relation between r and l in Figure 12. There is only one global optimum (l = 0 and r = 1)
but infinite sub-optima (l = 0.8 and r = 0.3), and the narrow region with r > 0.3 is surrounded by the region
with r = 0. So it is quite a challenge to learn the optimal policies in a fully decentralized way. Each episode
contains 100 timesteps, and the initial positions follow the uniform distribution. We perform experiments
with different stochasticities β, and train the agents for eight seeds with each β. In continuous environments,
BQL and baselines are built on DDPG.

As shown in Figure 2, IQL always falls into the local optimum (total reward ≈ 30) because of the non-
stationary transition probabilities. H-IQL only escapes the local optimum in one seed in the setting with
β = 0.3. According to the theoretical analysis in I2Q paper, the value estimation error of I2Q will become
larger when stochasticity grows, which is the reason why I2Q shows poor performance with β = 0.4 and
0.5. In neural network implementations, MA2QL and BQL use the same experience collection as IQL, so
there is no MA2QL- and BQL-. MA2QL converges to the local optimum because it cannot guarantee that
the converged equilibrium is the global optimum, especially trained using off-policy data. BQL (λ = 0.01)
can escape from local optimum in more than 4 seeds in all settings, which demonstrates the effectiveness
of our optimization objectives (9) and (10). The difference between global optimum (total reward ≈ 100)
and local optimum is large, which results in the large variance of BQL. In the objective (10), λ controls the
balance between performing best possible operator and offsetting the overestimation caused by the operator.
As shown in Figure 2, the large λ, i.e., 0.1, will weaken the strength of BQL, while too small λ, i.e., 0, will
cause severe overestimation and destroy the performance.

4.3 Multi-Agent MuJoCo

To evaluate BQL in partially observable environments, we adopt Multi-Agent MuJoCo (Peng et al., 2021),
where each agent independently controls one or some joints of the robot. In each task, we test four random
seeds and plot the learning curves in Figure 3. Here, we set λ = 0.5. In the first three tasks, each agent
can only observe the state of its own joints and bodies (with the parameter agent_obsk = 0). BQL achieves
higher reward or learns faster than the baselines, which verifies that BQL could be applied to partially
observable environments. In partially observable environments, BQL is performed on transition probabilities

9

Under review as submission to TMLR

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 2c_vs_64zg
0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(b) 2s3z
0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(c) 3s5z
0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(d) 1c3s5z
Figure 4: Learning curves on SMAC.

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(a) 3_vs_1 with keeper
0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

BQL

MA2QL

I2Q

H-IQL

IQL

(b) counterattack easy
0 2.5× 105 5× 105

timestep

−100

−50

0

50

100

150

200

re
w

ar
d λ = 0.0

λ = 0.2

λ = 0.5

λ = 0.8

λ = 1.0

IQL

(c) 2× 3 Swimmer
0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

λ = 0.8

λ = 0.85

λ = 0.9

λ = 0.95

IQL

(d) 2c_vs_64zg
Figure 5: (a) and (b): Learning curves on GRF. (c) and (d): Learning curves with different λ.

of observation Pi(o′
i|oi, ai), which also depends on π−i. The convergence and optimality of BQL can only

be guaranteed when one observation oi uniquely corresponds to one state s.

In the first three tasks, we only consider two-agent cases in the partially observable setting, because the too
limited observation range cannot support strong policies when there are more agents. We also test BQL on
17-agent Humanoid with full observation in Figure 3d. BQL obtains significant performance gain in this
many-agent task, which can be evidence of the good scalability of BQL.

4.4 SMAC and Google Research Football

We also perform experiments on partially observable and stochastic SMAC tasks (Samvelyan et al., 2019)
with the version SC2.4.10, including both easy and hard maps (Yu et al., 2021). Agent numbers vary
between 2 and 9. We build BQL on the implementation of PyMARL (Samvelyan et al., 2019) and train
the agents for four random seeds. The learning curves are shown in Figure 4. In general, BQL outperforms
the baselines, which verifies that BQL can also obtain performance gain in high-dimensional complex tasks.
In 2c_vs_64zg, by considering the non-stationary transition probabilities, BQL and I2Q achieve significant
improvement over other methods. We conjecture that the interplay between agents is strong in this task.

GRF (Kurach et al., 2020) is a physics-based 3D simulator where agents aim to master playing football. We
select two academy tasks with sparse rewards: 3_vs_1 with keeper (3 agents) and counterattack easy (4
agents). We build BQL on the implementation of PyMARL2 (Hu et al., 2021) and train the agents for four
random seeds. Although I2Q shows similar results with BQL in some SMAC tasks, BQL can outperform
I2Q in GRF as shown in Figure 5a and 5b, because GRF is more stochastic than SMAC and the value gap
of I2Q will enlarge along with the increase of stochasticity.

4.5 Hyperparameter λ

We further investigate the effectiveness of λ in Multi-Agent MuJoCo and SMAC. In the objective (10), λ
controls the balance between performing best possible operator and offsetting the overestimation caused by
the operator. As shown in Figure 5c and 5d, too large λ will weaken the strength of BQL. When λ = 1.0,
BQL degenerates into IQL. Too small λ, i.e., 0, will cause overestimation. If the environment is more
complex, e.g., SMAC, overestimation is more likely to occur, so we should set a large λ. In 2 × 3 Swimmer,
when λ falls within the interval [0.2, 0.8], BQL can obtain performance gain, showing the robustness to λ.

10

Under review as submission to TMLR

5 Conclusion

We propose best possible operator and theoretically prove that the policies of agents will converge to the
optimal joint policy if each agent independently updates its individual state-action value by the operator.
We then simplify the operator and derive BQL, the first decentralized MARL algorithm that guarantees
the convergence to the global optimum in stochastic environments. Empirically, BQL outperforms baselines
in a variety of multi-agent tasks. We also discuss the limitation of unique optimal joint policy and sample
efficiency.

References
Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS Torr,
Mingfei Sun, and Shimon Whiteson. Is Independent Learning All You Need in The StarCraft Multi-Agent
Challenge? arXiv preprint arXiv:2011.09533, 2020a.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer, and
Shimon Whiteson. Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative
Control. arXiv preprint arXiv:2003.06709, 2020b.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the implementation
tricks and monotonicity constraint in cooperative multi-agent reinforcement learning. arXiv e-prints, pp.
arXiv–2102, 2021.

Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In International
Conference on Machine Learning (ICML), 2019.

Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Sachin G Konan, Esmaeil Seraj, and Matthew Gombolay. Iterated reasoning with mutual information in
cooperative and byzantine decentralized teaming. In International Conference on Learning Representations
(ICLR), 2021.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajkac, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel
reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 2020.

Martin Lauer and Martin Riedmiller. An algorithm for distributed reinforcement learning in cooperative
multi-agent systems. In International Conference on Machine Learning (ICML), 2000.

Hepeng Li and Haibo He. Multi-agent trust region policy optimization. arXiv preprint arXiv:2010.07916,
2020.

Xihan Li, Jia Zhang, Jiang Bian, Yunhai Tong, and Tie-Yan Liu. A cooperative multi-agent reinforcement
learning framework for resource balancing in complex logistics network. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2019.

Yueheng Li, Guangming Xie, and Zongqing Lu. Difference advantage estimation for multi-agent policy
gradients. In International Conference on Machine Learning (ICML), 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference
on Learning Representations (ICLR), 2016.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-Agent Actor-Critic
for Mixed Cooperative-Competitive Environments. Neural Information Processing Systems (NeurIPS),
2017.

11

Under review as submission to TMLR

Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2007.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs, volume 1.
Springer, 2016.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr, Wendelin
Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gradients. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning. In International Conference on Machine Learning (ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim
G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft
Multi-Agent Challenge. arXiv preprint arXiv:1902.04043, 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN: Learning
To Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning. In International
Conference on Machine Learning (ICML), 2019.

Kefan Su and Zongqing Lu. Divergence-Regularized Multi-Agent Actor-Critic. In International Conference
on Machine Learning (ICML), 2022.

Kefan Su, Siyuan Zhou, Chuang Gan, Xiangjun Wang, and Zongqing Lu. MA2QL: A minimalist approach
to fully decentralized multi-agent reinforcement learning. arXiv preprint arXiv:2209.08244, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jader-
berg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-Decomposition Networks for
Cooperative Multi-Agent Learning Based on Team Reward. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International Con-
ference on Machine Learning (ICML), 1993.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster Level in StarCraft II
Using Multi-Agent Reinforcement Learning. Nature, 575(7782):350–354, 2019.

Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. Multi-agent reinforcement learn-
ing for active voltage control on power distribution networks. Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy multi-agent
decomposed policy gradients. In International Conference on Learning Representations (ICLR), 2020.

Bingyu Xu, Yaowei Wang, Zhaozhi Wang, Huizhu Jia, and Zongqing Lu. Hierarchically and cooperatively
learning traffic signal control. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness
of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-agent
reinforcement learning with networked agents. In International Conference on Machine Learning (ICML),
2018.

12

Under review as submission to TMLR

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of Reinforcement Learning and Control, pp. 321–384, 2021a.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. FOP: Factorizing Optimal
Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning. In International Conference on
Machine Learning (ICML), 2021b.

13

Under review as submission to TMLR

A Comparison with Hysteretic IQL

Hysteretic IQL is a special case of BQL when the environment is deterministic. To thoroughly illustrate
that, we rewrite the loss function of BQL

w(s, ai)
(

Qi (s, ai) − EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
])2

,

w(s, ai) =

1 if EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
]

> Qi (s, ai)

λ else.

If λ = 0, the update of BQL is

Qi(s, ai) = max
(

Qi(s, ai),EP̃i(s′|s,ai)

[
r + γmax

a′
i

Qi(s′, a′
i)
])

.

Hysteretic IQL follows the loss function

w(s, ai)
(

Qi (s, ai) − r − γmax
a′

i

Qi(s′, a′
i)
)2

,

w(s, ai) =
{

1 if r + γmax
a′

i

Qi(s′, a′
i) > Qi (s, ai)

λ else.

If λ = 0, Hysteretic IQL degenerates into Distributed IQL (Lauer & Riedmiller, 2000)

Qi(s, ai) = max
(

Qi(s, ai), r + γmax
a′

i

Qi(s′, a′
i)
)

.

BQL takes the max of the expected target on transition probability P̃i(s′|s, ai), while Hysteretic IQL takes
the max of the target on the next state s′. When the environment is deterministic, they are equivalent.
However, in stochastic environments, Hysteretic IQL cannot guarantee to converge to the global optimum
since the environment will not always transition to the same s′. BQL can guarantee the global optimum in
both deterministic and stochastic environments.

B Efficiency of BQL

deterministic

stochastic

Figure 6: Space of other agents’ policies π−i given an (s, ai).

We will discuss the efficiency of collecting the replay buffer for BQL. The space of other agents’ policies π−i

given (s, ai) pair is a convex polytope. For clarity, Figure 6 shows a triangle space. Each π−i corresponds to
a Pi(s′|s, ai). Deterministic policies π−i locate at the vertexes, while the edges and the inside of the polytope
are stochastic π−i, the mix of deterministic ones. Since BQL only considers deterministic policies, the buffer
series only needs to cover all the vertexes by acting deterministic policies in the collection of each buffer Dm

i ,
which is efficient. BQL needs only |Ai| × |A−i| = |A| small buffers, which is irrelevant to state space |S|, to
meet the requirement of simplified best possible operator that any one of possible Pi(s′|s, ai) can be found
in one (ideally only one) buffer given (s, ai) pair. More specifically, |Ai| buffers are needed to cover action

14

Under review as submission to TMLR

Ideally 4 buffers cover all possible

Figure 7: Toy case for illustrating the ideal buffer number. |S| = 3, |Ai| = 2, and |A−i| = 2 corresponding to P 1
i and

P 2
i . We can see that any Pi(s, ai) can be found in the 4 buffers.

5× 106 10× 106

timestep

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
iz

ed
re

w
ar

d

BQL

JQL

Figure 8: Learning curves of BQL and joint Q-learning (JQL). BQL shows similar sample efficiency to JQL.

space, and |A−i| buffers are needed to cover transition space for each action. We intuitively illustrate this in
Figure 7. Each state in Dm

i requires # samples to estimate the expectation in (7), so the sample complexity
is O(|A||S|#). For the joint Q-learning (3), the most efficient known method to guarantee the convergence
and optimality in stochastic environments, each state-joint action pair (s, a) requires # samples to estimate
the expectation, so the sample complexity is also O(|A||S|#). Thus, BQL is close to the joint Q-learning in
terms of sample complexity, which is empirically verified in Figure 8.

One may ask “since you obtain all possible transition probabilities, why not perform IQL on each transition
probability and choose the highest value?” Actually, this naive algorithm can also learn the optimal policy,
but the buffer collection of the naive algorithm is much more costly than that of BQL. The naive algorithm
requires that any one of possible transition probability functions of the whole state-action space could be
found in one buffer, which needs |A−i||S| buffers. And training IQL |A−i||S| times is also formidable. BQL
only requires that any one of possible transition probability of any state-action pair could be found in one
buffer, which is much more efficient.

However, considering sample efficiency, BQL with neural networks only maintains one replay buffer Di

containing all historical experiences, which is the same as IQL. Pi in Di corresponds to the average of other
agents’ historical policies, which is stochastic. Therefore, to guarantee the optimality, in theory, BQL with
one buffer has to go through almost the whole π−i space, which is costly. As shown in Figure 1d, BQL-
(with one buffer) outperforms IQL but cannot achieve similar results as BQL (with buffer series), showing
that maintaining one buffer is costly but still effective. In neural network instantiation, we show the results
of BQL with the buffer series in Figure 9. Due to sample efficiency, the buffer series cannot achieve strong
performance, and maintaining one buffer like IQL is a better choice in complex environments.

15

Under review as submission to TMLR

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

one buffer

buffer series

(a) MPE, β = 0.4

0 2.5× 105 5× 105

timestep

−100

−50

0

50

100

150

200

re
w

ar
d

one buffer

buffer series

(b) 2× 3 Swimmer
Figure 9: BQL with one buffer and buffer series.

2.5× 105 5.0× 105

timestep

0

20

40

60

80

100

re
w

ar
d

BQL on SAC

SAC

BQL

IQL

IPPO

(a) MPE, β = 0.4

0 2.5× 105 5× 105

timestep

−500

−250

0

250

500

750

1000

re
w

ar
d

BQL on SAC

SAC

BQL

IQL

IPPO

(b) 2× 4d Ant
Figure 10: Learning curves of other base algorithms.

C Other Base Algorithms

Besides DDPG, BQL could also be built on other variants of Q-learning, e.g., SAC. Figure 10 shows that
BQL could also obtain performance gain on independent SAC. Independent PPO (IPPO) (de Witt et al.,
2020a) is an on-policy decentralized MARL baseline. IPPO is not a Q-learning method so it cannot be the
base algorithm of BQL. On-policy algorithms do not use old experiences, which makes them weak on sample
efficiency (Achiam, 2018) especially in fully decentralized settings as shown in Figure 10. Thus, it is unfair
to compare off-policy algorithms with on-policy algorithms.

Published as a conference paper at ICLR 2021

a2

a1 A(1) A(2) A(3)

A(1) 9.99 10 0
A(2) 10 0
A(3) 0 0

(a) Payoff of a harder matrix game

0 100 200 300 400 500
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX
QTRAN
QMIX
VDN

Qatten
OW-QMIX
CW-QMIX
Optimal

(b) Deep MARL algorithms

0 150 300 450 600 750
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX-3L10H
QPLEX-3L4H
QPLEX-2L10H
QPLEX-2L4H
Optimal

(c) Learning curves of ablation study

Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN

6

0
0

(a) matrix game

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

9.980

9.985

9.990

9.995

10.000

10.005

10.010

re
w

ar
d

BQL

IQL

(b) learning curves
Figure 11: Learning curves on a one-stage matrix game with multiple optimal joint policies.

D Multiple Optimal Joint Policies

We assume that there is only one optimal joint policy. With multiple optimal actions (with the max Qi(s, ai)),
if each agent arbitrarily selects one of the optimal independent actions, the joint action might not be optimal.
To address this, we use the simple technique proposed in I2Q (Jiang & Lu, 2022). Concretely, we set a
performance tolerance ε and introduce a fixed randomly initialized reward function r̂(s, s′) ∈ (0, (1 − γ)ε].
Then all agents perform BQL to learn Q̂i(s, ai) of the shaped reward r+ r̂. Since r̂ > 0, Q̂i(s, ai) > Qi(s, ai).
In Q̂i(s, ai), the maximal contribution from r̂ is (1 − γ)ε/(1 − γ) = ε, so the minimal contribution from r is
Q̂i(s, ai) − ε > Qi(s, ai) − ε, which means that the maximal performance drop is ε when selecting actions
according to Q̂i. It is a small probability event to find multiple optimal joint policies on the reward function
r + r̂, because r̂(s, s′) is randomly initialized. Thus, if ε is set to be small enough, BQL can solve the task

16

Under review as submission to TMLR

with multiple optimal joint policies. However, this technique is introduced to only remedy the assumption
for theoretical results. Empirically, this is not required, because there is usually only one optimal joint policy
in complex environments. In all experiments, we do not use the randomly initialized reward function for
BQL and other baselines, so the comparison is fair.

We test the randomly initialized reward function on a one-stage matrix game with two optimal joint policies
(1, 2) and (2, 1), as shown in Figure 11. If the agents independently select actions, they might choose
the miscoordinated joint policies (1, 1) and (2, 2). IQL cannot converge, but BQL agents always select
coordinated actions, though the value gap between the optimal policy and suboptimal policy is so small,
which verifies the effectiveness of the randomly initialized reward.

0.0 0.2 0.4 0.6 0.8 1.0

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 reward of l

density of lglobal optimum

local optimum

Figure 12: Curves of reward and density of l =
√

2
3
∑3

i=0 x2
i in MPE. We plot the density of uniform state distribution.

There is only one global optimum, but the density of local optimum is high. So decentralized agents will easily learn
the local optimal policies.

E Hyperparameters

In MPE-based (MIT license) differential games, the relationship between r and l is visualized in Figure 12.

In 2 × 3 Swimmer, there are two agents and each of them controls 3 joints of ManyAgent Swimmer. In 6|2
Ant, there are two agents. One of them controls 6 joints, and one of them controls 2 joints. And so on.

In MPE-based differential games and Multi-Agent MuJoCo (MIT license), we adopt SpinningUp (Achiam,
2018) implementation (MIT license), the SOTA implementation of DDPG, and follow all hyperparameters
in SpinningUp. The discount factor γ = 0.99, the learning rate is 0.001 with Adam optimizer, the batch size
is 100, the replay buffer contains 5 × 105 transitions, the hidden units are 256.

In SMAC (MIT license), we adopt PyMARL (Samvelyan et al., 2019) implementation and follow all hyper-
parameters in PyMARL (Apache-2.0 license). The discount factor γ = 0.99, the learning rate is 0.0005 with
RMSprop optimizer, the batch size is 32 episodes, the replay buffer contains 5000 episodes, the hidden units
are 64. We adopt the version SC2.4.10 of SMAC.

In GRF (Apache-2.0 license), we adopt PyMARL2 (Hu et al., 2021) implementation (Apache-2.0 license)
and follow all hyperparameters in PyMARL2. The discount factor γ = 0.999, the learning rate is 0.0005
with Adam optimizer, the batch size is 128 episodes, the replay buffer contains 2000 episodes, the hidden
units are 256. We use simple115 feature (a 115-dimensional vector summarizing many aspects of the game)
as observation instead of RGB image.

In MPE-based differential games, we set λ = 0.01. In Multi-Agent MuJoCo, we set λ = 0.5, and in SMAC,
we set λ = 0.85 for 2c_vs_64zg and λ = 0.8 for other tasks. In GRF, we set λ = 0.1 for 3_vs_1 with keeper
and λ = 0.4 for counterattack easy.

The experiments are carried out on Intel i7-8700 CPU and NVIDIA GTX 1080Ti GPU. The training of each
MPE, MuJoCo, and GRF task could be finished in 5 hours, and the training of each SMAC task could be
finished in 20 hours.

17

	Introduction
	Method
	Preliminaries
	Best Possible Operator
	Simplified Best Possible Operator
	Best Possible Q-Learning

	Related Work
	Experiments
	Stochastic Games
	MPE
	Multi-Agent MuJoCo
	SMAC and Google Research Football
	Hyperparameter

	Conclusion
	Comparison with Hysteretic IQL
	Efficiency of BQL
	Other Base Algorithms
	Multiple Optimal Joint Policies
	Hyperparameters

