

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW WELL DOES GPT-4O UNDERSTAND VISION? EVALUATING MULTIMODAL FOUNDATION MODELS ON STANDARD COMPUTER VISION TASKS

Anonymous authors

Paper under double-blind review

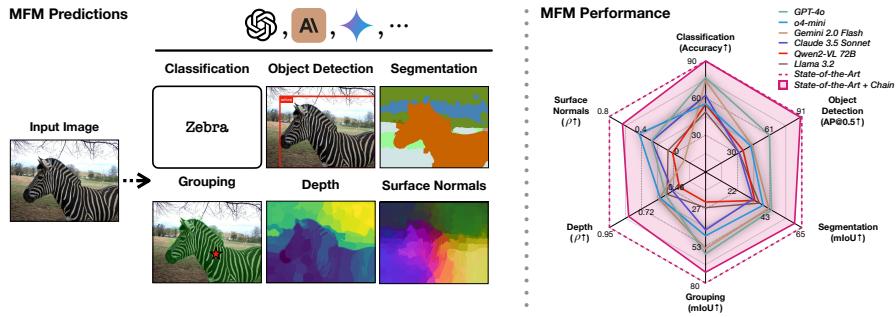


Figure 1: We benchmark multimodal foundation models (MFM) on established computer vision tasks and datasets. **Left:** GPT-4o’s predictions for each task. **Right:** The performance of the MFM on several classical computer vision tasks. We compare MFM with specialist models both directly and by calibrating for the chosen structure and constraints of the used prompt chain (+chain; see Sec. 4). The axes are normalized using task-specific lower and upper bounds, defined by blind guessing and state-of-the-art specialist performance, respectively.

ABSTRACT

Multimodal foundation models (MFM), such as GPT-4o, have recently made remarkable progress. However, their detailed visual understanding beyond question answering remains unclear. In this paper, we **benchmark the popular MFM** (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) **on standard computer vision tasks** (semantic segmentation, object detection, image classification, depth and surface normal prediction) **using established datasets** (e.g., COCO, ImageNet and its variants, etc).

The main challenges in performing this analysis are: **1)** most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and **2)** many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these by translating vision tasks into text-promptable, API-compatible formats via prompt chaining, creating a standardized benchmarking framework.

We observe that: **1)** The models are not close to the state-of-the-art specialist models at any tasks. **2)** They are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. **3)** They perform semantic tasks notably better than geometric ones. **4)** GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks. **5)** Reasoning models, e.g. o3, show improvements in geometric tasks. **6)** While prompt chaining techniques affect performance, better models are less sensitive to prompt variations. **7)** An analysis of models with native image generation, such as the latest GPT-4o, shows they exhibit failure modes, such as hallucinated objects or misalignment between input and output.

054

1 INTRODUCTION

055
 056 Multimodal foundation models (MFMs), such as GPT-4o, Gemini 1.5 Pro and 2.0 Flash, and
 057 Claude 3.5 Sonnet Anthropic (2024); OpenAI (2024b); Reid et al. (2024), have advanced rapidly,
 058 demonstrating impressive capabilities in their public releases (OpenAI, 2024b). However, while
 059 the community has extensively investigated their language proficiency (Chen et al., 2021; Chiang
 060 et al., 2024; Hendrycks et al., 2020; Rein et al., 2023), the extent of their vision capabilities remains
 061 underexplored. We still lack a well-calibrated quantitative understanding of their performance on
 062 established vision tasks and datasets, particularly across diverse axes of vision, e.g. semantics, 3D,
 063 grouping, etc.

064 Most of the existing vision benchmarks of MFMs primarily target text (e.g., VQA) or tasks closely
 065 tied to text, like classification (Fu et al., 2024; Rahmazadehgervi et al., 2024; Tong et al., 2024a;b;
 066 Wu and Xie, 2024; Yue et al., 2024). While they provide useful insights, several key limitations
 067 persist. First, it is unclear how much solving these benchmarks truly depends on the visual input,
 068 and some were shown to mainly measure the language capabilities of MFMs while overlooking the
 069 vision component (Tong et al., 2024a). Second, they all require the model to output text, making it
 070 hard to compare the vision capabilities of MFMs on vision-only tasks and against vision specialist
 071 models. Third, they do not shed light on other aspects of visual understanding, such as 3D geometry,
 072 grouping, or segmentation, that are less text oriented.

073 We address these limitations by evaluating MFMs on well-established vision tasks and datasets
 074 developed by the community. Specifically, we test GPT-4o, o4-mini, Claude 3.5 Sonnet, Gemini
 075 2.0 Flash, Gemini 1.5 Pro, Qwen2-VL, and Llama 3.2 on classification, object detection, semantic
 076 segmentation, grouping, depth prediction, and surface normal prediction using COCO (Lin et al.,
 077 2014), Hypersim (Roberts et al., 2021), as well as ImageNet (Russakovsky et al., 2014) and its
 078 variants (Hendrycks and Dietterich, 2019; Hendrycks et al., 2021; Kar et al., 2022b; Recht et al.,
 079 2019; Wang et al., 2019). Most of these tasks, however, require dense pixel-wise predictions not
 080 readily compatible with the default text output of most MFMs. Furthermore, direct prompting usually
 081 leads to a varying and often weak performance across tasks, hence it may not represent the actual
 082 visual understanding capabilities of MFMs (see Sec. 4.2 and App. E).

083 To address these challenges, we split each task into multiple sub-tasks, each of which can be solved
 084 in a textual form via prompting (see Sec. 3). This results in a *prompt chaining framework that*
 085 *can be applied to any MFM with a text interface (e.g., ChatBot APIs) to solve standard vision*
 086 *tasks.* Specifically, our proposed approach allows MFMs to **1**) detect bounding boxes, **2**) generate
 087 complete segmentation masks for complex scenes, **3**) extract semantic entities from images similar to
 088 SAM (Kirillov et al., 2023b), **4**) estimate dense depth and surface normal maps (see Fig. 1.)

089 We emphasize that this prompt chaining framework is *not proposed as an alternative methodology for*
 090 *solving vision tasks, nor do we suggest that MFMs should adopt such approaches in practice.* Rather,
 091 our framework serves specifically as a standardized method to measure and benchmark *any MFM* that
 092 can input images and output text. Crucially, *this enables a quantifiable and holistic understanding of*
 093 *MFMs' vision capabilities on various established vision tasks and benchmarks, as well as a direct*
 094 *comparison with vision-only models.*

095 We find that the current generation of *MFMs achieves a good performance in most cases* and are
 096 respectable as generalists, with GPT-4o scoring the best in 4 out of 6 tasks. However, *they still lag*
 097 *behind task-specific state-of-the-art vision models in all tasks.* In particular, we find that the MFMs
 098 perform geometric tasks significantly worse than semantic ones. Furthermore, we perform a detailed
 099 prompt sensitivity analysis for each task and find that, while performance varies for different prompts,
 100 better models exhibit less sensitivity. To enable further research in this direction and enable the
 101 community to benchmark future MFMs on vision tasks, we will open-source our evaluation and
 102 prompt chaining tool set, along with the interactive tool provided in the supplementary material.

103

2 RELATED WORK

104
 105 **Advances in MFMs.** There has been remarkable progress in MFMs Achiam et al. (2023); Alayrac
 106 et al. (2022); Anthropic (2024); Bai et al. (2023); Beyer et al. (2024); Dai et al. (2023); Li et al. (2023a);
 107 Liu et al. (2024); OpenAI (2024a;b; 2025b); Reid et al. (2024); Team (2024); Team et al. (2023);
 108 Wang et al. (2022; 2024) (see (Yin et al., 2023; Zhang et al., 2024) for surveys), leading to strong per-

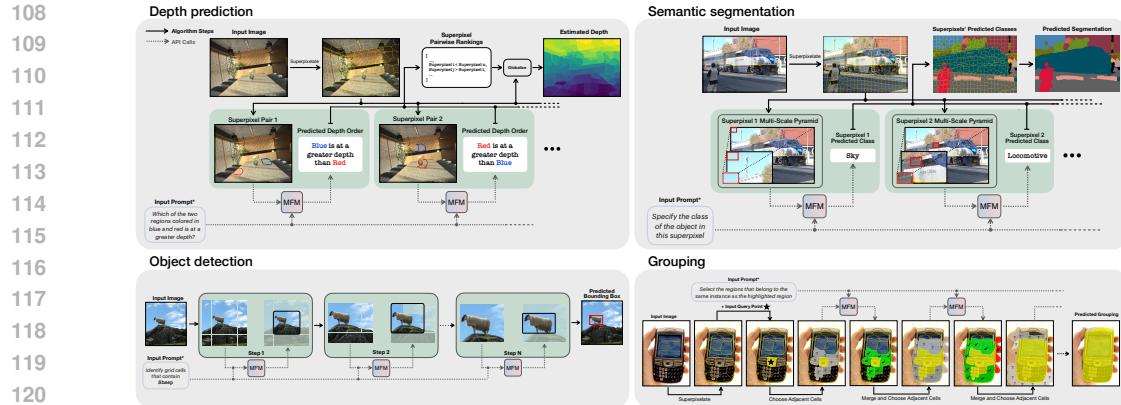


Figure 2: **Prompt chain algorithms overview.** a) **Depth prediction** randomly samples pairs of superpixels and performs pairwise depth comparisons, which are globalized by minimizing an objective function, resulting in a relative depth map. Surface normal estimation is performed in a similar manner (see appendix). b) **Semantic segmentation** constructs multi-scale “pyramids” of superpixel crops (superpixel, local context, full image) and classifies these sequentially with the MFM. c) **Object detection** iteratively queries a 3×3 grid of image crops for the target class (e.g., Sheep), discarding empty cells and refining the search until the object is localized. d) **Grouping** grows a cluster around a query point by merging adjacent superpixels predicted to belong to the same object. *Summary of the actual prompt; see full prompt chain descriptions in the supplementary material.

formance on multimodal tasks like VQA and instruction following. Despite the progress, it is unclear how well these models perform tasks that require dense visual understanding, which is our main focus.

Benchmarking vision capabilities of MFM. Many works investigate the vision capabilities of MFM via VQA-style benchmarks that combine visual and textual inputs to generate textual outputs (Al-Tahan et al., 2024; Fu et al., 2024; Jiang et al., 2024a; Li et al., 2023b; Liu et al., 2024; Rahmazdehgeri et al., 2024; Tong et al., 2024a;b; Yue et al., 2024). While these approaches offer valuable insights, they are incompatible with vision-only models, making direct comparisons difficult. In contrast, we evaluate MFM on standard vision tasks, enabling direct comparison with strong vision specialists to track MFM’s progress. Cambrian-1 (Tong et al., 2024a) evaluates MFM on vision datasets (Brazil et al., 2023; Lin et al., 2014; Zhou et al., 2017) by repurposing dataset annotations into text format. We differ by translating MFM outputs into the annotation format instead, e.g., segmentation maps. To the best of our knowledge, this is the first approach that enables an apples-to-apples comparison with vision specialist models using standard task-specific metrics and qualitative analyses in the tasks’ native output space.

Prompting MFM. Various prompting techniques have been developed for MFM (Khot et al., 2022; Wei et al., 2022; Yao et al., 2024; Zhou et al., 2022). We follow a similar strategy and decompose complex vision tasks into simpler sub-tasks that MFM can handle. Several works developed prompting techniques to unlock the vision capabilities of MFM (Hu et al., 2024; Wu and Xie, 2024; Wu et al., 2024; Yang et al., 2023a). The related DetToolChain (Wu et al., 2024) for object detection is not fully reproducible at the time of writing. We differ by 1) focusing on a wider range of tasks including semantic and geometric ones 2) for several MFM including closed- and open-weight ones 3) with a simpler yet effective and uniform prompt chaining mechanism.

3 PROMPT CHAINING FOR SOLVING VISION TASKS

In this section, we describe the developed prompt chaining techniques that enable MFM to solve standard computer vision tasks. The core idea is to break each task into simpler, text-solvable sub-tasks, e.g., identifying whether an object is present in a patch of an image. We then solve each sub-task by prompting the MFM. To guide the choice of how to split each task into sub-tasks, we rely on our early key observation that most MFM are relatively strong at image classification (see, e.g., Tab. 1) and, therefore, split each task into multiple classification sub-tasks. We provide the pseudo-code for each technique in App. D.

Object detection. The goal is to predict bounding box coordinates that tightly localize the objects in the image. Similar to Yang et al. (2023b), our initial attempts showed that many MFM fail at predicting the coordinates directly. Thus, we develop a prompt chaining method and divide the original task into two stages. The first stage is to identify all objects in the image, similar to classification. In the second stage, for each object, we regress its coordinates via recursive zooming (see Fig. 2). Specifically, we divide the image into grid cells and ask the model to identify whether (a part of) the object is present in each cell. We then discard cells without objects, reducing the search space. We apply this process recursively, progressively eliminating irrelevant regions of the image until only the object of interest remains present in the image. We use two grid resolutions: a coarse grid for quick downsampling and a finer grid for precise edge refinement to reduce the number of steps.

Semantic segmentation. The goal is to assign a single semantic class to each pixel in an image. Instead of per-pixel querying that is prohibitively expensive, we split the image into pixel groups using an *unsupervised* superpixel clustering algorithm (Achanta et al., 2012) and assign a single label per group to decrease the number of API calls (or forward passes). This approach is used primarily for **cost efficiency**, as the superpixel algorithm is **semantically-agnostic**: it only provides candidate regions based on low-level features like color and texture Stutz et al. (2018), while the MFM remains solely responsible for the semantic labeling. We confirm in App. E.8 that our findings hold even when increasing the superpixel granularity. In all our comparisons, *we account for potential biases introduced by superpixelation (and other approximations in prompting)* by introducing calibration control baselines (see Sec. 4.)

After dividing the image into superpixels, we classify them in batches to decrease the overall cost, as in the classification task. Similar to the object detection algorithm, this approach utilizes the strength of MFM as strong image classifiers. To maintain consistency, we include prior predictions in the prompt history, which improves performance.

In our early experiments, we found that simply outlining individual superpixels on an input image leads to poor performance. This aligns with findings that MFM have “blurry vision” and struggle with fine-grained localization (Fu et al., 2024; Wu and Xie, 2024). To address this, we provide the MFM with the crops of each superpixel at multiple scales, which we found to improve the performance significantly. Please see Fig. 2 for an overview.

Grouping. Given an image and a query (or anchor) point on it, the goal is to identify other pixels that belong to the same object or background. Unlike semantic segmentation, this task has no predefined classes, making it more challenging. To tackle this task, as before, we use superpixels and the MFM’s capability to determine visual similarity (Fu et al., 2024). We create a graph of neighboring superpixels, identify the one with the query point, and explore its neighbors. The model decides whether each adjacent superpixel belongs to the same object as the initial superpixel. The selected superpixels are then merged with the initial one to form the next input cluster. This process continues until no more superpixels are added. Please see Fig. 2 for an overview.

Depth prediction. We perform relative depth prediction by querying the model to rank different parts of the image according to their distance from the camera. As per-pixel querying is infeasible, we adopt a region-wise comparison strategy inspired from Zoran et al. (2015). To identify suitable regions for comparison, we first segment the image into superpixels. We then randomly sample pairs of superpixels and query the MFM to rank these pairs based on relative depth (see Fig. 13 in the appendix). These pairwise rankings are then globalized by minimizing the objective function from (Zoran et al., 2015), which assigns larger values to superpixels ranked deeper in pairwise comparisons (see App. D.3). We then use the values found by the optimization method to rank all superpixels. For simplicity, we assume that all pixels within a superpixel share the same depth rank, allowing us to extend the superpixel-level depth predictions to a pixel-wise ranking across the entire image (control baselines are included in evaluations).

Surface normal prediction. We follow a ranking approach similar to that used for depth. We use standard basis vectors relative to the camera (right, up, and forward) as reference directions, and for each randomly sampled pair of superpixels, we query the MFM to determine their relative alignment with each basis vector (see Fig. 14 in the appendix). After we obtain the pairwise comparisons for each direction, we globalize them using the same algorithm used for depth (Zoran et al., 2015). This results in three distinct surface normal maps, one for each basis direction. Similar to depth, we assume uniformity within superpixels and assign the same rank to all pixels within each superpixel group (control baselines are included in the evaluations).

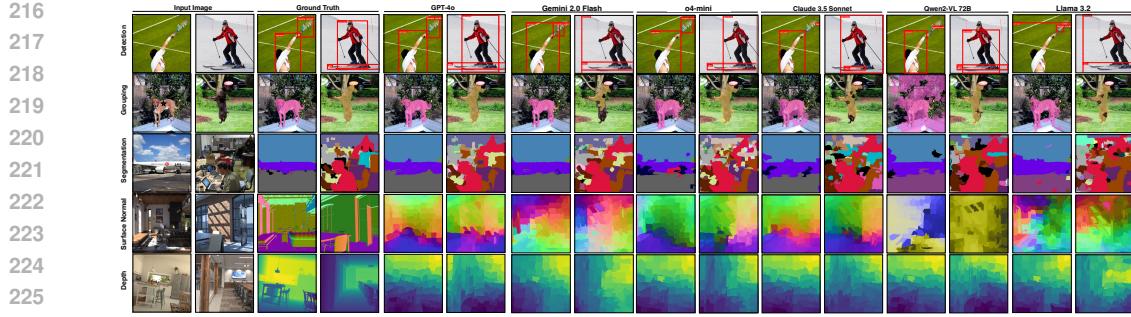


Figure 3: **Qualitative results.** Visual comparisons showing the performance of MFMs across each task. We find that all models perform relatively better on semantic tasks compared to the geometric ones. For surface normal visualizations, we combine the per-axis normalized predictions and project them onto the unit sphere. Please see the appendix for additional qualitative results.

Image classification. The MFM classifies the image from a list of predefined classes. For efficiency, we follow (Jiang et al., 2024a) and classify images in batches, which does not significantly harm accuracy.

3.1 ACCOUNTING FOR ALGORITHMIC CONSTRAINTS

Using superpixels and the zooming algorithm can impose constraints on MFMs’ performance. We address this in two ways. First, we introduce *targeted control baselines* in all our experiments (see Sec. 4) to ensure fair and calibrated comparisons with other vision models. Second, in App. E.8, we demonstrate that employing more fine-grained prompt chains (e.g., using more superpixels) yields consistent conclusions, confirming that our findings are robust to the chosen granularity.

4 EXPERIMENTS

We present the experimental results for different tasks and MFMs. First, we describe our setting, including the choice of the datasets and models. Then, we discuss our main results. We provide qualitative examples for all tasks in Fig. 3. Finally, we provide further analysis and ablations in Sec. 4.2. Please see the appendix for additional results.

Evaluated MFMs. We evaluate closed-weight MFMs, namely GPT-4o (OpenAI, 2024b), Gemini 2.0 Flash (Google DeepMind, 2024), Gemini 1.5 Pro (Reid et al., 2024), and Claude 3.5 Sonnet (Anthropic, 2024) by querying them via their APIs. We also include Qwen2-VL-72B (Wang et al., 2024) and Llama 3.2 90B (AI, 2024; Meta) as recent open-weight models that yield competitive results with GPT-4o and Claude 3.5 on several benchmarks. In addition, we evaluate recent multimodal reasoning models such as o1, o3, and o4-mini OpenAI (2024a; 2025b). We evaluate o4-mini across the full benchmark, and evaluate o1 and o3 on smaller representative subsets due to cost constraints. For each model and task, we select the best prompt on a validation set for final testing.

Datasets. We use the following common vision datasets for evaluations:

Image classification. We use standard benchmarks including ImageNet (Russakovsky et al., 2014) and ImageNet-v2 (Recht et al., 2019). To test robustness, we use ImageNet-R (Hendrycks et al., 2021), ImageNet-S (Wang et al., 2019), and two corruption benchmarks from RobustBench, namely, ImageNet-C (Croce et al., 2020; Hendrycks and Dietterich, 2019) and ImageNet-3DCC (Kar et al., 2022b).

Object detection. We use the COCO (Lin et al., 2014) validation set and choose images containing a single instance of each present class, resulting in 1.7K examples.

Semantic segmentation & grouping. We use a random subset of 500 COCO (Lin et al., 2014) validation images for semantic segmentation for cost-efficiency. For grouping, we filter 100 images from the COCO validation set by measuring the consistency of SAM (Kirillov et al., 2023a) predictions between different query points within every instance. More details are provided in the appendix.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: **Image classification.** We compare the top-1 acc. (\uparrow) of the MFM with vision specialists, Model Soups (Wortsman et al., 2022) and OpenCLIP Cherti et al. (2023). Although their performance falls short of the top specialist models, MFM, particularly GPT-4o, demonstrate competitive results across a broad range of benchmarks.

Model	ImageNet	ImageNet-V2	Corruptions		Domain Shift	
			2DCC	3DCC	ImageNet-R	ImageNet Sketch
Model Soups ViT-G	90.94	84.22	-	-	95.46	74.23
OpenCLIP H	84.37	78.33	66.96	65.95	93.76	73.24
GPT-4o	77.20	71.57	62.46	61.13	84.38	67.30
o4-mini	55.90	46.99	37.22	36.68	56.05	45.18
Gemini 2.0 Flash	74.78	75.79	55.67	56.92	82.05	69.43
Gemini 1.5 Pro	73.88	69.76	56.14	56.22	71.42	57.15
Claude 3.5 Sonnet	62.85	54.45	40.76	41.41	70.36	57.42
Qwen2-VL	55.54	49.39	38.92	36.45	66.31	51.18
Llama 3.2	49.15	48.21	34.45	34.37	65.05	47.11

Table 2: **Grouping.** Comparison of MFM and SAM (Kirillov et al., 2023b) on the grouping task.

Model	mIoU (\uparrow)
SAM	80.12
SAM + Chain	72.32
GPT-4o	59.06
o4-mini	46.00
Gemini 2.0 Flash	55.25
Gemini 1.5 Pro	44.13
Claude 3.5 Sonnet	41.68
Qwen2-VL	21.64
Llama 3.2	25.69
Oracle + Chain	81.77

Depth & surface normal prediction. We use Hypersim (Roberts et al., 2021) and randomly subsample 100 validation images from it for cost-efficiency.

Baselines. We include the following control baselines to contextualize the performance of MFM and account for the impact of superpixelation and other design choices:

Vision Specialist. We report the performance of leading vision models for each task. We specify each model used in the corresponding task sections. In addition to the state-of-the-art models, we benchmark 4M-21 (Bachmann et al., 2024; Mizrahi et al., 2023) as a zero-shot vision baseline for an unbiased comparison. Although 4M-21 is an MFM, here we treat it as a vision specialist because it is specifically trained for solving these tasks. Overall, these baselines indicate the current state of the (specialized) computer vision models.

Vision Specialist + Chain. This control baseline applies the same algorithmic constraints to the vision specialist as those experienced by MFM, such as superpixels and recursive zooming. This control baseline provides a **fair and calibrated comparison** between vision specialists and MFM, ensuring that our benchmark remains accurate in a relative and ordinal sense.

Oracle + Chain. This baseline shows the performance of the prompt chain if the MFM gave the ground-truth answer for each sub-task. *It isolates MFM performance from limitations imposed by our chain’s granularity.* Note that this is not a hard upper bound, and we can alleviate these limitations by using more fine-grained chains (see App. E.8.)

Blind Guess. We prompt the model with a blank image, revealing potential biases and assessing whether the model genuinely utilizes the image content for its predictions.

4.1 EVALUATION RESULTS

Object detection. The results are summarized in Tab. 3. We use DETR (Carion et al., 2020) and Co-DETR (Zong et al., 2023), a state-of-the-art COCO model, as the vision specialists, and 4M-21 as a zero-shot baseline. We observe that all MFM lag behind the vision models, with GPT-4o achieving the highest performance, significantly outperforming other MFM. For the “Specialist + Chain” baselines, we apply the same recursive algorithm, but at each stage we only keep the grid cells that intersect with the original bounding boxes predicted by the specialist. As mentioned earlier, this calibration confirms that the gap between MFM and specialists remains significant.

Finally, we assess the performance of the “Oracle + Chain” baseline. We evaluated two variants: one using GPT-4o’s class predictions, and another using the ground-truth class labels. The first baseline examines the outcome if GPT-4o correctly selects the grid cells at each step of the chain, while the second assumes both correct class predictions and accurate grid cell selection. These provide the upper bounds for both the grid search component and the overall pipeline when using a specific grid resolution to calibrate the performance.

Semantic segmentation. Table 4 and Fig. 3 show that MFM achieve rather non-trivial performance, yet they still lag behind the vision specialist, i.e. OneFormer (Jain et al., 2022). Similar to object detection, we include the baseline of constraining the performance of the vision specialist using the

Table 3: **Object Detection:** Average precision of MFM vs. vision specialists (DETR, Co-DETR) and 4M-21. GPT-4o leads among MFM.

Baselines	Model	AP ₅₀ (↑)	AP ₇₅ (↑)	AP (↑)
Vision Specialists	Co-DETR	91.30	86.17	80.23
	Co-DETR + Chain	90.06	52.78	51.54
	DETR	73.31	63.61	58.67
	DETR + Chain	72.33	38.36	39.36
	4M-21	59.54	51.57	47.71
	4M-21 + Chain	55.46	30.48	30.74
MFM	GPT-4o	60.62	31.97	31.87
	o4-mini	42.90	22.18	22.60
	Gemini 2.0 Flash	44.17	15.83	19.85
	Gemini 1.5 Pro	39.75	15.27	18.11
	Claude 3.5 Sonnet	31.69	12.13	14.78
	Qwen2-VL	35.62	12.82	15.27
Control	Llama 3.2	31.87	8.40	12.83
	Oracle + Chain (pred. class)	75.44	41.31	41.56
	Oracle + Chain (full)	92.18	49.33	50.14
Control	Blind guess	<0.01	<0.01	<0.01

chain algorithm: we assign the majority class prediction to each superpixel and flood-fill the entire superpixel with that class.

Grouping. Table 2 shows that MFM_s have varying performance on this task, and GPT-4o performs the best, achieving overall good performance as can also be seen in Fig. 3. All MFM_s still lag behind the vision specialist SAM (Kirillov et al., 2023a).

Depth prediction. The results are summarized in Tab. 5. Alongside standard metrics, we also report **1)** the Spearman correlation coefficient (ρ), which serves as a relative metric by measuring the correlation between the ground-truth depth ranking of the pixels and the predicted ranking and **2)** accuracy, which reflects the percentage of correct pairwise depth comparisons. MFMs demonstrate a non-trivial performance and outperform the blind guess baseline. Notably, o4-mini achieves the strongest performance among MFMs, despite trailing behind some models in the semantic tasks shown before. Still, there remains a significant gap compared to the vision specialist, Omnidata (Eftekhar et al., 2021; Kar et al., 2022a), which is more pronounced compared to the semantic tasks.

Similar to previous tasks, we analyze the performance using the “Oracle + Chain” baseline, which assumes 100% accuracy in all pairwise comparisons, and the “Omnidata + Chain” baseline, which uses depth predictions from Omnidata to perform these pairwise comparisons. Due to the coarse granularity of the evaluation, the two baselines closely match each other. Importantly, we find that MFM still lag behind these baselines, suggesting that our conclusions hold despite the chosen granularity level.

Surface normal prediction. To assess performance, we employ Spearman’s rank correlation coefficient, ρ_i , measuring the correlation between ground truth and predicted pixel alignments along each basis direction i . Alignment for a pixel is measured as the dot product of the surface normal with the direction i .

Tab. 6 demonstrates that most MFM_s struggle with this task, with some showing a negative correlation for certain directions, revealing a systematic bias in their understanding of these directions. Notably, o4-mini outperforms all other MFM_s, indicating stronger geometric understanding. This extends to other recent reasoning models, with o1 and o3 also showing strong performance on the evaluated subset.

Furthermore, we show in the appendix that the MFM models not directly trained for reasoning improve their performance on the up-down ambiguity resolution with CoT prompting Wei et al. (2022). Similar to depth, *these results suggest that while MFM models have limited 3D visual understanding, newer reasoning models like o1, o3, and o4-mini exhibit promising progress.*

Table 4: **Semantic Segmentation:** mIoU and pixel accuracy of MFM vs. OneFormer and 4M-21. GPT-4o again performs best among MFM.

Baselines	Model	mIoU (\uparrow)	Pixel acc. (\uparrow)
Vision Specialists	OneFormer	65.52	83.26
	OneFormer + Chain	60.64	81.69
	4M-21	54.31	79.66
	4M-21 + Chain	52.72	78.59
MFM	GPT-4o	44.89	68.60
	o4-mini	39.19	64.26
	Gemini 2.0 Flash	43.04	66.15
	Gemini 1.5 Pro	40.46	64.88
	Claude 3.5 Sonnet	32.05	58.41
	Qwen2-VL	33.59	56.36
	Llama 3.2	36.63	59.95
Control	Oracle + Chain	83.41	94.68
	Blind guess	0.03	0.29

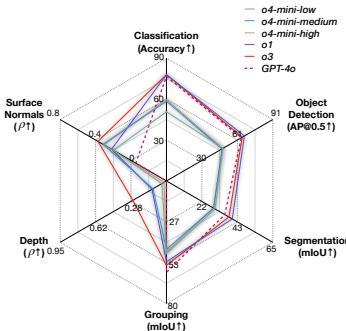


Figure 4: Evaluation of reasoning models. The performance of o1, o3, and o4-mini (at varying levels of reasoning effort) is compared against GPT-4o on a representative subset of images. The reasoning models exhibit a particularly strong performance in geometric tasks.

378
 379 **Table 5: Depth prediction.** MFM can coarsely
 380 estimate depth, but their gap to vision specialists
 381 is larger than in semantic tasks. All MFM perform
 382 similarly, with GPT-4o and o4-mini slightly
 383 ahead.

384 Baselines	385 Model	386 Higher is better ↑			
		387 δ_1	388 δ_2	389 δ_3	390 ρ
385 Vision	Omnidata	0.768	0.867	0.911	0.95
	Omnidata + Chain	0.568	0.772	0.864	0.81
	4M-21	0.636	0.814	0.888	0.89
	4M-21 + Chain	0.565	0.774	0.865	0.81
388 MFM	GPT-4o	0.461	0.716	0.840	0.54
	o4-mini	0.467	0.718	0.841	0.58
	Gemini 2.0 Flash	0.461	0.715	0.839	0.59
	Gemini 1.5 Pro	0.458	0.709	0.835	0.51
	Claude 3.5 Sonnet	0.428	0.693	0.830	0.49
	Qwen2-VL	0.432	0.698	0.831	0.44
	Llama 3.2	0.458	0.711	0.835	0.53
	Control	0.571	0.774	0.863	0.83
393	Blind Guess	0.375	0.628	0.773	0.25

395
 396 **Table 6: Surface normal prediction.** For
 397 surface normal prediction, MFM again
 398 show a large gap to specialists, particu-
 399 larly on the x -axis. o4-mini is the strongest
 400 MFM, while Gemini often fails, perform-
 401 ing near chance.

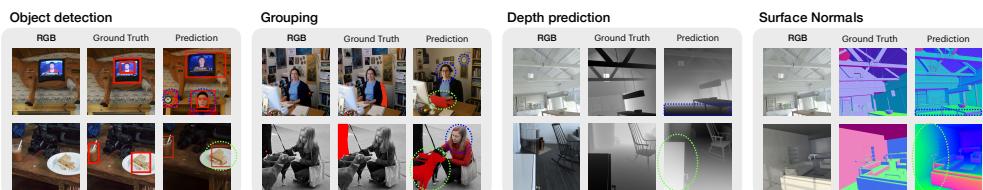
396 Baselines	397 Model	398		
		399 ρ_x	400 ρ_y	401 ρ_z
402 Vision	Omnidata	0.80	0.83	0.78
	Omnidata + Chain	0.64	0.70	0.58
	4M-21	0.71	0.74	0.65
	4M-21 + Chain	0.65	0.70	0.56
403 MFM	GPT-4o	-0.14	0.57	0.40
	o4-mini	0.22	0.61	0.46
	Gemini 2.0 Flash	-0.39	-0.04	0.02
	Gemini 1.5 Pro	-0.17	-0.57	0.04
	Claude 3.5 Sonnet	-0.19	0.61	0.40
	Qwen2-VL	0.09	-0.07	0.02
	Llama 3.2	0.41	-0.42	0.22
404 Control	Oracle + Chain	0.64	0.70	0.60
405	Blind guess	-0.48	-0.61	0.11

396 **Image classification.** The classification results across all datasets are summarized in Tab. 1. We
 397 use Model Soups ViT-G (Wortsman et al., 2022) as the vision specialist, and we also include
 398 OpenCLIP H (Cherti et al., 2023) to assess zero-shot capabilities. Although MFM do not reach the
 399 performance levels of vision specialists, they demonstrate strong results and resilience to corruptions
 400 and distribution shifts. Notably, GPT-4o and Gemini 2.0 Flash stand out with a particularly strong
 401 performance, followed by Gemini 1.5 Pro, Claude 3.5 Sonnet, o4-mini, Qwen2-VL, and Llama 3.2.
 402 We also observe that o4-mini is especially sensitive to the batch size used during inference, with
 403 performance improving at smaller batch sizes (see ablation in the appendix).

404 **Reasoning models.** As discussed earlier, we evaluate o1 and o3 on a representative subset of
 405 images (see appendix for details). For comparison, we also include GPT-4o as a baseline, along with
 406 evaluations of o4-mini at varying levels of reasoning effort (*low, medium, and high*). The results are
 407 presented in Fig. 4. o1 and o3 slightly outperform GPT-4o on most semantic tasks, and significantly
 408 outperform it on geometric tasks. As before, GPT-4o excels in semantic tasks on this subset, while
 409 o4-mini performs better on geometric ones. We find no clear trend with the reasoning effort; *medium*
 410 and *high* reasoning improve results over *low*, but not always. We refer the reader to the appendix for
 411 further details and experiments.

412 **GPT-4o with image generation capability.** Recent MFM, such as the updated GPT-4o OpenAI
 413 (2025a), can generate dense image outputs rather than being restricted solely to output text. This
 414 capability represents a promising advancement, potentially enabling a comprehensive evaluation on
 415 diverse vision tasks. However, the current image generation capability exhibit several limitations,
 416 some of which we illustrate in Fig. 5. Specifically, we observe that generated outputs suffer from
 417 spatial misalignments and hallucinations, as also observed in Chen et al. (2025).

418 This presents challenges for directly applying this model to vision tasks, which we leave to future
 419 work. We provide further qualitative examples and preliminary quantitative analyses in App. G.



420
 421
 422 **Figure 5: Failure cases of GPT-4o with image generation capability.** Despite the model’s promising
 423 capabilities, limitations remain. Here, we highlight some typical failure modes: **hallucinations**
 424 (marked in **dotted blue**) and **inaccurate predictions** (marked in **dotted green**).
 425
 426
 427
 428
 429
 430
 431

432 4.2 ANALYSIS
433

434 **Prompt chaining vs direct prompting.** We analyze the impact of using prompt chains versus directly
435 asking the models to solve tasks in a single prompt in Tab. 7. For bounding box regression, we
436 directly query GPT-4o to predict its coordinates; for semantic segmentation, we mark image regions
437 and request corresponding semantic labels. The results indicate a clear performance boost from using
438 the prompt chains. Please see App. E for a detailed discussion, qualitative visuals, and ablations.

439 **Prompt sensitivity.** The choice of prompt can greatly
440 influence the performance of a model, and we have made
441 reasonable efforts to optimize prompts for each model.
442 We evaluate the MFM across various prompts to assess
443 their sensitivity to word choice and prompt structure.
444 We then select the most effective prompt on a small
445 validation set for the final results presented in Sec. 4. A
446 comprehensive analysis is provided in App. H, showing
447 that there is some variation in performance with different
448 prompts, and the performance is generally less prompt-
449 dependent for better-performing models, e.g., GPT-4o.
450

451 **In-the-wild evaluations.** Previously, we used standard vision datasets like ImageNet and COCO in
452 our evaluations. Given the opaqueness on what training data was used in training the MFM, one
453 cannot be confident that those images were not used in training. This, so called ‘data contamination’,
454 problem is a broad concern for the community regarding most MFM Jacovi et al. (2023). To
455 assess to what extent the MFM generalize to entirely novel data and ensure our evaluations are not
456 distorted by potential data contamination, we curated a collection of images released online after
457 the specific model APIs were launched (Flickr, 2024; Unsplash, 2024), which the MFM could not
458 have encountered before their knowledge cutoff date. Results in App. E.9 show a good generalization
459 performance to the in-the-wild samples. Therefore, we do not find evidence for data contamination
460 with standard datasets to be a concern for our evaluations.

461 5 LIMITATIONS AND CONCLUSIONS
462

463 We present a benchmark to investigate the vision capabilities of MFM by translating standard
464 computer vision tasks into an API-compatible format that can be solvable via prompt chaining. Our
465 results show that current MFM have relatively stronger performance in semantic tasks compared to
466 geometric tasks, and GPT-4o is generally the best-performing model, followed by Gemini 2.0 Flash
467 and 1.5 Pro, o4-mini, Claude 3.5 Sonnet, Llama 3.2, and Qwen2-VL-72B. Despite recent advances,
468 MFM still lag significantly behind vision specialists, even when specialists are evaluated under
469 the same constraints. This suggests plenty of room for improvement in model development. Notably,
470 recent reasoning models such as o1, o3, and o4-mini show promising performance on geometric
471 tasks, indicating growing capabilities in 3D understanding that complement their already strong
472 semantic performance. We conclude with some limitations and future directions:

473 *Inference cost.* The multiple API calls per sample make our benchmark more computationally
474 expensive than VQA-style evaluations (see App. I). While we acknowledge this as a shortcoming, we
475 emphasize that the framework is designed as a **one-time benchmarking tool** for assessing visual
476 capabilities, rather than efficient querying for downstream applications. While efficiency is important,
477 it is orthogonal to our objective, and a promising direction for future work.

478 *Optimality of the proposed prompt chains.* Research into advanced prompting techniques has the
479 potential to further enhance the performance of MFM on classical vision tasks, beyond what is
480 shown in this paper. Nonetheless, while the final design appears simple, our proposed prompt
481 chains are carefully designed, emerge from a vast search space, and consistently improve upon direct
482 prompting (Sec. 4.2 and App. E). Furthermore, we also included careful controls and analyses to
483 disentangle the impact of the prompting method from the benchmarking conclusions.

484 We emphasize that our framework is for benchmarking, not a production-ready method for solving
485 these tasks. Indeed, we expect that future MFM with any-to-any capabilities will likely close the
486 gap to specialist vision models by training directly on these tasks. Our framework, however, can
487 benchmark any MFM with image-input and text-output capabilities. Through that, we establish
488 the first benchmark for comparing a diverse range of MFM, both against each other and against
489 specialist vision models, on standard vision tasks.

490 **Table 7: Prompt chaining ablation.** We
491 compare the performance of the prompt
492 chaining algorithm to direct prompting on
493 GPT-4o for semantic segmentation and ob-
494 ject detection. *Segmentation is on 100
495 images.

Task	Direct prompting	Prompt Chaining (Ours)
Segmentation (mIoU \uparrow)*	25.79	41.67
Object Detection (AP ₅₀ \uparrow)	17.69	60.62

486 REFERENCES
487

488 Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic
489 superpixels compared to state-of-the-art superpixel methods. *IEEE transactions on pattern analysis and
490 machine intelligence*, 34(11):2274–2282, 2012.

491 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
492 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint
493 arXiv:2303.08774*, 2023.

494 Meta AI. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

495 Haider Al-Tahan, Quentin Garrido, Randall Balestrieri, Diane Bouchacourt, Caner Hazirbas, and Mark
496 Ibrahim. Unibench: Visual reasoning requires rethinking vision-language beyond scaling. *arXiv preprint
497 arXiv:2408.04810*, 2024.

498 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
499 Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot
500 learning. *Advances in Neural Information Processing Systems*, 35:23716–23736, 2022.

501 Anthropic. Introducing claude 3.5 sonnet. <https://www.anthropic.com/news/claude-3-5-sonnet>, 2024. Accessed: 2024-09-23.

502 Roman Bachmann, Oğuzhan Fatih Kar, David Mizrahi, Ali Garjani, Mingfei Gao, David Griffiths, Jiaming Hu,
503 Afshin Dehghan, and Amir Zamir. 4m-21: An any-to-any vision model for tens of tasks and modalities. *arXiv
504 preprint arXiv:2406.09406*, 2024.

505 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
506 Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

507 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim
508 Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al. Paligemma: A versatile
509 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.

510 Garrick Brazil, Abhinav Kumar, Julian Straub, Nikhila Ravi, Justin Johnson, and Georgia Gkioxari. Omni3d: A
511 large benchmark and model for 3d object detection in the wild. In *Proceedings of the IEEE/CVF conference
512 on computer vision and pattern recognition*, pages 13154–13164, 2023.

513 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
514 End-to-end object detection with transformers. In *Computer Vision–ECCV 2020: 16th European Conference,
515 Glasgow, UK, August 23–28, 2020, Proceedings, Part I* 16, pages 213–229. Springer, 2020.

516 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
517 Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on
518 code. *arXiv preprint arXiv:2107.03374*, 2021.

519 Sixiang Chen, Jinbin Bai, Zhuoran Zhao, Tian Ye, Qingyu Shi, Donghao Zhou, Wenhao Chai, Xin Lin,
520 Jianzong Wu, Chao Tang, et al. An empirical study of gpt-4o image generation capabilities. *arXiv preprint
521 arXiv:2504.05979*, 2025.

522 Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and Hsin-Hsi Chen. Self-icl: Zero-shot in-context learning
523 with self-generated demonstrations, 2023. URL <https://arxiv.org/abs/2305.15035>.

524 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph
525 Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image
526 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
527 2818–2829, 2023.

528 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolaos Angelopoulos, Tianle Li, Dacheng Li, Hao
529 Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for
530 evaluating llms by human preference. *arXiv preprint arXiv:2403.04132*, 2024.

531 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
532 Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark.
533 *arXiv preprint arXiv:2010.09670*, 2020.

534 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
535 Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models with instruction
536 tuning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=vvoWPYqZJA>.

540 Ainaz Eftekhar, Alexander Sax, Roman Bachmann, Jitendra Malik, and Amir Roshan Zamir. Omnidata: A
 541 scalable pipeline for making multi-task mid-level vision datasets from 3d scans. *2021 IEEE/CVF International*
 542 *Conference on Computer Vision (ICCV)*, pages 10766–10776, 2021.

543 Flickr. Find your inspiration. <https://www.flickr.com/>, 2024. Accessed: 2024-09-23.

544 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-Chiu
 545 Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not perceive. *arXiv preprint*
 546 *arXiv:2404.12390*, 2024.

547 Google. Explore vision capabilities with the gemini api. <https://ai.google.dev/gemini-api/docs/vision?lang=python>, 2024. Accessed: 2024-09-23.

548 Google DeepMind. Gemini 2.0 flash. <https://deepmind.google/technologies/gemini/flash/>, 2024.

549 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and
 550 perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

551 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
 552 Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

553 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
 554 Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-
 555 distribution generalization. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 556 pages 8340–8349, 2021.

557 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and Ranjay
 558 Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language models. *arXiv*
 559 *preprint arXiv:2406.09403*, 2024.

560 Huggingface. Llama multiple images. <https://huggingface.co/meta-llama/Llama-3-2-11B-Vision-Instruct/discussions/43>.

561 Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain text: Practical
 562 strategies for mitigating data contamination by evaluation benchmarks. *arXiv preprint arXiv:2305.10160*,
 563 2023.

564 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, and Humphrey Shi. Oneformer: One trans-
 565 former to rule universal image segmentation, 2022. URL <https://arxiv.org/abs/2211.06220>.

566 Yixing Jiang, Jeremy Irvin, Ji Hun Wang, Muhammad Ahmed Chaudhry, Jonathan H Chen, and Andrew Y Ng.
 567 Many-shot in-context learning in multimodal foundation models. *arXiv preprint arXiv:2405.09798*, 2024a.

568 Yixing Jiang, Jeremy Irvin, Ji Hun Wang, Muhammad Ahmed Chaudhry, Jonathan H. Chen, and Andrew Y. Ng.
 569 Many-shot in-context learning in multimodal foundation models, 2024b. URL <https://arxiv.org/abs/2405.09798>.

570 Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and data augmentation.
 571 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18963–
 572 18974, 2022a.

573 Oğuzhan Fatih Kar, Teresa Yeo, and Amir Zamir. 3d common corruptions for object recognition. In *ICML 2022*
 574 *Shift Happens Workshop*, 2022b.

575 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish Sabharwal.
 576 Decomposed prompting: A modular approach for solving complex tasks. *arXiv preprint arXiv:2210.02406*,
 577 2022.

578 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
 579 Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick. Segment anything. *ArXiv*,
 580 [abs/2304.02643](https://arxiv.org/abs/2304.02643), 2023a. URL <https://api.semanticscholar.org/CorpusID:257952310>.

581 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer
 582 Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. *arXiv preprint arXiv:2304.02643*,
 583 2023b.

584 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training
 585 with frozen image encoders and large language models. *arXiv preprint arXiv:2301.12597*, 2023a.

594 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination
 595 in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

596

597 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
 598 C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In *European Conference on Computer
 599 Vision*, 2014.

600 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
 601 Improved reasoning, ocr, and world knowledge, 2024.

602 Meta. Llama 90b. https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2/.

603

604 David Mizrahi, Roman Bachmann, Oğuzhan Fatih Kar, Teresa Yeo, Mingfei Gao, Afshin Dehghan, and Amir
 605 Zamir. 4M: Massively multimodal masked modeling. In *Advances in Neural Information Processing Systems*,
 606 2023.

607

608 OpenAI. Introducing openai o1. <https://openai.com/o1/>, 2024a.

609 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024b. Accessed: 2024-09-
 610 23.

611 OpenAI. Introducing 4o image generation. <https://openai.com/index/introducing-4o-image-generation/>, 2025a.

612

613 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b.

614

615 Pooyan Rahmazadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision language
 616 models are blind. *arXiv preprint arXiv:2407.06581*, 2024.

617

618 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize
 619 to imagenet? In *International conference on machine learning*, pages 5389–5400. PMLR, 2019.

620

621 Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste Alayrac,
 622 Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking multimodal
 623 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

624

625 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
 626 Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. *arXiv preprint
 627 arXiv:2311.12022*, 2023.

628

629 Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan,
 630 Russ Webb, and Joshua M Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor
 631 scene understanding. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages
 632 10912–10922, 2021.

633

634 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
 635 Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale
 636 visual recognition challenge. *International Journal of Computer Vision*, 115:211–252, 2014.

637

638 David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels: An evaluation of the state-of-the-art.
 639 *Computer Vision and Image Understanding*, 166:1–27, 2018.

640

641 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint arXiv:2405.09818*,
 642 2024.

643

644 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 645 Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models.
 646 *arXiv preprint arXiv:2312.11805*, 2023.

647

648 Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula, Jihan
 649 Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open, vision-centric exploration
 650 of multimodal llms. *arXiv preprint arXiv:2406.16860*, 2024a.

651

652 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut? exploring
 653 the visual shortcomings of multimodal llms. *arXiv preprint arXiv:2401.06209*, 2024b.

654

655 Unsplash. The internet’s source for visuals. <https://unsplash.com/>, 2024. Accessed: 2024-09-23.

648 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by
 649 penalizing local predictive power. *Advances in Neural Information Processing Systems*, 32, 2019.

650

651 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan
 652 Wang. Git: A generative image-to-text transformer for vision and language. *arXiv preprint arXiv:2205.14100*,
 653 2022.

654 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang,
 655 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution.
 656 *arXiv preprint arXiv:2409.12191*, 2024.

657 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
 658 Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information
 659 processing systems*, 35:24824–24837, 2022.

660 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S.
 661 Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model
 662 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time,
 663 2022. URL <https://arxiv.org/abs/2203.05482>.

664 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In *Proceedings
 665 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13084–13094, 2024.

666 Yixuan Wu, Yizhou Wang, Shixiang Tang, Wenhao Wu, Tong He, Wanli Ouyang, Jian Wu, and Philip Torr. Det-
 667 toolchain: A new prompting paradigm to unleash detection ability of mllm. *arXiv preprint arXiv:2403.12488*,
 668 2024.

669 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark prompting
 670 unleashes extraordinary visual grounding in gpt-4v. *arXiv preprint arXiv:2310.11441*, 2023a.

671

672 Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan Wang. The
 673 dawn of lmms: Preliminary explorations with gpt-4v(ision), 2023b. URL <https://arxiv.org/abs/2309.17421>.

674

675 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree
 676 of thoughts: Deliberate problem solving with large language models. *Advances in Neural Information
 677 Processing Systems*, 36, 2024.

678 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on multimodal
 679 large language models. *arXiv preprint arXiv:2306.13549*, 2023.

680

681 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
 682 Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 683 benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 684 Recognition*, pages 9556–9567, 2024.

685 Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-lmms: Recent
 686 advances in multimodal large language models. *arXiv preprint arXiv:2401.13601*, 2024.

687

688 Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
 689 through ADE20K dataset. *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
 690 pages 5122–5130, 2017.

691 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
 692 Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language
 693 models. *arXiv preprint arXiv:2205.10625*, 2022.

694

695 Zhuofan Zong, Guanglu Song, and Yu Liu. Dets with collaborative hybrid assignments training, 2023. URL
 696 <https://arxiv.org/abs/2211.12860>.

697

698 Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T Freeman. Learning ordinal relationships for mid-level
 699 vision. In *Proceedings of the IEEE international conference on computer vision*, pages 388–396, 2015.

700

701

APPENDIX

TABLE OF CONTENTS

A Overview Video	19
B Code & Full prompts	19
C Qualitative examples	19
D Additional Details on Prompt Chaining	19
D.1 Object detection	19
D.2 Segmentation	21
D.3 Depth prediction	21
D.4 Surface normal prediction	23
E Additional experimental details and results	25
E.1 Object detection	25
E.2 Semantic segmentation	25
E.3 Grouping	27
E.4 Depth prediction	29
E.5 Surface normal prediction	29
E.6 Experiments with Llama	29
E.7 Blind guess	30
E.8 Finer-grained prompt chain	31
E.9 In-the-wild evaluations	32
F Reasoning results	32
F.1 Ablating the batch size	32
F.2 Detailed Experiments	32
G Additional experiments with 4o Image Generation	34
G.1 Prompting Methodology	34
G.2 Preliminary Quantitative Analysis	36
H Prompt sensitivity analysis	36
I Prompting Costs	36

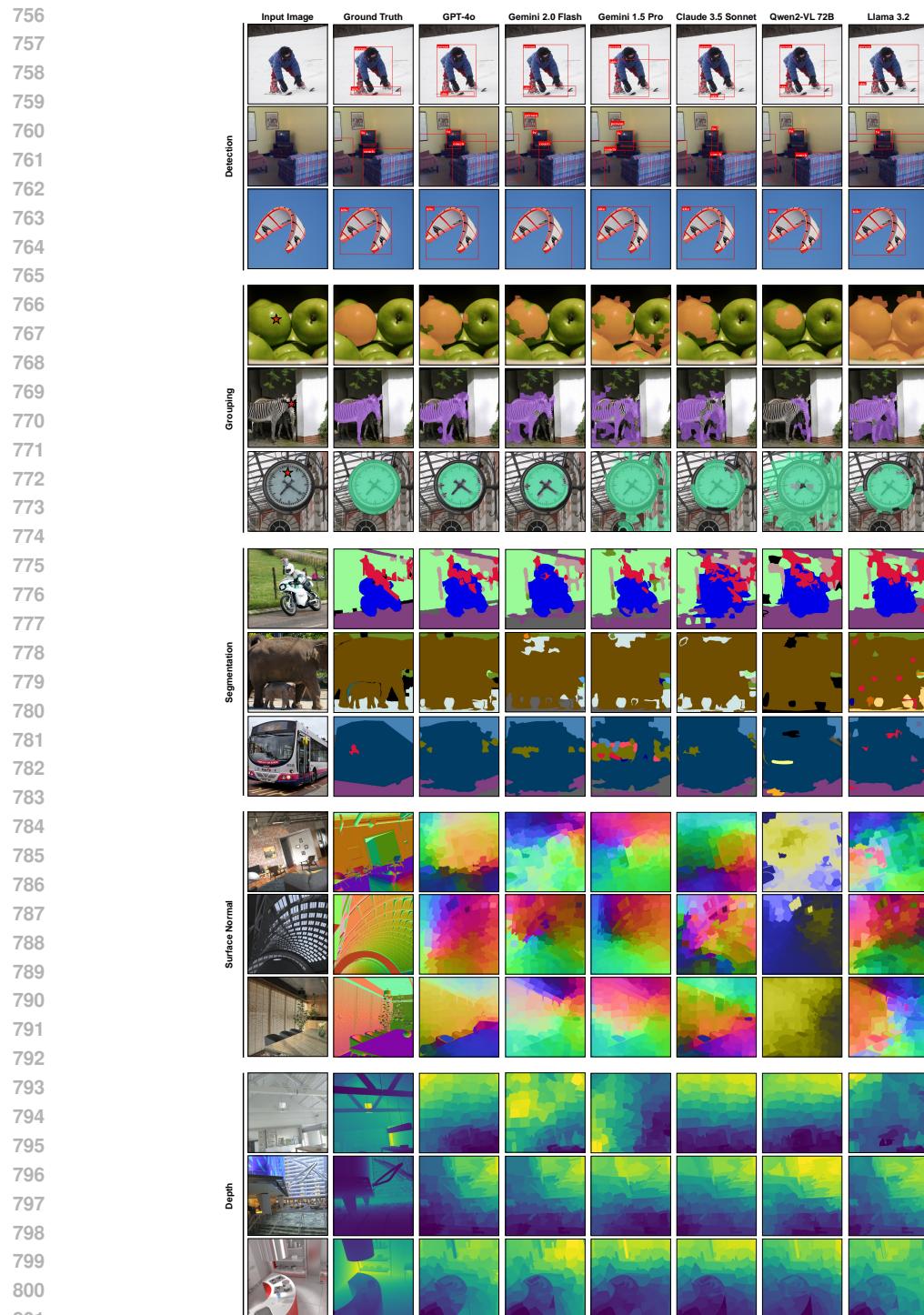


Figure 6: Additional qualitative results for MFM predictions on different tasks.

802
803
804
805
806
807
808
809

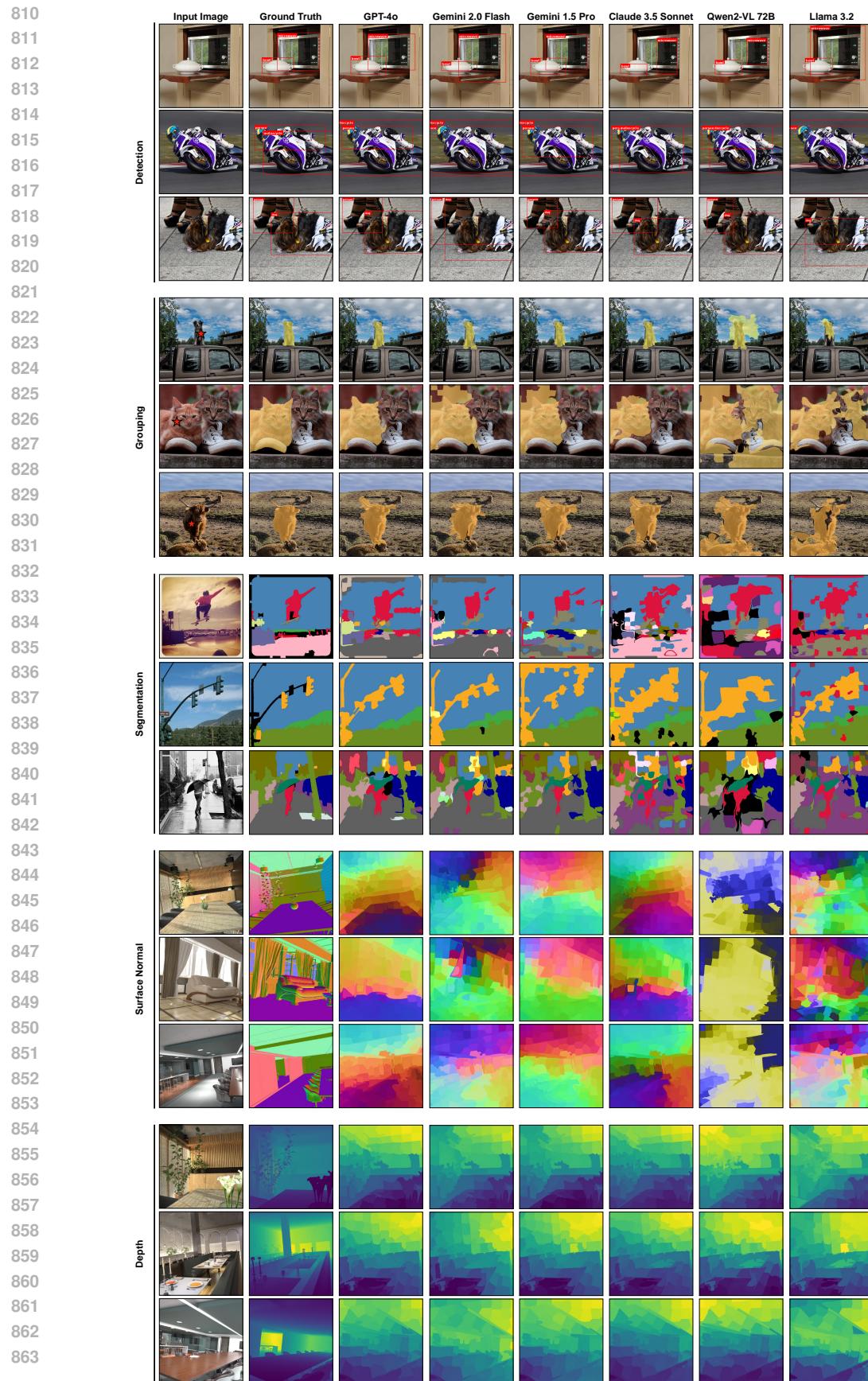


Figure 7: Additional qualitative results for MFM predictions on different tasks.

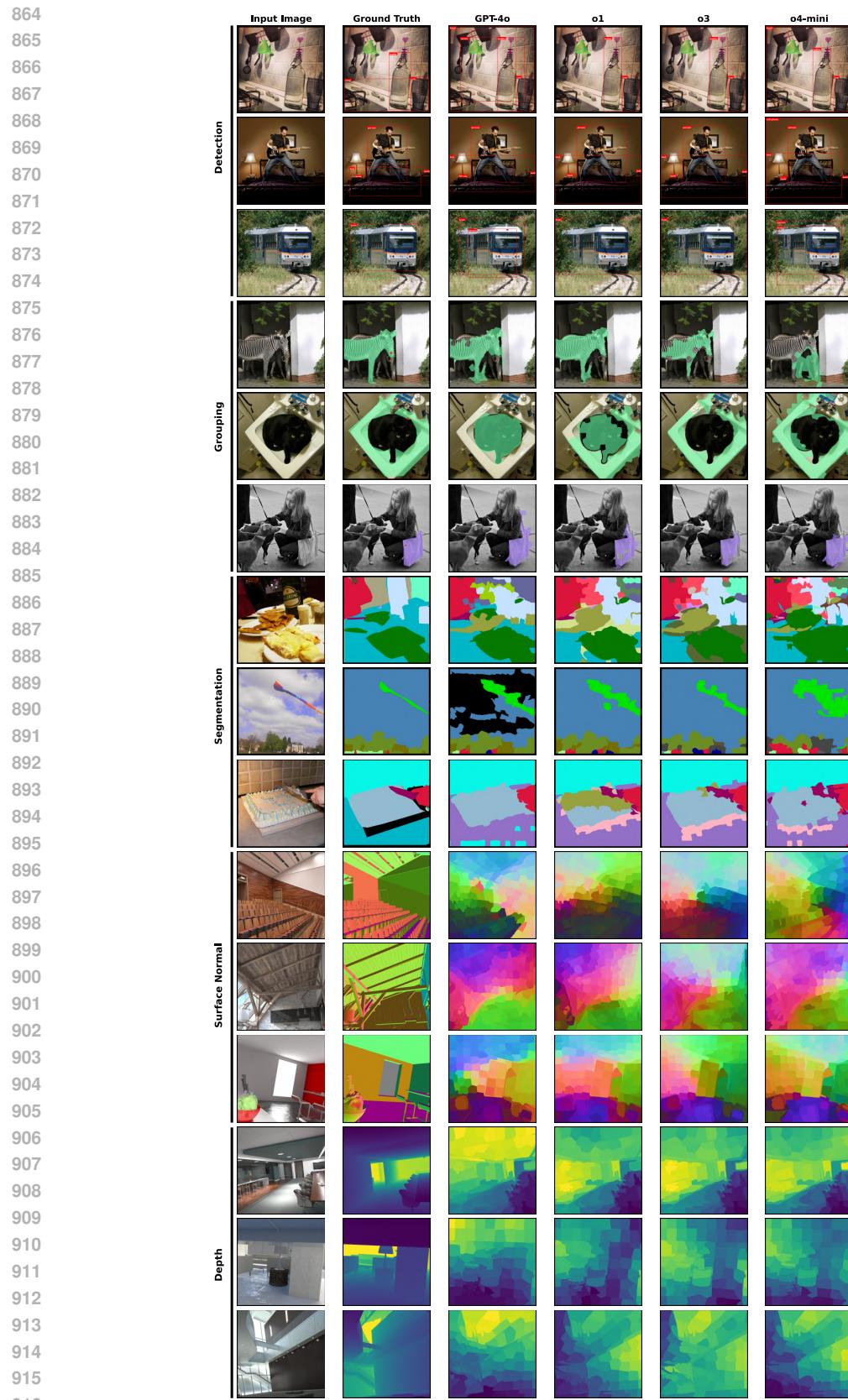


Figure 8: Qualitative results for reasoning model predictions on different tasks next to GPT-4o prediction.

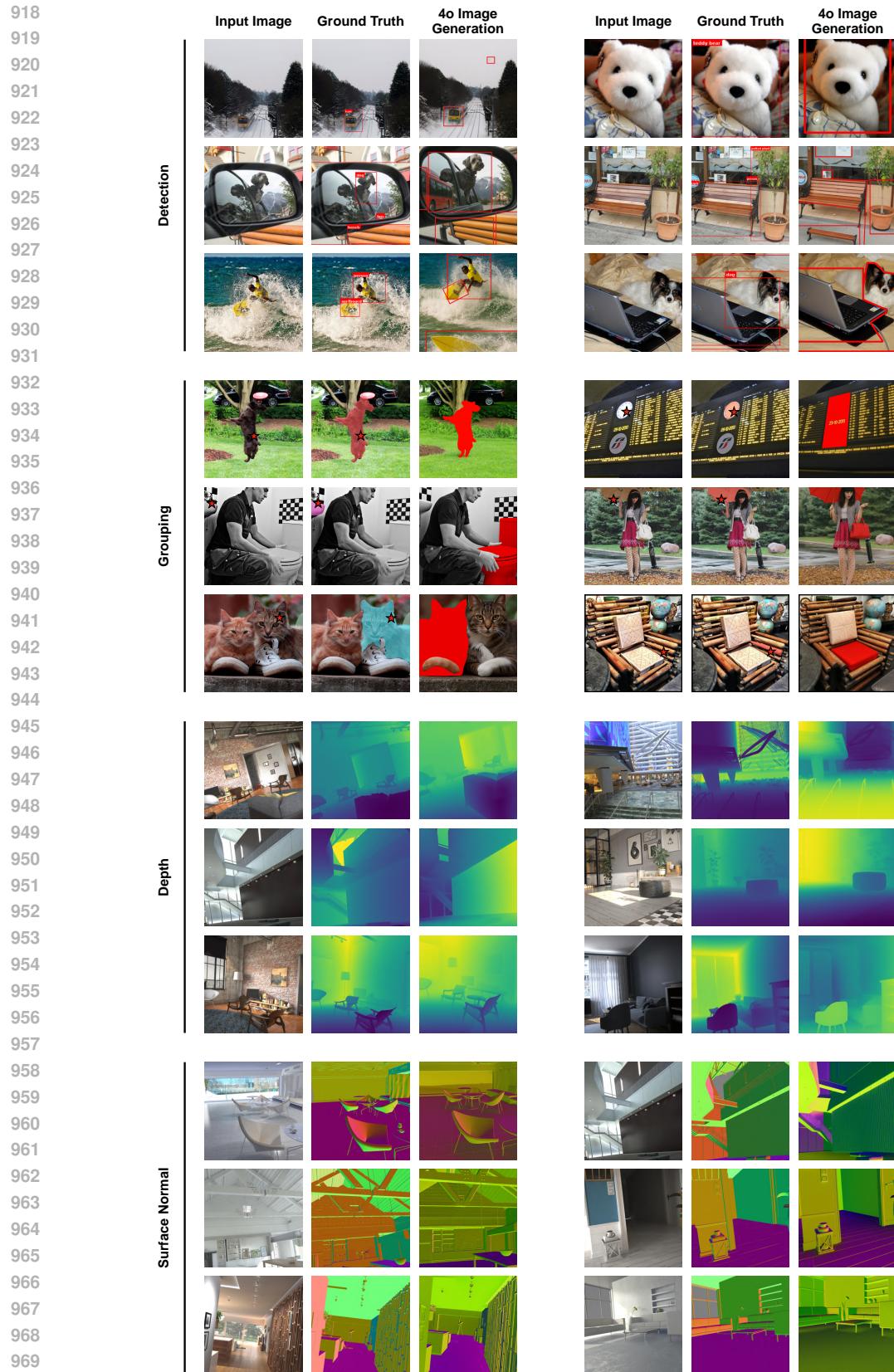
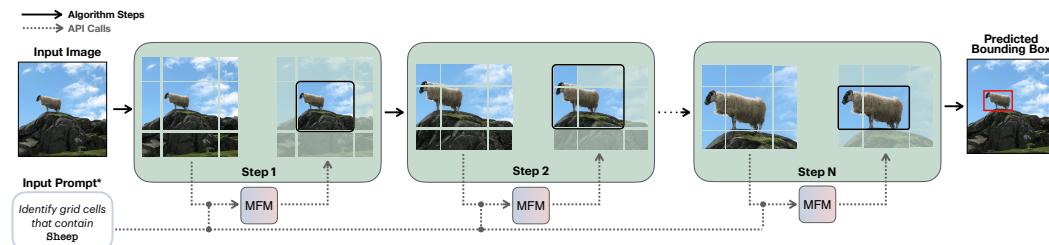


Figure 9: Additional qualitative results for GPT-4o image generation predictions across tasks. Notice the various failure cases such as spatial misalignment in these examples, as outlined in the main paper Fig. 5.

972 **A OVERVIEW VIDEO**
973974 A narrated overview video including the paper’s method, quantitative and qualitative results, as well
975 as interactive visualizations, is provided in the supplementary material.
976977 **B CODE & FULL PROMPTS**
978979 We provide our code and full prompts in the supplementary material.
980981 **C QUALITATIVE EXAMPLES**
982983 We provide additional qualitatives in Figures 6, 7, 8 and 9 to show each model’s performance on
984 different tasks.
985986 **D ADDITIONAL DETAILS ON PROMPT CHAINING**
987988 **D.1 OBJECT DETECTION**
989990 **Different variations of classification for object detection.** As discussed in Section 3, the first stage
991 of the object detection pipeline involves identifying all the objects present in the image. We attempt
992 the following two strategies for the multi-label classification task:
993994

- 995 The first strategy simply provides the model with the entire image, asking it to identify all
996 present classes.
- 997 The second strategy divides the image into five regions: four quadrants and a center crop.
998 The model is asked to identify the classes present in the 5 regions in independent queries.
999 With each query, the full image is provided for additional context. The final prediction is
1000 obtained by taking the union of the classes identified across all regions (see Algorithm 1
1001 in the appendix for detailed pseudocode). This approach typically improves recall but may
1002 reduce precision, reflecting a trade-off between the two strategies.

1003 The precision-recall trade-off for the models is described in Tab. 8. To pick the best classification
1004 strategy for the models, we run the oracle on the predicted labels on a small subset and pick the one
1005 that yields the highest AP.1006 After we find the object labels, we run the procedure described in Algorithm 2 to regress the bounding
1007 boxes. Figure 10 also provides a visualization of the mentioned algorithm.
10081017 **Figure 10: Object detection algorithm.** At each step, we divide the image into a 3×3 grid of crops
1018 and query each for the presence of the target object (Sheep in the figure) through the model. Grid
1019 cells without the object are discarded, and the process is repeated until the object is fully located.
10201021 **Summary of the actual prompt; see the full prompt in the provided Markdown files.*1022 In Alg. 2, we explored batching the grid-cells and querying them independently. While batching
1023 didn’t affect results for most MFM, it significantly deteriorated the performance for Gemini, so we
1024 opted to use independent queries for Gemini instead.
1025

1026
1027
1028
1029
1030Table 8: **Classification for Object Detection:** The results clearly show the precision-recall trade-off between using the two strategies for multi-label classification.1031
1032
1033
1034
1035
1036
1037
1038

	Strategy	Model	Precision	Recall
Strategy 1		GPT-4o	97.5	75.75
		Gemini 1.5 Pro	90.5	83.81
		Claude 3.5 Sonnet	84.27	81.24
Strategy 2		GPT-4o	89.05	88.37
		Gemini 1.5 Pro	84.37	89.3
		Claude 3.5 Sonnet	78.18	85.94

1039
1040
1041
1042
1043**Algorithm 1** Region-based Image Classification

```

1: procedure REGIONBASEDCLASSIFICATION(image)
2:   regions  $\leftarrow$  DivideIntoRegions(image)
3:   allClasses  $\leftarrow$   $\emptyset$ 
4:   for region  $\in$  regions do
5:     classes  $\leftarrow$  QueryMFM(image, region)
6:     allClasses  $\leftarrow$  allClasses  $\cup$  classes
7:   end for
8:   return allClasses
9: end procedure
10: procedure DIVIDEINTOREGIONS(image)
11:   quadrants  $\leftarrow$  DivideIntoQuadrants(image)
12:   center  $\leftarrow$  ExtractCenterCrop(image)
13:   return quadrants  $\cup$  {center}
14: end procedure

```

1059
1060
1061
1062
1063**Algorithm 2** Recursive Grid-Search

```

1: procedure COARSEGRIDSEARCH(image, object, gridStructure)
2:   while search space can be reduced do
3:     cells  $\leftarrow$  DivideIntoGrid(image, gridStructure)
4:     relevantCells  $\leftarrow$  {c  $\in$  cells :
5:       QueryMFM(c, object) = TRUE}
6:     image  $\leftarrow$  CropToRelevantCells(image,
7:                               relevantCells)
7:   end while
8:   return image as bbox
9: end procedure
10: procedure QUERYMFM(cell, object)
11:   return MFM classification of object presence in cell
12: end procedure

```

1078
1079

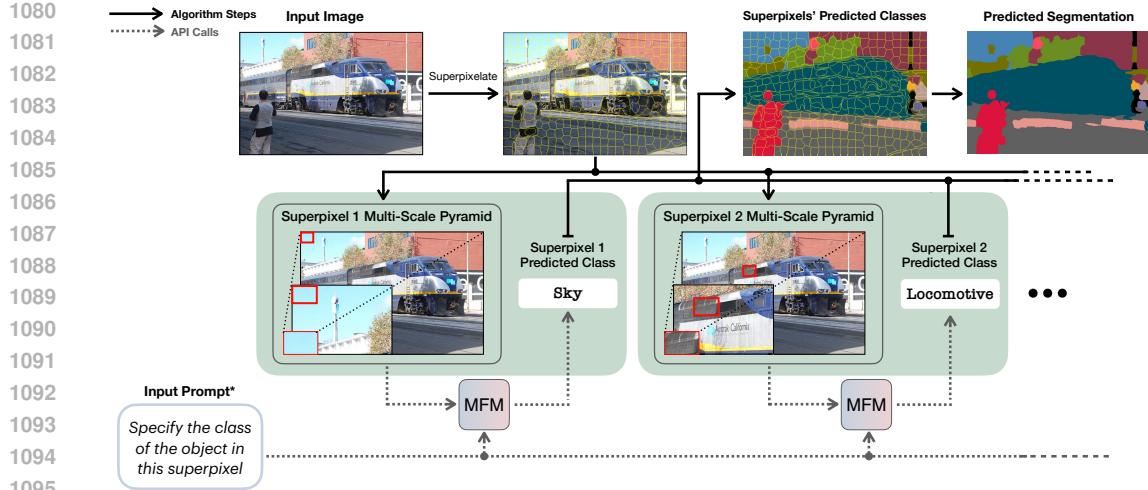


Figure 11: **Semantic segmentation algorithm.** We divide the image into superpixels and create “multi-scale pyramids” of superpixels. The pyramids are then classified using the MFM in a sequential manner to produce the complete segmentation map. A multi-scale pyramid consists of 3 layers: a crop of the superpixel, some context surrounding the crop, and the full image. In practice, we batch multiple superpixels into sequences and classify them jointly. ^{*}*Summary of the actual prompt; see the full prompt in the provided Markdown files.*

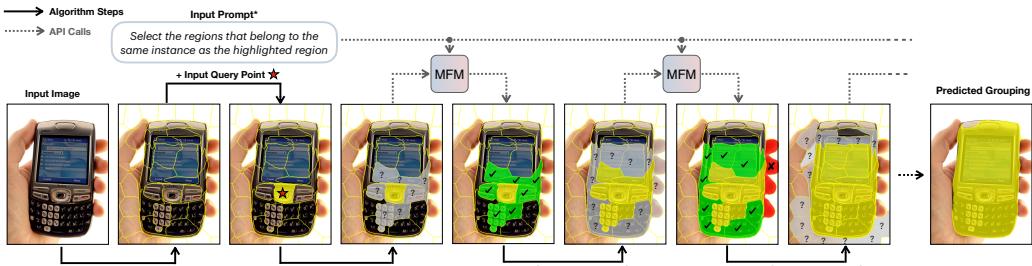


Figure 12: **Grouping algorithm.** Given an image and a query point, we first divide the image into superpixels and select the superpixel that the query point falls into. At each step, the model is asked to identify the adjacent superpixels that belong to the same object as the one covered by the cluster. The selected superpixels are then merged with the cluster to form the next step’s input cluster. ^{*}*Summary of the actual prompt; see the full prompt in the provided Markdown files.*

D.2 SEGMENTATION

The procedures for supervised segmentation and grouping are described in Algorithm 3 (see Fig. 11) and Algorithm 4 (see Fig. 12) respectively.

D.3 DEPTH PREDICTION

The procedure for depth prediction is given in Algorithm 5. Furthermore, a visualization of the depth prediction algorithm is given in Fig. 13. A crucial part of the algorithm involves optimizing the objective to obtain the overall depth rankings. To formulate the objective for globalizing the pairwise depth rankings, we repurpose the objective in Zoran et al. (2015). Given the vector of global rankings $\mathbf{x} \in \mathbb{R}^N$, we first consider instances where superpixel i is predicted to be at a greater depth than superpixel j . The corresponding objective is formulated as:

$$\mathcal{L}_{gt}(\mathbf{x}) = \sum_{i,j} (x_i - x_j - 1)^2 \quad (1)$$

1134

1135

1136

1137

Algorithm 3 Superpixel Segmentation

```

1: procedure SEMSEGMENTATION(image, batchSize, scaleList)
2:   superpixels  $\leftarrow$  SLIC(image)
3:   classifiedSuperpixels  $\leftarrow$   $\emptyset$ 
4:   history  $\leftarrow$   $\emptyset$ 
5:   for i  $\leftarrow$  1 to length(superpixels) step batchSize do
6:     batch  $\leftarrow$  GetBatch(superpixels, i, batchSize)
7:     pyramid  $\leftarrow$  CreateSemanticPyramid(
8:       image, batch, scaleList)
9:     batchClasses  $\leftarrow$  ClassifyBatch(
10:      pyramid, history)
11:     classifiedSuperpixels  $\leftarrow$ 
12:       classifiedSuperpixels  $\cup$  batchClasses
13:     history  $\leftarrow$  UpdateHistory(
14:       history, batchClasses)
15:   end for
16:   segmentedImage  $\leftarrow$  FloodFillSuperpixels(
17:     image, classifiedSuperpixels)
18:   return segmentedImage
19: end procedure

```

1156

1157

1158

1159

1160

1161

1162

1163

Algorithm 4 BFS Segmentation

```

1: procedure INSTANCEGROUPING(image, queryPoint, batchSize, scaleList)
2:   superpixels  $\leftarrow$  SLIC(image)
3:   graph  $\leftarrow$  ConstructSuperpixelGraph(superpixels)
4:   startNode  $\leftarrow$  FindSuperpixelContaining(
5:     superpixels, queryPoint)
6:   cluster  $\leftarrow$  {startNode}
7:   queue  $\leftarrow$  new Queue()
8:   queue.enqueue(startNode)
9:   visited  $\leftarrow$  {startNode}
10:  while not queue.isEmpty() do
11:    batch  $\leftarrow$  GetBatchFromQueue(queue, batchSize)
12:    batchPyr  $\leftarrow$  CreateSemanticPyramid(
13:      image, batch, scaleList)
14:    clusterPyr  $\leftarrow$  CreateSemanticPyramid(
15:      image, cluster, scaleList)
16:    newMembers  $\leftarrow$  QueryMFM(
17:      batchPyr, clusterPyr)
18:    cluster  $\leftarrow$  cluster  $\cup$  newMembers
19:    queue, visited  $\leftarrow$  UpdateQueueAndVisited(
20:      graph, newMembers, visited)
21:  end while
22:  return cluster
23: end procedure

```

1185

1186

1187

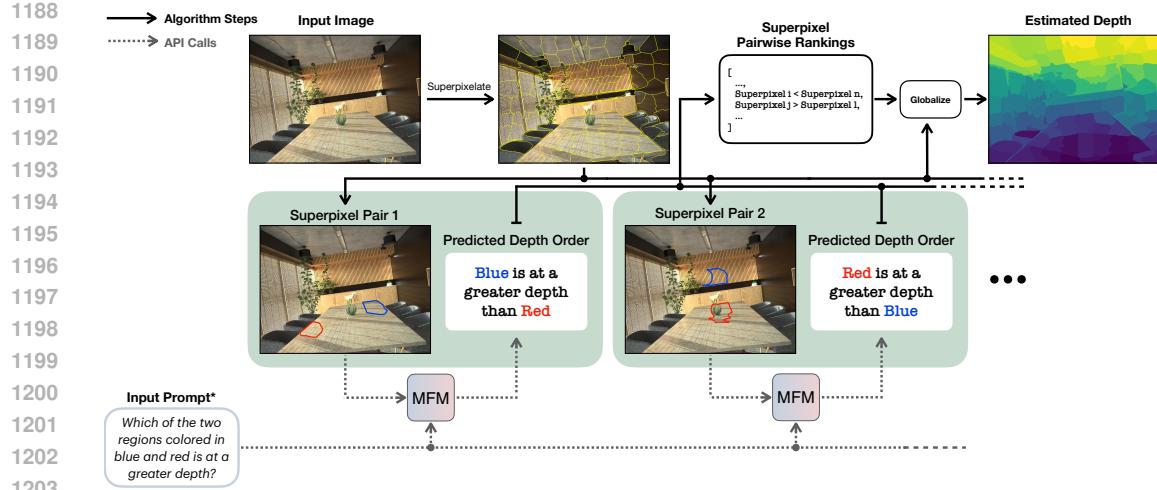


Figure 13: **Depth prediction algorithm.** We randomly select pairs of superpixels. Each pair is given to the model to perform a pairwise depth comparison. The resulting pairwise ranks are then globalized by minimizing an objective function to generate a relative depth map, which can then be scaled to obtain classical evaluation metrics. ^{*}*Summary of the actual prompt; see the full prompt in the provided Markdown files.*

This objective encourages x_i , ranked at a greater depth than x_j , to take on higher values. Similarly, an analogous objective \mathcal{L}_{lt} can be defined for superpixels x_i predicted to be at a depth less than x_j .

Following Zoran et al. (2015), we include a smoothness regularization term to stabilize the depth estimates:

$$\mathcal{L}_s(\mathbf{x}) = \sum_{i,j} (x_i - x_j)^2 \quad (2)$$

This regularization is applied over pairs of adjacent superpixels i and j , promoting smooth transitions between their depth values.

The final objective that needs to be minimized is a weighted sum of the above terms:

$$\mathbf{x} = \min_{\mathbf{x}} (\lambda_{gt}\mathcal{L}_{gt} + \lambda_{lt}\mathcal{L}_{lt} + \lambda_s\mathcal{L}_s) \quad (3)$$

where λ_{gt} , λ_{lt} , and λ_s are the weight parameters. For our experiments, we select $\lambda_{gt} = \lambda_{lt} = 1$ and λ_s based on the performance on a smaller validation set.

To obtain metric depth estimates, we assume access to ground-truth depth values for the purpose of scaling. Specifically, after floodfilling the values of \mathbf{x} , we generate a complete relative depth map \mathbf{d} . Given the ground-truth depth map \mathbf{d}^* , we optimize the following objective to determine the appropriate scale and shift parameters:

$$(s, t) = \arg \min_{s,t} \sum_{i=1}^M (s\mathbf{d}_i + t - \mathbf{d}_i^*)^2 \quad (4)$$

where M is the total number of pixels in the image. By solving this optimization problem, we can then scale and shift the relative depth map \mathbf{d} to align it with the metric depth.

D.4 SURFACE NORMAL PREDICTION

The procedure for surface normal prediction is detailed in Algorithm 6 and Fig. 14. While the model makes binary decisions regarding whether one depth is lesser or greater than another, we have found that enabling the model to also consider equality predictions enhances the accuracy of surface normal estimates.

1242 **Algorithm 5** Depth Prediction

1243 1: **procedure** ESTIMATEDEPTH(*image*, *numPairs*)

1244 2: *superpixels* \leftarrow SLIC(*image*)

1245 3: *pairwiseRankings* $\leftarrow \emptyset$

1246 4: **for** *i* $\leftarrow 1$ to *numPairs* **do**

1247 5: *pair* \leftarrow SampleRandomPair(*superpixels*)

1248 6: *ranking* \leftarrow QueryMFM(*pair*)

1249 7: *pairwiseRankings* \leftarrow

1250 *pairwiseRankings* $\cup \{ranking\}$

1251 8: **end for**

1252 9: *globalRankings* \leftarrow MinimizeObjective(

1253 *pairwiseRankings*)

1254 10: *depthMap* \leftarrow AssignDepthToPixels(

1255 *image*, *superpixels*, *globalRankings*)

1256 11: **return** *depthMap*

1257 12: **end procedure**

1258

1259

1260 To incorporate this into our approach, we introduce the following term for cases where superpixels x_i

1261 and x_j are predicted to be at equal depth:

1262

1263

1264
$$\mathcal{L}_{eq}(\mathbf{x}) = \sum_{i,j} (x_i - x_j)^2 \quad (5)$$

1265

1266

1267 for pairs of superpixels x_i and x_j predicted to lie at an equal depth. For weights, we choose

1268 $\lambda_{eq} = \lambda_{lt} = \lambda_{gt} = 1$ and as before, we pick λ_s based on the performance on a smaller validation set.

1269

1270

1271 **Algorithm 6** Surface Normal Prediction

1272 1: **procedure** ESTIMATENORMALS(*image*, *numPairs*, *bases*)

1273 2: *superpixels* \leftarrow SLIC(*image*)

1274 3: *pairwiseAlign* $\leftarrow \{\}$

1275 4: **for** *i* $\leftarrow 1$ to *numPairs* **do**

1276 5: *pair* \leftarrow SampleRandomPair(*superpixels*)

1277 6: **for** *b* in *bases* **do**

1278 7: *alignment* \leftarrow QueryMFM(*pair*, *b*)

1279 8: *pairwiseAlign*[*b*] \leftarrow

1280 *pairwiseAlign*[*b*] $\cup \{alignment\}$

1281 9: **end for**

1282 10: **end for**

1283 11: *normalMaps* $\leftarrow \{\}$

1284 12: **for** *b* in *bases* **do**

1285 13: *globalAlign* \leftarrow MinimizeGlobalObjective(

1286 *pairwiseAlign*[*b*])

1287 14: *normalMaps*[*b*] \leftarrow AssignAlignmentToPix(

1288 *image*, *superpixels*, *globalAlign*)

1289 15: **end for**

1290 16: **return** *normalMaps*

1291 17: **end procedure**

1292

1293 To visualize surface normals, we take the per-axis predictions and normalize them to [0,1], after

1294 which we project them onto the unit sphere. We directly interpret the three channels as RGB values.

1295 Note that since the per-axis normalized surface normal predictions do not present absolute directional

information with respect to the camera, the colors might not match the ground truth visualizations.

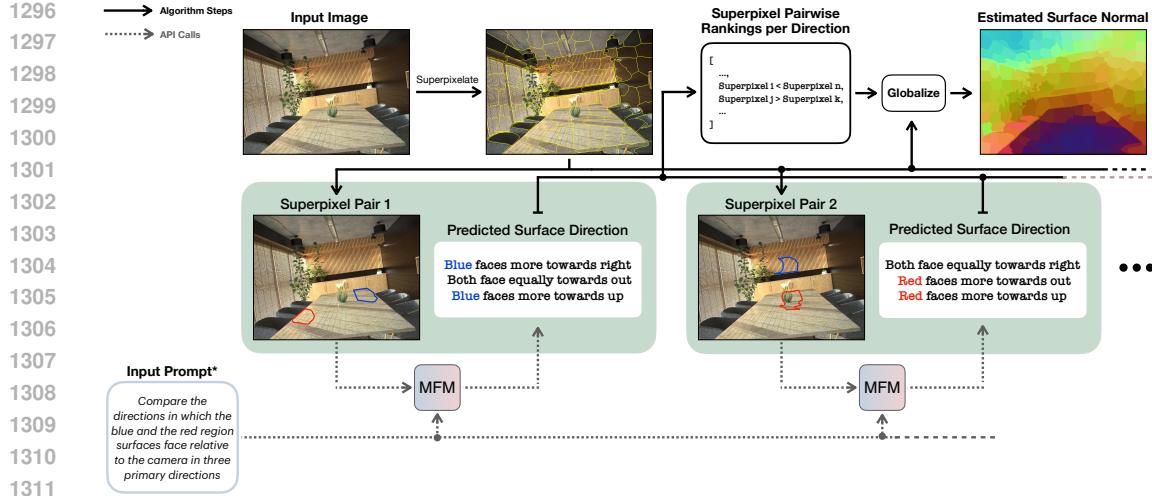


Figure 14: **Surface normal prediction algorithm.** Similar to depth in Fig. 13, we randomly select superpixels and give them to the model to perform a pairwise comparison. The superpixels are compared based on their alignment with the basis vectors relative to the camera. The pairwise ranks are globalized to obtain the final result. **Summary of the actual prompt; see the full prompt in the provided Markdown files.*

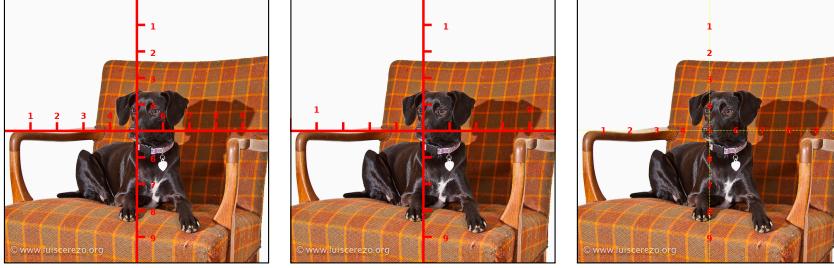


Figure 15: We ablate different ruler types as visual aids for object detection.

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 OBJECT DETECTION

We evaluate additional baselines for GPT-4o in Tab. 9. In these experiments, the classification component of the pipeline remains unchanged, while the grid search is replaced with alternative methods. The results are clear: GPT-4o struggles with directly regressing bounding box coordinates. To address this, we experimented with overlaying rulers on the images to assist in bounding box regression, following insights from Wu et al. (2024), but we found minimal improvement. The various visual prompts we tried are displayed in Fig. 15, and the numbers we obtained on a subset of 100 COCO images are summarised in Tab. 10.

Additionally, we evaluate direct bounding box regression with Gemini, Qwen2-VL, and Claude (see Tab. 9), as some of these models have demonstrated this capability (Google, 2024). The results indicate substantial variance in performance: while Gemini and Qwen2-VL localize bounding boxes effectively, GPT-4o and Claude underperform considerably. Interestingly, despite improvements in Gemini and Qwen2-VL, they still lag behind the specialist models and do not surpass GPT-4o when using the chain algorithm.

E.2 SEMANTIC SEGMENTATION

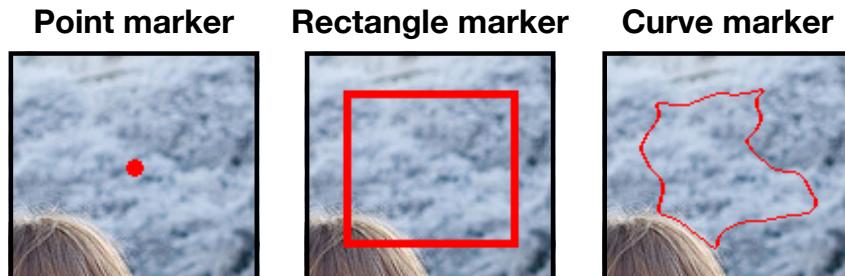
We depict various marker types used for segmentation in Fig. 16. Furthermore, we conduct an ablation study on the marker type and the context provided during classification, as shown in Tab. 11. The

1350
 1351 **Table 9: Additional experiments with MFM on object detection.** Direct bounding box regression
 1352 is ineffective for GPT-4o and Claude 3.5 Sonnet, while Gemini 1.5 Pro and Qwen2-VL perform better.
 1353 For all models, the most effective prompt was selected from a set of options based on validation set
 1354 performance, similar to the approach used for prompt chains.

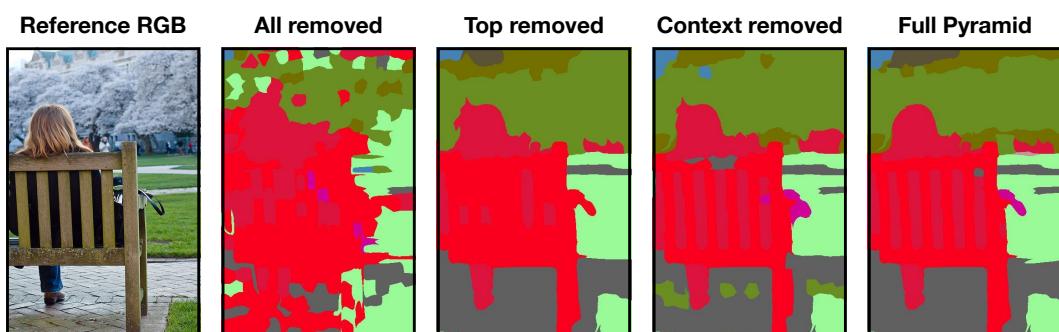
Method	AP ₅₀	AP ₇₅	AP
GPT-4o (Direct Regression)	17.69	1.69	5.08
Gemini 2.0 Flash (Direct Regression)	38.77	10.80	15.66
Gemini 1.5 Pro (Direct Regression)	55.11	31.23	31.33
Claude 3.5 Sonnet (Direct Regression)	17.97	2.13	6.03
Qwen2-VL (Direct Regression)	44.10	23.71	24.36
GPT-4o (Regression with Ruler)	15.95	2.60	4.99

1363
 1364 **Table 10: Rulers for Object Detection:** The results indicate that visual markers such as rulers are
 1365 ineffective in aiding GPT-4o for bounding box regression. Numbers obtained are on a subset of 100
 1366 COCO Images.

Visual Prompt	AP ₅₀	AP ₇₅	AP
Ruler 1	21.19	4.09	7.60
Ruler 2	22.59	7.85	9.20
Ruler 3	19.06	4.86	8.09

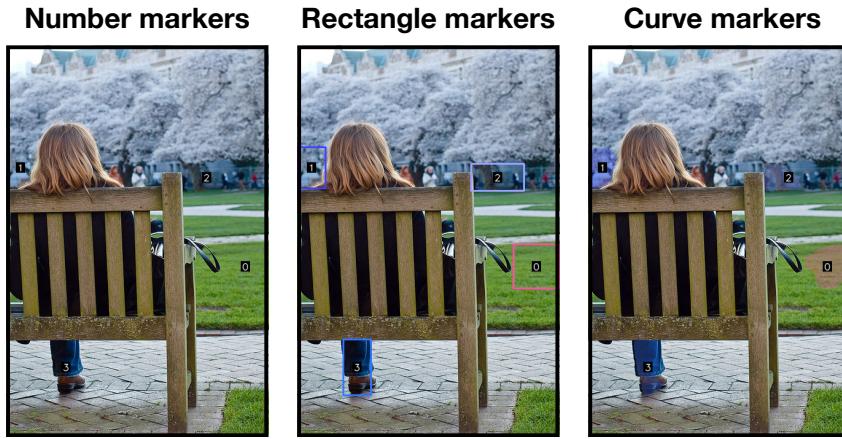


1384 Figure 16: The curve, rectangle, and point marker types we ablated for the segmentation task.



1385
 1386 **Figure 17: Semantic Segmentation predictions with different layers of the semantic pyramid.**
 1387 From left to right: **1.** The RGB Image. **2.** The predicted mask when no crops are given, and markings
 1388 on the full image are directly used. The model is unable to make out fine details. **3.** The predicted
 1389 mask when the top of the semantic pyramid is removed. The model misses out on predicting some
 1390 finer details (for instance, the gaps in the bench and the handbag). **4.** The predicted mask when the
 1391 middle layer (the context) is removed. The model makes some wrong predictions. **5.** The mask with
 1392 the full pyramid of information.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418



1419 Figure 18: The marker styles used for directly querying semantic entities from the full image.
1420

1421 **Table 11: Ablation study on semantic segmentation.** The results show that GPT-4o is robust to the
1422 choice of visual prompt. The substantial performance drop (16 mIoU) observed upon removal of the
1423 semantic pyramid shows the critical role of the contextual information used in the sub-task.

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

Category	Ablation	mIoU	Pixel Accuracy
Visual Prompts	Curve	41.62	67.43
	Rectangle	41.67	69.74
	Point	41.68	68.83
Contextual Ablations	Without Crop	40.97	69.84
	Without Context	31.25	61.66
	Best Direct	25.79	55.42

1434 numbers highlight the importance of contextual information within the semantic pyramid. Removing
1435 the context layer leads to a performance drop of over 10 mIoU. Additionally, the direct strategy of
1436 marking directly on the image and then classifying results in a 16 mIoU difference, indicating that
1437 MFM currently lack the ability to localize precisely. We also investigate the impact of omitting
1438 the finest level of the semantic pyramid—the crop. While the mIoU value does not decrease much,
1439 qualitative analysis reveals that this omission hampers the model’s ability to capture finer image
1440 details. This is shown in Fig. 17.

1441 We also conduct ablation studies on the effect of the model’s performance when the semantic pyramid
1442 is omitted. The visual markers in Fig. 16 do not work well and do not allow batching, so we borrow a
1443 visual marker similar to the one used in Yang et al. (2023a) (see Fig. 18). Table 12 shows the results
1444 for different marker types Yang et al. (2023a). It is clear that the model’s performance greatly drops
1445 when it is deprived of the crops. We note that the marks we use differ from the ones used in Yang
1446 et al. (2023a) in two ways:

- 1447 • The marks obtained in Yang et al. (2023a) already correspond to semantic entities, while we
1448 use superpixels as a proxy for this.
- 1449 • Extracting a full semantic mask requires discerning finer-grained details, so the marks we
1450 use typically correspond to smaller regions in the image.

1452 E.3 GROUPING

1454 For the grouping task, we filter out 100 COCO images that contain instances which are well-posed
1455 for this task. The well-posedness of an instance for grouping is measured by how consistent the SAM
1456 predictions are for the instance. To calculate the consistency of predictions for an instance, we sample
1457 random points inside the instance and use SAM to obtain an instance mask for each point individually,
as well as a global mask by querying all points together. The mIoU between individual masks and

1458
 1459 **Table 12: Ablation on Direct Segmentation:** The numbers clearly show that omitting the extra
 1460 information provided by the crops greatly impacts the model’s performance. The numbers shown
 1461 are for a subset of 30 images. The prompt was selected from a set of options based on validation set
 1462 performance.

1462

1463

Visual Marker	mIoU	Pixel Accuracy
Curve	20.70	50.34
Rectangle	18.24	47.80
Number	21.13	50.00

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

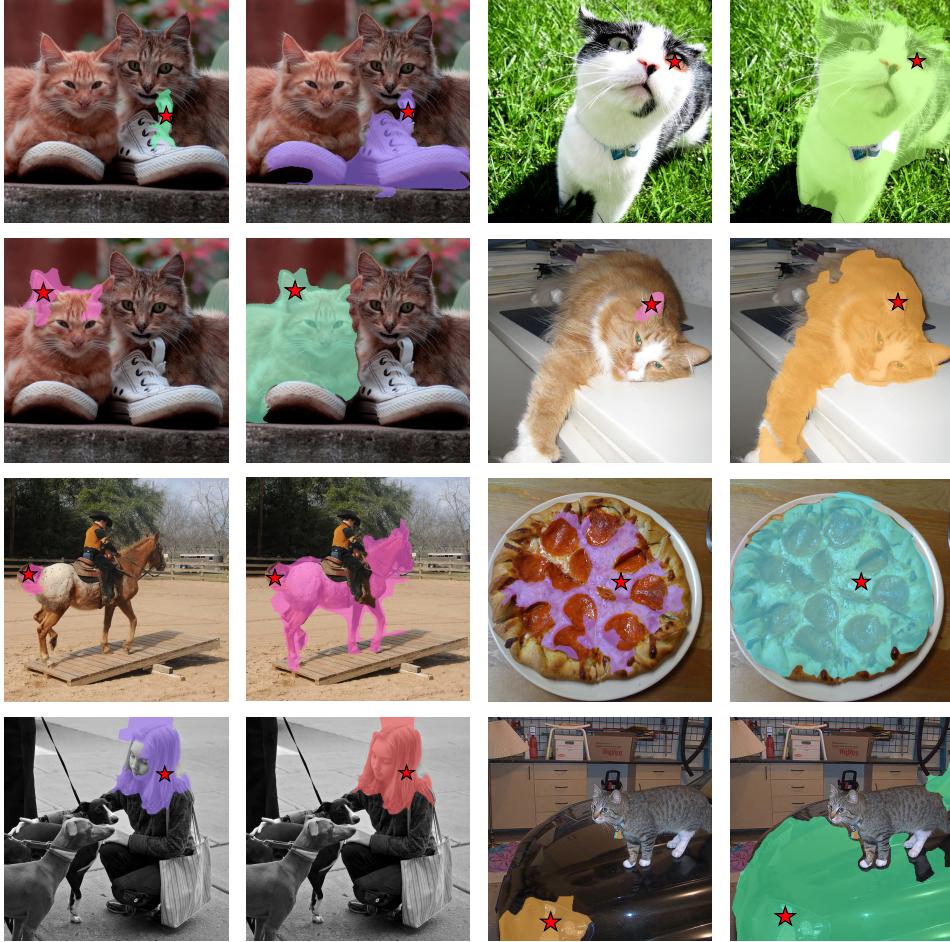
1494

1495

1496

1497

1498



1499 **Figure 19: Ambiguous instances:** If a cat’s ear is marked, is the object the cat or the cat’s ear? Images
 1500 on the left: Grouping without explicit reference to “objectness”. Images on the right: Grouping
 1501 obtained using the “apostrophe-s” test.

1502

1503

1504 the global mask is used as the consistency metric. Finally, the images that contain instances with a
 1505 consistency value above a given threshold are selected and randomly sampled to create the evaluation
 1506 set.

1507

1508

1509

1510 Determining the granularity of what qualifies as an object in a grouping task is often ambiguous. For
 1511 instance, if a person’s nose is highlighted, should the object be considered the nose alone, or the
 entire person? Both interpretations are valid, leading to potential inconsistencies.

1512 Table 13: **Ablation study on depth prediction.** GPT-4o performs the best when curves are used as
 1513 the visual marker.

Method	Higher is better ↑				Accuracy	Lower is better ↓
	δ_1	δ_2	δ_3	ρ		
Curve	0.550	0.822	0.935	53.75	70.43	0.332
Rectangle	0.534	0.807	0.931	51.68	69.28	0.341
Point	0.525	0.802	0.928	51.89	62.07	0.366

1521 Table 14: **Oracle depth results** with different numbers of superpixels and comparisons made during
 1522 chaining.

Superpixels	Samples	Higher is better ↑				AbsRel
		δ_1	δ_2	δ_3	ρ	
100	200	0.571	0.774	0.863	0.83	0.528
100	400	0.597	0.785	0.867	0.86	0.514
200	200	0.571	0.773	0.867	0.83	0.501
200	400	0.593	0.788	0.869	0.86	0.502

1532 To address this, we propose a prompting method that refines the granularity of “objectness.” By
 1533 instructing the model to interpret the highlighted instance as a possessive noun—expressed through
 1534 the “apostrophe-s” structure—the model is encouraged to group coarser objects. For example, when
 1535 prompted with “person’s nose,” the model is guided to interpret the object as the person, rather than
 1536 the nose alone. This approach is illustrated in Fig. 19.

1537 While this method is not universally effective, it often resolves ambiguity by clarifying the relationship
 1538 between parts and wholes. We provide the full prompt in the supplementary material.

1540 E.4 DEPTH PREDICTION

1541 We conduct an ablation study on the choice of visual markers in Tab. 13. Please also see Tab. 14 for
 1542 additional oracle evaluations.

1545 E.5 SURFACE NORMAL PREDICTION

1546 We conduct an ablation study on the choice of visual markers in Tab. 15.

1549 E.6 EXPERIMENTS WITH LLAMA

1551 Unlike the other models, Llama employs different prompt chains for object detection, grouping and
 1552 segmentation due to its current limitations with handling multiple images (Huggingface). Specifically:

- 1554 • For object detection, we provide the full image with the corresponding grid cell marked
 instead of providing a crop of the grid cell with the full image.
- 1556 • For semantic segmentation, we provide the full image with the corresponding superpixel
 marked, instead of providing a set of crops per superpixel.

1559 Table 15: **Ablation study on surface normal prediction.** GPT-4o is relatively robust to different
 1560 visual marker choices.

Method	ρ_x	ρ_y	ρ_z
Curve	-4.89	58.00	39.28
Rectangle	-13.99	58.84	39.65
Point	2.42	51.26	39.59

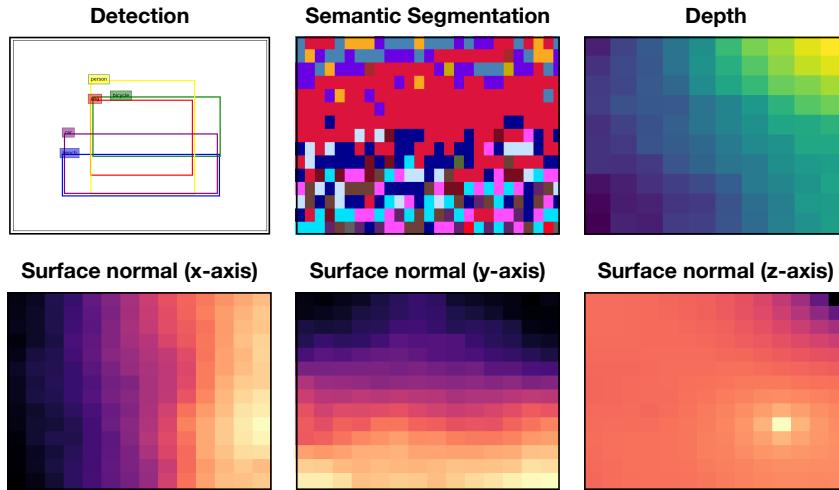


Figure 20: The blind guesses made by GPT-4o on different tasks.

- For grouping, we highlight the superpixel corresponding to the initial cluster in red and the superpixel of the query point in blue. The model is tasked with determining whether the blue region belongs to the same entity as the red region.

As with the other models, we experimented with multiple prompts and selected the best-performing one based on a smaller validation set across all tasks.

Surprisingly, Llama does well in segmentation despite not being provided with any crops. A comparative evaluation against other MFM on a smaller subset using identical prompts is shown in Tab. 16. Notably, Llama surpasses all other models in this setup.

An additional interesting finding is Llama’s unique capability to achieve a positive correlation in the x -direction for the surface normals task, a result not observed with the other non-reasoning MFM.

Table 16: The performance of Llama compared with the other models on a smaller subset, in the absence of crops.

	Model	mIoU	Pixel Accuracy
MFM	GPT-4o	19.77	54.31
	Gemini 1.5 Pro	22.98	61.04
	Claude 3.5 Sonnet	20.00	55.69
	Llama-3.2-90B	25.86	61.66

E.7 BLIND GUESS

As mentioned in Section 4, a useful way to analyze the potential biases of the MFM, and to gauge the degree to which it uses the visual content is a blind guess, or prompting the image with a blank image. In particular:

- For **object detection**, we ask the model to imagine the classes present. After this, we ask it to provide reasonable coordinates for the objects based on its world knowledge.
- For **semantic segmentation**, we mark a rectangle in a white image and force the model to predict a class. We ask the model to use the location to make an educated guess.
- For **depth**, we ask the model to imagine an indoor setting. We mark two rectangles and force the model to predict that one is at a greater depth than the other.
- For **normals**, we repeat the procedure for depth for each direction.

The results for GPT-4o are visualized in Fig. 20, and reveal several interesting insights.

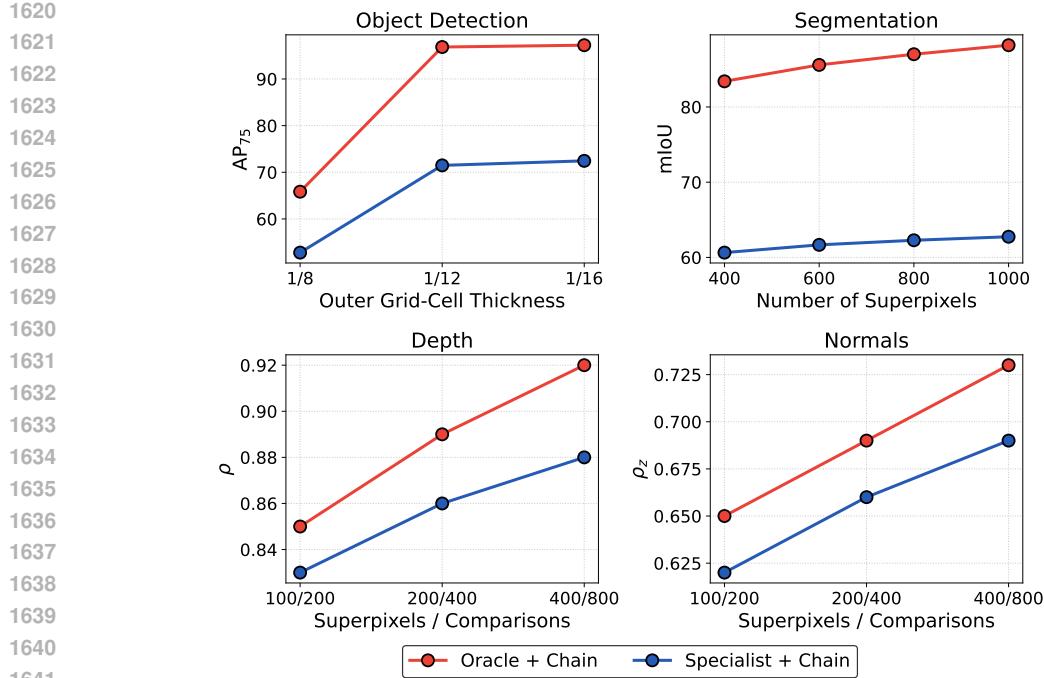


Figure 21: Performance improvements of the “Oracle + Chain” and “Specialist + Chain” baselines on full datasets when using a finer-grained prompt chain. Ten iterations were used for object detection.

- For **object detection**, the model chooses common classes like person and car. Additionally, it seems to grasp the relative sizes of objects reasonably well, as indicated by its tendency to make the car and the bench longer.
- For **semantic segmentation**, the model makes reasonable guesses. For instance, it guesses “sky-merged” and “airplane” at the top of the image, “person” near the middle, “dog,” “cat,” and “floor” near the bottom.
- For **depth prediction**, GPT-4o exhibits a “ceiling bias” and consistently infers that the top right corner is located at a greater relative depth. We observe that this bias is reflected in several of the model’s predictions as well, where the ceiling is consistently assumed to be at a greater depth.
- For **surface normals**, the model uses the relative locations of the rectangles to form judgments. For instance, in the x direction, it infers that the right rectangle aligns more towards the right. In the y direction, it consistently infers that the bounding box at a greater y coordinate aligns more with the positive y direction. While Chain-of-Thought (CoT) reasoning is able to break this bias along the y direction for GPT-4o, the left-right bias persists when actual images are presented.

E.8 FINER-GRAINED PROMPT CHAIN

A natural question is whether the performance of our MFM can be further enhanced by refining the granularity of the prompt chain. In other words, can we improve performance by increasing the number of superpixels and comparisons or by using thinner outer grid cells? To explore this, we first examine the effect of a finer-grained prompt chain on the “Oracle + Chain” and “Specialist + Chain” baselines. As shown in Fig. 21, these baselines exhibit steady performance improvements as the prompt chain is refined.

To determine whether this trend extends to the MFM, we conducted a small-scale experiment using GPT-4o on the same tasks. As illustrated in Fig. 22, although GPT-4o shows modest improvements with a finer-grained prompt chain, its performance quickly saturates due to misclassifications. This

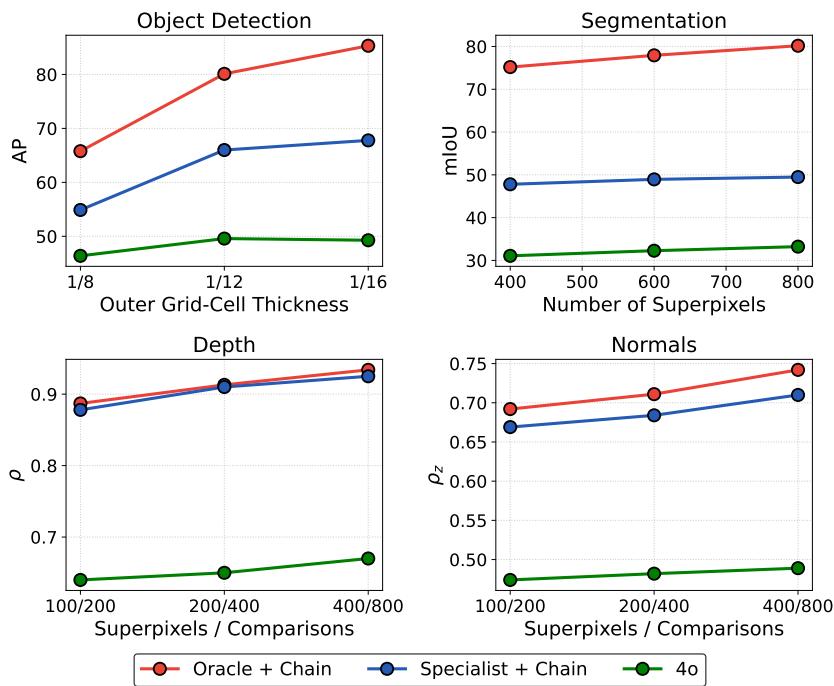


Figure 22: GPT-4o’s performance improvements with a finer-grained prompt chain plateau, showing that our original settings are adequate.

observation supports our decision to adopt a coarser granularity for the MFM, confirming that our original settings are sufficient to capture the performance gap.

We reiterate here that the control baselines in our paper serve as calibration tools rather than performance ceilings. They mitigate the sub-optimality of the prompting method and prevent exaggerated conclusions about MFM significantly lagging behind specialists. Our benchmark is designed to be accurate in a relative and ordinal sense.

E.9 IN-THE-WILD EVALUATIONS

Please see Fig. 25, 26 and 27 for qualitative evaluation of MFM on in-the-wild samples (Flickr, 2024; Unsplash, 2024).

F REASONING RESULTS

F.1 ABLATING THE BATCH SIZE

As noted in Sec. 4.1, o4-mini is especially sensitive to the batch size used during inference. While our main evaluations used a batch size of 100 for consistency across models, we ablate this choice on a subset of 500 ImageNet samples in Fig. 23.

As shown, o4-mini suffers a substantial degradation in classification accuracy as the batch size increases, across all reasoning effort settings. In contrast and surprisingly, both o1 and o3 demonstrate improved performance with larger batch sizes, consistent with trends observed in prior work on in-context learning for LLMs Chen et al. (2023); Jiang et al. (2024b).

F.2 DETAILED EXPERIMENTS

As noted in the main paper, we evaluate o1 and o3 on smaller, representative subsets of data. To construct informative subsets for classification, object detection, segmentation, and grouping, we compute the Kendall τ rank correlation between the performance rankings of non-reasoning models

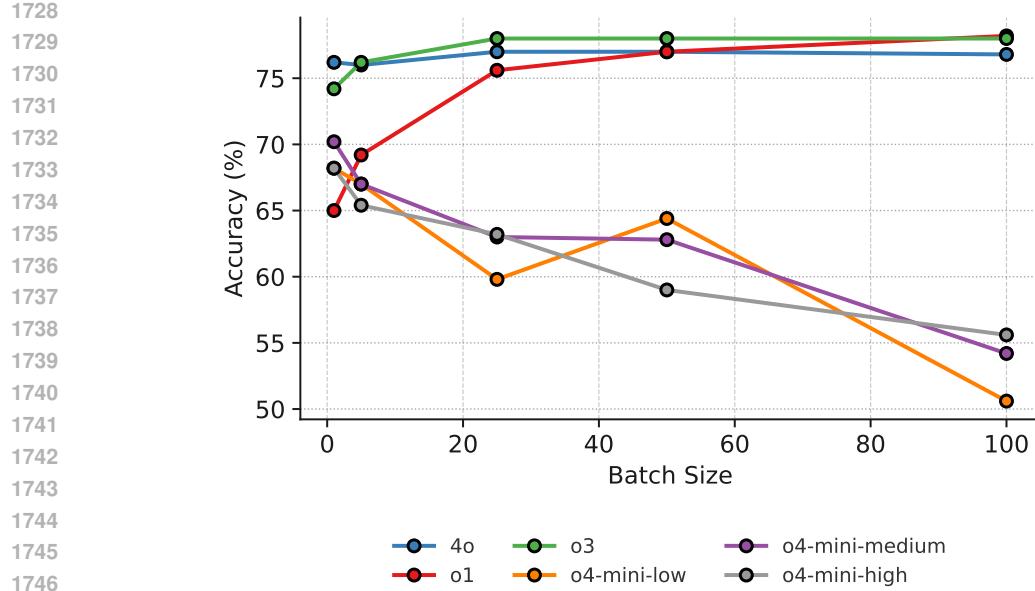


Figure 23: **Effect of batch size on classification accuracy.** We ablate the classification performance of o1, o3, o4-mini and GPT-4o on a subset of 500 ImageNet images under varying batch sizes. While o1 and o3 benefit from larger batch sizes, o4-mini shows a pronounced drop in accuracy.

on candidate subsets and their full-dataset rankings, over multiple bootstrap runs. For each task, we choose the smallest subset size that meets a task-specific correlation threshold, yielding 1,000 samples for classification, 200 for detection, 50 for segmentation, and 30 for grouping. These subsets are deemed informative because they preserve the relative ranking of non-reasoning models.

For depth and surface normal prediction, we select the 10 most challenging samples for GPT-4o (those where it achieves the lowest Spearman correlation) due to higher evaluation costs.

Table 17: **Classification.** Accuracy scores on the standard classification datasets. o3 consistently outperforms GPT-4o, and achieves the highest overall scores. In contrast, o4-mini lags behind.

Model	ImageNet	ImageNet-V2	2DCC	3DCC	ImageNet-R	ImageNet-Sketch
o4-mini (low)	50.7	—	—	—	—	—
o4-mini (medium)	58.4	49.2	35.6	36.4	58.2	46.4
o4-mini (high)	59.6	—	—	—	—	—
o1	77.90	70.50	62.40	60.20	85.3	65.50
o3	78.00	74.10	62.60	61.70	87.2	69.10
GPT-4o	76.70	72.10	63.80	61.40	86.2	66.10

Table 18: **Object Detection.** All models other than o4-mini achieve comparable performance, with o1 and o3 slightly outperforming GPT-4o.

Table 19: **Segmentation.** o1 and o3 outperform GPT-4o in both mIoU and pixel accuracy. o4-mini underperforms across all reasoning levels.

Model	AP ₅₀ (↑)	AP ₇₅ (↑)	AP (↑)
o4-mini (low)	48.40	29.71	27.65
o4-mini (medium)	47.56	29.77	27.11
o4-mini (high)	48.10	26.49	26.07
o1	66.70	40.52	37.77
o3	64.89	40.73	38.57
GPT-4o	64.11	42.61	38.17

Model	mIoU (↑)	Pixel acc. (↑)
o4-mini (low)	29.67	63.94
o4-mini (medium)	28.86	63.82
o4-mini (high)	28.66	62.81
o1	40.24	72.92
o3	38.18	72.75
GPT-4o	35.66	69.59

1782 Table 20: **Depth Prediction.** All models struggle with this difficult subset. However, o3 consistently
 1783 outperforms the others across most metrics.

Model	$\delta_1(\uparrow)$	$\delta_2(\uparrow)$	$\delta_3(\uparrow)$	$\rho(\uparrow)$	Accuracy(\uparrow)	AbsRel(\downarrow)
o4-mini (low)	0.467	0.726	0.857	-0.009	55.15	1.07
o4-mini (medium)	0.465	0.711	0.852	0.070	56.85	0.953
o4-mini (high)	0.462	0.724	0.864	-0.029	53.65	1.090
o1	0.456	0.716	0.873	0.079	57.20	0.914
o3	0.490	0.738	0.855	0.250	63.50	0.819
GPT-4o	0.460	0.732	0.881	-0.050	52.00	1.121

1793 Table 21: **Grouping.** GPT-4o outperforms all reasoning-based models on
 1794 this semantic task. Among the reasoning models, o3 performs best.

Model	mIoU(\uparrow)
o4-mini (low)	47.41
o4-mini (medium)	44.59
o4-mini (high)	46.36
o1	52.61
o3	55.06
GPT-4o	59.64

1793 Table 22: **Surface Normals.** Reasoning models outperform GPT-4o, particularly along the horizontal (x)
 1794 direction, where GPT-4o shows a strong negative correlation. o3 achieves the highest scores across all axes.

Model	ρ_x	ρ_y	ρ_z
o4-mini (low)	0.18	0.12	0.30
o4-mini (medium)	0.39	0.24	0.32
o4-mini (high)	0.38	0.23	0.31
o1	0.24	0.23	0.19
o3	0.48	0.36	0.28
GPT-4o	-0.30	0.09	0.05

1807 The performance of o1, o3, GPT-4o, and o4-mini, under varying levels of reasoning effort, is
 1808 summarized in Tables 17 through 22, covering classification, object detection, segmentation, grouping,
 1809 depth, and surface normal prediction.

1810 On semantic tasks, all models perform comparably, with o1 and o3 showing slightly stronger results
 1811 in classification, object detection, and segmentation. For geometric tasks, performance drops across
 1812 the board due to the difficulty of the selected samples. However, the reasoning models consistently
 1813 outperform GPT-4o. In particular, all reasoning models achieve positive correlation along the
 1814 horizontal axis in surface normal prediction, correcting a common failure mode in GPT-4o (see Fig. 8,
 1815 where the horizontal gradient is flipped). Qualitative comparisons for all tasks are shown in Fig. 8.

1817 G ADDITIONAL EXPERIMENTS WITH 4O IMAGE GENERATION

1822 G.1 PROMPTING METHODOLOGY

1823 As discussed in the main paper, GPT-4o generates full image recreations rather than edits, often
 1824 resulting in spatial misalignments. To enable consistent comparisons, we first zero-pad all input
 1825 images to square dimensions and, after generation, crop the relevant regions to align with the original
 1826 input. Below, we outline task-specific prompting details. Preliminary quantitative results for grouping,
 1827 depth, and surface normals, evaluated at full scale, are provided in App. G.2.

1828 **Grouping.** The prompt used for object-based segmentation is shown in Listing 1. The model is given
 1829 an image with a red point marking a location on an object and is instructed to return the same image
 1830 with the entire object filled in solid red. To extract the predicted mask, we use HSV thresholding and
 1831 post-process it by retaining only the largest connected component, which effectively removes small
 1832 artifacts and hallucinated regions. Although this simple postprocessing often yields reasonable masks,
 1833 more advanced postprocessing techniques could improve results further. We leave such refinements
 1834 to future work.

1836
 1837 You are given an input RGB image where a small red circle marks a point
 1838 on an object.
 1839 Your task is to return the **exact same image**, but with the **entire**
 1840 object that contains the marked point filled in **solid red**.
 1841 Do not add any other markings, text, or overlays; only apply the red fill
 to the object.

1842
 1843 Listing 1: Grouping prompt for GPT-4o image generation
 1844

1845 **Depth.** The prompt used for depth prediction is provided in Listing 2. The model is instructed to
 1846 produce a grayscale rendering of the input image, where closer regions appear darker and farther
 1847 regions lighter.

1848
 1849 Generate a **pure grayscale depth map** from the input image. The
 1850 grayscale values must encode depth as follows:
 1851 - **White** (255 intensity) represents points that are **closest** to
 1852 the camera (minimum depth).
 1853 - **Black** (0 intensity) represents points that are **farthest** from
 1854 the camera (maximum depth).
 1855 - All other points must be shaded **monotonically** between black and white
 1856 ******, based solely on their distance from the camera.
 1857
 1858 This map must not contain any colors, textures, or artistic effects: only
 1859 smooth grayscale transitions that accurately reflect increasing
 depth, with darker shades at greater distances.

1860
 1861 Listing 2: Depth prediction prompt for GPT-4o image generation
 1862

1863 **Surface Normals.** The prompt used for surface normal prediction is shown in Listing 3. The model
 1864 is asked to generate a surface normal map in the standard RGB encoding used in computer graphics.
 1865 Conventionally, red corresponds to the left-right (x) axis (left = 0, right = 1), green to the up-down
 1866 (y) axis (down = 0, up = 1), and blue to the depth (z) axis (inward = 0, outward = 1).

1867 You are a vision model that, given an input RGB image, must predict a per
 1868 -pixel surface normal map and render it as an RGB image using the
 1869 standard normal-map color scheme.
 1870
 Requirements:
 1. **Output format**
 1871 - Directly generate an image.
 1872 - Produce a raw image (same dimensions as input) whose pixel colors
 1873 encode the normals as above.
 1874 - Do **not** add any annotations, text overlays, or alpha channels: only
 1875 the RGB channels.
 1876 2. **Normal-map encoding**
 1877 - For each pixel estimate its surface normal vector
 1878 - Display the orientation of the surface normal vector using the standard
 1879 color scheme used in computer graphics.

1880
 1881 Listing 3: Normals prediction prompt for GPT-4o image generation
 1882

1883 G.1.1 PROMPT SENSITIVITY
 1884

1885 We observe that GPT-4o’s image generation is highly sensitive to changes in the prompt. To illustrate
 1886 this brittleness, we test two modified prompts. For depth prediction, we invert the color mapping in
 1887 Listing 2, asking the model to render *near* points as dark and *far* points as white. For surface normals,
 1888 rather than producing a single RGB normal map, we prompt the model for three separate grayscale
 1889 images, each representing alignment with one of the x , y , or z axes, similar to our prompt-chaining
 setup. As shown in Tab. 23, these small changes lead to a substantial degradation in performance.

1890 Table 23: **Performance for different prompts.** Comparison between the original and an altered
 1891 prompt for both depth prediction and surface normal prediction.

(a) Depth prediction					
Prompt	δ_1 (\uparrow)	δ_2 (\uparrow)	δ_3 (\uparrow)	ρ (\uparrow)	AbsRel (\downarrow)
Original	0.562	0.849	0.942	0.448	0.303
Altered	0.399	0.694	0.854	-0.12	0.474

(b) Surface normal prediction			
Prompt	ρ_x	ρ_y	ρ_z
Original	0.31	0.35	0.14
Altered	-0.15	0.38	-0.23

1905 G.2 PRELIMINARY QUANTITATIVE ANALYSIS

1907 The full-scale quantitative results are shown in Tab. 24. While the performance is non-trivial, it
 1908 currently falls short of what is achieved by GPT-4o using the prompt chain. We view the refinement
 1909 of prompts and decoding strategies for image generation as an important direction for future work.

1910 Notably, grouping predictions are impacted by spatial misalignment, hallucinated regions, and
 1911 incorrect markings. Depth predictions, on the other hand, occasionally suffer from an inverted
 1912 rendering of the depth gradient, which significantly affects correlation-based metrics. We showcase
 1913 representative qualitative results for grouping, depth, and surface normals in Fig. 9, highlighting both
 1914 successes and common failure modes.

1915 Table 24: GPT-4o image generation performance across three tasks.

Task	Metric	Value (\uparrow)
Grouping	mIoU	28.14
Depth Prediction	δ_1	0.485
	δ_2	0.735
	δ_3	0.848
	ρ	0.52
	AbsRel (\downarrow)	0.575
Surface Normal Prediction	ρ_x	0.09
	ρ_y	0.44
	ρ_z	0.17

1929 H PROMPT SENSITIVITY ANALYSIS

1932 In Fig. 24, we evaluate the non-reasoning models for each task considering different prompting
 1933 techniques. We observe that GPT-4o generally shows lower sensitivity to different prompts on most of
 1934 the tasks compared to other MFM. For surface normals, we interestingly observe that the predictions
 1935 greatly improve in the y and z directions, when GPT-4o and Claude are asked to reason in the prompt
 1936 (see Tab. 25).

1937 I PROMPTING COSTS

1940 At the time of writing, the API pricing for GPT-4o (gpt-4o-2024-08-06) was \$2.50 per million
 1941 input tokens and \$10.00 per million output tokens. For Gemini 1.5 Pro (gemini-1.5-pro-001),
 1942 the corresponding rates were \$3.50 (input) and \$10.50 (output), and for Claude 3.5 Sonnet
 1943 (claude-3-5-sonnet-20240620), \$3.00 and \$15.00, respectively. In contrast, lower-cost mod-
 els like Gemini 2.0 Flash (gemini-2.0-flash-001) and o4-mini (o4-mini-2025-04-16)

1944 Table 25: **Prompt sensitivity for surface normal prediction.** Correlations under five different
 1945 prompts for GPT-4o and Claude 3.5 Sonnet. CoT prompting (**in bold**) greatly improves ρ_y and ρ_z .
 1946

Model	Prompt	$\rho_x (\uparrow)$	$\rho_y (\uparrow)$	$\rho_z (\uparrow)$
GPT-4o	Prompt 1	-0.36	-0.63	0.04
	Prompt 2	-0.29	-0.45	-0.10
	Prompt 3	0.07	0.55	0.44
	Prompt 4	-0.08	0.65	0.43
	Prompt 5	-0.34	0.45	0.37
Claude 3.5 Sonnet	Prompt 1	-0.34	-0.56	0.00
	Prompt 2	-0.18	-0.08	-0.11
	Prompt 3	-0.09	0.68	0.41
	Prompt 4	-0.06	0.66	0.35
	Prompt 5	-0.06	0.56	0.35

1960 were priced at \$0.10/\$0.40 and \$1.10/\$4.40, respectively. The reasoning models o1-2024-12-17
 1961 and o3-2025-04-16 were substantially more expensive at \$15.00/\$60.00 and \$10.00/\$40.00,
 1962 respectively.

1963 The costs for the scaled-up experiments are documented in Tab. 26, and the prompting costs for the
 1964 reasoning model are presented in Tab. 27. The primary reason for cost fluctuations across tasks is the
 1965 way each MFM tokenizes images. The notably higher costs for object detection with Gemini 1.5 Pro
 1966 stem from the independent calls required in the prompt chain. For reasoning models, especially on
 1967 the surface normal task, a major contributor is the large number of generated reasoning tokens. The
 1968 availability of highly affordable models like Gemini 2.0 Flash, for which **our entire evaluation cost**
 1969 **approximately \$50**, demonstrates that such benchmarking is becoming increasingly accessible.

1970 These costs reflect the constraints of current APIs and are not indicative of how such tasks would be
 1971 solved in practical deployments. As discussed in the main paper, our framework is intended for a
 1972 standardized one-time evaluation (and not for efficient task execution) with MFMs.

1973 Table 26: Prompting costs for scaled-up experiments (in \$).
 1974

Task	GPT-4o	Gemini 1.5 Pro	Claude 3.5 Sonnet	Gemini 2.0 Flash
Classification	223.8	298.6	142.8	9.7
Object Detection	185.8	610.8	155.0	18.1
Semantic Segmentation	232.1	450.1	227.9	14.0
Grouping	22.1	47.4	42.0	1.0
Depth	57.4	52.4	198.2	3.6
Normals	130.1	50.1	209.9	3.9

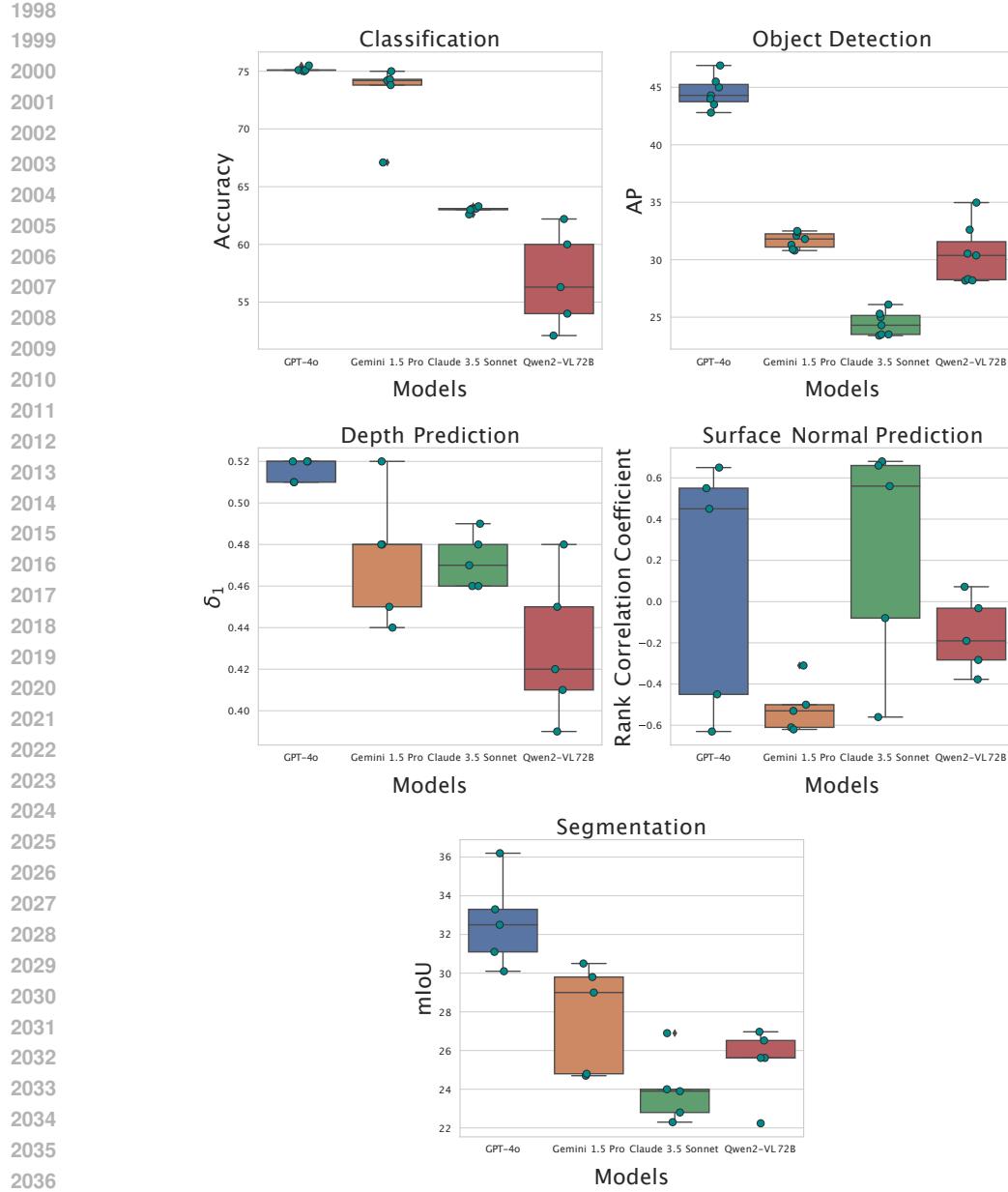


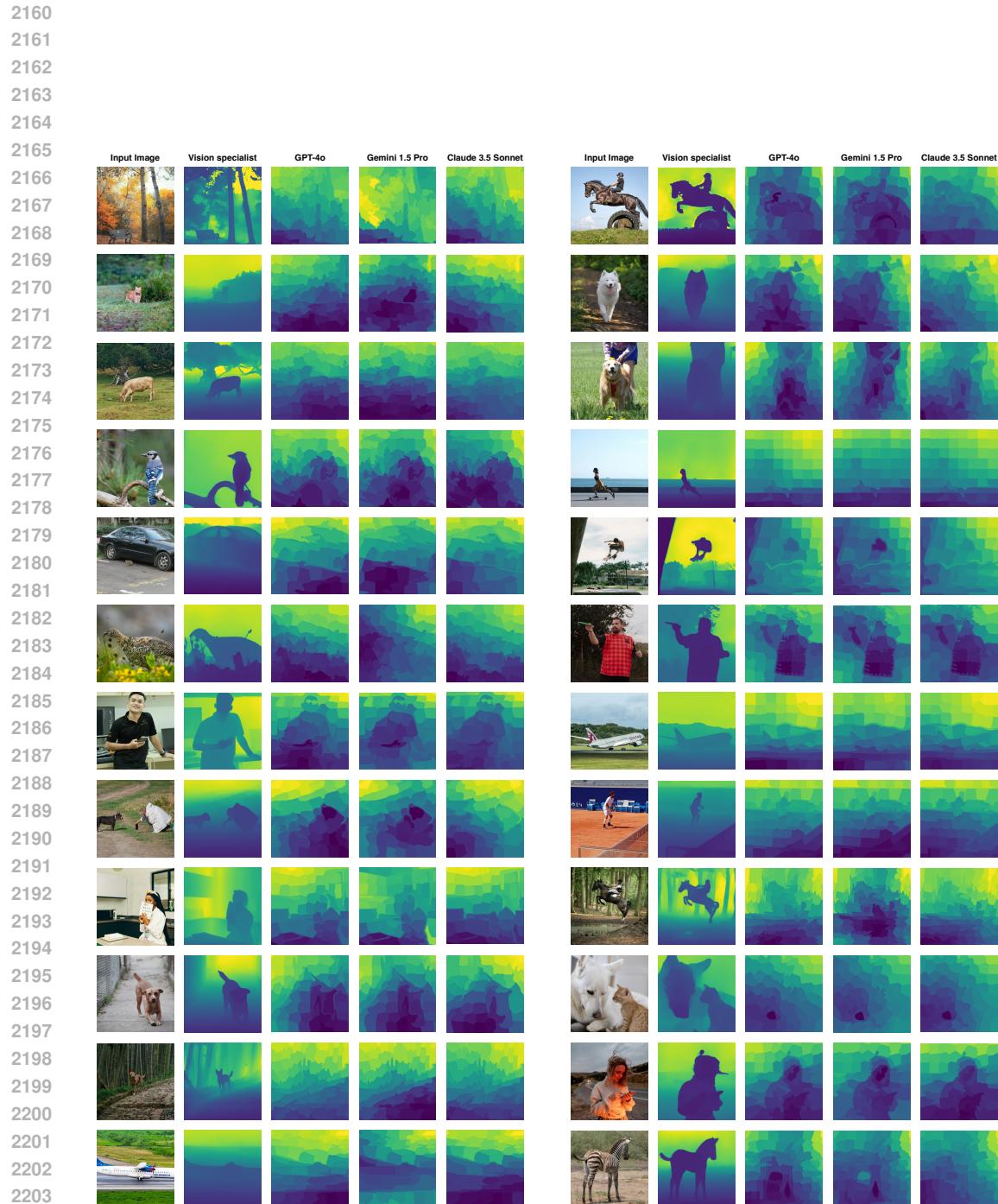
Figure 24: Sensitivity of MFM models to different prompting techniques. We observe that GPT-4o showcases a lower sensitivity on most tasks compared to other MFM models.

Table 27: Prompting costs for the reasoning models (in \$).^{*} Reported costs are for experiments conducted on the subset.

Task	o1*	o3*	o4-mini
Classification	41.0	22.5	50.0
Object Detection	220.0	104.0	102.2
Semantic Segmentation	200.0	96.0	115.0
Grouping	82.2	48.9	25.0
Depth	96.4	31.5	62.0
Normals	306.2	85.4	194.0

Figure 25: Qualitative results of evaluating MFM models for object detection on in-the-wild examples (Flickr, 2024; Unsplash, 2024). We compare against 4M-21 Bachmann et al. (2024) as a vision specialist.

Figure 26: Qualitative results of evaluating MFM for semantic segmentation on in-the-wild examples (Flickr, 2024; Unsplash, 2024). We compare against 4M-21 Bachmann et al. (2024) as a vision specialist.



2205 Figure 27: Qualitative results of evaluating MFMs for depth prediction on in-the-wild exam-
 2206 ples (Flickr, 2024; Unsplash, 2024). We compare against the Omnidata Eftekhar et al. (2021)
 2207 depth estimator as a vision specialist.