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Figure 1: We benchmark multimodal foundation models (MFMs) on established computer vision
tasks and datasets. Left: GPT-40’s predictions for each task. Right: The performance of the MFMs
on several classical computer vision tasks. We compare MFMs with specialist models both directly
and by calibrating for the chosen structure and constraints of the used prompt chain (+chain; see
Sec. ). The axes are normalized using task-specific lower and upper bounds, defined by blind
guessing and state-of-the-art specialist performance, respectively.
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ABSTRACT

Multimodal foundation models (MFMs), such as GPT-40, have recently made
remarkable progress. However, their detailed visual understanding beyond question
answering remains unclear. In this paper, we benchmark the popular MFMs
(GPT-40, 04-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet,
Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmenta-
tion, object detection, image classification, depth and surface normal prediction)
using established datasets (e.g., COCO, ImageNet and its variants, etc).

The main challenges in performing this analysis are: 1) most models are trained
to output text and cannot natively express versatile domains, such as segments or
3D geometry, and 2) many leading models are proprietary and accessible only at
an API level, i.e., there is no weight access to adapt them. We address these by
translating vision tasks into text-promptable, API-compatible formats via prompt
chaining, creating a standardized benchmarking framework.

We observe that: 1) The models are not close to the state-of-the-art specialist
models at any tasks. 2) They are respectable generalists; this is remarkable as
they are presumably trained on primarily image-text-based tasks. 3) They perform
semantic tasks notably better than geometric ones. 4) GPT-40 performs the best
among non-reasoning models, securing the top position in 4 out of 6 tasks. 5)
Reasoning models, e.g. 03, show improvements in geometric tasks. 6) While
prompt chaining techniques affect performance, better models are less sensitive to
prompt variations. 7) An analysis of models with native image generation, such as
the latest GPT-40, shows they exhibit failure modes, such as hallucinated objects
or misalignment between input and output.
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1 INTRODUCTION

Multimodal foundation models (MFMs), such as GPT-40, Gemini 1.5 Pro and 2.0 Flash, and
Claude 3.5 Sonnet Anthropic| (2024); OpenAl| (2024b)); Reid et al.| (2024])), have advanced rapidly,
demonstrating impressive capabilities in their public releases (OpenAll |2024b). However, while
the community has extensively investigated their language proficiency (Chen et al., 2021} |(Chiang
et al.,|2024; Hendrycks et al., [2020; [Rein et al.| 2023)), the extent of their vision capabilities remains
underexplored. We still lack a well-calibrated quantitative understanding of their performance on
established vision tasks and datasets, particularly across diverse axes of vision, e.g. semantics, 3D,
grouping, etc.

Most of the existing vision benchmarks of MFMs primarily target text (e.g., VQA) or tasks closely
tied to text, like classification (Fu et al., 2024} |Rahmanzadehgervi et al.| 2024; Tong et al., 2024 ajb;
'Wu and Xiel 2024 [Yue et al.l [2024)). While they provide useful insights, several key limitations
persist. First, it is unclear how much solving these benchmarks truly depends on the visual input,
and some were shown to mainly measure the language capabilities of MFMs while overlooking the
vision component (Tong et al., [2024a). Second, they all require the model to output text, making it
hard to compare the vision capabilities of MFMs on vision-only tasks and against vision specialist
models. Third, they do not shed light on other aspects of visual understanding, such as 3D geometry,
grouping, or segmentation, that are less text oriented.

We address these limitations by evaluating MFMs on well-established vision tasks and datasets
developed by the community. Specifically, we test GPT-40, 04-mini, Claude 3.5 Sonnet, Gemini
2.0 Flash, Gemini 1.5 Pro, Qwen2-VL, and Llama 3.2 on classification, object detection, semantic
segmentation, grouping, depth prediction, and surface normal prediction using COCO (Lin et al.|
2014), Hypersim (Roberts et al., 2021)), as well as ImageNet (Russakovsky et al., [2014)) and its
variants (Hendrycks and Dietterich, 2019; Hendrycks et al., [2021; |[Kar et al., 2022bj |[Recht et al.
2019; (Wang et al., 2019). Most of these tasks, however, require dense pixel-wise predictions not
readily compatible with the default text output of most MFMs. Furthermore, direct prompting usually
leads to a varying and often weak performance across tasks, hence it may not represent the actual
visual understanding capabilities of MFMs (see Sec.[d.2]and App. [E).

To address these challenges, we split each task into multiple sub-tasks, each of which can be solved
in a textual form via prompting (see Sec. [3). This results in a prompt chaining framework that
can be applied to any MFM with a text interface (e.g., ChatBot APIs) to solve standard vision
tasks. Specifically, our proposed approach allows MFMs to 1) detect bounding boxes, 2) generate
complete segmentation masks for complex scenes, 3) extract semantic entities from images similar to
SAM (Kirillov et al.l [2023b), 4) estimate dense depth and surface normal maps (see Fig. [I])

We emphasize that this prompt chaining framework is not proposed as an alternative methodology for
solving vision tasks, nor do we suggest that MFMs should adopt such approaches in practice. Rather,
our framework serves specifically as a standardized method to measure and benchmark any MFM that
can input images and output text. Crucially, this enables a quantifiable and holistic understanding of
MFMSs’ vision capabilities on various established vision tasks and benchmarks, as well as a direct
comparison with vision-only models.

We find that the current generation of MFMs achieves a good performance in most cases and are
respectable as generalists, with GPT-40 scoring the best in 4 out of 6 tasks. However, they still lag
behind task-specific state-of-the-art vision models in all tasks. In particular, we find that the MFMs
perform geometric tasks significantly worse than semantic ones. Furthermore, we perform a detailed
prompt sensitivity analysis for each task and find that, while performance varies for different prompts,
better models exhibit less sensitivity. To enable further research in this direction and enable the
community to benchmark future MFMs on vision tasks, we will open-source our evaluation and
prompt chaining tool set, along with the interactive tool provided in the supplementary material.

2 RELATED WORK

Advances in MFMs. There has been remarkable progress in MFMs |Achiam et al.|(2023)); |Alayrac
et al.|(2022);|Anthropic|(2024)); Bai et al.| (2023)); Beyer et al.|(2024)); Dai et al.|(2023)); Li et al.|(2023a);
Liu et al.| (2024); [OpenAll (2024ajb; 2025b)); |Reid et al.| (2024)); [Team| (2024)); [Team et al.| (2023);
Wang et al.|(2022;2024)) (see (Yin et al., 2023} [Zhang et al., [2024) for surveys), leading to strong per-
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Figure 2: Prompt chain algorithms overview. a) Depth prediction randomly samples pairs of
superpixels and performs pairwise depth comparisons, which are globalized by minimizing an
objective function, resulting in a relative depth map. Surface normal estimation is performed in a
similar manner (see appendix). b) Semantic segmentation constructs multi-scale “pyramids” of
superpixel crops (superpixel, local context, full image) and classifies these sequentially with the
MFM. ¢) Object detection iteratively queries a 3 x 3 grid of image crops for the target class (e.g.,
Sheep), discarding empty cells and refining the search until the object is localized. d) Grouping
grows a cluster around a query point by merging adjacent superpixels predicted to belong to the same
object. “Summary of the actual prompt; see full prompt chain descriptions in the supplementary
material.

formance on multimodal tasks like VQA and instruction following. Despite the progress, it is unclear
how well these models perform tasks that require dense visual understanding, which is our main focus.

Benchmarking vision capabilities of MFMs. Many works investigate the vision capabilities
of MFMs via VQA-style benchmarks that combine visual and textual inputs to generate textual
outputs (Al-Tahan et all 2024} [Fu et al| 2024 20244, 2023b; [Liu et al., 2024
[Rahmanzadehgervi et al., 2024} [Tong et al., [2024ab; [Yue et al., [2024). While these approaches
offer valuable insights, they are incompatible with vision-only models, making direct comparisons
difficult. In contrast, we evaluate MFMs on standard vision tasks, enabling direct comparison with
strong vision specialists to track MFMs’ progress. Cambrian-1 evaluates MFMs
on vision datasets (Brazil et al.} 2023}, [Lin et al., 2014} [Zhou et al., 2017) by repurposing dataset
annotations into text format. We differ by translating MFM outputs into the annotation format instead,
e.g., segmentation maps. To the best of our knowledge, this is the first approach that enables an
apples-to-apples comparison with vision specialist models using standard task-specific metrics and
qualitative analyses in the tasks’ native output space.

Prompting MFMs. Various prompting techniques have been developed for MFMs
2022}, [Wei et al [2022; [Yao et all [2024; [Zhou et all, 2022). We follow a similar strategy and
decompose complex vision tasks into simpler sub-tasks that MFMs can handle. Several works
developed prompting techniques to unlock the vision capabilities of MFMs (Hu et al, 2024} [Wu and|
2024 Wu et al| 2024} [Yang et al 2023a). The related DetToolChain (Wu et al., for
object detection is not fully reproducible at the time of writing. We differ by 1) focusing on a wider
range of tasks including semantic and geometric ones 2) for several MFMs including closed- and
open-weight ones 3) with a simpler yet effective and uniform prompt chaining mechanism.

3  PROMPT CHAINING FOR SOLVING VISION TASKS

In this section, we describe the developed prompt chaining techniques that enable MFMs to solve
standard computer vision tasks. The core idea is to break each task into simpler, text-solvable
sub-tasks, e.g., identifying whether an object is present in a patch of an image. We then solve each
sub-task by prompting the MFM. To guide the choice of how to split each task into sub-tasks, we
rely on our early key observation that most MFMs are relatively strong at image classification (see,
e.g., Tab.[I) and, therefore, split each task into multiple classification sub-tasks. We provide the
pseudo-code for each technique in App. [D}
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Object detection. The goal is to predict bounding box coordinates that tightly localize the objects
in the image. Similar to|Yang et al.|(2023b), our initial attempts showed that many MFMs fail at
predicting the coordinates directly. Thus, we develop a prompt chaining method and divide the original
task into two stages. The first stage is to identify all objects in the image, similar to classification.
In the second stage, for each object, we regress its coordinates via recursive zooming (see Fig. 2)).
Specifically, we divide the image into grid cells and ask the model to identify whether (a part of) the
object is present in each cell. We then discard cells without objects, reducing the search space. We
apply this process recursively, progressively eliminating irrelevant regions of the image until only the
object of interest remains present in the image. We use two grid resolutions: a coarse grid for quick
downsampling and a finer grid for precise edge refinement to reduce the number of steps.

Semantic segmentation. The goal is to assign a single semantic class to each pixel in an image.
Instead of per-pixel querying that is prohibitively expensive, we split the image into pixel groups
using an unsupervised superpixel clustering algorithm (Achanta et al.,2012) and assign a single label
per group to decrease the number of API calls (or forward passes). This approach is used primarily
for cost efficiency, as the superpixel algorithm is semantically-agnostic: it only provides candidate
regions based on low-level features like color and texture Stutz et al.[(2018)), while the MFM remains
solely responsible for the semantic labeling. We confirm in App. [E.8|that our findings hold even
when increasing the superpixel granularity. In all our comparisons, we account for potential biases
introduced by superpixelation (and other approximations in prompting) by introducing calibration
control baselines (see Sec.[d])

After dividing the image into superpixels, we classify them in batches to decrease the overall cost, as
in the classification task. Similar to the object detection algorithm, this approach utilizes the strength
of MFMs as strong image classifiers. To maintain consistency, we include prior predictions in the
prompt history, which improves performance.

In our early experiments, we found that simply outlining individual superpixels on an input image
leads to poor performance. This aligns with findings that MFMs have “blurry vision” and struggle
with fine-grained localization (Fu et al) 2024; [Wu and Xie, [2024)). To address this, we provide
the MFM with the crops of each superpixel at multiple scales, which we found to improve the
performance significantly. Please see Fig.2]for an overview.

Grouping. Given an image and a query (or anchor) point on it, the goal is to identify other pixels that
belong to the same object or background. Unlike semantic segmentation, this task has no predefined
classes, making it more challenging. To tackle this task, as before, we use superpixels and the
MFMs’ capability to determine visual similarity (Fu et al.,|2024). We create a graph of neighboring
superpixels, identify the one with the query point, and explore its neighbors. The model decides
whether each adjacent superpixel belongs to the same object as the initial superpixel. The selected
superpixels are then merged with the initial one to form the next input cluster. This process continues
until no more superpixels are added. Please see Fig. [2|for an overview.

Depth prediction. We perform relative depth prediction by querying the model to rank different
parts of the image according to their distance from the camera. As per-pixel querying is infeasible,
we adopt a region-wise comparison strategy inspired from |[Zoran et al.|(2015)). To identify suitable
regions for comparison, we first segment the image into superpixels. We then randomly sample
pairs of superpixels and query the MFM to rank these pairs based on relative depth (see Fig. [I3]in
the appendix). These pairwise rankings are then globalized by minimizing the objective function
from (Zoran et al.| |2015), which assigns larger values to superpixels ranked deeper in pairwise
comparisons (see App.|[D.3). We then use the values found by the optimization method to rank all
superpixels. For simplicity, we assume that all pixels within a superpixel share the same depth rank,
allowing us to extend the superpixel-level depth predictions to a pixel-wise ranking across the entire
image (control baselines are included in evaluations).

Surface normal prediction. We follow a ranking approach similar to that used for depth. We use
standard basis vectors relative to the camera (right, up, and forward) as reference directions, and for
each randomly sampled pair of superpixels, we query the MFM to determine their relative alignment
with each basis vector (see Fig. [I4]in the appendix). After we obtain the pairwise comparisons for
each direction, we globalize them using the same algorithm used for depth (Zoran et al.| [2015). This
results in three distinct surface normal maps, one for each basis direction. Similar to depth, we
assume uniformity within superpixels and assign the same rank to all pixels within each superpixel
group (control baselines are included in the evaluations).
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Figure 3: Qualitative results. Visual comparisons showing the performance of MFMs across each
task. We find that all models perform relatively better on semantic tasks compared to the geometric
ones. For surface normal visualizations, we combine the per-axis normalized predictions and project
them onto the unit sphere. Please see the appendix for additional qualitative results.

Image classification. The MFM classifies the image from a list of predefined classes. For efficiency,
we follow (Jiang et all[2024a) and classify images in batches, which does not significantly harm
accuracy.

3.1 ACCOUNTING FOR ALGORITHMIC CONSTRAINTS

Using superpixels and the zooming algorithm can impose constraints on MFMs’ performance. We
address this in two ways. First, we introduce targeted control baselines in all our experiments (see
Sec.[) to ensure fair and calibrated comparisons with other vision models. Second, in App.[E-8] we
demonstrate that employing more fine-grained prompt chains (e.g., using more superpixels) yields
consistent conclusions, confirming that our findings are robust to the chosen granularity.

4 EXPERIMENTS

We present the experimental results for different tasks and MFMs. First, we describe our setting,
including the choice of the datasets and models. Then, we discuss our main results. We provide
qualitative examples for all tasks in Fig.[3] Finally, we provide further analysis and ablations in
Sec.[d2] Please see the appendix for additional results.

Evaluated MFMs. We evaluate closed-weight MFMs, namely GPT-40 (OpenAl, 2024b), Gemini

2.0 Flash (Google DeepMind, [2024)), Gemini 1.5 Pro 2024), and Claude 3.5 Sonnet
2024) by querying them via their APIs. We also include Qwen2-VL-72B
and Llama 3.2 90B as recent open-weight models that yield competitive results with
GPT-40 and Claude 3.5 on several benchmarks. In addition, we evaluate recent multimodal reasoning
models such as o1, 03, and 04-mini [OpenAll (2024a}; 2025b). We evaluate o4-mini across the full
benchmark, and evaluate ol and 03 on smaller representative subsets due to cost constraints. For each
model and task, we select the best prompt on a validation set for final testing.

Datasets. We use the following common vision datasets for evaluations:

Image classification. We use standard benchmarks including ImageNet (Russakovsky et al.| [2014)
and ImageNet-v2 2019). To test robustness, we use ImageNet-R (Hendrycks et al.,
[2021), ImageNet-S [2019), and two corruption benchmarks from RobustBench, namely,
ImageNet-C (Croce et al.,[2020; Hendrycks and Dietterich, [2019) and ImageNet-3DCC
2022b).

Object detection. We use the COCO (Lin et al} 2014) validation set and choose images containing a
single instance of each present class, resulting in 1.7K examples.

Semantic segmentation & grouping. We use a random subset of 500 COCO 2014) validation
images for semantic segmentation for cost-efficiency. For grouping, we filter 100 images from the
COCO validation set by measuring the consistency of SAM (Kirillov et al) [2023a) predictions
between different query points within every instance. More details are provided in the appendix.
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Table 1: Image classification. We compare the top-1 acc. (1) of the Table 2: Grouping. Com-
MFMs with vision specialists, Model Soups (Wortsman et al., 2022) parison of MFMs and
and OpenCLIP |Cherti et al.| (2023). Although their performance SAM (Kirillov et al.,
falls short of the top specialist models, MFMs, particularly GPT-4o, 2023b) on the grouping

demonstrate competitive results across a broad range of benchmarks. task.
Model ImageNet TmageNet-V2 Corruptions Domain Shift Model mloU (1)
2DCC 3DCC ImageNet-R ImageNet Sketch SAM 80.12
Model Soups VI-G  90.94 84.22 - - 95.46 74.23 SAM + Chain 72.32
OpenCLIP H 84.37 78.33 6696 6595 93.76 73.24 GPT-4o 59.06
o4-mini 46.00
GPT-40 77.20 71.57 6246  61.13 84.38 67.30 Gemini 2.0 Flash 55.25
o4-mini 55.90 46.99 3722 36.68 56.05 45.18 Gemini 1.5 Pro 413
Gemini 2.0 Flash 74.78 75.79 55.67  56.92 82.05 69.43 Claude 3.5 Sonnet 4168
Gemini 1.5 Pro 73.88 69.76 56.14  56.22 71.42 57.15
2-VL 21.64
Claude 3.5 Sonnet 62,85 5445 4076 4141 7036 57.42 Jwen2 V] 35,69
Qwen2-VL 55.54 49.39 3892 3645 66.31 51.18 Oracle + Chain 8177
Liama 3.2 49.15 4821 3445 3437 65.05 47.11 :

Depth & surface normal prediction. We use Hypersim (Roberts et al.||2021)) and randomly subsample
100 validation images from it for cost-efficiency.

Baselines. We include the following control baselines to contextualize the performance of MFMs
and account for the impact of superpixelation and other design choices:

Vision Specialist. We report the performance of leading vision models for each task. We specifty
each model used in the corresponding task sections. In addition to the state-of-the-art models, we
benchmark 4M-21 (Bachmann et al., 2024; Mizrahi et al., 2023)) as a zero-shot vision baseline for an
unbiased comparison. Although 4M-21 is an MFM, here we treat it as a vision specialist because it is
specifically trained for solving these tasks. Overall, these baselines indicate the current state of the
(specialized) computer vision models.

Vision Specialist + Chain. This control baseline applies the same algorithmic constraints to the vision
specialist as those experienced by MFMs, such as superpixels and recursive zooming. This control
baseline provides a fair and calibrated comparison between vision specialists and MFMs, ensuring
that our benchmark remains accurate in a relative and ordinal sense.

Oracle + Chain. This baseline shows the performance of the prompt chain if the MFM gave the
ground-truth answer for each sub-task. It isolates MFM performance from limitations imposed by our
chain’s granularity. Note that this is not a hard upper bound, and we can alleviate these limitations
by using more fine-grained chains (see App.[E.§])

Blind Guess. We prompt the model with a blank image, revealing potential biases and assessing
whether the model genuinely utilizes the image content for its predictions.

4.1 EVALUATION RESULTS

Object detection. The results are summarized in Tab. |3} We use DETR (Carion et al.}|2020) and
Co-DETR (Zong et al.,|2023)), a state-of-the-art COCO model, as the vision specialists, and 4M-21 as
a zero-shot baseline. We observe that all MFMs lag behind the vision models, with GPT-40 achieving
the highest performance, significantly outperforming other MFMs. For the “Specialist + Chain”
baselines, we apply the same recursive algorithm, but at each stage we only keep the grid cells that
intersect with the original bounding boxes predicted by the specialist. As mentioned earlier, this
calibration confirms that the gap between MFMs and specialists remains significant.

Finally, we assess the performance of the “Oracle + Chain” baseline. We evaluated two variants: one
using GPT-40’s class predictions, and another using the ground-truth class labels. The first baseline
examines the outcome if GPT-4o correctly selects the grid cells at each step of the chain, while the
second assumes both correct class predictions and accurate grid cell selection. These provide the
upper bounds for both the grid search component and the overall pipeline when using a specific grid
resolution to calibrate the performance.

Semantic segmentation. Table 4| and Fig. [3]show that MFMs achieve rather non-trivial performance,
yet they still lag behind the vision specialist, i.e. OneFormer (Jain et al.}|2022). Similar to object
detection, we include the baseline of constraining the performance of the vision specialist using the
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Table 3: Object Detection: Average precision of Table 4: Semantic Segmentation: mloU and
MFMs vs. vision specialists (DETR, Co-DETR)  pixel accuracy of MFMs vs. OneFormer and 4M-

and 4M-21. GPT-40 leads among MFMs. 21. GPT-4o0 again performs best among MFMs.

Baselines Model AP5o (1) APz (1) AP(1) Baselines Model mloU (1)  Pixel acc. (1)
Co-DETR 91.30 86.17 8023 —— — —
Co-DETR + Chain 9006 5278 5154 (O)E;i:g;‘;;;‘ + Chain gagi ;1’ ég

Vision Specialists DR . 331 63.01 80 Vision Specialists 9 543 79,

ston Speclalists  pETR + Chain 7233 3836 39.36 tM-21 54.31 79.66

4M-21 59.54 51.57 47.71 4M-21 + Chain 52.72 78.59
4M-21 + Chain 5546 3048 3074 GPTdo 15 5,60
GPT-40 60.62 3197 31.87 od-mini 39‘19 64'26
o4-mini 4290 2218 2260 - : :
Gemini 2.0 Flash 44.17 1583 19.85 MFMs Gemini 2.0 Flash 43.04 66.15

MFMs Gemini 1.5 Pro 39.75 1527 1811 Gemini 1.5 Pro 40.46 64.83
Claude 3.5 Sonnet 31.69 12.13 14.78 Claude 3.5 Sonnet 32.05 58.41
Qwen2-VL 35.62 1282 1527 Qwen2-VL 33.59 56.36
Llama 3.2 31.87 8.40 12.83 Llama 3.2 36.63 59.95
Oracle + Chain (pred. class) 75.44 41.31 41.56 .

Control Oracle + Chain (full) 92.18 4933 50.14 Control Oracle + Chain 83.41 94.68
Blind guess <001 <001 <00l Blind guess 0.03 0.29

chain algorithm: we assign the majority class prediction to each superpixel and flood-fill the entire
superpixel with that class.

od-mini-low
— od-mini-medium

Grouping. Table E] shows that MFMs have varying perfor- Classtication ot-minihigh
mance on this task, and GPT-40 performs the best, achiev- gy o
ing overall good performance as can also be seen in Fig.

All MFMs still lag behind the vision specialist SAM (Kir! ~ vomsos
llov et al.,[2023a).

Object
91 Detection
(AP@0.5T)

Depth prediction. The results are summarized in Tab. [5]
Alongside standard metrics, we also report 1) the Spear- s
man correlation coefficient (p), which serves as a relative Comy0ss ’ i 3s Segmentation
metric by measuring the correlation between the ground- ‘
truth depth ranking of the pixels and the predicted ranking
and 2) accuracy, which reflects the percentage of correct
pairwise depth comparisons. MFMs demonstrate a non-
trivial performance and outperform the blind guess base-
line. Notably, 04-mini achieves the strongest performance
among MFMs, despite trailing behind some models in
the semantic tasks shown before. Still, there remains a
significant gap compared to the vision specialist, Om-
nidata (Eftekhar et al.,[2021}; Kar et al.l [2022a)), which is
more pronounced compared to the semantic tasks.

80
Grouping
(mloUT)

Figure 4: Evaluation of reasoning mod-
els. The performance of ol, 03, and
04-mini (at varying levels of reasoning
effort) is compared against GPT-40 on
a representative subset of images. The
reasoning models exhibit a particularly
strong performance in geometric tasks.

Similar to previous tasks, we analyze the performance using the “Oracle + Chain” baseline, which
assumes 100% accuracy in all pairwise comparisons, and the “Omnidata + Chain” baseline, which
uses depth predictions from Omnidata to perform these pairwise comparisons. Due to the coarse
granularity of the evaluation, the two baselines closely match each other. Importantly, we find that
MEFMs still lag behind these baselines, suggesting that our conclusions hold despite the chosen
granularity level.

Surface normal prediction. To assess performance, we employ Spearman’s rank correlation
coefficient, p;, measuring the correlation between ground truth and predicted pixel alignments along
each basis direction ¢. Alignment for a pixel is measured as the dot product of the surface normal
with the direction 1.

Tab. [f|demonstrates that most MFMs struggle with this task, with some showing a negative correlation
for certain directions, revealing a systematic bias in their understanding of these directions. Notably,
04-mini outperforms all other MFMs, indicating stronger geometric understanding. This extends to
other recent reasoning models, with ol and 03 also showing strong performance on the evaluated
subset.

Furthermore, we show in the appendix that the MFMs not directly trained for reasoning improve their
performance on the up-down ambiguity resolution with CoT prompting |[Wei et al.|(2022)). Similar to
depth, these results suggest that while MFMs have limited 3D visual understanding, newer reasoning
models like 01, 03, and o4-mini exhibit promising progress.
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Table 5: Depth prediction. MFMs can coarsely Table 6: Surface normal prediction. For
estimate depth, but their gap to vision specialists surface normal prediction, MFMs again
is larger than in semantic tasks. All MFMs per- show a large gap to specialists, particu-
form similarly, with GPT-40 and 04-mini slightly larly on the x-axis. 04-mini is the strongest
ahead. MFM, while Gemini often fails, perform-

ing near chance.

Baselines Model Higher is better 1

01 O 03 p Baselines Model Pu Py Pz
Omnidata 0.768 0.867 0911 0.95 Omnidata 0.80 0.83 0.78
Vision Omnidata + Chain  0.568 0.772 0.864 0.81 Vision Omnidata + Chain  0.64 0.70 0.58
4M-21 0.636 0.814 0.888 0.89 4M-21 0.71 0.74  0.65
4M-21 + Chain 0.565 0.774 0.865 0.81 4M-21 + Chain 0.65 0.70 056
GPT-40 0.461 0.716 0.840 0.54 GPT-40 -0.14 057 040
o4-mini 0.467 0.718 0.841 0.58 o4-mini 022 061 046
Gemini 2.0 Flash 0461 0.715 0.839 0.59 Gemini 2.0 Flash ~ -0.39 -0.04 0.02
MFMs Gemini 1.5 Pro 0.458 0.709 0.835 0.1 MFMs Gemini 1.5 Pro -0.17 -0.57 0.04
Claude 3.5 Sonnet  0.428 0.693 0.830 0.49 Claude 3.5 Sonnet  -0.19  0.61  0.40
Qwen2-VL 0.432 0.698 0.831 044 Qwen2-VL 0.09 -0.07 0.02
Llama 3.2 0.458 0.711 0.835 0.53 Llama 3.2 041 -042 022
Control Oracle + Chain 0.571 0.774 0.863 0.83 Oracle + Chain 0.64 070 0.60
Blind Guess 0375 0.628 0.773 0.25 Control  pying guess 048 -0.61 0.11

Image classification. The classification results across all datasets are summarized in Tab. [T} We
use Model Soups ViT-G (Wortsman et all, 2022) as the vision specialist, and we also include
OpenCLIP H (Cherti et al.l 2023)) to assess zero-shot capabilities. Although MFMs do not reach the
performance levels of vision specialists, they demonstrate strong results and resilience to corruptions
and distribution shifts. Notably, GPT-40 and Gemini 2.0 Flash stand out with a particularly strong
performance, followed by Gemini 1.5 Pro, Claude 3.5 Sonnet, 04-mini, Qwen2-VL, and Llama 3.2.
We also observe that o4-mini is especially sensitive to the batch size used during inference, with
performance improving at smaller batch sizes (see ablation in the appendix).

Reasoning models. As discussed earlier, we evaluate ol and o3 on a representative subset of
images (see appendix for details). For comparison, we also include GPT-40 as a baseline, along with
evaluations of o4-mini at varying levels of reasoning effort (low, medium, and high). The results are
presented in Fig.[] ol and 03 slightly outperform GPT-40 on most semantic tasks, and significantly
outperform it on geometric tasks. As before, GPT-40 excels in semantic tasks on this subset, while
04-mini performs better on geometric ones. We find no clear trend with the reasoning effort; medium
and high reasoning improve results over low, but not always. We refer the reader to the appendix for
further details and experiments.

GPT-40 with image generation capability. Recent MFMs, such as the updated GPT-40
(20254a)), can generate dense image outputs rather than being restricted solely to output text. This
capability represents a promising advancement, potentially enabling a comprehensive evaluation on
diverse vision tasks. However, the current image generation capability exhibit several limitations,
some of which we illustrate in Fig.[5] Specifically, we observe that generated outputs suffer from

spatial misalignments and hallucinations, as also observed in (2025)).

This presents challenges for directly applying this model to vision tasks, which we leave to future
work. We provide further qualitative examples and preliminary quantitative analyses in App.

Object detection Grouping Depth prediction Surface Normals
RGB Ground Truth Prediction RGB Ground Truth Prediction RGB Ground Truth Prediction RGB Ground Truth Prediction

— M a 07
s N e ~
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Figure 5: Failure cases of GPT-40 with image generation capability. Despite the model’s promising
capabilities, limitations remain. Here, we highlight some typical failure modes: hallucinations
(marked in dotted blue) and inaccurate predictions (marked in dotted green).
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4.2 ANALYSIS

Prompt chaining vs direct prompting. We analyze the impact of using prompt chains versus directly
asking the models to solve tasks in a single prompt in Tab. [/| For bounding box regression, we
directly query GPT-4o0 to predict its coordinates; for semantic segmentation, we mark image regions
and request corresponding semantic labels. The results indicate a clear performance boost from using
the prompt chains. Please see App. [E|for a detailed discussion, qualitative visuals, and ablations.

Prompt sensitivity. The choice of prompt can greatly Table 7: Prompt chaining ablation. We
influence the performance of a model, and we have made compare the performance of the prompt
reasonable efforts to optimize prompts for each model. chaining algorithm to direct prompting on
We evaluate the MFMs across various prompts to assess  GPT-4o for semantic segmentation and ob-
their sensitivity to word choice and prompt structure. ject detection. “Segmentation is on 100
We then select the most effective prompt on a small images.

validation set for the final results presented in Sec.[d] A

. L . . ‘ Task Direct Prompt Chaini
comprehensive analysis is provided in App.[Hl showing prompting - (Oursy T
that there is some variation in performance with different  gegmentation (mioU 1)* 25.79 4167
prompts, and the performance is generally less prompt-  Object Detection (APs 1) 17.69 60.62

dependent for better-performing models, e.g., GPT-4o.

In-the-wild evaluations. Previously, we used standard vision datasets like ImageNet and COCO in
our evaluations. Given the opaqueness on what training data was used in training the MFMs, one
cannot be confident that those images were not used in training. This, so called ‘data contamination’,
problem is a broad concern for the community regarding most MFMs [Jacovi et al.| (2023). To
assess to what extent the MFMs generalize to entirely novel data and ensure our evaluations are not
distorted by potential data contamination, we curated a collection of images released online after
the specific model APIs were launched (Flickr, 2024} |Unsplash, [2024), which the MFMs could not
have encountered before their knowledge cutoff date. Results in App. [E:9show a good generalization
performance to the in-the-wild samples. Therefore, we do not find evidence for data contamination
with standard datasets to be a concern for our evaluations.

5 LIMITATIONS AND CONCLUSIONS

We present a benchmark to investigate the vision capabilities of MFMs by translating standard
computer vision tasks into an API-compatible format that can be solvable via prompt chaining. Our
results show that current MFMs have relatively stronger performance in semantic tasks compared to
geometric tasks, and GPT-4o is generally the best-performing model, followed by Gemini 2.0 Flash
and 1.5 Pro, 04-mini, Claude 3.5 Sonnet, Llama 3.2, and Qwen2-VL-72B. Despite recent advances,
MEFMs still lag significantly behind vision specialists, even when specialists are evaluated under
the same constraints. This suggests plenty of room for improvement in model development. Notably,
recent reasoning models such as ol, 03, and o4-mini show promising performance on geometric
tasks, indicating growing capabilities in 3D understanding that complement their already strong
semantic performance. We conclude with some limitations and future directions:

Inference cost. The multiple API calls per sample make our benchmark more computationally
expensive than VQA-style evaluations (see App.[l). While we acknowledge this as a shortcoming, we
emphasize that the framework is designed as a one-time benchmarking tool for assessing visual
capabilities, rather than efficient querying for downstream applications. While efficiency is important,
it is orthogonal to our objective, and a promising direction for future work.

Optimality of the proposed prompt chains. Research into advanced prompting techniques has the
potential to further enhance the performance of MFMs on classical vision tasks, beyond what is
shown in this paper. Nonetheless, while the final design appears simple, our proposed prompt
chains are carefully designed, emerge from a vast search space, and consistently improve upon direct
prompting (Sec..2]and App. [E)). Furthermore, we also included careful controls and analyses to
disentangle the impact of the prompting method from the benchmarking conclusions.

We emphasize that our framework is for benchmarking, not a production-ready method for solving
these tasks. Indeed, we expect that future MFMs with any-to-any capabilities will likely close the
gap to specialist vision models by training directly on these tasks. Our framework, however, can
benchmark any MFM with image-input and text-output capabilities. Through that, we establish
the first benchmark for comparing a diverse range of MFMs, both against each other and against
specialist vision models, on standard vision tasks.
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Figure 6: Additional qualitative results for MFM predictions on different tasks.
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Figure 7: Additional qualitative results for MFM predictions on different tasks.
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Figure 8: Qualitative results for reasoning model predictions on different tasks next to GPT-40
prediction.
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Figure 9: Additional qualitative results for GPT-40 image generation predictions across tasks. Notice
the various failure cases such as spatial misalignment in these examples, as outlined in the main paper

Fig. 5}
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A  OVERVIEW VIDEO

A narrated overview video including the paper’s method, quantitative and qualitative results, as well
as interactive visualizations, is provided in the supplementary material.

B CoDE & FULL PROMPTS

We provide our code and full prompts in the supplementary material.

C QUALITATIVE EXAMPLES

We provide additional qualitatives in Figures[6] [7] [§|and [9]to show each model’s performance on
different tasks.

D ADDITIONAL DETAILS ON PROMPT CHAINING

D.1 OBIJECT DETECTION

Different variations of classification for object detection. As discussed in Section 3] the first stage
of the object detection pipeline involves identifying all the objects present in the image. We attempt
the following two strategies for the multi-label classification task:

* The first strategy simply provides the model with the entire image, asking it to identify all
present classes.

* The second strategy divides the image into five regions: four quadrants and a center crop.
The model is asked to identify the classes present in the 5 regions in independent queries.
With each query, the full image is provided for additional context. The final prediction is
obtained by taking the union of the classes identified across all regions (see Algorithm|I]
in the appendix for detailed pseudocode). This approach typically improves recall but may
reduce precision, reflecting a trade-off between the two strategies.

The precision-recall trade-off for the models is described in Tab.[8] To pick the best classification
strategy for the models, we run the oracle on the predicted labels on a small subset and pick the one
that yields the highest AP.

After we find the object labels, we run the procedure described in Algorithm 2]to regress the bounding
boxes. Figure [I0]also provides a visualization of the mentioned algorithm.

—> Algorithm Steps
......... > API Calls

Y Bounding Box

Input Image // 0 0

R

Step 1 ) N Step 2 ) 0 StepN

Input Prompt*

Identify grid cells :'"g"'">(MFM ‘
that contain i —_—
Sheep

See? S8
o] el

Figure 10: Object detection algorithm. At each step, we divide the image into a 3 x 3 grid of crops
and query each for the presence of the target object (Sheep in the figure) through the model. Grid
cells without the object are discarded, and the process is repeated until the object is fully located.
“Summary of the actual prompt; see the full prompt in the provided Markdown files.

In Alg. 2] we explored batching the grid-cells and querying them independently. While batching
didn’t affect results for most MFMs, it significantly deteriorated the performance for Gemini, so we
opted to use independent queries for Gemini instead.
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Table 8: Classification for Object Detection: The results clearly show the precision-recall trade-off
between using the two strategies for multi-label classification.

Strategy Model Precision Recall
GPT-40 97.5 75.75

Strategy 1  Gemini 1.5 Pro 90.5 83.81
Claude 3.5 Sonnet 84.27 81.24
GPT-40 89.05 88.37

Strategy 2 Gemini 1.5 Pro 84.37 89.3

Claude 3.5 Sonnet 78.18 85.94

Algorithm 1 Region-based Image Classification

: procedure REGIONBASEDCLASSIFICATION(¢mage)
regions < DivideIntoRegions(image)
allClasses + ()
for region € regions do

classes < QueryMFM (image, region)
allClasses < allClasses U classes
end for
return allClasses
end procedure
10: procedure DIVIDEINTOREGIONS(¢mage)

PRADIN RN

2

11: quadrants < DivideIntoQuadrants(image)
12: center + ExtractCenterCrop(image)
13: return quadrants U {center}

14: end procedure

Algorithm 2 Recursive Grid-Search

1: procedure COARSEGRIDSEARCH(image, object, gridStructure)
2 while search space can be reduced do

3 cells < DividelntoGrid(image, gridStructure)
4: relevantCells < {c € cells :

5: QueryMFM(c, object) = TRUE}

6 tmage < CropToRelevantCells(image,

relevantCells)

7: end while

8: return image as bbox

9: end procedure
10: procedure QUERYMFM(cell, object)
11: return MFM classification of object presence in cell
12: end procedure
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=3 Algorithm Steps Input Image Superpixels’ Predicted Classes Predicted Segmentation
-------- > APICalls

Superpixelate |

Superpixel 2 Multi-Scale Pyramid l
Supe:l;ixel 1 | i £ Superpixel 2
Predicted Class g Predicted Class
Sky Locomotive © @@

Input Prompt*

Specify the class
of the object in
this superpixel

Figure 11: Semantic segmentation algorithm. We divide the image into superpixels and create
“multi-scale pyramids” of superpixels. The pyramids are then classified using the MFM in a sequential
manner to produce the complete segmentation map. A multi-scale pyramid consists of 3 layers: a
crop of the superpixel, some context surrounding the crop, and the full image. In practice, we batch
multiple superpixels into sequences and classify them jointly. “Summary of the actual prompt; see
the full prompt in the provided Markdown files.

—> Algorithm Steps. Input Prompt*
"""" > API Calls Select the regions that belong to the
'same instance as the highlighted region

+ Input Query Point %

Input Image Predicted Grouping

Superpixelate Choose Adjacent Cells Merge and Choose Adjacent Cells Merge and Choose Adjacent Cells

Figure 12: Grouping algorithm. Given an image and a query point, we first divide the image into
superpixels and select the superpixel that the query point falls into. At each step, the model is asked to
identify the adjacent superpixels that belong to the same object as the one covered by the cluster. The
selected superpixels are then merged with the cluster to form the next step’s input cluster. “Summary
of the actual prompt; see the full prompt in the provided Markdown files.

D.2 SEGMENTATION

The procedures for supervised segmentation and grouping are described in Algorithm 3] (see Fig. [TT))
and Algorithm ] (see Fig. [I2)) respectively.

D.3 DEPTH PREDICTION

The procedure for depth prediction is given in Algorithm[5] Furthermore, a visualization of the depth
prediction algorithm is given in Fig.[I3] A crucial part of the algorithm involves optimizing the
objective to obtain the overall depth rankings. To formulate the objective for globalizing the pairwise

depth rankings, we repurpose the objective in|[Zoran et al[ (2015). Given the vector of global rankings
x € RN, we first consider instances where superpixel i is predicted to be at a greater depth than

superpixel j. The corresponding objective is formulated as:

Lo(x) =) (2 — 2, —1)° (1

4,3
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Algorithm 3 Superpixel Segmentation

1: procedure SEMSEGMENTATION(image, batchSize, scaleList)
2 superpizels < SLIC(image)
3: classi fiedSuperpizels + ()
4: history < 0
5 for i < 1 to length(superpizels) step batchSize do
6 batch < GetBatch(superpizels, i, batchSize)
7 pyramid + CreateSemanticPyramid(
image, batch, scaleList)

8: batchClasses < ClassifyBatch(
pyramid, history)
9: classi fiedSuperpizels <
classi fiedSuperpixzels U batchClasses
10: history < UpdateHistory(
history, batchClasses)
11: end for

12: segmentedImage < FloodFillSuperpixels(
image, classi fiedSuperpixels)

13: return segmentedlmage

14: end procedure

Algorithm 4 BFS Segmentation

1: procedure INSTANCEGROUPING(image, queryPoint, batchSize, scaleList)

2: superpixels < SLIC(image)

3: graph < ConstructSuperpixelGraph(superpizels)

4: startNode < FindSuperpixelContaining(

superpizels, queryPoint)

cluster < {startNode}

queue < new Queue()

queue.enqueue(start N ode)

visited « {startNode}

while not queue.isEmpty() do

batch < GetBatchFromQueue(queue, batchSize)
batch Pyr + CreateSemanticPyramid(
image, batch, scaleList)

12: cluster Pyr < CreateSemanticPyramid(
image, cluster, scaleList)

13: newMembers < QueryMFM(
batchPyr, cluster Pyr)

14: cluster < cluster U newMembers

15: queue, visited < UpdateQueueAndVisited(
graph, newMembers, visited)

16: end while

17: return cluster

18: end procedure

TeYexawm

—_—
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———> Algorithm Steps Input Image
-------- > API Calls

Superpixel Estimated Depth

Pairwise Rankings

Superpixel 1 < Superpixel n,
Superpixel j > Superpixel 1,

|

Predicted Depth Order Predicted Depth Order

Blueisata Redisata P
greater depth greater depth
than Red than Blue

Input Prompt*

Which of the two
regions colored in
blue and red is at a
greater depth?

Figure 13: Depth prediction algorithm. We randomly select pairs of superpixels. Each pair is
given to the model to perform a pairwise depth comparison. The resulting pairwise ranks are then
globalized by minimizing an objective function to generate a relative depth map, which can then be
scaled to obtain classical evaluation metrics. “Summary of the actual prompt; see the full prompt in
the provided Markdown files.

This objective encourages x;, ranked at a greater depth than x;, to take on higher values. Similarly,
an analogous objective £;; can be defined for superpixels x; predicted to be at a depth less than ;.

Following [Zoran et al.| (2015)), we include a smoothness regularization term to stabilize the depth
estimates:

Lo(w) =) (;— ;) 2
.3
This regularization is applied over pairs of adjacent superpixels 7 and 7, promoting smooth transitions

between their depth values.

The final objective that needs to be minimized is a weighted sum of the above terms:

T = mmin (Mgt Lyt + Nt Lis + AsLs) G)

where A\g¢, Az, and A, are the weight parameters. For our experiments, we select Az = Az = 1 and
s based on the performance on a smaller validation set.

To obtain metric depth estimates, we assume access to ground-truth depth values for the purpose
of scaling. Specifically, after floodfilling the values of x, we generate a complete relative depth
map d. Given the ground-truth depth map d*, we optimize the following objective to determine the
appropriate scale and shift parameters:

M
(s,t) = arg rrsutn Z(sdi +t—d})? “4)
7=l

where M is the total number of pixels in the image. By solving this optimization problem, we can
then scale and shift the relative depth map d to align it with the metric depth.

D.4 SURFACE NORMAL PREDICTION

The procedure for surface normal prediction is detailed in Algorithm [6]and Fig.[T4] While the model
makes binary decisions regarding whether one depth is lesser or greater than another, we have found
that enabling the model to also consider equality predictions enhances the accuracy of surface normal
estimates.
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Algorithm 5 Depth Prediction
1: procedure ESTIMATEDEPTH(image, numPairs)

2: superpizels < SLIC(image)

3: pairwiseRankings < ()

4: for i < 1 to numPairs do

5: pair < SampleRandomPair(superpizels)

6: ranking < QueryMFM(pair)

7: patrwise Rankings <
pairwiseRankings U {ranking}

8: end for

9: global Rankings < MinimizeObjective(
pairwise Rankings)

10: depthM ap < AssignDepthToPixels(

image, superpizels, global Rankings)
11: return depthMap
12: end procedure

To incorporate this into our approach, we introduce the following term for cases where superpixels x;
and z; are predicted to be at equal depth:

Leg(m) = (i — ;) ®)

%]

for pairs of superpixels x; and z; predicted to lie at an equal depth. For weights, we choose
Aeq = Ait = Agt = 1 and as before, we pick A; based on the performance on a smaller validation set.

Algorithm 6 Surface Normal Prediction

1: procedure ESTIMATENORMALS(image, numPairs, bases)
2: superpizels <— SLIC(image)
3 pairwiseAlign < {}
4: for i < 1 to numPairs do
5: pair < SampleRandomPair(superpizels)
6: for b in bases do
7 alignment < QueryMFM(pair, b)
8 pairwiseAlign[b] <
pairwiseAlign[b] U {alignment}

9: end for

10: end for

11: normalMaps + {}

12: for b in bases do

13: global Align < MinimizeGlobalObjective(
pairwiseAlign[b))

14: normal Maps[b] < AssignAlignmentToPix(
image, superpizels, global Align)

15: end for

16: return normalM aps

17: end procedure

To visualize surface normals, we take the per-axis predictions and normalize them to [0,1], after
which we project them onto the unit sphere. We directly interpret the three channels as RGB values.
Note that since the per-axis normalized surface normal predictions do not present absolute directional
information with respect to the camera, the colors might not match the ground truth visualizations.
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Figure 14: Surface normal prediction algorithm. Similar to depth in Fig. we randomly select
superpixels and give them to the model to perform a pairwise comparison. The superpixels are
compared based on their alignment with the basis vectors relative to the camera. The pairwise ranks
are globalized to obtain the final result. “Summary of the actual prompt; see the full prompt in the
provided Markdown files.

Figure 15: We ablate different ruler types as visual aids for object detection.

E ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

E.1 OBJECT DETECTION

We evaluate additional baselines for GPT-40 in Tab. 0] In these experiments, the classification
component of the pipeline remains unchanged, while the grid search is replaced with alternative
methods. The results are clear: GPT-4o struggles with directly regressing bounding box coordinates.
To address this, we experimented with overlaying rulers on the images to assist in bounding box
regression, following insights from (2024), but we found minimal improvement. The
various visual prompts we tried are displayed in Fig.|[15] and the numbers we obtained on a subset of
100 COCO images are summarised in Tab.

Additionally, we evaluate direct bounding box regression with Gemini, Qwen2-VL, and Claude
(see Tab[d), as some of these models have demonstrated this capability [2024). The results
indicate substantial variance in performance: while Gemini and Qwen2-VL localize bounding boxes
effectively, GPT-40 and Claude underperform considerably. Interestingly, despite improvements in
Gemini and Qwen2-VL, they still lag behind the specialist models and do not surpass GPT-40 when
using the chain algorithm.

E.2 SEMANTIC SEGMENTATION

We depict various marker types used for segmentation in Fig.[16| Furthermore, we conduct an ablation
study on the marker type and the context provided during classification, as shown in Tab. [IT] The
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Table 9: Additional experiments with MFMs on object detection. Direct bounding box regression
is ineffective for GPT-40 and Claude 3.5 Sonnet, while Gemini 1.5 Pro and Qwen2-VL perform better.
For all models, the most effective prompt was selected from a set of options based on validation set
performance, similar to the approach used for prompt chains.

Method APs5 AP75 AP

GPT-40 (Direct Regression) 17.69  1.69 5.08
Gemini 2.0 Flash (Direct Regression)  38.77 10.80 15.66
Gemini 1.5 Pro (Direct Regression) 55.11 31.23 31.33
Claude 3.5 Sonnet (Direct Regression) 17.97  2.13 6.03
Qwen2-VL (Direct Regression) 44.10 23.71 24.36

GPT-40 (Regression with Ruler) 1595 2.60 499

Table 10: Rulers for Object Detection: The results indicate that visual markers such as rulers are
ineffective in aiding GPT-40 for bounding box regression. Numbers obtained are on a subset of 100
COCO Images.

Visual Prompt AP5;y AP7; AP

Ruler 1 21.19 4.09 7.60
Ruler 2 22.59 7.85 9.20
Ruler 3 19.06 4.86 8.09

Point marker Rectangle marker  Curve marker

Figure 16: The curve, rectangle, and point marker types we ablated for the segmentation task.

Reference RGB All removed Top removed Context removed Full Pyramid

Figure 17: Semantic Segmentation predictions with different layers of the semantic pyramid.
From left to right: 1. The RGB Image. 2. The predicted mask when no crops are given, and markings
on the full image are directly used. The model is unable to make out fine details. 3. The predicted
mask when the top of the semantic pyramid is removed. The model misses out on predicting some
finer details (for instance, the gaps in the bench and the handbag). 4. The predicted mask when the
middle layer (the context) is removed. The model makes some wrong predictions. 5. The mask with
the full pyramid of information.
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Number markers  Rectangle markers Curve markers

Figure 18: The marker styles used for directly querying semantic entities from the full image.

Table 11: Ablation study on semantic segmentation. The results show that GPT-4o is robust to the
choice of visual prompt. The substantial performance drop (16 mloU) observed upon removal of the
semantic pyramid shows the critical role of the contextual information used in the sub-task.

Category Ablation mloU  Pixel Accuracy
Curve 41.62 67.43
Visual Prompts Rectangle 41.67 69.74
Point 41.68 68.83
. Without Crop 40.97 69.84
Contextual Ablations  y: o Context  31.25 61.66
Best Direct 25.79 55.42

numbers highlight the importance of contextual information within the semantic pyramid. Removing
the context layer leads to a performance drop of over 10 mloU. Additionally, the direct strategy of
marking directly on the image and then classifying results in a 16 mloU difference, indicating that
MEFEMs currently lack the ability to localize precisely. We also investigate the impact of omitting
the finest level of the semantic pyramid—the crop. While the mIoU value does not decrease much,
qualitative analysis reveals that this omission hampers the model’s ability to capture finer image
details. This is shown in Fig.[T7]

We also conduct ablation studies on the effect of the model’s performance when the semantic pyramid
is omitted. The visual markers in Fig.[T6|do not work well and do not allow batching, so we borrow a
visual marker similar to the one used in|Yang et al| (2023a) (see Fig. [T8). Table[T2] shows the results
for different marker types Yang et al.| (2023a). It is clear that the model’s performance greatly drops
when it is deprived of the crops. We note that the marks we use differ from the ones used in

(2023a)) in two ways:

* The marks obtained in|Yang et al.| (2023a) already correspond to semantic entities, while we
use superpixels as a proxy for this.

 Extracting a full semantic mask requires discerning finer-grained details, so the marks we
use typically correspond to smaller regions in the image.

E.3 GROUPING

For the grouping task, we filter out 100 COCO images that contain instances which are well-posed
for this task. The well-posedness of an instance for grouping is measured by how consistent the SAM
predictions are for the instance. To calculate the consistency of predictions for an instance, we sample
random points inside the instance and use SAM to obtain an instance mask for each point individually,
as well as a global mask by querying all points together. The mloU between individual masks and
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Table 12: Ablation on Direct Segmentation: The numbers clearly show that omitting the extra
information provided by the crops greatly impacts the model’s performance. The numbers shown
are for a subset of 30 images. The prompt was selected from a set of options based on validation set
performance.

Visual Marker mloU Pixel Accuracy

Curve 20.70 50.34

Rectangle 18.24 47.80

Number 21.13 50.00

* *
* *
* * * *
* * * *
* *
* *

Figure 19: Ambiguous instances: If a cat’s ear is marked, is the object the cat or the cat’s ear? Images
on the left: Grouping without explicit reference to “objectness". Images on the right: Grouping
obtained using the "apostrophe-s" test.

the global mask is used as the consistency metric. Finally, the images that contain instances with a
consistency value above a given threshold are selected and randomly sampled to create the evaluation
set.

E.3.1 WHAT CONSTITUTES AN OBJECT?
Determining the granularity of what qualifies as an object in a grouping task is often ambiguous. For

instance, if a person’s nose is highlighted, should the object be considered the nose alone, or the
entire person? Both interpretations are valid, leading to potential inconsistencies.
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Table 13: Ablation study on depth prediction. GPT-40 performs the best when curves are used as
the visual marker.

Method Higher is better 1 Lower is better |
01 02 03 p Accuracy AbsRel

Curve 0.550 0.822 0935 53.75 70.43 0.332

Rectangle 0.534 0.807 0.931 51.68 69.28 0.341

Point 0.525 0.802 0.928 51.89 62.07 0.366

Table 14: Oracle depth results with different numbers of superpixels and comparisons made during
chaining.

Superpixels Samples Higher is better T Lower is better |
(51 62 (53 P AbsRel
100 200 0.571 0.774 0.863 0.83 0.528
100 400 0.597 0.785 0.867 0.86 0.514
200 200 0.571 0.773 0.867 0.83 0.501
200 400 0.593 0.788 0.869 0.86 0.502

To address this, we propose a prompting method that refines the granularity of “objectness.” By
instructing the model to interpret the highlighted instance as a possessive noun—expressed through
the “apostrophe-s” structure—the model is encouraged to group coarser objects. For example, when
prompted with “person’s nose,” the model is guided to interpret the object as the person, rather than
the nose alone. This approach is illustrated in Fig.[I9]

While this method is not universally effective, it often resolves ambiguity by clarifying the relationship
between parts and wholes. We provide the full prompt in the supplementary material.

E.4 DEPTH PREDICTION

We conduct an ablation study on the choice of visual markers in Tab.[I3] Please also see Tab. [T4]for
additional oracle evaluations.

E.5 SURFACE NORMAL PREDICTION

We conduct an ablation study on the choice of visual markers in Tab.[T3]

E.6 EXPERIMENTS WITH LLAMA

Unlike the other models, Llama employs different prompt chains for object detection, grouping and
segmentation due to its current limitations with handling multiple images (Huggingface)). Specifically:

* For object detection, we provide the full image with the corresponding grid cell marked
instead of providing a crop of the grid cell with the full image.

 For semantic segmentation, we provide the full image with the corresponding superpixel
marked, instead of providing a set of crops per superpixel.

Table 15: Ablation study on surface normal prediction. GPT-4o0 is relatively robust to different
visual marker choices.

Method Pa Py Pz

Curve -4.89 58.00 39.28
Rectangle -13.99 58.84 39.65
Point 242 5126 39.59
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Detection Semantic Segmentation Depth

Surface normal (x-axis) Surface normal (y-axis) Surface normal (z-axis)

Figure 20: The blind guesses made by GPT-40 on different tasks.

* For grouping, we highlight the superpixel corresponding to the initial cluster in red and the
superpixel of the query point in blue. The model is tasked with determining whether the
blue region belongs to the same entity as the red region.

As with the other models, we experimented with multiple prompts and selected the best-performing
one based on a smaller validation set across all tasks.

Surprisingly, Llama does well in segmentation despite not being provided with any crops. A
comparative evaluation against other MFMSs on a smaller subset using identical prompts is shown in
Tab. [I6] Notably, Llama surpasses all other models in this setup.

An additional interesting finding is Llama’s unique capability to achieve a positive correlation in the
z-direction for the surface normals task, a result not observed with the other non-reasoning MFMs.

Table 16: The performance of Llama compared with the other models on a smaller subset, in the
absence of crops.

Model mloU  Pixel Accuracy
GPT-40 19.77 54.31
Gemini 1.5 Pro 22.98 61.04
MFMs Claude 3.5 Sonnet  20.00 55.69
Llama-3.2-90B 25.86 61.66

E.7 BLIND GUESS

As mentioned in Section[d] a useful way to analyze the potential biases of the MFM, and to gauge
the degree to which it uses the visual content is a blind guess, or prompting the image with a blank
image. In particular:

* For object detection, we ask the model to imagine the classes present. After this, we ask it
to provide reasonable coordinates for the objects based on its world knowledge.

» For semantic segmentation, we mark a rectangle in a white image and force the model to
predict a class. We ask the model to use the location to make an educated guess.

* For depth, we ask the model to imagine an indoor setting. We mark two rectangles and
force the model to predict that one is at a greater depth than the other.

* For normals, we repeat the procedure for depth for each direction.

The results for GPT-4o0 are visualized in Fig. and reveal several interesting insights.

30



Under review as a conference paper at ICLR 2026

Object Detection Segmentation
901 ./f’"'./.
80
in 801 -]
) E
704 701
60 |
, , , . S
1/8 1/12 1/16 400 600 800 1000
Outer Grid-Cell Thickness Number of Superpixels
Depth Normals
0.921 0.7251
0901 0.7001
o 0887 & 0.6751
0.861 0.650
0.841
0.625
100/200 200/400 4007800 100/200 200/400 4007800
Superpixels / Comparisons Superpixels / Comparisons

[—0— Oracle + Chain  —@— Specialist + Chain}

Figure 21: Performance improvements of the “Oracle + Chain" and “Specialist + Chain" baselines on
full datasets when using a finer-grained prompt chain. Ten iterations were used for object detection.

* For object detection, the model chooses common classes like person and car. Additionally,
it seems to grasp the relative sizes of objects reasonably well, as indicated by its tendency to
make the car and the bench longer.

» For semantic segmentation, the model makes reasonable guesses. For instance, it guesses
"sky-merged" and "airplane” at the top of the image, "person” near the middle, "dog," "cat,"
and "floor" near the bottom.

¢ For depth prediction, GPT-40 exhibits a "ceiling bias" and consistently infers that the top
right corner is located at a greater relative depth. We observe that this bias is reflected in
several of the model’s predictions as well, where the ceiling is consistently assumed to be at
a greater depth.

* For surface normals, the model uses the relative locations of the rectangles to form
judgments. For instance, in the x direction, it infers that the right rectangle aligns more
towards the right. In the y direction, it consistently infers that the bounding box at a greater
y coordinate aligns more with the positive y direction. While Chain-of-Thought (CoT)
reasoning is able to break this bias along the y direction for GPT-40, the left-right bias
persists when actual images are presented.

E.8 FINER-GRAINED PROMPT CHAIN

A natural question is whether the performance of our MFMs can be further enhanced by refining
the granularity of the prompt chain. In other words, can we improve performance by increasing the
number of superpixels and comparisons or by using thinner outer grid cells? To explore this, we
first examine the effect of a finer-grained prompt chain on the “Oracle + Chain" and “Specialist +
Chain" baselines. As shown in Fig.[21] these baselines exhibit steady performance improvements as
the prompt chain is refined.

To determine whether this trend extends to the MFMs, we conducted a small-scale experiment using
GPT-40 on the same tasks. As illustrated in Fig.[22] although GPT-40 shows modest improvements
with a finer-grained prompt chain, its performance quickly saturates due to misclassifications. This
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Figure 22: GPT-40’s performance improvements with a finer-grained prompt chain plateau, showing
that our original settings are adequate.

observation supports our decision to adopt a coarser granularity for the MFMs, confirming that our
original settings are sufficient to capture the performance gap.

We reiterate here that the control baselines in our paper serve as calibration tools rather than perfor-
mance ceilings. They mitigate the sub-optimality of the prompting method and prevent exaggerated
conclusions about MFMs significantly lagging behind specialists. Our benchmark is designed to be
accurate in a relative and ordinal sense.

E.9 IN-THE-WILD EVALUATIONS

Please see Fig. [25] [26] and [27] for qualitative evaluation of MFMs on in-the-wild samples (Flickr}
2024 |Unsplashl 2024).

F REASONING RESULTS

F.1 ABLATING THE BATCH SIZE

As noted in Sec.[#.1] 04-mini is especially sensitive to the batch size used during inference. While
our main evaluations used a batch size of 100 for consistency across models, we ablate this choice on
a subset of 500 ImageNet samples in Fig. 23]

As shown, o4-mini suffers a substantial degradation in classification accuracy as the batch size
increases, across all reasoning effort settings. In contrast and surprisingly, both o1 and 03 demonstrate
improved performance with larger batch sizes, consistent with trends observed in prior work on
in-context learning for LLMs (Chen et al.| (2023); Jiang et al.| (2024b).

F.2 DETAILED EXPERIMENTS
As noted in the main paper, we evaluate ol and 03 on smaller, representative subsets of data. To

construct informative subsets for classification, object detection, segmentation, and grouping, we
compute the Kendall 7 rank correlation between the performance rankings of non-reasoning models
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Figure 23: Effect of batch size on classification accuracy. We ablate the classification performance
of ol, 03, o4-mini and GPT-40 on a subset of 500 ImageNet images under varying batch sizes. While
ol and o3 benefit from larger batch sizes, 04-mini shows a pronounced drop in accuracy.

on candidate subsets and their full-dataset rankings, over multiple bootstrap runs. For each task,
we choose the smallest subset size that meets a task-specific correlation threshold, yielding 1,000
samples for classification, 200 for detection, 50 for segmentation, and 30 for grouping. These subsets
are deemed informative because they preserve the relative ranking of non-reasoning models.

For depth and surface normal prediction, we select the 10 most challenging samples for GPT-40
(those where it achieves the lowest Spearman correlation) due to higher evaluation costs.

Table 17: Classification. Accuracy scores on the standard classification datasets. 03 consistently
outperforms GPT-40, and achieves the highest overall scores. In contrast, 04-mini lags behind.

Model ImageNet ImageNet-V2 2DCC 3DCC ImageNet-R ImageNet-Sketch
04-mini (low) 50.7 - - - - -
04-mini (medium) 58.4 49.2 35.6 36.4 58.2 46.4
o4-mini (high) 59.6 - - - - -

ol 77.90 70.50 62.40  60.20 85.3 65.50

o3 78.00 74.10 62.60 61.70 87.2 69.10
GPT-40 76.70 72.10 63.80 61.40 86.2 66.10

Table 18: Object Detection. All models other  Table 19: Segmentation. ol and 03 outperform
than o4-mini achieve comparable performance, = GPT-40 in both mloU and pixel accuracy. o4-

with ol and 03 slightly outperforming GPT-40. mini underperforms across all reasoning levels.

Model APso (1)  AP75 (1) AP(D) Model mloU (1) Pixel acc. (1)

04-mini (low) 48.40 29.71 27.65 04-mini (low) 29.67 63.94

o4-mini (medium) 47.56 29.77 27.11 o4-mini (medium) 28.86 63.82

g‘l"m‘m (high) gg;g ig‘s‘g %2(7’; o4-mini (high) 28.66 62.81

o3 64.89 40.73 38.57 O; gg%g ;%2%

GPT-40 64.11 4261  38.17 0 S :
GPT-40 35.66 69.59
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Table 20: Depth Prediction. All models struggle with this difficult subset. However, 03 consistently
outperforms the others across most metrics.

Model 01(1)  62(1) 31 p(1)  Accuracy(T) AbsRel(])
04-mini (low) 0467 0.726 0.857 -0.009 55.15 1.07
o4-mini (medium) 0.465 0.711 0.852 0.070 56.85 0.953
o4-mini (high) 0462 0.724 0.864 -0.029 53.65 1.090
ol 0456 0.716 0.873 0.079 57.20 0.914
03 0.490 0.738 0.855 0.250 63.50 0.819
GPT-4o0 0.460 0.732 0.881 -0.050 52.00 1.121
Table 21: Grouping. GPT-40 outper- Table 22: Surface Normals. Reasoning models out-
forms all reasoning-based models on perform GPT-4o0, particularly along the horizontal (x)
this semantic task. Among the rea- direction, where GPT-40 shows a strong negative corre-
soning models, 03 performs best. lation. 03 achieves the highest scores across all axes.
Model mloU(7) Model Pz Py o
04-mini (low) 4741 04-mini (low) 0.18 0.12 0.30
04-mini (medium) 44.59 04-mini (medium) 0.39 024 0.32
04-mini (high) 46.36 04-mini (high) 038 023 0.31
ol 52.61 ol 024 023 0.19
03 55.06 03 048 0.36 0.28
GPT-4o 59.64 GPT-4o0 -0.30 0.09 0.05

The performance of ol, 03, GPT-40, and o4-mini, under varying levels of reasoning effort, is
summarized in Tables[I7]through22] covering classification, object detection, segmentation, grouping,
depth, and surface normal prediction.

On semantic tasks, all models perform comparably, with ol and 03 showing slightly stronger results
in classification, object detection, and segmentation. For geometric tasks, performance drops across
the board due to the difficulty of the selected samples. However, the reasoning models consistently
outperform GPT-40. In particular, all reasoning models achieve positive correlation along the
horizontal axis in surface normal prediction, correcting a common failure mode in GPT-4o (see Fig.

where the horizontal gradient is flipped). Qualitative comparisons for all tasks are shown in Fig. BFl

G ADDITIONAL EXPERIMENTS WITH 40 IMAGE GENERATION

G.1 PROMPTING METHODOLOGY

As discussed in the main paper, GPT-40 generates full image recreations rather than edits, often
resulting in spatial misalignments. To enable consistent comparisons, we first zero-pad all input
images to square dimensions and, after generation, crop the relevant regions to align with the original
input. Below, we outline task-specific prompting details. Preliminary quantitative results for grouping,
depth, and surface normals, evaluated at full scale, are provided in App.[G.2]

Grouping. The prompt used for object-based segmentation is shown in Listing |1} The model is given
an image with a red point marking a location on an object and is instructed to return the same image
with the entire object filled in solid red. To extract the predicted mask, we use HSV thresholding and
post-process it by retaining only the largest connected component, which effectively removes small
artifacts and hallucinated regions. Although this simple postprocessing often yields reasonable masks,
more advanced postprocessing techniques could improve results further. We leave such refinements
to future work.
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You are given an input RGB image where a small red circle marks a point
on an object.

Your task is to return the xxexact same imagexx, but with the **entire
object that contains the marked point filled in solid redxx.

Do not add any other markings, text, or overlays; only apply the red fill
to the object.

Listing 1: Grouping prompt for GPT-40 image generation

Depth. The prompt used for depth prediction is provided in Listing[2] The model is instructed to
produce a grayscale rendering of the input image, where closer regions appear darker and farther
regions lighter.

Generate a xxpure grayscale depth mapxx from the input image. The
grayscale values must encode depth as follows:

— xxWhite (255 intensity)x** represents points that are xxclosestxx to
the camera (minimum depth) .

- xxBlack (0 intensity) ** represents points that are xxfarthestxx from
the camera (maximum depth) .

— All other points must be shaded xxmonotonically between black and white
*%, based solely on their distance from the camera.

This map must not contain any colors, textures, or artistic effects: only
smooth grayscale transitions that accurately reflect increasing
depth, with darker shades at greater distances.

Listing 2: Depth prediction prompt for GPT-40 image generation

Surface Normals. The prompt used for surface normal prediction is shown in Listing 3] The model
is asked to generate a surface normal map in the standard RGB encoding used in computer graphics.
Conventionally, red corresponds to the left-right (x) axis (left = 0, right = 1), green to the up—down
(y) axis (down = 0, up = 1), and blue to the depth (z) axis (inward = 0, outward = 1).

You are a vision model that, given an input RGB image, must predict a per
-pixel surface normal map and render it as an RGB image using the
standard normal-map color scheme.

Requirements:

1. xxOutput formatxx*

— Directly generate an image.

— Produce a raw image (same dimensions as input) whose pixel colors
encode the normals as above.

- Do x*notxx add any annotations, text overlays, or alpha channels: only
the RGB channels.

2. **xNormal-map encodingxx*

- For each pixel estimate its surface normal vector

- Display the orientation of the surface normal vector using the standard

color scheme used in computer graphics.

Listing 3: Normals prediction prompt for GPT-40 image generation

G.1.1 PROMPT SENSITIVITY

We observe that GPT-40’s image generation is highly sensitive to changes in the prompt. To illustrate
this brittleness, we test two modified prompts. For depth prediction, we invert the color mapping in
Listing 2] asking the model to render near points as dark and far points as white. For surface normals,
rather than producing a single RGB normal map, we prompt the model for three separate grayscale
images, each representing alignment with one of the x, y, or z axes, similar to our prompt-chaining
setup. As shown in Tab. these small changes lead to a substantial degradation in performance.
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Table 23: Performance for different prompts. Comparison between the original and an altered
prompt for both depth prediction and surface normal prediction.

(a) Depth prediction

Prompt 6, (1) 62 (1) d3(1) p(1) AbsRel (1)

Original 0.562 0.849 0942 0.448 0.303
Altered  0.399 0.694 0.854 -0.12 0.474

(b) Surface normal prediction

Prompt Pz Py Pz

Original 031 035 0.14
Altered -0.15 0.38 -0.23

G.2 PRELIMINARY QUANTITATIVE ANALYSIS

The full-scale quantitative results are shown in Tab. [24] While the performance is non-trivial, it
currently falls short of what is achieved by GPT-40 using the prompt chain. We view the refinement
of prompts and decoding strategies for image generation as an important direction for future work.

Notably, grouping predictions are impacted by spatial misalignment, hallucinated regions, and
incorrect markings. Depth predictions, on the other hand, occasionally suffer from an inverted
rendering of the depth gradient, which significantly affects correlation-based metrics. We showcase
representative qualitative results for grouping, depth, and surface normals in Fig.[9] highlighting both
successes and common failure modes.

Table 24: GPT-40 image generation performance across three tasks.

Task Metric Value (1)
Grouping mloU 28.14
Depth Prediction 01 0.485

P 0.735

3 0.848

p 0.52

AbsRel () 0.575
Surface Normal Prediction  p, 0.09

Py 0.44

0z 0.17

H PROMPT SENSITIVITY ANALYSIS

In Fig. 24} we evaluate the non-reasoning models for each task considering different prompting
techniques. We observe that GPT-40 generally shows lower sensitivity to different prompts on most of
the tasks compared to other MFMs. For surface normals, we interestingly observe that the predictions
greatly improve in the y and z directions, when GPT-40 and Claude are asked to reason in the prompt

(see Tab.[23).

I PROMPTING COSTS

At the time of writing, the API pricing for GPT-40 (gpt—-40-2024-08-06) was $2.50 per million
input tokens and $10.00 per million output tokens. For Gemini 1.5 Pro (gemini-1.5-pro-001),
the corresponding rates were $3.50 (input) and $10.50 (output), and for Claude 3.5 Sonnet
(claude-3-5-sonnet-20240620), $3.00 and $15.00, respectively. In contrast, lower-cost mod-
els like Gemini 2.0 Flash (gemini-2.0-flash-001) and o4-mini (04-mini-2025-04-16)
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Table 25: Prompt sensitivity for surface normal prediction. Correlations under five different
prompts for GPT-40 and Claude 3.5 Sonnet. CoT prompting (in bold) greatly improves p, and p..

Model Prompt pe (M py M p (D

Prompt 1 -036 -0.63  0.04
Prompt2 -029 -045 -0.10
GPT-40 Prompt3  0.07 0.55 0.44
Prompt4 -0.08 0.65 0.43
Prompt5 -0.34 045 0.37

Prompt 1 -0.34  -0.56  0.00
Prompt2  -0.18 -0.08 -0.11
Claude 3.5 Sonnet Prompt3 -0.09  0.68 0.41
Prompt4 -0.06 0.66 0.35
Prompt5 -0.06 0.56 0.35

were priced at $0.10/$0.40 and $1.10/$4.40, respectively. The reasoning models 01-2024-12-17
and 03-2025-04-16 were substantially more expensive at $15.00/$60.00 and $10.00/$40.00,
respectively.

The costs for the scaled-up experiments are documented in Tab. [26] and the prompting costs for the
reasoning model are presented in Tab. The primary reason for cost fluctuations across tasks is the
way each MFM tokenizes images. The notably higher costs for object detection with Gemini 1.5 Pro
stem from the independent calls required in the prompt chain. For reasoning models, especially on
the surface normal task, a major contributor is the large number of generated reasoning tokens. The
availability of highly affordable models like Gemini 2.0 Flash, for which our entire evaluation cost
approximately $50, demonstrates that such benchmarking is becoming increasingly accessible.

These costs reflect the constraints of current APIs and are not indicative of how such tasks would be
solved in practical deployments. As discussed in the main paper, our framework is intended for a
standardized one-time evaluation (and not for efficient task execution) with MFMs.

Table 26: Prompting costs for scaled-up experiments (in $).

Task GPT-40 Gemini 1.5 Pro Claude 3.5 Sonnet Gemini 2.0 Flash
Classification 223.8 298.6 142.8 9.7
Object Detection 185.8 610.8 155.0 18.1
Semantic Segmentation ~ 232.1 450.1 2279 14.0
Grouping 22.1 474 42.0 1.0
Depth 57.4 524 198.2 3.6
Normals 130.1 50.1 209.9 39
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Figure 24: Sensitivity of MFMs to different prompting techniques. We observe that GPT-40 showcases
a lower sensitivity on most tasks compared to other MFMs.

Table 27: Prompting costs for the reasoning models (in $)."Reported costs are for experiments
conducted on the subset.

Task ol* 03*  o4-mini
Classification 41.0 22.5 50.0
Object Detection 220.0 104.0 102.2
Semantic Segmentation 200.0  96.0 115.0
Grouping 82.2 48.9 25.0
Depth 96.4 31.5 62.0
Normals 306.2 854 194.0
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Figure 25: Qualitative results of evaluating MFMs for object detection on in-the-wild examples (Flickr,

[2024; [Unsplash| 2024). We compare against 4M-21Bachmann et al.| (2024) as a vision specialist.
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Figure 27: Qualitative results of evaluating MFMs for depth prediction on in-the-wild exam-

ples (Flickr, 2024}, [Unsplashl, [2024). We compare against the Omnidata [Eftekhar et al.| (2021

depth estimator as a vision specialist.
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