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Abstract. We propose novel graph transformations that allow standard
message passing to achieve state-of-the-art expressiveness and predictive
performance. Message passing graph neural networks are known to have
limited expressiveness in distinguishing graphs. To mitigate this, one can
either change message passing or modify the graphs. Changing message
passing is powerful but requires significant changes to existing implemen-
tations and cannot easily be combined with other approaches. Modify-
ing the graph requires no changes to the learning algorithm and works
directly with off-the-shelf implementations. In this paper, we propose
novel graph transformations and compare them to the state-of-the-art.
We prove that they are at least as expressive as corresponding message
passing algorithms when combined with the Weisfeiler-Leman test or a
sufficiently powerful graph neural network. Furthermore, we empirically
demonstrate that these transformations lead to competitive results on
molecular graph datasets.

Keywords: Graph Neural Networks · Weisfeiler Leman · Expressive-
ness.

1 Introduction

Message passing graph neural networks (GNNs) have limited expressiveness
when it comes to distinguishing graphs [20, 28]. Vanilla GNNs can only dis-
tinguish two graphs which the Weisfeiler Leman test (WL) [27] can also dis-
tinguish. This means that GNNs are limited in terms of functions on graphs
they can express. There are two common approaches of improving the expres-
siveness of methods that perform message passing on graphs. The first modifies
the graphs by a transformation and the second improves the message passing
algorithm. Graph transformations that improve the expressiveness might extend
vertex features with random features [1, 9, 22]. Other graph transformations se-
lected a set of patterns and for those patterns extend vertex features with rooted
homomorphism counts [2], or subgraph isomorphism counts [7]. Some methods
that improve message passing are, for example, higher order GNNs [20], Equiv-
ariant Subgraph Aggregation Networks [3], Structural Message-Passing Neural
Networks [26], and CW Networks [4].

Improving expressiveness via a graph transformation has the advantage that
only the graphs need to be transformed before running the learning algorithm.
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This allows simple integration into previous implementations and can be eas-
ily combined with other existing models. However, improving message passing
allows for a lot of flexibility when it comes to designing the algorithm. In con-
trast, graph transformations are very limited as the resulting algorithm will still
rely on message passing. Thus, intuitively it seems that improving message pass-
ing should allow us to build more expressive algorithms than by applying just
a graph transformation combined with message passing. We show that this is
not necessarily the case. We prove that three methods with improved message
passing CW Networks (CWN) [4], Equivariant Subgraph Aggregation Networks
(ESAN) [3], and δ-k-dimensional WL (δ-k-WL) and its neural networks vari-
ants [19] can be reduced to graph transformations. We prove that combining our
graph transformations with a sufficiently powerful GNN or WL is at least as
expressive as the original algorithm. Additionally, we empirically demonstrate
that our methods achieve competitive results on graph datasets.

Contributions. In this work we investigate whether it is possible to replace algo-
rithms with different forms of message passing by a graph transformation. We
introduce two novel algorithms that simplify CW Networks [4] and Equivari-
ant Subgraph Aggregation Network [3] to a graph transformation. Cell encoding
(Section 4) can transform any regular cell complex to a graph and subgraph bag
encoding (Section 5) can transform any bag of subgraphs into a graph. We prove
that these transformation combined with WL or a suitably expressive GNN are
at least as expressive as the original methods in distinguishing regular cell com-
plexes or graphs. We identify δ-k-WL [20] (Section 6) and its neural network
variants as being an examples of our approach. While they are defined to per-
form message passing on k-tuples instead of single vertices, they have originally
been implemented via a graph transformation plus standard message passing.
We prove that implementing δ-k-WL with a graph transformation does not lose
expressiveness over directly implementing the algorithm. In Section 7, we show
empirically that cell encoding and subgraph bag encoding improves the results of
GNNs on graph classification and regression tasks, yielding competitive results
to CW Networks and Equivariant Subgraph Aggregation Networks.

2 Related Work

The high-level idea of replacing algorithms that improve message passing by
graph transformations, has been proposed in parallel to our work, in a posi-
tional paper by Veličković [25]. Much work has been done on building message
passing graph neural networks that are more expressive than WL. As we propose
the idea of using graph transformations to simplify algorithms that improve mes-
sage passing, it makes sense to analyze previous works through the lens of this
idea. Thus we start with improved message passing algorithms. These methods
usually transform the graph to a different structure and then perform message
passing on that structure. We consider this transformation the first step of the
improved message passing. In the following, we introduce three different types
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of such methods. The first operates on k-tuples of nodes, the second on simplical
complexes or regular cell complexes, and the third on subgraphs.

The first type of method exchanges messages between k-tuples of nodes.
Higher dimensional WL (k-WL) is a generalization of WL and forms a sequence
of algorithms that are stronger than WL [8]. Increasing k increases the expres-
siveness at the cost of the runtime. Morris et al. [20] introduced k-dimensional
GNNs which extend the concept of k-WL to GNNs. For a sufficiently power-
ful neural network, k-GNNs have equal expressiveness as k-WL [20]. However,
as k increases, the runtime of k-GNNs grows exponentially. To combat this,
Morris et al. [19] introduced (local) δ-k dimensional WL and GNNs. These al-
gorithms use the sparsity of graphs to improve the runtime and expressiveness.
The second type of method operates on simplical complexes or a regular cell
complexes. The two most prominent examples of this idea are Simplical Net-
works [5] and CW Networks [4]. Other algorithms that work on these structures
are as Simplical Neural Networks [11], Dist2Cycle [18], and Cell Complex Neural
Networks [15]. The third type of method decomposes the graph into subgraph,
such as Automorphism-based Neural Networks (Autobahn) [24] or Equivariant
Subgraph Aggregation Networks (ESAN) [3].

Next we consider algorithms that can be seen as applying a graph transfor-
mation. It has been proven that adding random features to vertices improves
the expressiveness of GNNs [1,9,22]. GNNs with random features are universal,
meaning that they can learn any function defined on a graph [1]. However, to do
this they sacrifice permutation invariance and equivariance. This means that per-
muting the graph will change the result of these algorithms. Many permutation
invariant approaches extend the graph features by counting patterns. Barceló
et al. [2] extend GNNs with rooted homomorphism counts of a set of patterns.
They prove multiple interesting theorems relating their GNN and the choice of
patterns to the k-WL test. Graph Structural Networks (GSN) [7] introduce a
new graph convolution layer which extends messages with subgraph isomorphism
counts. While this cannot be directly seen as transforming the graph, it is very
similar to adding these subgraph isomorphism counts to the vertex features.

3 Background

In this section, we introduce the concept of expressiveness and describe how it
can be proven that a new message passing algorithm is more expressive than
WL. We say that algorithm A is at least as expressive as algorithm B if A can
distinguish every pair of graphs or regular cell complexes that B can distinguish.
A is equally expressive as B, if A is at least as expressive as B and B is at least
as expressive as A. A is more expressive than B if A is at least as expressive as
B and can distinguish more pairs of graphs or cell complexes than B.

The usual first step of developing neural network based algorithms that are
more expressive than WL, is to introduce a stronger variant of WL. This variant
is used to compare the expressiveness to WL and thus also to GNNs, as GNNs
are at most as expressive as WL [28]. Then one usually defines the neural network
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and proves that it is equally expressive as the previously introducedWL variant if
some conditions on the underlying neural network are met. This makes it possible
to relate the expressiveness of the new neural network algorithms to WL and
GNNs. For example Cellular Weisfeiler-Leman (CWL) is a variant of WL and
CW Networks are the corresponding neural network equivalent [4]. For ESAN,
the WL variant is called DSS-WL and the neural network is DSS-GNN. Finally
for δ-k-WL the neural network equivalent is δ-k-GNN. As all our theorems focus
on to the expressiveness of these algorithms, we will only introduce the WL
variants in detail. In what follows, we use {{·}} to denote a multiset and NG(v)
to denote the neighbours of vertex v in graph G. In each iteration of a colour
refinement algorithm, each vertex is assigned a colour which is a refinement of
its colour in the previous iteration. We say a colouring is stable, if performing
another iteration of the colouring algorithm does not refine the colouring.

4 Cell Encoding

CW Networks [4] perform message passing on regular cell complexes instead of
graphs. By lifting graphs to regular cell complexes they can be enriched with
more structure, yielding more expressive algorithms. We propose cell encoding
which transforms any regular cell complex to graph. This allows any GNN to
operate on regular cell complexes, and allows us to increase the expressiveness
of GNNs by first lifting graphs to regular cell complexes and then transforming
them back to graphs via cell encoding. The results of this section appeared
already in [17].

4.1 CW Networks

In this section we briefly introduce CW Networks, for more information consider
Appendix A. Bodnar et al. [4] generalized the message passing paradigm from
graphs to regular cell complexes. Regular cell complexes generalize the simplical
complexes used by [6]. A regular cell complex X is a topological space consist-
ing of subspaces {Xσ}σ∈PX called cells together with an indexing set PX . This
indexing set encodes all topological information about X and can be used to
define a boundary relation ≺ between cells. This boundary relation can then be
leveraged to define adjacencies between cells. Cellular Weisfeiler Leman (CWL)
performs message passing on cells. In each iteration of CWL the algorithm com-
putes a colouring for each cell depending on the colours of neighbouring cells in
the previous iteration. Similar to WL two regular cell complexes are not isomor-
phic if at some iteration the colour histograms of all cells are different for the
two complexes.

To apply the concept of regular cell complexes to graphs, Bodnar et al. [4]
define the concept of a cellular lifting map, a function f that transforms a graph
to a regular cell complex such that two graphs G1, G2 are isomorphic if and only
if f(G1), f(G2) are isomorphic. They prove that a class of lifting maps called
skeleton preserving lifting maps together with CWL are at least as expressive as
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WL. Typically, such lifting maps create cells out of vertices, together with cells
that encode other structures such as induced cycles or cliques. Figure 1 shows an
example of this, the original graph (left) is turned into a cell complex (center)
where the vertices are 0-dimensional cells, edges are 1-dimensional cells, and in-
duced cycles are 2-dimensional cells. Bodnar et al. [4] define CW Networks which
combine neural networks with cellular message passing, similar to graph neural
networks with message passing. CW Networks can be made equally expressive as
CWL. Thus, by lifting graphs to cell complexes and then using a CW Network
one can obtain algorithms that are strictly more expressive than WL.

4.2 Graph Transformation
We propose cell encoding, a novel algorithm that transforms a regular cell com-
plex X to a graph GX . A similar construction for a type of regular cell complexes
called simplical complexes is already known to the topology community [13]. We
show that cell encoding combined with WL is at least as expressive as CWL in
distinguishing regular cell complexes. With this, we can perform message passing
on graphs instead of cell complexes while keeping the expressiveness guarantees
from CWL. However, this approach is not limited to cell complexes obtained
with a cellular lifting map. Indeed, any cell complex can be transformed into a
graph while ensuring that WL is as expressive least as CWL.
Definition 1 (Cell Encoding). Given a regular cell complex X with a finite
indexing set PX , cell encoding transforms PX into a graph GX = (VX , EX) with
vertex features. Where

VX = PX ,

EX = {{τ, δ} | τ, δ ∈ PX , τ ≺ δ or δ ≺ τ} ∪ {{τ, δ} | ∃σ ∈ PX , τ ≺ σ, δ ≺ σ}.
For unlabeled regular cell complexes we introduce a feature that encodes the di-
mension of each cell. For labeled regular cell complexes we extend the features
correspondingly.

Encoding the dimension of a cell in vertex features can be done via one-hot
encoding and we use it to distinguish between cells of different dimensions.
Theorem 1. Cell encoding together with WL is as least as expressive as CWL.

While cell encoding together with WL is as expressive as CWL, this does
not mean that it yields exactly the same result. When CWL passes messages
via upper adjacent cells, it adds the colour of the higher dimensional cell to the
message. This is not something covered by our transformation. This does not
impact the expressiveness of the method, but still might lead to better results
on practical applications. Running cell encoding takes linear time with respect
to the number of cells and their adjacencies. From runtime point of view, a
single iteration of running WL on a graph obtained by cell encoding is slightly
more efficient than CWL on the corresponding regular cell complex: each vertex
corresponds to a cell and each edge to a message passed in CWL. However, as
described above our method passes less messages, leading to it being slightly
more efficient.
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→ →

Fig. 1. Left: a graph. Center: a regular cell complex built from the graph by lifting all
induced cycles to 2-dimensional cells ( blue ) via k-IC. Right: a graph obtained from
the cell complex via cell encoding or directly from the original graph via cellular ring
encoding. Vertices that existed in the original graph are colored white. Yellow vertices
represent edges in the original graph and blue vertices represent induced cycles in the
original graph. (This image is partly based on an image by [4])

Proof Sketch. (Full proof in Appendix A). We prove that every pair of vertices
assigned the same colour by WL imply that the underlying cells will be assigned
the same colour by CWL. We show this by induction on the iterations of CWL.
The base case directly follows from the fact that graphs obtained by applying
CRE to a regular cell complex have the same number of vertices as the under-
lying cell complex has cells. In the induction step, the properties of a stable
WL colouring together with the vertex features encoding the dimension of cells
means we can distinguish between vertices that correspond to cells of different
dimensions. This allows us to show that if cell encoding together with WL cannot
distinguish a pair of regular cell complexes then neither can CWL.

4.3 Cellular Ring Encoding
We have seen that we can use cell encoding to transform any regular cell com-
plexes to a graph. In this section, we show that cell encoding can be used to
build more expressive GNNs. Bodnar et al. [4] present cellular lifting maps that
when combined with CWL yield algorithms strictly more expressive than WL.
One of these lifting maps is k-IC that transforms every vertex, edge, and induced
cycle (IC) of length up to k into a cell. Note that k ≥ 3 is a hyperparamter that
needs to be set separately. Combining k-IC with cell encoding gives us cellular
ring encoding (CRE). CRE transforms a graph into another graph with vertex
features. An example of CRE can be seen in Figure 1.
Proposition 1. CRE together with WL is more expressive than WL.
Proof. k-IC has been shown to be strictly more expressive than WL when com-
bined with CWL [4]. By Theorem 1 it follows that combining CRE with WL is
strictly more expressive than just WL.
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Since the graph neural network GIN [28] can be made as expressive as WL,
it follows that combining CRE with GIN is more expressive than WL.

5 Subgraph Bag Encoding

With CW Networks we have seen an algorithm that performs message passing on
cell complexes. Equivariant Subgraph Aggregation Networks [3] (ESAN) perform
message passing on a collection of subgraphs (subgraph bags). To apply this to
graphs, a policy first transforms the graphs to subgraph bags. Depending on the
policy, this can yield algorithms that are strictly more expressive than WL. As
there are no restrictions on the policy, this is a very general method that can
be adapted closely to the specific problem. We propose subgraph bag encoding
which transforms any bag of subgraphs to a graph.

5.1 Equivariant Subgraph Aggregation Networks

To analyze the theoretical expressiveness of this approach Bevilacqua et al. [3]
present DSS-WL, a stronger variant of WL. DSS-WL takes a graph G and a pol-
icy π of computing the subgraph bags. In each iteration the algorithm computes
a colour cv,S for each node v in each subgraph S.

1. The policy π is applied to G to obtain the bag of subgraphs. If G has vertex
features then the initial colour of a vertex are set to its features. Otherwise,
all vertices are assigned the same colour.

2. Given the colour ctv,S of vertex v in subgraph S ∈ π(G) in iteration t. The
colour in the next iteration is defined by ct+1

v,S = HASH
(
ctv,S , N

t
v,S , C

t
v,M

t
v

)
.

Where N t
v,S =

{{
ctx,S | x ∈ NS(v)

}}
is the multiset of colours of neighbors of

v in subgraph S, Ctv =
{{
ctv,S′ | S′ ∈ π(Gi) and v ∈ V (S′)

}}
is the multiset

of v’s colour across the different subgraphs, and M t
v = {{Ctx | x ∈ NGi(v)}}

is the multiset of all Ctx where x is a neighbor of v in the original graph G.
3. After each iteration a colour cS is assigned to each subgraph S that encodes

the multiset of node colours in S. Two graphs are non isomorphic if the
multiset of these colours for the two graphs diverge. If the colour refinement
algorithm converges on all subgraphs, then the test is inconclusive.

There exist policies that make DSS-WL strictly more powerful than WL and
message passing graph neural networks [3]. One such policy computes 3-ego-
networks, that is the induced k-hop neighbourhood for each node in the graph.

5.2 Graph Transformation

We propose subgraph bag encoding (SBE), an algorithm that for a given policy
π transforms a graph G to Gπ. We prove that SBE combined with WL is at
least as expressive as DSS-WL (or DSS-GNN) in distinguishing pairs of graphs.
An example of SBE can be found in Figure 2. For each vertex v in a subgraph
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Fig. 2. A graph (left), the graph transformed into bags of subgraphs (center) by a policy
and the result of applying subgraph bag encoding to the graph and bags of subgraphs
(right). Black vertices represent the original graph, red vertices the subgraphs and
yellow vertices the separator vertices.

S ∈ π(G), SBE creates a unique vertex vS and connects them according to E(S).
For any vertex v ∈ V (G), it creates a vertex vG and a separator vertex v′. All
vertices of the form vG are connected as defined by E(G). Separator vertices
connect vertices in different subgraphs that stem from the same vertex in the
original graph.

Definition 2 (Subgraph Bag Encoding). Given a graph G and policy π we
define Gπ = (Vπ, Eπ) to be the graph obtained by subgraph bag encoding. Where

Vπ = {v′ | v ∈ V (G)} ∪
⋃

S∈π(G)∪G

V (S),

Eπ =
⋃

S∈π(G)∪G

E(S) ∪ {{v′, vS} | S ∈ π(G) ∪G and v ∈ V (S)}.

For unlabeled graphs we introduce a vertex feature that encodes whether it is a
separator vertex, was created from a subgraph S ∈ π(G), or was created from G.
For labeled graphs we extend the features correspondingly.

Theorem 2. SBE together with WL is at least as expressive as DSS-WL.

Proof Sketch. (Full proof in Appendix A). The proof follows a similar structure
as the proof of Theorem 1. We assume two arbitrary graphs G,H, a policy π such
that WL cannot distinguish Gπ, Hπ. We show that DSS-WL cannot distinguish
G,H by induction on the iterations t of DSS-WL. For each iteration we show that
if a vertex in subgraph S ∈ π(G) is assigned the same colour by WL as a vertex
in subgraph T ∈ π(H), then they are also assigned the same colour by DSS-WL.
The base case follows from the fact that all vertices are initialized with the same
colours by WL and DSS-WL, excluding type encoding. In the induction step, the
we use the fact that separator vertices have features that distinguish them from
subgraph vertices. Then we argue that the colour of a separator vertex encodes
the colours of that vertex among the different subgraphs.
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Note that Theorem 2 does not put any requirements on the policy. This
allows maximal flexibility when it comes to developing new policy while still
being able to profit from subgraph bag encoding. SBE runs in linear time with
respect to the size of all subgraphs computed by the policy plus the size of the
original graph. A single iteration of WL on a graph created by SBE is slightly
less efficient than ESAN on the corresponding bags of subgraphs as the separator
nodes add additional overheard. However, we think that in a follow up work we
be able to proof the theorem without using separator nodes.

6 δ-k Graph Transformation

The next algorithm, δ-k-dimensional Weisfeiler-Leman (δ-k-WL) [19] performs
message passing on k-tuples of vertices and is very similar to k-WL [8]. However,
only δ-k-WL distinguishes between global and local neighborhoods. The neural
network equivalent of δ-k-WL [19] is an example of our approach. We show that
implementing the algorithm with a graph transformation is at least as expressive
as directly implementing the algorithm. Due to a lack of space, we defer this part
to Appendix C.

7 Experiments

Models. In this section, we investigate the empirical performance of cell encoding
and subgraph bag encoding. We compare our methods against the CW Network
CIN [4] and the Equivariat Subgraph Aggregation Network DSS-GNN [3]. Sim-
ilar to [3, 4] we use the Graph Isomorphism Network (GIN) [28] as our GNN.
As GIN with suitable parameters is equally expressive as WL, this means that
GIN with CRE or SBE can be more expressive than WL. We combine GIN with
methods obtained via cell encoding and subgraph bag encoding. CIN performs
message passing on cell complexes constructed with the cellular lifting map k-
IC. Analogously, we use the cell encoding method cellular ring encoding (CRE).
For subgraph bag encoding we use a policy that transforms a graph into a set
of 3-ego-networks, that is a set of induced 3-hop neighborhoods for each vertex.
We use the same policy for DSS-GNN. We also include GIN and a multilayer
perceptron (MLP) as baselines. The baseline MLP performs a mean pooling op-
eration over the whole graph and then applies a MLP to the resulting feature
vector, completely ignoring the graph structure and edge features. Note that we
do not compare the δ-k Graph Transformation against δ-k-GNN, as δ-k-GNN
was implemented via a method that is an example of our approach.

Datasets. We evaluate on the graph regression dataset ZINC [14, 23]1, and on
two graph classification datasets ogbg-molhiv [16] and ogbg-moltox21 [16]2.
1 ZINC is accessible via pytorch geometric https://pytorch-geometric.

readthedocs.io/
2 Both ogb datasets are accessible via the ogb python package https://ogb.

stanford.edu

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
https://ogb.stanford.edu
https://ogb.stanford.edu
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Table 1. ROC-AUC on ogbg-molhiv
(bigger is better)

Algorithm Test
ROC-AUC

Validation
ROC-AUC

MLP 0.62± 0.013 0.651± 0.005
GIN 0.766± 0.014 0.823± 0.007
CIN 0.772± 0.014 0.829± 0.014
GIN + CRE 0.779± 0.017 0.833± 0.007
DSS-GNN 0.774± 0.017 0.847± 0.011
GIN + SBE 0.737± 0.013 0.831± 0.010

Table 2. ROC-AUC on ogbg-moltox21
(bigger is better)

Algorithm Test
ROC-AUC

Validation
ROC-AUC

MLP 0.613± 0.003 0.586± 0.001
GIN 0.749± 0.005 0.788± 0.004
CIN 0.754± 0.006 0.803± 0.004
GIN + CRE 0.750± 0.007 0.804± 0.006
DSS-GNN 0.771± 0.009 0.824± 0.005
GIN + SBE 0.762± 0.006 0.814± 0.004

For ZINC we use the commonly used smaller variant that contains 12000 molec-
ular graphs, it has been used for example by [2, 3, 7]. ogbg-molhiv contains
41127 graphs and ogbg-moltox21 contains 7831 graphs. Both ogbg-molhiv and
ogbg-moltox21 are binary graph classification problems. However, the prior has
only one task while the latter has 12 tasks, meaning that 12 predictions need to
be performed simultaneously. As defined in the open graph benchmark (ogb) [16]
we use ROC-AUC to evaluate the results on ogbg-molhiv and ogbg-moltox21.
As is common we use mean average error for ZINC.

Setup. Our setup3 is based on [10]. We evaluate each method on each of the three
datasets. All datasets supply a train, validation and test split which we use and
keep fixed for all algorithms. We tune the hyperparameters on the validation
set. The used hypereparameter grids and more information about our setup can
be found in Appendix D. We try 20 parameter combinations per method and
dataset. During training we use a learning rate of 10−3, whenever the model
has not improved on the validation set for 20 epochs we lower the learning rate
by 50%. The training stops when the learning rate dips below 10−5 or after at
most 300 epochs. The only exception is that we train CIN on the ogbg-molhiv
dataset for only 100 epochs due to how long the training takes. For evaluation,
we use the metric obtained in the epoch with the best validation performance
and report the average and standard deviation over 10 separate training runs
with different random seeds.

Results. The results can be found in Table 1, 2, and 3. GIN+CRE and CIN
obtain similar results on all three datasets and outperform GIN on two. On two
of the three datasets GIN+SBE performs much better than the GIN and MLP
baselines and competitively to DSS-GNN. Only on ogbg-molhiv it performs
slightly worse than DSS-GNN and GIN. On ZINC both graph transformations
show strong improvements over GIN.

3 Code can be found at https://github.com/ocatias/WL_Return

https://github.com/ocatias/WL_Return
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Table 3. Mean average error (MAE) on ZINC (smaller is better)

Algorithm Test
MAE

Validation
MAE

MLP 1.441± 0.001 1.317± 0.001
GIN 0.250± 0.007 0.264± 0.004
CIN 0.083± 0.005 0.087± 0.005
GIN + CRE 0.090± 0.005 0.097± 0.005
DSS-GNN 0.101± 0.004 0.118± 0.006
GIN + SBE 0.103± 0.006 0.133± 0.006

8 Conclusion

We have proposed three graph transformations, that can grant any GNN some
of the advantages of CW Networks, ESAN, or (local) δ-k-WL. For a sufficiently
powerful GNN, these transformations provably improve the expressiveness. In-
stead of requiring changes to existing models only the preprocessing of graphs
needs to be adapted. Additionally, we can adapt any GNN to operate on reg-
ular cell complexes or bags of subgraphs. For cell encoding and subgraph bag
encoding, we have demonstrated empirically that such an approach can improve
the quality of predictions on graph classification and regression datasets. While
our graph transformations often yield strong improvements over just an MPNN,
this is not always the case. However, due to how simple it is to use this approach
this is not a big problem: all that is required is to change the preprocessing of
the graph datasets. With this many possible algorithms can be switched in and
out quickly with little downside.

More generally, we have shown that graph transformations together with
standard message passing can be used to implement improved message passing.
We have also identified δ-k-WL and its variants as an example of this graph
transformation approach that has been used in the past. Note that our graph
transformations are not restricted to be only used with message passing algo-
rithms. As long as they are combined with an algorithm that is at least as
expressive as WL the theorems hold and give expressiveness guarantees.

The idea of graph transformations to improve the expressiveness of GNNs has
limitations caused by the focus on expressiveness, as there is no direct connection
between a GNN being more expressive and achieving better predictive results. As
a consequence, the fact that a graph transformation increases the expressiveness
of an MPNN alone is not useful: there is a trivial graph transformation that yields
the same expressiveness as any algorithm A that is based on WL or computes
something similar to graph isomorphism classes. For this one simply runs A on
the input graph G and returns a new graph with a single node whose features
encode the output of A on G. Combining this algorithm with an WL or a suitably
expressive MPNN is guaranteed to be as expressive as A. However, it is unlikely
to yield good predictive results as it compresses the graph into a single vector
before the learning algorithm is applied. In the future, we intend to formalize
this idea to avoid such issues and investigate how far we can improve message
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passing with graph transformations. We conjecture that any GNN that passes
messages between pairs of objects along paths that are fixed before the message
passing is performed can be implemented as a graph transformation plus an
MPNN.
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A Proof for Cell Encoding

Before we prove Theorem 1, we introduce necessary definitions. Bodnar et al. [4]
generalized the message passing paradigm from graphs to regular cell complexes.
Regular cell complexes generalize the simplical complexes used by [6]. A regular
cell complex X is a topological space with a partition of subspaces {Xσ}σ∈PX
called cells with an indexing set PX . The subspace of each cell defines its dimen-
sion. This indexing set encodes all topological information about X and can be
used to define a boundary relation ≺ between cells.

Definition 3 (Bodnar et al. [4]). For cells σ, τ the boundary relation σ ≺ τ
holds if and only if Xσ ⊂ Xτ and there is no cell δ such that Xσ ⊂ Xδ ⊂ Xτ .

This boundary relation can then be used to define adjacencies between cells.

Definition 4 (Bodnar et al. [4]). For a regular cell complex X and a cell
σ ∈ PX , we define:

1. The boundary adjacent cells B(σ) = {τ | τ ≺ σ}. These are the
lower-dimensional cells on the boundary of σ. For instance, the boundary
cells of an edge are its vertices.

2. The co-boundary adjacent cell C(σ) = {τ | σ ≺ τ}. These are the higher-
dimensional cells with σ on their boundary. For instance, the co-boundary
cells of a vertex are the edges it is part of.

3. The upper adjacent cells N↑(σ) = {τ | ∃δ such that σ ≺ δ and τ ≺ δ}. These
are the cells of the same dimension as σ that are on the boundary of the same
higher-dimensional cell as σ. The typical graph adjacencies between vertices
are the canonical example here.

To WL generalize to regular cell complexes, Bodnar et al. define how to
collect the colours of neighbouring cells.

Definition 5 (Bodnar et al. [4]). For any cells σ, τ ∈ PX we define C(σ, τ) =
C(σ) ∩ C(τ).

Definition 6 (Bodnar et al. [4]). Let c be a celulular colouring of X with cσ
denoting the colour assigned to cell σ ∈ PX . We define the following multi-sets
of colours:

1. The colours of the boundary cells of σ : cB(σ) = {{cτ | τ ∈ B(σ)}}.
2. The upper adjacent colours of σ : c↑(σ) = {{(cτ , cδ) | τ ∈ N↑(σ) and δ ∈ C(σ, τ)}}.

Cellular Weisfeiler Leman (CWL) performs message passing on cells. In each
iteration of CWL the algorithm computes a colouring for each cell depending
on the colours of neighbouring cells in the previous iteration. We define the
neighbourhood of a cell σ via cB(σ) and c↑(σ). Similar to WL two regular cell
complexes are not isomorphic if at some iteration the colour histograms of the
cells are different for the two complexes.
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1. Given a regular cell complex X, all cells are initialised with the same colour.
2. Given the colour ctσ of cell σ at iteration t, we compute the colour of cell σ

at the next iteration ct+1
σ by injectively mapping the multi-sets of colours

belonging to the adjacent cells of σ using an injective HASH function:
ct+1
σ = HASH

(
ctσ, c

t
B(σ), ct↑(σ)

)
.

3. The algorithm stops when a stable colouring is reached. Two cell complexes
are considered non-isomorphic if their colour histograms are different. Oth-
erwise, the test is inconclusive.

To apply the concept of regular cell complexes to graphs, Bodnar et al. [4]
define the concept of a cellular lifting map, a function f that transforms a graph
to a regular cell complex such that two graphs G1, G2 are isomorphic if and
only if f(G1), f(G2) are isomorphic. They prove that lifting maps called skele-
ton preserving lifting maps together with CWL are at least as expressive as
WL. Typically, lifting maps create cells out of vertices, together with cells that
encode other structures such as induced cycles or cliques. They define CW Net-
works which combine neural networks with cellular message passing, similar to
graph neural networks with message passing. With a sufficiently powerful neural
network CW Networks are equally expressive as CWL. Thus, by lifting graphs
to cell complexes and then using a CW Network one can obtain algorithms that
are strictly more expressive than WL.

We prove that Theorem 1 holds.

Proof. Let PX , PY be the indexing sets of two regular cell complexes. Let GX
and HY be the graphs obtained by applying cell encoding to PX and PY . We use
π to denote the stable colouring obtained by WL to GX , HY and ct to denote
the colour obtained by CWL on PX , PY after iteration t. Thus πσ denotes the
colours assigned to vertex σ by WL and ctσ denotes the colour assigned to cell
σ by CWL. We assume that WL with cell encoding cannot distinguish GX and
HY . From this we show that for every iteration t ≥ 0 of CWL it holds that:

For all τ ∈ V (GX), σ ∈ V (HY ) with πτ = πσ it holds that ctτ = ctσ.
Note that this is equivalent to showing that if WL with cell encoding cannot

distinguish GX and HY then CWL cannot distinguish PX and PY . When WL
with cell encoding cannot distinguish GX and HY , then we know that for every
vertex in GX there is a vertex in HY that are assigned the same color by WL.
The statement then implies that there is a bijective mapping from cells of PX to
PY such that they are assigned the same colour by CWL which means that the
histogram of colours is the same for both graphs. From this it follows that CWL
cannot distinguish PX , PY . We show that this statement holds by induction on
the iteration t of CWL.

The proof will make use of the fact that π is a stable colouring. This means
that any two vertices p ∈ V (GX) and q ∈ V (HY ) assigned the same colour
πp = πq would be assigned the same colour in any additional iteration of WL.
This implies that the multiset of colours of neighbors of p is equivalent to the
multiset of colours of neighbors of q. Thus, there exists a bijective function
α : NGX (p)→ NHY (q) such that for any x ∈ NGX (p) it holds that πx = πα(x).
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Base case: We show that the statement holds for t = 0. CWL initializes
all cells to the same colour. Thus, all we need to show is that PX and PY have
the same number of cells. The number of vertices in GX and HY is equal to the
number of cells in PX and PY , respectively. Since WL cannot distinguish GX
and HY we know that they must have the same number of vertices.

Induction hypothesis: We assume that the statements holds for n.
Induction step: We show that the statements hold for n + 1. Let τ ∈

V (GX), σ ∈ V (HY ) be arbitrary vertices with πτ = πσ. We need to show that
cn+1
τ = cn+1

σ . By the definition of CWL we know that cn+1
τ = HASH

(
cnτ , c

n
B(τ), cn↑ (τ)

)
and cn+1

σ = HASH
(
cnσ, c

n
B(σ), cn↑ (σ)

)
. We will show that the inputs into the two

hash functions are equal for cn+1
τ and cn+1

σ .
First, we show that cnτ = cnσ. This immediately follows from the assumption

πτ = πσ and the induction hypothesis.
Next, we want to show that cnB(τ) = cnB(σ). The assumption πτ = πσ implies

that there exists a bijective function α : NGX (τ) → NHY (σ) such that for any
x ∈ NGX (τ) it holds that πx = πα(x). Since the initial colours encode the
dimensions of the cell, this function mus also respect the dimension of the cell
meaning it only maps vertices to vertices whose cells have the same dimensions.
This implies that for every cell µ with µ ≺ τ we know that there exists a cell
ν = α(µ) with ν ≺ σ such that πµ = πν . With the induction hypothesis it follows
that cnµ = cnν . Observe, that B(τ) contains only cells µ with µ ≺ τ . Analogously,
B(σ) contains cells ν with ν ≺ σ. Thus cnB(τ) = cnB(σ).

Finally, we need to show that cn↑ (τ) = cn↑ (σ). By definition we know that
cn↑ (τ) =

{{
(cnµ, cnδ ) | µ ∈ N↑(τ) and δ ∈ C(τ, µ)

}}
. We can rewrite this as cn↑ (τ) ={{

(cnµ, cnδ ) | τ ≺ δ and µ ≺ δ
}}
. We will make use of the bijective function α de-

fined in the paragraph above. We know that for any cell δ with τ ≺ δ there exists
a vertex δ adjacent to τ such that πδ = πα(δ). This implies two things: first by
using the induction hypothesis we know that cnδ = cnα(δ). Secondly, there exist a
bijective function βδ : NGX (δ)→ NHY (α(δ)) that has the same properties as α.
That is, for any x ∈ NGX (δ) it holds that πx = πβδ(x).

We can now put all of this together. The existence of α means that for any
cell δ with τ ≺ δ there is a cell α(δ) ∈ PY such that cnδ = cnα(δ). Next, with
the existence of βδ it follows that for each cell µ with µ ≺ δ there exists a cell
βδ(µ) ∈ PY such that cnµ = cnβδ(µ). With the fact that α and βδ(µ) are bijective,
it follows that cn↑ (τ) = cn↑ (σ). This proves the induction step and concludes the
proof of Theorem 1.

B Proof for Subgraph Bag Encoding

We prove that Theorem 2 holds.

Proof. LetG,H be two graphs and π a policy. We use τv,S to denote the colouring
of vertex vS obtained by applying WL to Gπ, and τv to denote the colour of
vertex v. We use ctv,S to denote the colour of vertex v in subgraph S obtained in



Weisfeiler and Leman Return with Graph Transformations 17

the t-th iteration of DSS-WL. We assume that WL cannot distinguish Gπ, Hπ.
We prove that for any t ≥ 0 it holds that

∀v ∈ V (G), w ∈ V (H), S ∈ π(G), T ∈ π(H) : τv,S = τw,T → ctv,S = ctw,T

by induction on the iteration t of DSS-WL. Note that proving this statement
is equivalent to the theorem: As the graphs cannot be distinguished by WL we
know that there exists a bijection α : V (Gπ)→ V (Hπ) that maps vertices of the
same colours together. Since the additional features let us distinguish vertices v
from vS , this means that α always maps a vertex vS to a vertex wT such that
they are assigned the same colour. From the statement then follows that the
graphs are assigned the same colours by DSS-WL.

Base case: Any vertices vS ∈ V (Gπ), wT ∈ V (Hπ) are assigned the same
colour by WL as their counterpart v ∈ V (S), w ∈ V (T ) by DSS-WL. Thus from
τv,S = τw,T it follows that c0v,S = c0w,T .

Induction hypothesis: We assume the statement holds for n.
Induction step: Let v ∈ V (G), w ∈ V (H), S ∈ π(G), T ∈ π(H). We assume

that τv,S = τw,T holds and want to show cn+1
v,S = cn+1

w,T . For this, we show that the
colour obtained by the hash function is the same, as in both cases the same values
get put into the function. Thus, we need to show that cnv,S = cnw,T , Nn

v,S = Nn
w,T ,

Cnv = Cnw, and Mn
v = Mn

w. From the induction hypothesis and τv,S = τw,T it
immediately follows that cnv,S = cnw,T .

We want to show that Nn
v,S = Nn

w,Z . From τv,S = τw,Z and the fact that τ
is a stable colouring we know there exists a bijection β : NGπ (vS) → NHπ (wZ)
where for any x ∈ NGπ (vS) it holds that τx = τβ(x). Additionally, all neighbors of
vS are either separator vertices or neighbors in the subgraph S and the features
allow us to distinguish between those two types. Thus β maps vertices from V (S)
to vertices from V (Z). Note that these are exactly the vertices whose colours are
in Nn

v,S , N
n
w,Z . Thus, by combining this with the induction hypothesis we obtain

that Nn
v,S = Nn

w,Z .
We want to show that Cnv = Cnw. We use the function β defined in the previous

paragraph. Due to the additional features, β must map a separator vertex v′ to a
separator vertex w′ meaning that τv′ = τw′ . As the colouring is stable, this means
that there exists a bijective function γ mapping neighbors of v′ to neighbors of w′
such that they are assigned the same colour by τ . As these neighborhoods corre-
spond to cv,S′ , cw,T ′ for all S′ ∈ π(G), T ′ ∈ π(H), we can combine this with the
induction hypothesis to obtain that Cnv =

{{
cnv,S′ | S′ ∈ π(G) and v ∈ V (S′)

}}
={{

cnw,T ′ | T ′ ∈ π(H) and w ∈ V (T ′)
}}

= Cnw. Note that v′ also has a neighbor vG,
that is a vertex from the graph G, which was not created from a policy. However,
as this vertex is assigned a different feature γ does not map such a vertex to a
vertex created by the policy.

Finally, we want to show Mn
v = Mn

w. Recall that Mn
v = {{Cnx | x ∈ NG(v)}}.

In the previous paragraph we have already argued that τv′ = τw′ . Thus we
know that τv,G = τw,H as the colouring is stable and they are assigned a feature
that is unique among the neighbours of v′ and w′. Thus there exists a bijective
function σ : NG(v)→ NH(w) such that for any neighbor x ∈ NG(v) it holds that
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τx,G = τσ(x),H . We want to show that for any such neighbor x ∈ NG(v) it holds
that Cnx = Cnσ(x). Let x be one such vertex. As τx,G = τσ(x),H it follows that the
separator vertices assigned to x and σ(x) have the same colour: τx = τσ(x). From
here we can use the same argument as in the previous paragraph to obtain that
Cnx = Cnσ(x). This concludes the proof of the induction hypothesis and shows
that the theorem holds.

C δ-k Graph Transformation

We start by introducing the relevant variants of (local) δ-k-WL [19]. Then we
define our graph transformations and prove that they are at least as expressive
as the original algorithms.

C.1 δ-k-dimensional Weisfeiler-Leman

The algorithm starts by assigning to each k-tuple a colour that encodes its
isomorphism class, meaning that two tuples are assigned the same colour if and
only if there exists an isomorphism between the labeled subgraphs induced by
the tuples. In each iteration of δ-k-WL, each k-tuple is assigned a colour that
depends on its previous colour and the colours of its neighbours: Let v be a k-
tuple of vertices from graph G and j be in {1, . . . , n}. We use φj(v, w) to denote
the tuple obtained by replacing the j-th vertex in v by the vertex w. For a tuple
w = φj(v, w), we say that v and w are j-neighbours. We use vj to denote the
j-th vertex in v, that is the vertex that gets replaced by w to obtain w. If vj
and w are neighbors in G, then v and w are local j-neighbours, otherwise they
are global j-neighbours. The function adj(v,w) returns ‘L’ if v and w are local
j-neighbours and ‘G’ otherwise. We can define δ-k-WL:

1. Assign to each k-tuple a colour that encodes its isomorphism class
2. Given the colour ctv of tuple v in iteration t. The colour in the next iteration

is defined by ct+1
v =

(
ctv,M

t
δ,δ̄

(v)
)
where

M t
δ,δ̄

(v) =
({{(

cnφ1(v,w), adj(v, φ1(v, w))
)
| w ∈ V (G)

}}
, . . . ,{{(

cnφk(v,w), adj(v, φk(v, w))
)
| w ∈ V (G)

}})
.

3. The algorithm stops when a stable colouring is reached. Two graphs are
non-isomorphic if their histogram of colours is different. Otherwise the test
is inconclusive.

The δ-k-WL algorithm is strictly more expressive than k-WL. However, as
it passes messages between global and local neighbors, it has the same runtime
complexity as k-WL. To remedy this, Morris et al. [20] propose two additional
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variants of δ-k-WL that make only limited use of global neighbourhoods. Local
δ-k-Weisfeiler-Leman (δ-k-LWL) only considers local j-neighborhoods. For this
M t
δ,δ̄

(v) gets replaced by

M t
δ(v) =

({{
cφ1(v,w)|w∈NG(v1)

}}
, . . . ,

{{
cφk(v,w)|w∈NG(vk)

}})
.

The authors proved that δ-k-WL is at least as expressive as δ-k-LWL. An-
other variant, δ-k-LWL+ uses a similar aggregation function asM t

δ(v). However,
it supplements the colour of a local j-neighbour by the number of j-neighbours
(including global neighbours) that have the same colour as the local neighbour.
This means that δ-k-LWL+ uses only some global information. Interestingly, δ-
k-LWL+ is equally expressive as δ-k-WL. There exist equally expressive neural
network variant for all δ-k-WL variants.

C.2 Graph Transformation

We present δ-k graph transformation, an algorithm that transforms a graph to
another graph such that applying WL or a suitably expressive GNN to the result
graph is equally expressive as δ-k-WL. Note that a very similar construction was
used by Morris et al. [19] to implement neural network variants of δ-k-WL.

Definition 7 (δ-k Graph Transformation). Let G = (V,E) be a graph and
k ≥ 1 an integer. We denote by TL (TG) the sets containing every triplet (x, y, j)
for which the k-tuples x and y are local (respectively global) j-neighbors. Then
applying a δ-k graph transformation to G returns the graph Gδ,k = (Vδ,k, Eδ,k)
where

Vδ,k = {x | x ∈ V (G)k} ∪ {lxyj | (x, y, j) ∈ TL} ∪ {gxyj | (x, y, j) ∈ TG},

Eδ,k ={{x, lxyj}, {y, lxyj} | (x, y, j) ∈ TL} ∪ {{x, gxyj}, {y, gxyj} | (x, y, j) ∈ TG}.

For any vertex x corresponding to a tuple we add a vertex feature that encodes
its isomorphism type and allows us to distinguish it from l and g vertices. To all
lxyj (or gxyj) vertices we add a feature that allows us to distinguish it from all
g (respectively l) vertices and all vertices corresponding to tuples. Additionally,
we add a feature that encodes j.

The l and g vertices and their features allow us to distinguish whether two
tuples are global or local j-neighbors, and keep track of the value of j. These
nodes are not strictly necessary if one uses edge features. For this one removes
all edges, and all g and l vertices. Then one simply adds an edge between two
vertices if their corresponding tuples are j-neighbors for any value of j. The
edge features then encode j and whether they are global or local neighbours.
This works because for any two different tuples there exists at most one value
of j for which they are j-neighbours. Thus at most one edge needs to be created
between any two vertices.
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For the purpose of GNNs, the features must be padded to have the same
length for all vertices. Additionally, it might be useful to use one-hot encoding
for j and the type of vertex.

Theorem 3. δ-k graph transformation together with WL is at least as expressive
as δ-k-WL.

Proof. Let G and H be two graphs, we need to prove that if WL cannot dis-
tinguish Gδ,k and Hδ,k then δ-k-WL cannot distinguish G and H. We use πv
to denote the colour of vertex v encoding a k-tuple obtained by applying WL
to Gδ,k or Hδ,k. We use ktv to denote the colour of the corresponding k-tuple
v computed in the t-th iteration of δ-k-WL on G or H. We assume that WL
cannot distinguish Gδ,k, Hδ,k and show the stronger statement

∀x ∈ V (G)k, y ∈ V (H)k : πx = πy → ctx = cty

for all t ≥ 0 by induction on the iteration t of δ-k-WL.
Base case: Let x and y be arbitrary k-tuples. The statement follows from

the fact that both the initial features of x, y and c0x, c0y encode the isomorphism
class of x and y.

Induction hypothesis: We assume the statement holds for n.
Induction step: Let x and y be arbitrary k-tuples. We need to show that

πx = πy → cn+1
x = cn+1

y . We assume that πx = πy. From the definition of δ-k-
WL it follows that cn+1

x =
(
cnx,M

n
δ,δ̄

(x)
)
and cn+1

y =
(
cny,M

n
δ,δ̄

(y)
)
. From the

assumption that πx = πy and the induction hypothesis it follows that cnx = cny.
Next, we want to show that Mn

δ,δ̄
(x) = Mn

δ,δ̄
(y). By definition we know that

Mn
δ,δ̄

(x) =
({{(

cnφ1(x,w), adj(x, φ1(x, w))
)
| w ∈ V (G)

}}
, . . . ,{{(

cnφk(x,w), adj(x, φk(x, w))
)
| w ∈ V (G)

}})
.

We prove that Mn
δ,δ̄

(x) = Mn
δ,δ̄

(y) by showing that for any j ∈ [1, . . . , k] it holds
that {{(

cnφj(x,w), adj(x, φj(x, w))
)
| w ∈ V (G)

}}
=
{{(

cnφj(y,w), adj(y, φj(y, w))
)
| w ∈ V (H)

}}
.

(1)

As πx = πy we know that there exists a a bijective function α : NGδ,k(x)→
NHδ,k(y) such that for any neighbor p of x it holds that πp = πα(p). Recall that
all neighbors of x and y are l and g vertices, and that the features of l and g
vertices encode their type and the j of the j-neighborhood that connects the
tuples. As WL is a colour refinement algorithm it follows that α only maps l to
l vertices and g to g vertices. Additionally, α only maps one vertex to another
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if they have the same j. Due to the colouring being stable and x and y having
the same colour it follows that{{(

πφj(x,w), adj(x, φj(x,w))
)
| w ∈ V (G)

}}
=
{{(

πα(φj(x,w)), adj(x, α(φj(x,w)))
)
| w ∈ V (G)

}}
=
{{(

πφj(y,w), adj(y, φj(y, w))
)
| w ∈ V (H)

}}
.

By applying the induction hypothesis we obtain that Equation 1 holds. This
shows that the induction step is true and concludes the proof of Theorem 3.

As δ-k-WL is equally expressive as δ-k-LWL+ and at least as expressive as
k-WL and δ-k-LWL, this result also generalizes to those algorithms. However,
the big advantages of δ-k-LWL and δ-k-LWL+ over δ-k-WL is that they only
make very restricted use of global j-neighbourhoods. This means that δ-k graph
transformation is not an efficient alternative as it uses all global neighbourhoods.
However, the graph transformation can be adapted into local δ-k graph trans-
formation which only makes uses of local neighbourhoods.

Definition 8 (Local δ-k Graph Transformation). Let G = (V,E) be a graph
and k ≥ 1 an integer. Then applying a local δ-k graph transformation to G
returns the graph Gδ,k = (Vδ,k, Eδ,k) where

Vδ,k ={x | x ∈ V (G)k} ∪
{lxyj | x, y ∈ V (G)k, j ∈ [1, . . . , k], x and y are local j-neighbours},

Eδ,k ={{x, lxyj}, {y, lxyj} | x, y ∈ V (G)k, j ∈ [1, . . . , k], x and y are local j-neighbours}.

For any vertex x corresponding to a tuple we add a vertex feature that encodes its
isomorphism type and a feature that allows us to distinguish it from l vertices.
To all lxyj vertices we add a feature that allows us to distinguish it from all
vertices corresponding to tuples. Additionally, we add a feature that encodes j.

Theorem 4. Local δ-k graph transformation together with WL is at least as
expressive as δ-k-LWL.

Similar to δ-k graph transformation, we can avoid using l vertices if we use
edge features. Next, we prove Theorem 4.

Proof. Let G and H be two graphs, we need to prove that if WL cannot dis-
tinguish Gδ,k and Hδ,k then δ-k-LWL cannot distinguish G and H. We use πv
to denote the colour of vertex v encoding a k-tuple obtained by applying WL
to Gδ,k or Hδ,k. We use ktv to denote the colour of the corresponding k-tuple
v computed in the t-th iteration of δ-k-LWL on G or H. We assume that WL
cannot distinguish Gδ,k, Hδ,k and show the stronger statement

∀x ∈ V (G)k, y ∈ V (H)k : πx = πy → ctx = cty

for all t ≥ 0 by induction on the iteration t of δ-k-LWL.
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Base case: Let x and y be arbitrary k-tuples. The statement follows from
the fact that both the initial features of x, y and c0x, c0y encode the isomorphism
class of x and y.

Induction hypothesis: We assume the statement holds for t = n.
Induction step: Let x and y be arbitrary k-tuples. We need to show that

πx = πy → cn+1
x = cn+1

y . We assume that πx = πy. From the definition of δ-
k-LWL it follows that cn+1

x = (cnx,Mn
δ (x)) and cn+1

y =
(
cny,M

n
δ (y)

)
. From the

assumption that πx = πy and the induction hypothesis it follows that cnx = cny.
Next, we want to show that Mn

δ (x) = Mn
δ (y). By definition we know that

Mn
δ (x) =

({{(
cnφ1(x,w)

)
| w ∈ NG(x1)

}}
, . . . ,{{(

cnφk(x,w)

)
| w ∈ NG(xk)

}})
.

We prove that Mn
δ (x) = Mn

δ (y) by showing that for any j ∈ [1, . . . , k] it holds
that {{(

cnφj(x,w)

)
| w ∈ NG(xj)

}}
=
{{(

cnφ1(y,w)

)
| w ∈ NH(yj)

}}
.

(2)

As πx = πy we know that there exists a a bijective function α : NGδ,k(x)→
NGδ,k such that for any neighbor p of x it holds that πp = πα(p). Recall that all
neighbors of x and y are l vertices. As the feature of an l vertex encodes j and
WL is a colour refinement algorithm, we know that α only maps two vertices to
another if they have the same j. Due to the colouring being stable and x and y
having the same colour it follows that{{(

πφj(x,w)
)
| w ∈ NG(xj)

}}
=
{{(

πα(φj(x,w))
)
| w ∈ NG(xj)

}}
=
{{(

πφj(y,w)
)
| w ∈ NH(yj)

}}
.

By applying the induction hypothesis we obtain that Equation 2 holds. This
shows that the induction step is true and concludes the proof of Theorem 4.

As δ-k-LWL+ makes use of counting global neighbors with the same colour
it is not obvious whether it is possible to create a similar algorithm by just
combining a graph transformation and WL. This shows one of the limits of our
idea: while we are able to create a transformation with the same expressiveness,
we are unable to build one that is equally sparse.

Suppose we apply the graph transformation to a graph with N vertices.
Then, the δ-k graph transformation creates, Nk + kNk+1/2 vertices and kNk+1

edges. It thus runs in time O(Nk+1). By using edge features, the δ-k graph
transformation only creates Nk vertices and kNk+1 edges. The local δ-k graph
transformation creates less vertices and edges, depending on the sparsity of the



Weisfeiler and Leman Return with Graph Transformations 23

graph. Running a single iteration of WL on a graph created by the (local) δ-k
graph transformations is computationally more expensive than the correspond-
ing WL variant. This is due to the l and g vertices causing more messages to
be passed. However, if one uses edge features l and g are unnecessary and the
runtime complexity will be the same as for the corresponding WL variant.

D Experimental Details

The neural network models are implemented in Python with PyTorch [21] and
PyTorch Geometric [12]. The code to compute cellular ring encoding is based
on [4] and uses graph-tool4 to compute induced cycles in the graphs. The code
to compute subgraph bags is based on [3]. We use Weights & Biases5 to keep
track of the experiments.

All models except CIN were trained on systems with an NVIDIA GeForce
RTX 3080 GPUs. CIN was trained on a system with an NVIDIA GeForce GTX
TITAN X GPU, and a system with an GTX 1080 TI GPU.

D.1 Type Pooling

In all our new transformation algorithm vertices get assigned additional features
that encode the type of a vertex. In cell encoding, the features encode the di-
mension of the cell that corresponds to the vertex. In subgraph bag encoding,
the features encode whether a vertex is a separator vertex, in the original graph,
or in a subgraph. Inspired by a pooling operation by Bodnar et al. [4] we pro-
pose type pooling. The idea is that vertices with different types contain different
information and have varying importance. Thus instead of pooling all vertices
in a graph, we instead pool all vertices of a type. To get a single output for
the entire graph, we then apply a multilayer perceptron with a ReLU activation
function to each pooled vector and then sum the results. Formally, let T be the
set of types and let Ht with t ∈ T be the set of all representations of vertices
of type t, and MLPt be a multilayer perceptron with activation function. Then
type pooling computes

Type-Pool =
∑
t∈T

MLPt

(∑
h∈Ht

h

)
.

D.2 Hyperparameters

For all methods we tune the number of layers, dropout probability, and embed-
ding dimension (or hidden layer size for MLP). For GIN+CRE and CIN, we tune
the size of the largest cycle to lift. For GIN+CRE and GIN+SBE we also tune
whether to use type pooling (see Appendix D.1). Additionally, for GIN+CRE
we tune whether to aggregate edge and vertex features to higher dimensional
cells. The hyperparameters can be found in Table 4.
4 https://graph-tool.skewed.de/
5 https://wandb.ai/

https://graph-tool.skewed.de/
https://wandb.ai/
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Table 4. Hyperparameter grids for all models

Parameter Models Possible Values
Number of layers All [2,3,4,5]
Embedding Dimension /
Hidden Layer Size (MLP) All [32, 64, 128, 256, 300]

Dropout probability All [0, 0.5]
Ring size GIN+CRE, CIN [Yes, No]
Type pooling GIN+CRE, GIN+SBE [Yes, No]
Aggregate vertex
features GIN+CRE [Yes, No]

Aggregate edge
features GIN+CRE [Yes, No]
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