
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLING AND INTEGRATING
RELATIONAL AND SENSORY INFORMATION IN
TRANSFORMER ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Relational reasoning is a central component of generally intelligent systems, en-
abling robust and data-efficient inductive generalization. Recent empirical evidence
shows that many existing neural architectures, including Transformers, struggle
with tasks requiring relational reasoning. In this work, we distinguish between
two types of information: sensory information about the properties of individual
objects, and relational information about the relationships between objects. While
neural attention provides a powerful mechanism for controlling the flow of sen-
sory information between objects, the Transformer lacks an explicit computational
mechanism for routing and processing relational information. To address this
limitation, we propose an architectural extension of the Transformer framework
that we call the Dual Attention Transformer (DAT), featuring two distinct attention
mechanisms: sensory attention for directing the flow of sensory information, and a
novel relational attention mechanism for directing the flow of relational informa-
tion. We empirically evaluate DAT on a diverse set of tasks ranging from synthetic
relational benchmarks to complex real-world tasks such as language modeling
and visual processing. Our results demonstrate that integrating explicit relational
computational mechanisms into the Transformer architecture leads to significant
performance gains in terms of data efficiency and parameter efficiency.

1 INTRODUCTION

A central goal of machine learning research is to develop universal architectures capable of learning
and reasoning across a wide range of tasks and data modalities. Scientific approaches to understanding
human and animal intelligence seek to explain intelligent behavior using a small set of fundamental
principles [1]. However, machine intelligence, there exists a tension between the objective of
developing a general architecture and the need to incorporate inductive biases that are beneficial
for specific tasks [2, 3]. When faced with finite training data and numerous solutions to empirical
risk minimization, inductive biases steer the learning algorithm towards solutions with desirable
properties, enhancing data efficiency and generalization. A core scientific challenge of machine
learning is to identify a complete and broadly applicable set of inductive biases that promote robust,
flexible, and data-efficient learning across diverse real-world problems.

The Transformer architecture [4] offers a promising starting point for designing versatile, general-
purpose machine learning frameworks. By operating over sets or sequences of objects, Transformers
are able to support highly-general input and output modalities. More importantly, neural attention
provides an effective computational mechanism for dynamically routing information between different
elements in the input, enabling iterative contextual processing. This has led to remarkable empirical
success across several domains, including language [5–9] and visual processing [10–12].

However, recent work has shown that Transformers struggle to efficiently learn tasks involving
relational reasoning [13–22]. Relational reasoning is a central component of generally intelligent
systems, and is believed to underlie human abilities for abstraction and systematic generalization [23–
25]. The power of relational reasoning lies in its capacity to generate inferences and generalizations
in systematic and novel ways, which can ultimately lead to universal inductive generalization from a
finite set of observations to an infinite set of novel instances [26]. The lack of support for efficient and
robust relational learning and abstraction remains a major limitation of the Transformer framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, drawing an analogy to neural systems in the brain [27], we distinguish between two
types of information: sensory information which encodes the properties of individual objects, and
relational information which encodes the relationships between objects. Accordingly, we posit the
following explanation for the Transformer’s limited abilities in relational learning: while neural
attention provides a powerful mechanism for routing sensory information in the input, the Trans-
former lacks an explicit computational mechanism for routing and processing relational information
between objects in the input. We argue that a unified architecture for general machine intelligence
requires computational mechanisms and inductive biases for processing both sensory and relational
information. Towards this goal, we propose an extension of the Transformer framework that enables
explicit routing and processing of both sensory and relational information.

To introduce our proposed method at a high-level, it is useful to view standard Transformers as
an instance of a broader neural message-passing computational paradigm that consists of iterative
information retrieval followed by local processing. In the general form of a message-passing
procedure, a set of objects x1, . . . , xn are processed via an iterative application of the following steps:

(Information Retrieval) xi ← Aggregate
(
xi, {mj→i}nj=1

)
,

(Local Processing) xi ← Process(xi).
(1)

In Transformers, the information retrieval step corresponds to the self-attention mechanism, where the
message sent from object j to object i is an encoding of the sender’s sensory features, mj→i = ϕv(xj).
These messages are then aggregated according to some selection criterion based on the receiver’s
features, determined by softmax attention scores.

To enable explicit relational representation learning, we propose a novel attention mechanism, dubbed
relational attention, that selectively attends to and routes relational information between objects.
In relational attention, the message from the sender object to the receiver object consists of a set
of relations between them, which can be expressed as mj→i = r(xi, xj). Here, the relation r(·, ·)
models a series of comparisons between the pair of objects across different feature dimensions
using inner products of feature maps. We integrate this with the standard attention mechanism of
Transformers, yielding a variant of multi-head attention for processing both sensory and relational
information in parallel. This Dual Attention architecture disentangles these two types of information
during the aggregation phase and integrates them in the information processing stage.

The contributions of this paper are summarized as follows:

• A neural mechanism for routing and processing relational information. We introduce a new
relational attention mechanism that disentangles relational information from sensory information.
While standard self-attention models the retrieval of sensory information, relational attention
models the retrieval of relational information.

• An architectural extension of the Transformer for joint sensory-relational processing. We
introduce an extension of the Transformer architecture that integrates sensory and relational
information through Dual Attention—a form of multi-head attention with two distinct types
of attention heads. Standard self-attention heads encode sensory information, while relational
attention heads encode relational information.

• Empirically evaluating the promise of relational computational mechanisms. While relational
reasoning is believed to be an essential component of general intelligence, the success of relational
inductive biases in machine learning has so far been mainly limited to synthetic tasks, despite
recent advances in relational architectures [15–22]. We evaluate the Dual Attention Transformer
architecture on a diverse set of tasks ranging from synthetic relational benchmarks to complex
real-world tasks such as language modeling and visual processing. Our results demonstrate that
incorporating explicit relational computational mechanisms into the Transformer architecture
leads to significant performance gains in terms of data efficiency and parameter efficiency.

2 DISENTANGLING ATTENTION OVER SENSORY AND RELATIONAL
INFORMATION

2.1 STANDARD ATTENTION: ATTENTION OVER SENSORY INFORMATION

The attention mechanism of standard Transformers can be understood as a form of neural message-
passing that performs selective information retrieval over the sensory information in the context.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑥

𝑦1

𝑦2

𝑦𝑛

𝑣1

𝑣2

𝑣𝑛

⋮
𝑥

(a) Attention(x, (y1, . . . , yn))

𝑥

𝑦1

𝑦2

𝑦𝑛

𝑠1

𝑠2

𝑠𝑛

⋮

𝑟(𝑥, 𝑦1)

𝑟(𝑥, 𝑦2)

𝑟(𝑥, 𝑦𝑛) +

+

+

⋮

(b) RelationalAttention(x, (y1, . . . , yn))

Figure 1: Standard self-attention retrieves sensory information vi about the attributes of individual
objects while relational attention retrieves relational information r(x, yi) about the relationship
between the objects in the context and the receiver. Each relation is tagged with a symbol si which
acts as an abstract variable identifying the sender. In both cases, information is aggregated according
to the attention scores αi, which are computed by a softmax over inner products of queries and keys.

An object emits a query that is compared against the keys of each object in its context via an inner
product. A match occurs when the inner product is large, causing an encoding of the features of the
attended object to be retrieved and added to the residual stream of the receiver. Formally, attention
between an object x ∈ Rd and a context y = (y1, . . . , yn) ∈ Rn×d takes the form

Attention(x, (y1, . . . , yn)) =

n∑
i=1

αi(x,y)ϕv(yi), where,

α(x,y) = Softmax
([〈

ϕattn
q (x), ϕattn

k (yi)
〉]n

i=1

)
,

(2)

where ϕattn
q , ϕattn

k are learnable query and key maps controlling the selection criterion, and ϕv is a
learnable value map controlling what information about yi is sent. The attention scores α(x,y) are
used to retrieve a convex combination of the values, where αi(x,y) denotes the i-th component.

Here, the retrieved information is sensory, comprising the features and attributes of individual objects
in the context. For this reason, we refer to standard neural attention as “sensory attention”.

2.2 RELATIONAL ATTENTION: ATTENTION OVER RELATIONAL INFORMATION

Standard neural attention does not explicitly capture information about the relationship between the
sender and the receiver, making relational learning in standard Transformers inefficient [13–22]. We
propose relational attention, a novel attention mechanism for dynamically routing relational informa-
tion between objects. Under the message-passing view of eq. (1), relational attention represents an
operation where the message from one object to another encodes the relationship between them.

Mirroring standard attention, this operation begins with each object emitting a query and a key, which
are compared via an inner product to compute attention scores determining which objects to attend to.
Next, instead of retrieving the sensory features of the selected object, relational attention retrieves the
relation between the two objects—defined as a series of comparisons between the two objects under
different feature subspaces. In addition, a symbolic identifier is sent to indicate the identity of the
sender to the receiver. Mathematically, this operation is defined as follows.

RelationalAttention(x, (y1, . . . , yn)) =

n∑
i=1

αi(x,y)
(
r(x, yi)Wr + siWs

)
, where,

α(x,y) = Softmax
([〈

ϕattn
q (x), ϕattn

k (yi)
〉]n

i=1

)
,

r(x, yi) =
(〈

ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(yi)

〉)
ℓ∈[dr]

,

(s1, . . . , sn) = SymbolRetriever(y; Slib)

(3)

Thus, relational attention between the object x and the context y = (y1, . . . , yn) retrieves a convex
combination of the relation vectors {r(x, yi)}ni=1, representing x’s relationship with each object in
the context. Relational attention also retrieves a symbol vector si, selected from a learned symbol
library Slib, that encodes the identity information of the attended object. The role and implementation

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of the symbols will be discussed in the next subsection. As with standard attention, ϕattn
q , ϕattn

k are
learned feature maps that govern which object(s) in the context to attend to. Another set of query and
key feature maps, ϕrel

q,ℓ, ϕ
rel
k,ℓ, ℓ ∈ [dr], are learned to represent the relation between the sender and the

receiver. For each ℓ ∈ [dr], the feature maps ϕrel
q,ℓ, ϕ

rel
k,ℓ extract specific attributes from the object pair,

which are compared by an inner product. This produces a dr-dimensional relation vector representing
a fine-grained series of comparisons (⟨ϕrel

q,ℓ(x), ϕ
rel
k,ℓ(yi)⟩)ℓ∈[dr] across different feature subspaces.

In certain tasks [20–22], a useful inductive bias on the relations function r(·, ·) is symmetry; i.e.,
r(x, y) = r(y, x), ∀x, y. This corresponds to using the same feature filter for the query and key maps,
ϕrel
q = ϕrel

k . This adds structure to the relation function, transforming it into a positive semi-definite
kernel that defines a pseudometric on the object space, along with a corresponding geometry.

2.3 SYMBOL ASSIGNMENT MECHANISMS

To process relational information effectively, the receiver must have two pieces of information: 1) its
relationship to the objects in its context, and 2) the identity of the object associated with each relation.
In relational attention, the former is captured by r(x, yi) and the latter by si. The symbols si are used
to tag each relation with the identity information of the sender.

The symbol si identifies or points to the object yi, but, importantly, is designed to not fully encode
the features of the object. Instead, the symbols si function as abstract references to objects, perhaps
viewed as a connectionist analog of pointers in traditional symbolic systems. In particular, by drawing
symbol vectors from a finite library Slib to identify objects, relational attention maintains a relation-
centric representation. This separation between sensory and relational information is key to making
relational attention disentangled from sensory features, enabling generalization across relations.

The notion of the “identity” of an object can vary depending on context. In this work, we consider
modeling three types of identifiers: 1) position, 2) relative position, or 3) an equivalence class over
features. For each type of identifier, we model a corresponding symbol assignment mechanism [21].
We find that different symbol assignment mechanisms are more effective in different domains.

Positional Symbols. In some applications, it is sufficient to identify objects through their position
in the input sequence. We maintain a library of symbols Slib = (s1, . . . , smax_len) ∈ Rmax_len×d and
assign si to the i-th object in the sequence. These are essentially learned positional embeddings.

Position-Relative Symbols. Often, the relative position with respect to the receiver is a more
useful identifier than absolute position. This can be implemented with position-relative embeddings.
We learn a symbol library Slib = (s−∆, . . . , s−1, s0, s1, . . . , s∆) ∈ R(2∆+1)×d, where ∆ is the
maximum relative position, and relational attention becomes

∑
j αij(r(xi, xj)Wr + sj−i Ws).

Symbolic Attention. In certain domains, some information about the objects’ features is necessary
to identify them for the purposes of relational processing. Yet, to maintain a relational inductive bias,
we would like to avoid sending a full encoding of object-level features. In symbolic attention, we
learn a set of symbol vectors, Slib = (s1, . . . , sns

) ∈ Rns×d and a matching set of feature templates
Flib = (f1, . . . , fns

). We retrieve a symbol for each object by an attention operation that matches
the input vectors xi against the feature templates fj and retrieves symbols sj .

SymbolicAttention(x) = Softmax
(
(xWq)F

⊤
lib

)
Slib. (4)

Here, Slib, Flib,Wq are learned parameters. This can be thought of as implementing a learned
differentiable “equivalence class map” over feature embeddings. Crucially, the number of symbols
(i.e., feature equivalence classes) is finite, which enables relational attention to still produce a
relation-centric representation while tagging the relations with the necessary identifier.

2.4 WHAT CLASS OF FUNCTIONS CAN RELATIONAL ATTENTION COMPUTE?

To give some intuition about the type of computation that relational attention can perform, we
present the following approximation result. The following theorem states that relational attention can
approximate any function on X × Yn that 1) selects an element in (y1, . . . , yn), then 2) computes a
relation with it. Both the selection criterion and the relation function are arbitrary, and the selection
criterion can be query-dependent. The formal statement and proof are given in Appendix A.
Theorem 1 (Informal). Let Select : X×Yn → Y be an arbitrary preference selection function, which
selects an element among (y1, . . . , yn) based on a query-dependent preorder relation {≼x}x∈X . Let

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Rel : X ×Y → Rdr be an arbitrary continuous relation function on X ×Y . There exists a relational
attention module that approximates the function Rel(x, Select(x,y)) to arbitrary precision.

3 INTEGRATING ATTENTION OVER SENSORY AND RELATIONAL
INFORMATION

3.1 DUAL ATTENTION

One of the keys to the success of the Transformer architecture is the use of so-called multi-head
attention. This involves computing multiple attention operations in parallel at each layer and con-
catenating the output, enabling the model to learn multiple useful criteria for routing information
between objects. However, in standard Transformers, these attention heads focus solely on routing
sensory information, lacking explicit support for routing relational information between objects.

We posit that both sensory and relational information are crucial for robust and flexible learning over
sequences or collections of objects. To this end, we propose an extension of multi-head attention
comprising two distinct types of attention heads: sensory attention (i.e., standard self-attention), and
relational attention. This yields a powerful mechanism for dynamically routing both sensory and
relational information in parallel. Our hypothesis is that by having access to both computational
mechanism, the model can learn to select between them based on the current task or context, as well
as compose them to create highly-expressive and flexible computational circuits.

Algorithm 1 describes the proposed module, referred to as dual attention. The number of sensory-
attention heads nsa

h and number of relational attention heads nra
h are hyperparameters. The sensory-

attention heads attend to sensory information while the relational attention heads attend to relational
information. The combined nh := nsa

h + nra
h heads are then concatenated to produce the output. The

result is a representation of contextual information with integrated sensory and relational components.
Appendix B provides further discussion on the details of the architecture and its implementation.

Algorithm 1: Dual Attention

Input: x = (x1, . . . , xn) ∈ Rn×d

Compute self-attention heads

α(h) ← Softmax
(
(xW attn

q,h)(xW attn
k,h)

⊺)
, h ∈ [nsa

h]

e
(h)
i ←

∑
j

α
(h)
ij xj W

h
v , i ∈ [n], h ∈ [nsa

h]

ei ← concat
(
e
(1)
i , . . . , e

(nsa
h)

i

)
W sa

o , i ∈ [n]

Assign symbols: s = (s1, . . . , sn)← SymbolRetriever(x; Slib)

Compute relational attention heads

α(h) ← Softmax
(
(xW attn

q,h)(xW attn
k,h)

⊺)
, h ∈ [nra

h]

rij ←
(〈

xi W
rel
q,ℓ , xj W

rel
k,ℓ

〉)
ℓ∈[dr]

i, j ∈ [n]

a
(h)
i ←

∑
j

α
(h)
ij

(
rij W

h
r + sj W

h
s

)
, i ∈ [n], h ∈ [nra

h]

ai ← concat
(
a
(1)
i , . . . , a

(nra
h)

i

)
W ra

o , i ∈ [n]

Output :
(
concat(ei, ai)

)n
i=1

Attention Masks & Causality. Any type of attention mask (e.g., causal mask for autoregressive
language modeling) can be implemented in relational attention in the same way as for standard
self-attention (i.e., mask is added to αh

ij pre-softmax).

Positional Encoding. There exists different methods in the literature for encoding positional infor-
mation in the Transformer architecture. For example, [4] propose adding positional embeddings to
the input, [28] propose adding relative-positional embeddings at each attention operation, and [29]

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

propose rotary positional embeddings (RoPE) which apply a position-dependent map to the queries
and keys pre-softmax. These methods are compatible with dual attention and are configurable options
in our public implementation.

Computational complexity. The computational complexity of relational attention scales similarly
to standard self-attention with a O(n2) dependence on sequence length. Like standard attention,
relational attention can be computed in parallel via efficient matrix multiplication operations.

Symmetric relations. A symmetry constraint can be injected into the relations rij by imposing that
W rel

q = W rel
k , which is a useful inductive bias when the task-relevant relations have this structure.

3.2 THE DUAL ATTENTION TRANSFORMER ARCHITECTURE

The standard Transformer architecture is composed of repeated blocks of attention (information
retrieval) followed by an MLP (local processing). Our proposed Dual Attention Transformer follows
this same structure, but replaces multi-head self-attention with dual attention. At each layer, dual
attention dynamically retrieves both sensory and relational information from the previous level of
computation, which is then processed locally by an MLP. Algorithms 2 and 3 defines an encoder and
decoder block with dual attention. Composing these blocks yields the Dual Attention Transformer
architecture.

Algorithm 2: Dual Attention Encoder Block

Input :x ∈ Rn×d

x← Norm(x+DualAttn(x))
x← Norm(x+MLP(x))

Output: x

Algorithm 3: Dual Attention Decoder Block

Input :x,y ∈ Rn×d

x← Norm(x+DualAttn(x))
x← Norm(x+CrossAttn(x,y))
x← Norm(x+MLP(x))
Output: x

The Dual Attention Transformer framework supports all architectural variants of the standard Trans-
former, making it applicable to a wide range of task paradigms. An encoder-decoder architecture
with causal dual-head attention in the decoder can be applied to sequence-to-sequence tasks, as in the
original Transformer paper [4]. An encoder-only architecture can be used for a BERT-style language
embedding model [6] or a ViT-style vision model [10]. A decoder-only architecture with causal
dual-head attention can be used for autoregressive language modeling.

4 EMPIRICAL EVALUATION

We empirically evaluate the Dual Attention Transformer (abbreviated, DAT) architecture on a range of
tasks spanning different domains and modalities. Our goal is to assess the impact of integrating rela-
tional inductive biases into the Transformer architecture. We begin with a synthetic relational learning
benchmark to evaluate DAT’s relational computational mechanisms in a more controlled setting.
We then proceed to evaluate the proposed architecture on more complex real-world tasks, including
mathematical problem-solving, image recognition, and language modeling. These experiments
cover multiple task paradigms and architectural variants, including: discriminative (encoder-only
architecture), sequence-to-sequence (encoder-decoder), autoregressive language modeling (decoder-
only), and vision (ViT-style architecture) tasks. For each experiment, we compare a DAT model that
incorporates both sensory and relational heads against a standard Transformer where all heads are
ordinary sensory attention heads. The difference in performance highlights the impact of integrating
both types of attention heads, enabling a richer representation of sensory and relational information.
We summarize the experimental results below and defer certain experimental details to Appendix C.

4.1 SAMPLE-EFFICIENT RELATIONAL REASONING: RELATIONAL GAMES

We begin our empirical evaluation with the “Relational Games” benchmark for visual relational
reasoning contributed by Shanahan et al. [17]. The dataset consists of a family of binary classification
tasks, each testing a model’s ability to identify a particular visual relationship among a series of
objects (see Figure 6 for examples). The input is an RGB image depicting a grid of objects, and the
target is a binary classification indicating whether the particular relationship holds for this input. This
forms a controlled synthetic setting for evaluating DAT’s effectiveness in relational learning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Our goal in this section is to explore how the relational computational mechanisms of DAT affect
data-efficiency in relational learning—that is, how much data is necessary to learn a given task. We
evaluate learning curves by varying the size of the training set, training each model until convergence,
and evaluating on a hold-out validation set. We test two configurations of DAT: one with only
relational attention heads, and one with a combination both sensory and relational heads. We include
several Transformer baselines, varying the number of attention heads and the model dimension,
controlling for parameter count. The results are depicted in Figure 2.

We find that DAT is significantly more sample-efficient, particularly at more difficult tasks. Both
configurations of DAT are consistently more sample-efficient compared to the standard Transformer.
The effect is particularly dramatic on the ‘match pattern’ task which is the most difficult and
requires identifying a second-order relation (i.e., a relation between relations). We note that these
tasks are purely relational in the sense that pairwise same/different relations between objects are a
sufficient statistic for predicting the target. This suggests that relational attention is sufficient for
solving the task. Indeed, the DAT variant with only relational heads performs marginally better than
the variant with a combination of both sensory and relational heads. Notably, however, the difference
is only marginal, suggesting that the model is able to learn to select the computational mechanisms
that are most relevant to the given task. We provide further discussion in Appendix C.1, including
results comparing against previously-proposed relational architectures with stricter inductive biases.

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

same

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

occurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

xoccurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

between

5000 10000 15000 20000 25000

Training Set Size

0.6

0.7

0.8

0.9

match pattern Model

DAT (nsah = 0, nrah = 2) [421K]

DAT (nsah = 1, nrah = 1) [404K]

T (nsah = 8, nrah = 0) [481K]

T (nsah = 2, nrah = 0) [481K]

T (nsah = 8, nrah = 0) [386K]

T (nsah = 2, nrah = 0) [386K]

Figure 2: Learning curves on the relational games benchmark. Each subplot corresponds to a different
task. Numbers in square brackets in legend labels indicate parameter counts. Solid lines indicate
the mean over 5 trials with different random seeds and the shaded regions indicate bootstrap 95%
confidence intervals. DAT is more data-efficient at relational learning compared to a Transformer.

4.2 RELATIONAL INDUCTIVE BIASES FOR SYMBOLIC REASONING IN
SEQUENCE-TO-SEQUENCE TASKS: MATHEMATICAL PROBLEM SOLVING

Next, we evaluate DAT on a set of mathematical problem-solving tasks based on the benchmark
contributed by Saxton et al. [30]. Mathematical problem-solving is an interesting test for neural
models because it requires more than statistical pattern recognition—it requires inferring laws,
axioms, and symbol manipulation rules. The benchmark consists of a suite of mathematical problem-
solving tasks, with each task’s dataset consisting of a set of question-answer pairs. The tasks range
across several topics including solving equations, adding polynomials, expanding polynomials,
differentiating functions, predicting the next term in a sequence, etc. An example of a question in the
“polynomials__expand” task is “Expand (5x−3)(2x+1)” with the target answer “10x2−x−3”.
This is modeled as a sequence-to-sequence task with character-level encoding.

We compare DAT against Transformers using an encoder-decoder architecture. The encoder processes
the question, and the decoder autoregressively generates the answer while cross-attending to the
encoder. We explore how performance scales with model size by varying the number of layers.
In the Transformer, all attention heads are standard self-attention with nsa

h = 8, while in DAT we
have a combination of both types of attention heads with nsa

h = nra
h = 4. The DAT models use

position-relative symbols as their symbol assignment mechanism.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

750K 1M 1.25M 1.5M 1.75M

Model Size (Parameter Count)

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

algebra__linear_1

750K 1M 1.25M 1.5M 1.75M

Model Size (Parameter Count)

0.90

0.95

algebra__sequence_next_term

750K 1M 1.25M 1.5M 1.75M

Model Size (Parameter Count)

0.998

0.999

1.000

calculus__differentiate

750K 1M 1.25M 1.5M 1.75M

Model Size (Parameter Count)

0.8

0.9

A
cc

u
ra

cy

polynomials__expand

750K 1M 1.25M 1.5M 1.75M

Model Size (Parameter Count)

0.84

0.86

0.88

polynomials__add

Model

Transformer

DAT

Figure 3: Average character-level accuracy on different mathematical problem-solving tasks measured
at different model sizes. Error bars indicate bootstrap 95% confidence intervals over 5 trials. DAT
outperforms a standard Transformer across model sizes, suggesting that relational computational
mechanisms confer benefits on sequence-to-sequence tasks that involve symbolic computation.

Dataset Model Parameter Count # Layers dmodel nsa
h nra

h Accuracy

CIFAR-10 ViT 7.1M 8 384 12 0 86.4± 0.1%
ViDAT 6.0M 8 384 6 6 89.7± 0.1%

CIFAR-100 ViT 7.2M 8 384 12 0 68.8± 0.2%
ViDAT 6.1M 8 384 6 6 70.5± 0.1%

Table 1: Classification accuracy on image recognition with the CIFAR-10 and CIFAR-100 datasets.
Each training configuration is repeated 10 times with different random seeds; we report the mean
accuracy ± the standard error of mean. DAT outperforms a standard Vision Transformer, suggesting
that relational computational mechanisms are useful for visual processing tasks.

Figure 3 depicts the character-level accuracy for DAT and Transformers across varying model sizes.
We find that the DAT model outperforms the standard Transformer at all model scales and across all
tested tasks. This suggests that the relational computational mechanisms of DAT are beneficial for
the type of symbolic processing involved in solving mathematical problems.

4.3 VISUAL PROCESSING WITH RELATIONAL INDUCTIVE BIASES

As a general sequence model, the Transformer architecture can be applied to visual inputs by dividing
an image into patches that are then flattened, linearly embedded into vectors, and passed in as a
sequence. Through a series of attention and MLP operations, the visual input is processed for the
downstream visual task. This architecture is referred to as a Vision Transformer (ViT) [10]. Although
Transformers lack the explicit spatial inductive biases found in models like convolutional networks,
recent work has demonstrated its effectiveness at scale [12], suggesting that attention is a versatile
computational mechanism applicable across several data modalities.

In this section, we explore how the relational computational mechanisms introduced in DAT—namely,
relational attention—impact visual processing tasks. We hypothesize that visual processing benefits
from attending to both sensory and relational information. That is, when processing a local region of a
visual input (e.g., a patch, object, or object part), it is useful consider not only the sensory features of
other regions but also the relationships between these regions. For example, this captures information
about similar objects occurring in multiple places in the scene, or objects which are similar across
some attributes (e.g., texture) but different across others (e.g., color).

We evaluate a ViT-style DAT architecture (ViDAT), and compare it against a standard ViT on the
CIFAR image recognition benchmarks [31]. We train directly on CIFAR-10 and CIFAR-100,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

350M 750M 1.3B

Param Count

1B

2B

5B

10B

T
o

ke
n

s

Perplexity

15.0

18.0

21.0

24.0

27.0

30.0

Model

DAT

Transformer

Figure 4: A representation of the amount of data (in tokens) needed to reach a given level of language
modeling performance (in perplexity) at each model size. The DAT architecture demonstrates greater
data and parameter efficiency compared to standard Transformers.

respectively, without pretraining on larger datasets. During training, we use random cropping,
MixUp [32], and CutMix [33] as data augmentation techniques. We evaluate 8-layer models with
dmodel = dff = 384. The ViT model has nsa

h = 12 standard self-attention heads, while the DAT
model uses both sensory and relational heads, with an even split of nsa

h = nra
h = 6. We use symmetric

relations rij based on the intuition that visual processing involves symmetric attribute-similarity
relations. We use position-relative symbols as the symbol assignment mechanism. In Appendix C.3,
we present ablations, additional results, and provide further discussion.

Table 1 reports the classification accuracy of each model. We find that the ViDAT architecture outper-
forms the standard ViT architecture across both datasets, suggesting that the relational computational
mechanisms confer benefits in visual processing. These experiments show that relational inductive
biases can be useful for image recognition. We hypothesize that relational processing is even more
important in visual tasks requiring complex scene parsing, where reasoning about the relationships
between constituent objects is essential. Recent work on scene understanding in large vision-language
models supports this view [34–36]. We leave exploration of these more complex tasks to future work.

4.4 RELATIONAL INDUCTIVE BIASES IN LANGUAGE MODELING

Language understanding involves processing and organizing relational information, such as syntactic
structures, semantic roles, and contextual dependencies, to extract meaning from words and their
connections within sentences. Transformers have been remarkably effective at language modeling,
with neural scaling laws demonstrating that increasing model size and dataset size result in predictable
improvements in performance across a range of language tasks [8]. While the standard attention
mechanism of Transformers is able to capture simple positional and syntactic relations in its attention
scores, this is only used to control the flow of information between tokens rather than explicitly
encoding relational information in the latent embeddings themselves. The relational attention
mechanism of DAT enables explicitly learning relational contextual information that is directly
encoded in each token’s latent embedding.

In this section, we evaluate DAT on causal language modeling, exploring the impact of its relational
computational mechanisms in the domain of language. We use a decoder-only architecture, where
the model receives a sequence of tokens as input and is trained to causally predict the next token
at each position. We train on 10 billion GPT2 tokens of the FineWeb-Edu dataset [37], which is
a curated dataset of high-quality educational text data from CommonCrawl. We train models at
multiple parameter scales to study the scaling properties of DAT on language modeling with respect
to both model size and data size. Details of training and architectural hyperparameters are given
in Appendix C.4, together with further discussion of the results.

Figure 4 depicts the scaling properties of DAT’s language modeling performance with respect to model
size and data size, compared to a standard Transformer. We observe that DAT demonstrates greater
data and parameter efficiency, achieving improved performance across model and data scales. This
suggests that DAT’s relational computational mechanisms confers benefits in language processing.

Beyond performance improvements in language modeling as measured by a drop in perplexity, we
also find evidence that relational attention encodes human-interpretable semantic relations. Figure 5
depicts a visualization of the relations rij learned by a DAT language model. We observe that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: Relational attention in DAT language models encodes human-interpretable semantic rela-
tions. A visualization of the relations rij learned by a 24-layer 343M-parameter DAT language model.
Top. Visualization of one relation dimension in the first layer, focusing on the token ‘model’, which
has high activation with the tokens ‘state’, ‘machine’, and ‘mathematical’. Bottom.
Visualization of one relation dimension in the twelfth layer, focusing on the token ‘state’, which
has high activation with the tokens ‘mathematical’, ‘model’, and ‘computation’.

the relations learned by relational attention tend to encode semantic relations, rather than syntactic
relations. That is, relational activations rij ∈ Rdr are large between tokens with related meanings.
This is in contrast to the attention scores of standard Transformers, where attention heads typically
focus on position, syntax, and punctuation [38–40], rather than semantic content. We believe that
further exploration of this phenomenon from a mechanistic interpretability perspective could offer an
exciting avenue for future research.

5 CONCLUSION

Summary. The standard attention mechanism of Transformers provides a versatile mechanism for
retrieval of sensory information from a given context, but does not explicitly support retrieval of
relational information. In this work, we presented an extension of the Transformer architecture
that disentangles and integrates sensory and relational information through a variant of multi-head
attention with two distinct types of attention heads: standard self-attention for sensory information
and a novel relational attention mechanism for relational information. We empirically evaluate this
architecture and find that it yields performance improvements across a range of tasks and modalities.

Limitations & Future Work. The proposed architecture introduces several hyperparameters and
possible configurations. Although we carried out ablations on the major configuration choices
(e.g., composition of head types, symmetry, symbol assignment mechanisms), an expanded empirical
investigation would help develop an improved understanding of the behavior of this architecture under
different configurations. We also note that our implementation of the Dual-Attention Transformer
currently lacks the hardware-aware optimizations available for standard Transformers (e.g., Flash-
Attention [41]), which results in slower performance, though we expect similar optimizations to
be possible. An important direction for future work is the mechanistic interpretability [40, 42, 43]
of DAT models, focusing on identifying specific circuits that perform key computations to better
understand the performance improvements observed in complex domains like language modeling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

CODE AND REPRODUCIBILITY

Our implementation of the Dual Attention Transformer architecture is open-sourced and published as
a Python package. Pre-trained model weights, including the 1.3B-parameter DAT language model, are
made publicly available and can be loaded directly using the package. Additionally, we provide code
for running the experiments described in this paper, along with instructions for reproducing our results
and access to the experimental logs. Links will be included in the de-anonymized camera-ready
version.

REFERENCES

[1] Gary F Marcus. “The algebraic mind: Integrating connectionism and cognitive science”. MIT
press, 2003 (cited on page 1).

[2] David H Wolpert, William G Macready, et al. “No free lunch theorems for search”. Tech. rep.
Citeseer, 1995 (cited on page 1).

[3] Jonathan Baxter. “A model of inductive bias learning”. In: Journal of artificial intelligence
research (2000) (cited on page 1).

[4] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in neural information
processing systems (2017) (cited on pages 1, 5, 6, 18).

[5] Alec Radford et al. “Improving Language Understanding by Generative Pre-Training”. In:
(2018) (cited on page 1).

[6] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics. Association for Computational Linguistics, June
2019 (cited on pages 1, 6).

[7] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog
(2019) (cited on pages 1, 23).

[8] Jared Kaplan et al. “Scaling Laws for Neural Language Models”. 2020. arXiv: 2001.08361
[cs.LG] (cited on pages 1, 9, 23).

[9] Tom B. Brown et al. “Language Models are Few-Shot Learners”. 2020. arXiv: 2005.14165
[cs.CL] (cited on page 1).

[10] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers for Image Recog-
nition at Scale”. In: International Conference on Learning Representations. 2021 (cited on
pages 1, 6, 8, 21).

[11] Nicolas Carion et al. “End-to-end object detection with transformers”. In: European conference
on computer vision. Springer. 2020 (cited on page 1).

[12] Xiaohua Zhai et al. “Scaling vision transformers”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2022 (cited on pages 1, 8).

[13] Brenden Lake and Marco Baroni. “Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks”. In: International conference on machine
learning. PMLR. 2018 (cited on pages 1, 3).

[14] David Barrett et al. “Measuring abstract reasoning in neural networks”. In: International
conference on machine learning. PMLR. 2018 (cited on pages 1, 3).

[15] Adam Santoro et al. “A Simple Neural Network Module for Relational Reasoning”. June 2017.
arXiv: 1706.01427 [cs] (cited on pages 1–3).

[16] Adam Santoro et al. “Relational Recurrent Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems. Curran Associates, Inc., 2018 (cited on pages 1–3).

[17] Murray Shanahan et al. “An Explicitly Relational Neural Network Architecture”. In: Proceed-
ings of the 37th International Conference on Machine Learning. 2020 (cited on pages 1–3, 6,
19).

[18] Taylor W. Webb, Ishan Sinha, and Jonathan D. Cohen. “Emergent Symbols through Binding
in External Memory”. Mar. 2021. arXiv: 2012.14601 [cs] (cited on pages 1–3).

[19] Taylor W. Webb et al. “The Relational Bottleneck as an Inductive Bias for Efficient Abstrac-
tion”. In: Trends in Cognitive Sciences (May 2024) (cited on pages 1–3).

[20] Giancarlo Kerg et al. “On Neural Architecture Inductive Biases for Relational Tasks”. June
2022. arXiv: 2206.05056 [cs] (cited on pages 1–4, 19).

11

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1706.01427
https://arxiv.org/abs/2012.14601
https://arxiv.org/abs/2206.05056

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[21] Awni Altabaa et al. “Abstractors and relational cross-attention: An inductive bias for explicit
relational reasoning in Transformers”. In: The Twelfth International Conference on Learning
Representations. 2024 (cited on pages 1–4, 19, 24–26).

[22] Awni Altabaa and John Lafferty. “Learning Hierarchical Relational Representations through
Relational Convolutions”. Feb. 2024. arXiv: 2310.03240 [cs] (cited on pages 1–4).

[23] Richard E Snow, Patrick C Kyllonen, Brachia Marshalek, et al. “The topography of ability and
learning correlations”. In: Advances in the psychology of human intelligence (1984) (cited on
page 1).

[24] Charles Kemp and Joshua B Tenenbaum. “The discovery of structural form”. In: Proceedings
of the National Academy of Sciences (2008) (cited on page 1).

[25] Keith J Holyoak. “Analogy and relational reasoning”. In: The Oxford handbook of thinking
and reasoning (2012) (cited on page 1).

[26] Anirudh Goyal and Yoshua Bengio. “Inductive biases for deep learning of higher-level cogni-
tion”. In: Proceedings of the Royal Society A (2022) (cited on page 1).

[27] James Newman, Bernard J Baars, and Sung-Bae Cho. “A neural global workspace model for
conscious attention”. In: Neural Networks (1997) (cited on page 2).

[28] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention with Relative Position
Representations”. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). Ed. by Marilyn Walker, Heng Ji, and Amanda Stent. New Orleans, Louisiana:
Association for Computational Linguistics, June 2018 (cited on page 5).

[29] Jianlin Su et al. “RoFormer: Enhanced Transformer with Rotary Position Embedding”. Nov.
2023. arXiv: 2104.09864 [cs] (cited on pages 5, 18).

[30] David Saxton et al. “Analysing Mathematical Reasoning Abilities of Neural Models”. In:
International Conference on Learning Representations. 2019 (cited on pages 7, 19).

[31] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. Tech. rep. 2009
(cited on pages 8, 21).

[32] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”. In: International Confer-
ence on Learning Representations. 2018 (cited on pages 9, 22).

[33] Sangdoo Yun et al. “Cutmix: Regularization strategy to train strong classifiers with localizable
features”. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019
(cited on pages 9, 22).

[34] Justin Johnson et al. “CLEVR: A Diagnostic Dataset for Compositional Language and Ele-
mentary Visual Reasoning”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017 (cited on page 9).

[35] Aimen Zerroug et al. “A benchmark for compositional visual reasoning”. In: Advances in
neural information processing systems (2022) (cited on page 9).

[36] Bingchen Zhao et al. “Benchmarking Multi-Image Understanding in Vision and Language
Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning”. In: arXiv preprint
arXiv:2406.12742 (2024) (cited on page 9).

[37] Anton Lozhkov et al. “FineWeb-Edu”. May 2024 (cited on pages 9, 22).
[38] Kevin Clark et al. “What Does BERT Look At? An Analysis of BERT’s Attention”. 2019.

arXiv: 1906.04341 [cs.CL] (cited on page 10).
[39] Phu Mon Htut et al. “Do Attention Heads in BERT Track Syntactic Dependencies?” 2019.

arXiv: 1911.12246 [cs.CL] (cited on page 10).
[40] Nelson Elhage et al. “A Mathematical Framework for Transformer Circuits”. In: Transformer

Circuits Thread (2021). https://transformer-circuits.pub/2021/framework/index.html (cited on
page 10).

[41] Tri Dao et al. “Flashattention: Fast and memory-efficient exact attention with IO-awareness”.
In: Advances in Neural Information Processing Systems (2022) (cited on page 10).

[42] Catherine Olsson et al. “In-context Learning and Induction Heads”. In: Transformer Cir-
cuits Thread (2022). https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html (cited on page 10).

[43] Kevin Ro Wang et al. “Interpretability in the Wild: a Circuit for Indirect Object Identification
in GPT-2 Small”. In: The Eleventh International Conference on Learning Representations.
2023 (cited on page 10).

[44] Gerard Debreu et al. “Representation of a preference ordering by a numerical function”. In:
Decision processes (1954) (cited on page 14).

12

https://arxiv.org/abs/2310.03240
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/1906.04341
https://arxiv.org/abs/1911.12246

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[45] Awni Altabaa and John Lafferty. “Approximation of Relation Functions and Attention Mecha-
nisms”. Feb. 2024. arXiv: 2402.08856 [cs, stat] (cited on page 15).

[46] Noam Shazeer. “GLU Variants Improve Transformer”. Feb. 2020. arXiv: 2002.05202 [cs,
stat] (cited on page 18).

[47] Yann N Dauphin et al. “Language modeling with gated convolutional networks”. In: Interna-
tional conference on machine learning. PMLR. 2017 (cited on page 18).

[48] Dan Hendrycks and Kevin Gimpel. “Gaussian Error Linear Units (GELUs)”. 2016. arXiv:
1606.08415 [cs.LG] (cited on page 18).

[49] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. July 2023.
arXiv: 2307.09288 [cs] (cited on page 18).

[50] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer Normalization”. 2016.
arXiv: 1607.06450 [stat.ML] (cited on page 18).

[51] Biao Zhang and Rico Sennrich. “Root mean square layer normalization”. In: Advances in
Neural Information Processing Systems (2019) (cited on page 18).

[52] Ruibin Xiong et al. “On layer normalization in the transformer architecture”. In: International
Conference on Machine Learning. PMLR. 2020 (cited on page 18).

[53] Francesco Locatello et al. “Object-Centric Learning with Slot Attention”. Oct. 2020. arXiv:
2006.15055 [cs, stat] (cited on page 19).

[54] Joshua Ainslie et al. “GQA: Training Generalized Multi-Query Transformer Models from
Multi-Head Checkpoints”. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Singapore: Association for Computational Linguistics, 2023
(cited on page 21).

[55] Ekin D. Cubuk et al. “AutoAugment: Learning Augmentation Policies from Data”. 2019.
arXiv: 1805.09501 [cs.CV] (cited on page 22).

[56] Guilherme Penedo et al. “The FineWeb Datasets: Decanting the Web for the Finest Text Data
at Scale”. 2024. arXiv: 2406.17557 [cs.CL] (cited on page 22).

[57] Ronen Eldan and Yuanzhi Li. “TinyStories: How Small Can Language Models Be and Still
Speak Coherent English?” May 2023. arXiv: 2305.07759 [cs] (cited on page 25).

13

https://arxiv.org/abs/2402.08856
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2006.15055
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2305.07759

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FUNCTION CLASS OF RELATIONAL ATTENTION: A UNIVERSAL
APPROXIMATION RESULT

To gain a better understanding of the types of functions that can be computed by relational attention,
we presented a simple approximation result (Theorem 1) in Section 2.4. Here, we will provide a
formal statement of the result and prove it.

Recall that relational attention is a mapping on Rd ×Rn×d → Rdout , where d is the dimension of the
input objects and dout is the output dimension. For convenience, we denote the “query space” by X
and the “key space” by Y , though both are Rd in this setting. Relational attention takes as input a
query x ∈ X and a collection of objects y = (y1, . . . , yn) ∈ Yn and computes the following

RA(x,y) =

n∑
i=1

αi(x;y)
(
r(x, yi)Wr + si Ws

)
, (5)

α(x;y) = Softmax
([〈

ϕattn
q (x), ϕattn

k (yi)
〉]n

i=1

)
∈ ∆n, (6)

r(x, yi) =
(〈
ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(yi)

〉)
ℓ∈[dr]

∈ Rdr , (7)

(s1, . . . , sn) = SymbolRetriever (y; Slib) ∈ Rn×dout , (8)

where ϕattn
q , ϕattn

k , ϕrel
q,ℓ, ϕ

rel
k,ℓ : Rd → Rdk are the feature maps defining the attention mechanism and

the relation, respectively. For this section, these are multi-layer perceptrons. Note that in Algorithm 1
these are linear maps, but they are preceded by multi-layer perceptron in Algorithms 2 and 3, which
makes the overall function class the same. Moreover, for this analysis we will take Wr = I, dout = dr
and Ws = 0. We will later discuss how the role of symbols fits within the message of the result.

The following result states that relational attention can approximate any function of the form: 1)
select an object in (y1, . . . , yn) by an arbitrary query-dependent selection criterion, and 2) compute
an arbitrary relation r : X × Y → Rdr with the selected object. This is formalized below.

To formalize (1), we adopt an abstract and very general formulation of a “selection criterion” in terms
of a family of preference preorders, {≼x}x: for each possible query x, the preorder ≼x defines a
preference over objects in Y to be selected. Intuitively, “y1 ≼x y2” means that y2 is more relevant to
the query x than y1.

More precisely, for each query x ∈ X , ≼x is a complete (for each y1, y2 ∈ Y , either y1 ≼ y2
or y2 ≼x y1), reflexive (y ≼x y for all y ∈ Y), and transitive (y1 ≼x y2 and y2 ≼x y3 implies
y1 ≼x y3) relation. For each x ∈ X , ≼x induces a preordered space (Y,≼x). This implicitly defines
two additional relations: ≺x and ∼x. We will write y1 ≺x y2 if “y1 ≼x y2 and not y2 ≼x y1”, and
y1 ∼ y2 if “y1 ≼x y2 and y2 ≼x y1”.

For a collection of objects y = (y1, . . . , yn) ∈ Yn and a query x ∈ X , the preorder ≼x defines a
selection function

Select(x, (y1, . . . , yn)) := max ((y1, . . . , yn), key =≼x) . (9)
That is, Select(x,y) returns the most relevant element with respect to the query x. In particular, it
returns yi when yi ≻x yj , ∀j ̸= i (and may return an arbitrary element if no unique maximal element
exists in (y1, . . . , yn)).

We will assume some regularity conditions on the family of preorders {≼x}x which essentially
stipulate that: 1) nearby elements in Y have a similar preference with respect to each x, and 2) nearby
queries in X induce similar preference preorders.
Assumption 1 (Selection criterion is query-continuous and key-continuous). The family of preorder
relations {≼x}x∈X satisfies the following:

1. Key-continuity. For each x ∈ X , ≼x is continuous. That is, for any sequence (yi)i such that
yi ≼x z and yi → y∞, we have y∞ ≼x z. Equivalently, for any y ∈ Y , {z ∈ Y : z ≼x y}
and {z ∈ Y : y ≼x z} are closed sets in Y .

2. Query-continuity. Under key-continuity, Debreu et al. [44] shows that for each x ∈ X ,
there exists a continuous in utility function ux : Y → R for ≼x such that y1 ≼x y2 ⇐⇒
ux(y1) ≤ ux(y2). For query-continuity, we make the further assumption that there exists a
family of utility functions {ux : Y → R}x∈X such that u(x, y) := ux(y) is also continuous
in its first argument.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For technical reasons, for Equation (9) to make sense, we must assume that there exists a unique
element to be selected. We formulate this in terms of an assumption on the data distribution of the
space X × Yn. This is a technical assumption, and different forms of such an assumption would be
possible (e.g., instead condition on this event).

Assumption 2 (Selection is unique almost always). Let (x,y) ∼ Px,y . For each ε > 0, there exists
ηε > 0 such that minj ̸=i |ux(yi)− ux(yj)| > ηε with probability at least 1− ε.

Theorem (Function class of relational attention). Let X ,Y be compact Euclidean spaces. Let
{≼x}x∈X be an arbitrary family of relevance preorders on Y which are query-continuous and
key-continuous (Assumption 1). Let Select(x, (y1, . . . , yn)) = max((y1, . . . , yn), key =≼x) be the
selection function associated with {≼x}x. Let R : X ×Y → Rdr be an arbitrary continuous relation
function. Suppose x,y ∼ Px,y and that Assumption 2 holds (i.e., the data distribution is such that
there exists a unique most-relevant element w.h.p). For any ε > 0, there exists multi-layer perceptrons
ϕattn
q , ϕattn

k , ϕrel
q , ϕrel

k and a choice of symbols such that,

∥RA(x, (y1, . . . , yn))−R(x, Select(x, (y1, . . . , yn)))∥∞ < ε

Proof. Condition on the event E := {(x,y) ∈ X × Yn : minj ̸=i |ux(yi)− ux(yj)| > ηε}. Let
i∗ = argmax((y1, . . . , yn), key =≼x) = argmax(ux(y1), . . . , ux(yn)). By [45, Theorem 5.1], for
any ε1 > 0, there exists MLPs ϕattn

q , ϕattn
k such that αi∗(x,y) > 1− ε1 for any (x,y) ∈ E . That is,

the attention score is nearly 1 for the ≼x-selected element uniformly over inputs in E .

Similarly, by [45, Theorem 3.1], for any ε2 > 0, there exists MLPs (ϕrel
q,ℓ, ϕ

rel
k,ℓ)ℓ∈[dr] such that

r(x, y) := (⟨ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(y)⟩)ℓ∈[dr] approximates the target relation R uniformly within an error of

ε2,
∥R(x, y)− r(x, y)∥∞ < ε2, Lebesgue almost every (x, y) ∈ X × Y.

Thus, we have

∥RA(x, (y1, . . . , yn))−R(x,Select(x, (y1, . . . , yn)))∥∞

=

∥∥∥∥∥
n∑

i=1

αi(x;y) r(x, yi)−R(x, yi∗)

∥∥∥∥∥
∞

≤
n∑

i=1

∥αi(x;y) r(x, yi)−R(x, yi∗)∥∞

≤ αi∗(x,y) ∥r(x, yi∗)−R(x, yi∗)∥∞ +
∑
j ̸=i∗

αi(x;y) ∥r(x, yi)−R(x, yi∗)∥∞

≤ (1− ε1)ε2 + ε1 max
x,y,y∗

∥r(x, y)−R(x, y∗)∥∞ .

Note that maxx,y,y∗ ∥r(x, y)−R(x, y∗)∥∞ is finite since X ,Y are compact and r,R are continuous.
Letting ε1, ε2 be small enough completes the proof.

To summarize the analysis in this section, we showed that relational attention can approximate any
computation composed of first selecting an object from a collection then computing a relation with
that object. We can approximate any well-behaved selection criterion by formulating it in terms of an
abstract preference preorder, and approximating the corresponding utility function (given by a Debreu
representation theorem) by inner products of query and key feature maps. We can then approximate
the target relation function similarly by inner products of a different set of query and key feature
maps.

In the analysis above, we set aside the role of the symbols. Note that the function class this
approximation result proves involves retrieving a relation from a selected object, but does not
explicitly encode the identity of the selected object. Informally, the receiver knows that it has a
particular relation with one of the objects in its context, and knows that this relation is with an object
that was selected according to a particular selection criterion, but does not know the identity of the
object beyond that. This is the purpose of adding symbols to relational attention—the retrieved
relation is tagged with a symbol identifying the sender.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ARCHITECTURE & IMPLEMENTATION DETAILS

In this section, we briefly discuss some details of implementation that may be of interest to some
readers. Our code is publicly available through the project git repository and includes detailed
instructions for reproducing our experimental results. We also provide links to experimental logs.
Our code uses the PyTorch framework.

B.1 RELATIONAL ATTENTION AND DUAL-HEAD ATTENTION

The relational attention operation is defined as part of dual-head attention in Algorithm 1. We briefly
mention some details of the implementation.

Learnable parameters. Let nh := nsa
h + nra

h be the total number of sensory and relational heads.
The learnable parameters are

• Sensory attention heads. For each head h ∈ [nsa
h]:

◦ Attention query/key projections: W attn
q,h ,W attn

k,h ∈ Rdmodel×dkey ,
◦ Value projections: Wh

v ∈ Rdmodel×dh ,
◦ Output projection: W sa

o ∈ Rdmodel×dmodel .
• Relational attention heads. For each head h ∈ [nra

h] and each relation ℓ ∈ [dr]:

◦ Attention query/key projections: W attn
q,h ,W attn

k,h ∈ Rdmodel×dkey ,
◦ Relation query/key projections: W rel

q,ℓ ,W
rel
k,ℓ ∈ Rdmodel×dproj ,

◦ Symbol projection: Wh
s ∈ Rdmodel×dh ,

◦ Relation projection: Wh
r ∈ Rdr×dh ,

◦ Output projection: W ra
o ∈ Rdmodel×dmodel .

We let dkey, dh = dmodel/nh to maintain the same dimension for the input and output objects.
Similarly, we let dproj = dh · nra

h /dr so that the number of parameters is fixed as dr varies. That
is, we scale dproj down as dr increases; dproj has the interpretation of being the dimensionality of
the subspace on which we are computing comparisons. So, having a larger number of relations
corresponds to a more fine-grained comparison between the two objects.

To model symmetric relations, we let W rel
q,ℓ = W rel

k,ℓ. Recall that this has the interpretation of
computing a comparison between the same attributes in the pair of objects.

Note that the same dr-dimensional relation is used for all nra
h attention heads, with a different learned

linear map Wh
r for each head extracting the relevant aspects of the relation for that attention head and

controlling the placement in the residual stream. This allows for useful computations to be shared
across all heads. Note also that the head dimension dh = dmodel/nh is defined in terms of the total
number of attention heads and is the same for both sensory attention and relational attention. The
output of each head is a dh-dimensional vector. This means that after concatenating all the heads,
the proportion in the final dmodel-dimensional output that corresponds to each attention head type
is proportional to the number of heads of that type. For example, if nsa

h = 6, nra
h = 2, then 75%

of the dmodel-dimensional output is composed of the output of sensory attention heads and 25% is
composed of the output of relational attention heads. This enables tuning the relative importance of
each head type for the task.

Code. We briefly discuss the code implementing relational attention. We use einsum operations
heavily in our implementation due to the flexibility they offer for implementing general tensor
contractions. From Algorithm 1, recall that relational attention takes the form:

a
(h)
i ←

∑
j

α
(h)
ij

(
rijW

h
r + sjW

h
s

)
, (10)

where α
(h)
ij are the softmax attention scores for head h ∈ [nra

h], rij ∈ Rdr are relation vectors,
sj ∈ Rdmodel is the symbol associated with the j-th input, and Wh

r ,W
h
s map rij and sj , respectively,

to dh-dimensional vectors. We assume those are already computed and focus on a particular portion
of the computation of relational attention. We break up the computation as follows:∑

j

α
(h)
ij

(
rijW

h
r + sjW

h
s

)
=

∑
j

(
α
(h)
ij sjW

h
s

)
+

(∑
j

α
(h)
ij rij

)
Wh

r . (11)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Note that we factor out the Wh
r linear map and apply it after computing

∑
j α

(h)
ij rij . This is

intentional, as will be explained below.

This can be computed in PyTorch via einsum operations as follows.

sv: (b, n, n_h, d_h)
attn_scores: (b, n_h, n, n)
relations: (b, n, n, d_r)
self.wr: (n_h, d_h, d_r)

attended_symbols = torch.einsum(’bhij,bjhd->bihd’, attn_scores, sv)
shape: (b, n, n_h, d_h)

attended_relations = torch.einsum(’bhij,bijr->bihr’, attn_scores,
relations)

shape: (b, n, n_h, d_r)

attended_relations = torch.einsum(’bihr,hdr->bihd’, attended_relations,
self.wr)

shape: (b, n, n_h, d_h)

output = attended_symbols + attended_relations
shape: (b, n, n_h, d_h)

Here, we assume sv, attn_scores, and relations are already computed, and focus on a
particular part of the computation. sv[:,:,h,:] = sWh

s , corresponds to the symbols of each
object in the context, attn_scores[:,h,:,:] = αh are the softmax attention scores, and
relations[:, i,j,:] = rij are the relations, which can all be computed with simple matrix
multiplication operations, very similar to the standard implementations of multi-head attention.

The first line corresponds to computing
∑

j α
h
ijsjW

h
s . The second line corresponds to computing∑

j α
h
ijrij . The third line corresponds to applying the linear map Wh

r to the retrieved relations
at each head. The reason we apply the map Wh

r after attending to the relations is for memory
efficiency reasons. If we were to apply Wh

r first, we would need to manifest a tensor of dimension
b×n×n×nra

h ×dh, which is of orderO(b ·n2 ·dmodel). Instead, by factoring out Wh
r and applying

it after computing attention, we only need to manifest a tensor of dimension b× n× n× dr, which
is much smaller since dr ≪ dmodel. This tensor is contracted to a dimension b× n× dr first, then
mapped up to b× n× nra

h × dh. This makes the memory footprint of relational attention of the same
order as standard (sensory) attention when dr ≍ nh.

When using position-relative symbols, the implementation is adjusted since we need to compute∑
j

α
(h)
ij

(
rijW

h
r + sj−iW

h
s

)
(12)

instead, where the symbol sj−i sent now depends on both the sender j and the receiver i. Thus, we now
compute a symbols tensor which is indexed by both the sender j and receiver i: sv[i,j,h,:] =
sj−iW

h
s . Then, the implementation is adjusted by replacing the first line in the code above with

attended_symbols = torch.einsum(’bhij,ijhd->bihd’, attn_scores, sv)

The full implementation is made available through the project’s github repository.

Composing relational attention to learn hierarchical relations. We remark that composing relational
attention modules can be interpreted as representing hierarchical or higher-order relations. That is,
relations between relations. An example of this is the relation tested in the match pattern task in
the relational games benchmark. After one iteration of relational attention, an object’s representation
is updated with the relations it has with its context. A second iteration of relational attention now
computes a representation of the relation between an object’s relations and the relations of the objects
in its context.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

same occurs xoccurs between match patt

Figure 6: Examples of different tasks in the Relational Games benchmark. Each column corresponds
to a different task in the benchmark. The top row is an example of a positive instance and the bottom
row is an example of a negative instance.

B.2 ENCODER AND DECODER BLOCKS

We briefly mention a few configurations in our implementation that appear in our experiments. We
aimed to make our implementation configurable to allow for various tweaks and optimizations that
have been found in the literature for training Transformer models.

Symbol assignment. A shared symbol assignment module is used for all layers in the model. We
explore three types of symbol assignment mechanisms: positional symbols, position-relative symbols,
and symbolic attention. Different symbol assignment mechanisms are more well-suited to different
tasks. We discuss ablation experiments we carried out on the effect of the symbol assignment
mechanism in Appendix C.

MLP block. The MLP block uses a 2-layer feedforward network with a configurable activation func-
tion. The intermediate layer size is dff = 4 · dmodel by default. We also use the SwiGLU “activation
function” [46] in some of our experiments. SwiGLU is not merely an activation function, but is
rather a neural network layer defined as the component-wise product of two linear transformations
of the input. It is a type of gated linear unit [47] with the sigmoid activation replaced with a Swish
activation [48], SwiGLU(x) = Swish(xW + b) ⊗ (xV + c). This is used in the Llama series of
models and was found to be a useful modification [49].

Normalization. Either LayerNorm [50] or RMSNorm [51] can be used. Normalization can be
performed post-attention, like in the original Transformer paper [4], or pre-attention as in [52].

Positional encoding. Our experiments use either learned positional embeddings or RoPE [29].

C EXPERIMENTAL DETAILS & FURTHER DISCUSSION

C.1 RELATIONAL GAMES (SECTION 4.1)

EXPERIMENTAL DETAILS

Dataset details. The Relational Games benchmark datasets consists of 36× 36× 3 RGB images
depicting a 3× 3 grid of objects which satisfy a particular visual relationship. The task is to identify
whether a given relationship holds or not. The set of objects consists of simple geometric shapes.
Examples of each task are presented in Figure 6. For example, in the occurs task, one object is
present in the top row and three in the bottom row, and the task is to determine whether the object
in the top row occurs (i.e., is among) the objects in the bottom row. The most difficult task in the
benchmark is the match pattern task, where the grid contains a triplet of objects in the top row
and another triplet of objects in the bottom row. Each triplet satisfies some relationship (e.g., ABC,
ABA, ABB, or AAB), and the task is to determine whether the relation in the first triplet is the same
as the relation in the second triplet. The difficulty in solving this task is that it requires parsing a
second-order relation (a relation between relations). We remark that composing relational attention
modules naturally captures this kind of hierarchical relations: the first relational attention operation
produces objects representing relational information and the second would compute relations between
those relations (i.e., second-order relations).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Model architectures. We use a Vision-Transformer-type architecture where the input image is split
up into patches, flattened, and passed through the sequence model with added learned positional
embeddings. We use average pooling at the end and pass through an MLP to produce the final
prediction. We use a patch size of 12× 12 which separates objects according to the grid structure.
We note that in more general visual relational reasoning tasks where there isn’t this type of grid
structure, it would be appropriate to combine our approach with an object-discovery module such as
Slot Attention [53].

We use 2-layer models. The DAT models use dmodel = 128, dff = 256. One set of Transformer
baselines uses the same, while another is larger with dmodel = 144, dff = 288. All models use
SwiGLU “activation”, dropout rate = 0.1, and pre-LayerNormalization. For the DAT models, we use
positional symbols as the symbol assignment mechanism. The composition of sensory and relational
attention heads are depicted in the figure. In Figure 2, we use symmetric relations (i.e., imposing that
W rel

q = W rel
k). Below, we also explore the effect of this inductive bias, evaluating variants without

the symmetry constraint.

Training details. For each task and model, we evaluated learning curves by varying the training set
size and training the model until convergence, then evaluating on a hold-out test set. For four out of
five of the tasks, we evaluate learning curves within the range of 250 to 2, 500 samples, in increments
of 250. For the more difficult match pattern, the range is from 5, 000 to 25, 000 in increments
of 5, 000. The ranges were chosen based on the difficulty of the different tasks in order to identify
the right “resolution”. When evaluating learning curves, each training set is sampled randomly from
the full dataset. For each task, model, and training set size, we repeat the experiment 5 times with
different random seeds to compute approximate confidence intervals (accounting for randomness in
sampling the dataset and random initialization). We use an Adam optimizer with a learning rate of
0.001, β1 = 0.9, β2 = 0.99, and a batch size of 512. We train for 50 epochs.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Comparison to previous relational architectures. Previous research has explored relational learning
in synthetic settings, proposing various architectures with relational inductive biases. Here, we
compare DAT to three such architectures: PrediNet [17], CoRelNet [20], and Abstractor [21]. Unlike
DAT, these architectures use subtractive rather than additive relational inductive biases, imposing
constraints on the types of learnable representations to improve relational learning efficiency. As a
result, they are not general-purpose architectures and cannot be applied to broader domains such as
language modeling. Nonetheless, it is useful to compare DAT against those architectures to explore
the trade-offs of strong inductive biases and evaluate DAT in comparison to alternative approaches to
relational learning. Figure 7 shows learning curves comparing DAT against those baselines. DAT
performs competitively with previous relational architectures, generally outperforming PrediNet and
Abstractor, while performing marginally worse than CoRelNet. It is relevant to note that CoRelNet
incorporates strong task-specific inductive biases, and was partially designed with this benchmark in
mind.

Ablation over symmetry. We performed an ablation over the symmetry inductive bias in the relations
computed in relational attention. Our implementation exposes an argument which controls whether
the relation r(x, y) = (⟨W rel

q,ℓ ,W
rel
k,ℓ⟩)ℓ∈[dr] ∈ Rdr modeled in relational attention is constrained

to be symmetric by setting W rel
q,ℓ = W rel

k,ℓ. Indeed, we find symmetry to be a useful inductive
bias in this task. Figure 8 depicts learning curves for the two configurations of DAT comparing
symmetric RA against asymmetric RA. We find that symmetry results in faster learning curves for
both configurations.

C.2 MATHEMATICAL PROBLEM-SOLVING (SECTION 4.2)

EXPERIMENTAL DETAILS

Dataset details. Saxton et al. [30] propose a benchmark to assess neural models’ ability to perform
mathematical reasoning. The dataset consists of a suite of tasks in free-form textual input/output
format. The tasks cover several topics in mathematics, including arithmetic, algebra, and calculus.
For each task, the authors programmatically generate 2× 106 training examples and 104 validation
examples. Questions have a maximum length of 160 characters and answers have a maximum length
of 30 characters.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9
G

en
er

a
li
za

ti
o

n
A

cc
u

ra
cy

same

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

occurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

xoccurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

between

5000 10000 15000 20000 25000

Training Set Size

0.6

0.7

0.8

0.9

match pattern

Model

DAT (nsah = 0, nrah = 2) [421K]

T (nsah = 8, nrah = 0) [481K]

T (nsah = 2, nrah = 0) [481K]

T (nsah = 2, nrah = 0) [386K]

PrediNet [376K]

CoRelNet [215K]

Abstractor [469K]

Figure 7: Learning curves on the Relational Games benchmark, comparing DAT against previously-
proposed relational architectures. DAT performs competitively with previous relational architectures.

500 1000 1500 2000 2500

Training Set Size

0.6

0.7

0.8

0.9

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

same

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

occurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

xoccurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

between

5000 10000 15000 20000 25000

Training Set Size

0.6

0.8

1.0
match pattern

Model
Dual-Attn Transformer (nsah = 1, nrah = 1)

Dual-Attn Transformer (nsah = 0, nrah = 2)

Symmetric RA

Asymmetric RA

Figure 8: An ablation of the effect of symmetry in relational attention in the relational games
experiments.

Model architectures. We use an encoder-decoder architecture for this experiment, treating it as a
sequence-to-sequence task. We use character-level encoding with a common alphabet of size 85
containing small and upper case letters, digits 0-9, and symbols (e.g., *, /, +, -). We vary the
number of layers to explore how performance scales with model size in DAT compared to standard
Transformers. Each encode/decoder block uses ReLU activation, dropout rate = 0.1, and post-
normalization. We use dmodel = 128, dff = 256 for the DAT models and dmodel = 144, dff = 288
in the Transformer models to control for parameter count and give the Transformer an advantage in
the evaluation. Sinusoidal positional embeddings are used as the positional encoding method. For
all models, the total number of attention heads (across self-attention and relational attention) is 8.
For the Transformer model, there are only self-attention heads: nsa

h = 8 for both the encoder and
decoder. For DAT, we evaluated two configurations for the composition of head types, one with
nsa
h = nra

h = 4 in the encoder and nsa
h = 8, nra

h = 0 in the decoder (i.e., standard Transformer
Decoder), and one with nsa

h = 4 = nra
h = 4 in the encoder and nsa

h = 4 = nra
h = 4 in the decoder.

The number of cross-attention heads in the decoder is 8 in all cases. No symmetry constraint is made

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Task Model Parameter Count # Layers dmodel Encoder nsa
h Encoder nra

h Decoder nsa
h Decoder nra

h Accuracy

algebra__linear_1

Transformer 692K 2 128 8 0 8 0 62.5± 1.1%
DAT 783K 2 128 4 4 8 0 66.5± 1.0%
Transformer 871K 2 144 8 0 8 0 64.0± 1.5%
DAT 1.09M 3 128 4 4 8 0 68.1± 6.5%
Transformer 1.3M 3 144 8 0 8 0 57.0± 2.3%
DAT 1.43M 4 128 4 4 8 0 73.1± 1.1%
Transformer 1.7M 4 144 8 0 8 0 53.2± 1.1%

algebra__sequence_next_term

Transformer 692K 2 128 8 0 8 0 91.1± 0.2%
DAT 783K 2 128 4 4 8 0 91.6± 0.6%
Transformer 871K 2 144 8 0 8 0 91.4± 0.2%
DAT 1.09M 3 128 4 4 8 0 97.0± 0.5%
Transformer 1.3M 3 144 8 0 8 0 96.1± 0.5%
DAT 1.43M 4 128 4 4 8 0 –
Transformer 1.7M 4 144 8 0 8 0 93.4± 2.0%

calculus__differentiate

Transformer 692K 2 128 8 0 8 0 99.9± 0.0%
DAT 783K 2 128 4 4 8 0 100.0± 0.0%
Transformer 871K 2 144 8 0 8 0 99.9± 0.0%
DAT 1.09M 3 128 4 4 8 0 –
Transformer 1.3M 3 144 8 0 8 0 99.9± 0.0%
DAT 1.43M 4 128 4 4 8 0 100.0± 0.0%
Transformer 1.7M 4 144 8 0 8 0 99.9± 0.0%

polynomials__add

Transformer 692K 2 128 8 0 8 0 83.3± 0.1%
DAT 783K 2 128 4 4 8 0 85.6± 0.0%
Transformer 871K 2 144 8 0 8 0 84.5± 0.3%
DAT 1.09M 3 128 4 4 8 0 87.8± 0.1%
Transformer 1.3M 3 144 8 0 8 0 86.4± 0.3%
DAT 1.43M 4 128 4 4 8 0 88.7± 0.0%
Transformer 1.7M 4 144 8 0 8 0 87.6± 0.2%

polynomials__expand

Transformer 692K 2 128 8 0 8 0 74.0± 0.7%
DAT 783K 2 128 4 4 8 0 77.8± 0.1%
Transformer 871K 2 144 8 0 8 0 74.1± 0.6%
DAT 1.09M 3 128 4 4 8 0 –
Transformer 1.3M 3 144 8 0 8 0 81.0± 1.2%
DAT 1.43M 4 128 4 4 8 0 91.4± 0.9%
Transformer 1.7M 4 144 8 0 8 0 89.2± 0.5%

Table 2: Full results of mathematical problem-solving experiments. For each task, this table shows
the mean test character-level accuracy ± the standard error of mean for each model configuration.

on relational attention. Position-relative symbols are used as the symbol assignment mechanism, and
the symbol library is shared across all layers in both the encoder and decoder.

Training Details. Each model is trained on each task for 50 epochs. We use the Adam optimizer
with β1 = 0.9, β2 = 0.995, a learning rate of 6 × 10−4, and a batch size of 128. We evaluate and
track the per-character accuracy over the course of training. We repeat this process 5 times for each
combination of model and task with different random seeds to compute approximate confidence
intervals.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Table 2 reports the full set of results obtained for this experiment, including certain configurations
omitted from the figure in the main text.

C.3 VISUAL PROCESSING (SECTION 4.3)

EXPERIMENTAL DETAILS

Dataset details. In this set of experiments, we use the CIFAR-10 and CIFAR-100 datasets [31] which
are datasets of labeled small images. The CIFAR-10 dataset consists of 60, 000 32× 32 RGB images,
evenly split across 10 classes. The CIFAR-100 dataset consists of 60, 000 RGB images of the same
size, evenly split across 100 classes.

Model architectures. We use a ViT-style architecture [10]. RGB images are divided into 4 × 4
patches, flattened, linearly embedded into a vector, and fed through an Encoder. We use average
pooling followed by an MLP to produce the final prediction. We evaluate 8-layer models with
dmodel = dff = 384, GeLU activation, Pre-LayerNormalization, and no dropout. The ViT model
has nsa

h = 12 standard self-attention heads, while the DAT model uses both sensory and relational
heads, with an even split nsa

h = nra
h = 6. In the main text, we use symmetric relations rij with the

intuition that visual processing involves symmetric attribute-similarity relations. We also carried out
experiments with asymmetric relations and discuss the results below. In DAT, we use position-relative
symbols as the symbol assignment mechanism. Further, we use Grouped Query Attention [54] in
DAT to reduce the parameter count to account for the added parameters in relational attention.

Training Details. We train for 100 epochs. We use the Adam optimizer with a learning rate schedule
consisting of a gradual warmup to 10−3 in the first 5 epochs, followed by a cosine rate decay down
to 10−5. We use the hyperparameters β1 = 0.9, β2 = 0.999, and weight decay of 5 · 10−5. We

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Dataset Model Parameter Count # Layers dmodel nsa
h nra

h Symmetric rij Accuracy

CIFAR-10
ViT 7.1M 8 384 12 0 NA 86.4± 0.1%

ViDAT 6.0M 8 384 6 6 Yes 89.7± 0.1%
6.6M 8 384 6 6 No 89.5± 0.1%

CIFAR-100
ViT 7.2M 8 384 12 0 NA 68.8± 0.2%

ViDAT 6.1M 8 384 6 6 Yes 70.5± 0.1%
6.7M 8 384 6 6 No 70.5± 0.1%

Table 3: Ablation over symmetry of rij in relational attention for image recognition experiments.

Dataset Model Parameter Count # Layers dmodel nsa
h nra

h Accuracy

CIFAR-10 ViT 7.1M 8 384 12 0 89.5± 0.1%
ViDAT 6.0M 8 384 6 6 91.7± 0.1%

CIFAR-100 ViT 7.2M 8 384 12 0 68.2± 0.1%
ViDAT 6.1M 8 384 6 6 70.9± 0.1%

Table 4: Classification accuracy on CIFAR-10 and CIFAR-100 with AutoAugment data augmentation
during training. Each training configuration is repeated 10 times with different random seeds; we
report the mean accuracy ± the standard error of mean. DAT continues to outperform the standard
Vision Transformer.

normalize the images channel-wise such that pixels have mean zero and unit standard deviation. In the
results reported in Table 1 in the main text, we use random cropping, MixUp [32], and CutMix [33]
as data augmentation techniques during training. We also report results using AutoAugment [55]
below.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Effect of symmetry in rij . In the main text, Table 1 reports DAT results with symmetric relations
rij by imposing W rel

q = W rel
k . Here, we explore the effect of this choice. Table 3 compares DAT

models with and without the symmetry constraint. We find no significant difference in performance.
Though, we note the smaller parameter count in the symmetric variant.

Alternative data augmentation. In the main text, we use random cropping, MixUp, and CutMix data
augmentation during training. Here, we report results on an alternative data augmentation technique:
AutoAugment [55]. AutoAugment is an optimized set of data augmentation policies, found through
a data-dependent automatic search procedure. At each mini-batch, a random sub-policy is chosen
which consists of image processing operations such as translation, rotation, or shearing. Table 4
reports results using this data augmentation procedure. We continue to find that ViDAT outperforms
the standard ViT model.

C.4 LANGUAGE MODELING (SECTION 4.4)

EXPERIMENTAL DETAILS

Dataset details. The FineWeb-Edu [37] dataset is a curated dataset of text data. It is generated
by filtering the large-scale FineWeb dataset for LLM pre-training [56] using an educational quality
classifier trained on annotations generated by LLama3-70B-instruct. FineWeb-Edu has been shown
to outperform FineWeb on several benchmarks, demonstrating the importance of data quality. We
train our language models on a random subset of 10 billion tokens of FineWeb-Edu.

Model Architectures. We use a Decoder-only architecture, with causal attention for autoregressive
language modeling. We vary model size to explore the scaling properties of DAT with respect to
both model size and data size, comparing to the scaling properties of standard Transformers. Our
architectural hyperparameters follow common choices at different model scales, based on scaling
analyses performed for Transformers [56]. We explore 3 model scales: 350M (dmodel = 1024, nh =
16, L = 24), 750M (dmodel = 1536, nh = 24, L = 24), and 1.3B (dmodel = 2048, nh = 32, L =
24) parameters. We use dff = 4 · dmodel, GeLU activation, RoPE positional encoding, no bias, no

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

dropout, and Pre-LayerNormalization. We use the GPT2 tokenizer [7]. We use symbolic attention as
the symbol assignment mechanism, with the number of symbols in the symbol library scaling with
model size: 1024 symbols and 8 heads for the 350M and 750M scale models, and 2048 symbols with
16 heads for the 1.3B scale model. We also increase the relation dimension with model size. We
don’t impose a symmetry constraint, with the intuition that linguistic relations can be asymmetric.
We use Grouped Query Attention in the DAT models to reduce parameter count to account for the
added parameters in relational attention, making them smaller overall compared to the Transformer
baselines at each parameter scale.

Training Details. We train for 10B Tokens, with each batch containing 524, 288 tokens, split into
context windows of 1, 024 tokens. We use gradient accumulation to fit micro-batches into memory.
We use the AdamW optimizer with a maximum learning rate of 6× 10−4 and minimum learning rate
of 6× 10−5, first linearly warming up over the first 715 steps, then decaying back down with a cosine
schedule. We use β1 = 0.9, β2 = 0.95 and a weight decay of 0.1. We also use gradient clipping to
unit norm.

FURTHER DISCUSSION, EXPLORATION, & ABLATIONS

Figure 4 in the main text depicts the scaling properties of a DAT language model with respect to
model size and data size compared to a standard Transformer. Here, we provide a few additional
representations of the results. Table 5 reports the end-of-training validation perplexity of the different
models.

Figure 9 depicts training curves for the different model scales. We observe a power law scaling of the
validation loss with respect to number of training tokens. This matches the neural scaling laws [8],
which suggest that validation loss ought to scale roughly as d−α where d is the amount of training
data and the exponent α is a constant that depends on model architecture, training details, etc.

Table 5: End-of-training validation perplexity in language modeling on FineWeb-Edu dataset.

Model Param count # Tokens dmodel nlayers nsa
h nra

h dr nh
kv Perplexity ↓

Transformer 353M 10B 1024 24 16 - - - 16.94
DAT 343M 10B 1024 24 8 8 64 4 16.09

Transformer 757M 10B 1536 24 24 - - - 14.65
DAT 734M 10B 1536 24 12 12 64 6 14.31

Transformer 1.31B 10B 2048 24 32 - - - 13.63
DAT 1.27B 10B 2048 24 16 16 128 8 13.43

1B 10B

Tokens

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

V
a

li
d

a
ti

o
n

L
o

ss

350M Scale

Transformer - 353M

DAT - 343M

1B 10B

Tokens

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3
750M Scale

Transformer - 757M

DAT - 734M

1B 10B

Tokens

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3
1.3B Scale

Transformer - 1.31B

DAT - 1.27B

Figure 9: Validation loss on a logarithmic scale to examine data scaling laws. Dual Attention
Transformer language models obey similar scaling laws as standard Transformers with respect to the
amount of training data, while consistently achieving smaller loss at multiple model scales.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D COMPARISON TO ALTABAA ET AL. [21]: ABSTRACTORS AND RELATIONAL
CROSS-ATTENTION

A closely related work is Altabaa et al. [21], which proposes a Transformer-based module called
the “Abstractor” with relational inductive biases. The core operation in the Abstractor is a variant
of attention dubbed “relational cross-attention” (RCA). In this section, we will discuss the relation
between the Dual Attention Transformer and the Abstractor.

D.1 COMPARISON BETWEEN RA (THIS WORK) AND RCA [21]

Altabaa et al. [21] propose a variant of attention called relational cross-attention which shares some
characteristics with our proposal of what we’re calling “relational attention” in this work. In this
discussion, we will use the acronyms RCA and RA, respectively to distinguish between the two.

RCA processes a sequence of objects x = (x1, . . . , xn) and produces a sequence of objects x′ =
(x′

1, . . . , x
′
n) via the following operation

x′ ← σrel (ϕq(x)ϕk(x)
⊺
) s,

s = SymbolRetriever(x)

where ϕq, ϕk are query and key transformations, and the symbols s take the same role as in this work.
σrel is referred to as a “relation activation”. It may be either softmax or an element-wise activation
(e.g., tanh, sigmoid, or linear). For the purposes of this discussion, let us consider σrel = Softmax,
which was used in the majority of the experiments in [21].

To facilitate the discussion, let us write RA and RCA side-by-side using a common notation.

RA (this work) RCA [21]

(x′
1, . . . , x

′
n)← RA(x;Slib), (x′

1, . . . , x
′
n)← RCA(x;Slib)

x′
i =

n∑
j=1

αij

(
r(xi, xj)Wr + sj Ws

)
, x′

i =

n∑
j=1

αij sj ,

α = Softmax
(
ϕq(x)ϕk(x)

⊺)
, α = Softmax

(
ϕq(x)ϕk(x)

⊺)
,

r(x, y) =
(〈

ϕrel
q,ℓ(x), ϕ

rel
k,ℓ(y)

〉)
ℓ∈[dr]

,

(s1, . . . , sn) = SymbolRetriever(x; Slib) (s1, . . . , sn) = SymbolRetriever(x; Slib)

RCA can be understood as self-attention, but the values are replaced with symbols (i.e.,
Attention(Q← x, K ← x, V ← s)). By viewing the attention scores αij as relations, this has the
effect of producing a relation-centric representation. The rationale is that in standard self-attention,
the attention scores form a type of relation, but these relations are only used as an intermediate
processing step in an information-retrieval operation. The relations encoded in the attention scores
are entangled with the object-level features, which have much greater variability. This thinking also
motivates the design of RA in the present work.

RCA can be understood as computing a pairwise relation ⟨ϕattn
q (xi), ϕ

attn
k (xj)⟩ between xi and each

xj in the context, and retrieving the symbol sj associated with the object xj with which the relation
is strongest. That is, RCA treats the relations and the attention scores as the same thing. By contrast,
the attention operation and computation of relations are separate in RA. The attention component is
modeled by one set of query/key maps ϕattn

q , ϕattn
k and the relation component is modeled by another

set of query/key maps (ϕrel
q,ℓ, ϕ

rel
k,ℓ)ℓ∈[dr].

The intuitive reason for this choice is that, for many tasks, the optimal “selection criterion” will be
different from the task-relevant relation. For example, in a language modeling task, you may want to
attend to objects on the basis of proximity and/or syntax while being interested in a relation based on
semantics. Similarly, in a vision task, you may want to attend to objects on the basis of proximity,
while computing a relation across a certain visual attribute. Thus, the relational attention mechanism
proposed in this work offers greater flexibility and expressivity compared to RCA.

In RA, the symbols maintain the role of identifying the sender. But instead of being the whole
message, they are attached to a relation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.2 COMPARISON BETWEEN DAT AND THE ABSTRACTOR

We now briefly discuss the differences in the corresponding model architectures. Altabaa et al.
[21] propose an encoder-like module called the Abstractor which consists of essentially replac-
ing self-attention in an Encoder with relational cross-attention. That is, it consists of itera-
tively performing RCA followed by an MLP. The paper proposes several ways to incorporate
this into the broader Transformer architecture. For example, some of the experiments use a
Encoder → Abstractor → Decoder architecture to perform a sequence-to-sequence task.
Here, the output of a standard Transformer Encoder is fed into an Abstractor, and the Decoder
cross-attends to the output of the Abstractor. In another sequence-to-sequence experiment, Altabaa
et al. [21] use an architecture where the Decoder cross-attends to both the Encoder and the Abstractor,
making use of both sensory and relational information. In particular, the standard encoder and
decoder blocks are the same (focusing on sensory information), but an additional module is inserted
in between with a relational inductive bias.

By contrast, our approach in this paper is to propose novel encoder and decoder architectures imbued
with two distinct types of attention heads, one with an inductive bias for sensory information and
the other with an inductive bias for relational information. This has several potential advantages.
The first is versatility and generality. The Abstractor architectures that were explored in [21] only
explicitly support sequence-to-sequence or discriminative tasks. For example, they do not support
autoregressive models like modern decoder-only language models (e.g., of the form we experiment
with in Section 4.4). Moreover, even in sequence-to-sequence tasks, Abstractor architectures only
support relational processing over the input sequence, but they do not support relational processing
over the target sequence (since the decoder does not have RCA). Another potential advantage of
DAT is simplicity. The Abstractor paper proposes several architectures and configurations for the
Encoder/Abstractor/Decoder modules, introducing several hyperparameters that are not trivial to
choose. Moreover, it is unclear how to interpret this kind of architecture as the number of layers
increases, and the original paper does not experiment with scaling up the number of layers. The
final potential advantage is increased expressivity. In DAT, the two types of attention heads exist
side by side in each layer. This allows relational attention heads to attend to the output of the self-
attention heads at the previous layer, and vice-versa. This yields broader representational capacity,
and potentially more interesting behavior as we scale the number of layers.

D.3 HOW WOULD RCA PERFORM IN AN DAT -STYLE DUAL HEAD-TYPE ARCHITECTURE?

One question one might ask is: how would an DAT-style dual head-type architecture perform if we
used Altabaa et al. [21]’s RCA instead of the RA head-type proposed in this work? We carried out a
few ablation experiments to answer this question.

Figure 10 compares learning curves on the relational games benchmark between standard DAT (with
RA-heads) and a version of DAT with Altabaa et al. [21]’s RCA heads. We find that the two models
perform similarly, with most differences small enough to be within the margin of error. This figure
depicts the configuration with asymmetric RA and positional symbols.

Figure 11 depicts the validation loss curves on a small-scale language modeling experiment based on
the Tiny Stories dataset [57], comparing standard DAT against a version with RCA heads. Here, we
find that our relational attention heads yield better-performing models, with the RCA-head variant of
DAT performing no better than a standard Transformer with a matching total number of heads.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

same

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

occurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

xoccurs

500 1000 1500 2000 2500

Training Set Size

0.6

0.8

G
en

er
a

li
za

ti
o

n
A

cc
u

ra
cy

between

5000 10000 15000 20000 25000

Training Set Size

0.6

0.8

1.0
match pattern

Model
Dual-Attn Transformer (nsah = 1, nrah = 1)

Dual-Attn Transformer (nsah = 0, nrah = 2)

Relational Attention

Abstractor’s RCA

Figure 10: Learning curves for DAT with RA compared with DAT with RCA on the relational games
benchmark. The performance is similar, with most differences within the margin of error.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Tokens ×1010

1.8

1.9

2.0

2.1

2.2

V
a

li
d

a
ti

o
n

L
o

ss

Model

Dual-Attn Transformer (nsah = 6, nrah = 2)

Dual-Attn Transformer (nsah = 4, nrah = 4)

RA Type

Disentangled Relational Attention

Abstractor’s RCA

Figure 11: Ablation of relational attention type. The solid line depicts the form of relational attention
proposed in this work. The dotted line depicts RCA as proposed by Altabaa et al. [21]. We find
that our relational attention mechanism performs better, whereas RCA performs no better than a
Transformer.

26

