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Abstract

The rapid evolution of multimedia and computer vision technolo-

gies requires adaptive visual model deployment strategies to effec-

tively handle diverse tasks and varying environments. This work

introduces AxiomVision, a novel framework that can guarantee ac-

curacy by leveraging edge computing to dynamically select themost

efficient visual models for video analytics under diverse scenarios.

Utilizing a tiered edge-cloud architecture, AxiomVision enables the

deployment of a broad spectrum of visual models, from lightweight

to complex DNNs, that can be tailored to specific scenarios while

considering camera source impacts. In addition, AxiomVision pro-

vides three core innovations: (1) a dynamic visual model selection

mechanism utilizing continual online learning, (2) an efficient on-

line method that efficiently takes into account the influence of the

camera’s perspective, and (3) a topology-driven grouping approach

that accelerates the model selection process. With rigorous the-

oretical guarantees, these advancements provide a scalable and

effective solution for visual tasks inherent to multimedia systems,

such as object detection, classification, and counting. Empirically,

AxiomVision achieves a 25.7% improvement in accuracy.

CCS Concepts

• Information systems → Multimedia streaming; • Theory of

computation → Online learning algorithms.
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1 Introduction

Video analytics plays a pivotal role in a multitude of tasks in a

smart city, including vehicle license tracking, facial recognition,

and traffic monitoring [25, 42]. This variety of applications high-

lights the necessity for customized visual models designed to cater

to the unique requirements of different visual tasks. Yet, the ap-

plication of such models, particularly those based on deep neural

networks (DNNs), faces formidable challenges. These include the

highly diverse requirements of video analytics tasks, fluctuating en-

vironmental conditions, and the imperative for real-time operation

[7, 8]. The complexity and computational intensity of cutting-edge

visual models in multimedia systems further complicate their appli-

cation in resource-limited settings [41, 75]. Bandwidth constraints,

for example, limit the feasibility of transmitting high-resolution

video for analysis [77], highlighting a bottleneck in the practical

utility of these complex technologies.

The first challenge in video analytics centers on which visual
model to apply that caters to application-specific requirements under
a dynamic environment, especially in light of phenomena like data
drift [6, 10], where live video data’s characteristics stray from the

training dataset, as demonstrated in our Section 2. Despite a wide

range of advancements targeting various specific requirements, ef-

forts to modify existing models or customize visual models remain

predominantly focused on the static and single scenario. For in-

stance, works such as model pruning and compression [20, 30, 55],

while effective at streamlining complex models for resource-limited

environments, face significant performance degradation under ad-

verse conditions like poor lighting or extreme weather [22, 31].

Given the above analysis, we advocate for the strategic combination
of existing models to navigate the complexities of real-world scenar-
ios, instead of solely relying on a singular model or the pursuit of a
one-size-fits-all visual model for universal video analytics.

The complexity further escalates with the second challenge, as

the video analytic system transitions from single-camera sources to

multi-camera feeds. Independent decision-making for each camera

regarding model selection would cause the computational load to

increase linearly, which is unsustainable and retards the model

selection process. Strategies such as the “follow-the-leader” [28],
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Spatula’s camera correlation prioritization [27], and the CrossRoI
system’s re-identification algorithm [18] offer potential solutions

for managing multi-camera setups. Nevertheless, these offline, pe-

riodically preset camera groupings, which depend exclusively on

static search clustering and similar approaches, lack the essential

flexibility needed to adapt to the dynamic nature of real-world en-

vironments and the process of continual learning for improvement.

Moreover, the significance of camera deployment in video analyt-

ics has been largely overlooked, with attention primarily focused

on enhancing visual models on the server side, whether in the

context of automated surveillance or user-controlled VR cameras.

Nevertheless, for specialized tasks such as the creation of holo-

graphic stereogram portraits [14, 35], it is essential to investigate

the additional effects arising from different camera perspectives,

particularly when the perspective is altered. Additionally, due to

declining costs, the popularity of cameras with adjustable view-

points has surged (for instance, in 2020, the global market value

of pan-tilt-zoom (PTZ) cameras reached $3 billion [26, 66]). Cur-

rent methodologies, such as configuration adjustments in infer-

ence settings [28, 73], optimizing encoding [62, 77], and filtering

out superfluous details [12, 40], presuppose an immutable scene

captured by cameras. However, the variation of camera contents,

application-specific requirements, and adjustable perspective neces-

sitate moving beyond exclusively relying on pre-established offline

learning methods, to understand the effects of camera perspectives

for the accurate selection of visual models (the third challenge).

To address these challenges, this paper introduces AxiomVision,
a novel framework designed to guarantee the accuracy of video

analytics through the dynamic selection of visual models. Contrary

to systems limited to data center or cloud environments [60, 71]

that introduce issues like increased central load and the risk of

congestion [68], AxiomVision leverages edge computing [68, 76] to

decentralize processing, utilizing efficient lightweight DNN models

which are deployed close to data sources. With its tiered edge-cloud

architecture, AxiomVision strikes a balance between leveraging

currently effective visual models and exploring promising, yet un-

tapped models. This is achieved by continually analyzing observa-

tion feedback that includes camera perspective effects, even in the

absence of prior knowledge about these perspectives. Furthermore,

recognizing the potential for correlation among camera groups,

AxiomVision incorporates a graph-based grouping method based

on the natural camera network topology. This approach enables

flexible and continual adjustment for camera groups for various

visual tasks. To conclude, the manners in which this paper tackles

the aforementioned third challenges can be summarized as follows:

C1,DynamicVisualModel Selection.Weenhance task-specific

visual performance by employing an “online learning strategy” to se-
lect the optimal visual model dynamically. This method is different

from previous work that relies solely on a single model or focuses

on model enhancement. By incorporating continual feedback, our

strategy employs a dynamic selection mechanism to identify the

best-suited model adaptively. This mechanism is based on a tiered

edge-cloud architecture, which is designed for deploying a diverse

range of visual models, thus ensuring a wide selection availability.

C2, Camera Network Topology Utilization. Recognizing the

common practice of deploying cameras in groups, we leverage the

inherent network topology of these groups to develop a group-based

mechanism to expedite the model selection process, especially in

scenarios where there is no clear data to determine the optimal

model or the impact of perspective. We demonstrate that this ap-

proach significantly alleviates the demands of continual learning,

streamlining the operation in grouped camera environments.

C3, Camera Perspective Consideration. In response to the

increasingly adjustable function of the modern camera [66] and

our observation of measurement, we develop a “perspective-aware
learning method” for cameras. This method goes beyond the conven-

tional approaches which merely focus on improving visual models,

but we uniquely account for the impact of the source-side model

selection, namely, “camera perspectives”, through online sensing

estimation during the visual model selection process.

Our code is publicly accessible at: Code Link. Additionally, this

work does not raise any ethical issues.

2 Background and Motivation

We start with a discussion on related works. Then we present our

experimental results to illustrate how visual models’ performance

varies under external environmental conditions and across different

visual tasks, underscoring the necessity of dynamic adaptation.

Finally, we present the effects of the camera perspective.

2.1 Related Work

In video analytics, video frames are continuously streamed from

one or more cameras to servers for processing. This often involves

multiple visual models to support a multitude of video analytics

applications, particularly those based on diverse architectures and

weights of DNNs enabling them to accommodate an extensive

array of scenes and vision tasks [18, 53]. However, the growing

complexity of DNN architectures has resulted in increased pre-

diction latency, presenting a considerable challenge for resource-

limited end devices [39, 61]. To handle this, significant efforts have

been devoted to leveraging lightweight models with streamlined

architectures and fewer parameters [20, 74]. Yet, despite their effi-

ciency under specific conditions or in tailored environments, these

lightweight models often fall short in dynamic object distributions

or challenging environmental conditions. Furthermore, the high

costs of dynamically retraining model methods [6, 31] for specific

scenarios make real-time maintenance challenging under chang-

ing conditions [21]. Faced with this, our method focuses on how

to adapt to dynamic environments through the prioritization of

continuous online visual model selection, moving away from the

reliance on a few static models. More importantly, we demonstrate

the importance of “camera perspectives” on the model selection.

Regarding model selection, we implement the strategy derived

from multi-armed bandit (MAB), which performs online section of

one or more options from a set of alternatives based on feedback

from previous choices [34]. MAB has been widely applied in vari-

ous domains, including recommendation systems [11, 23], content

delivery [46, 69], and DNN design [70, 72]. Although some previous

works on clustering bandits have explored grouping human users

[17, 38, 44, 65], its application in the intricate domain of machine-

centric video analytics remains under-explored, which uniquely

focuses on maximizing inference accuracy and handling issues such

as frame drops, provided the analytics’ integrity is maintained [73].

https://github.com/zeyuzhangzyz/AxiomVision
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Figure 1: Comparative analysis of visual model performance across different environmental conditions.

(a) Variability in perspective
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Figure 2: Role of camera perspective in object detection and

semantic segmentation visual tasks.

2.2 Motivation Experiments

To investigate the variability of various models across different

scenarios and the impact of camera perspectives, we conduct a

thorough comparative analysis encompassing a range of models

such as the YOLOv5 series [29], RTM detection [50], SSD [43], and

Faster R-CNN [54]. In particular, object detection and semantic

segmentation are selected as the visual tasks in our experiments.

Dataset. To assess the performance of visual models under dif-

ferent environmental conditions, we compile five representative

video datasets, each covering a specific real-world scenario. These

datasets are sourced from publicly available videos on YouTube,

identified by searching for specific keywords (e.g., “live stream

webcams”) and selecting those pertinent to traffic conditions. To

explore the effects of varying camera perspectives, four videos with

distinct perspectives are selected at the same time from the above

sources [56–59]. Furthermore, the free-viewpoint videos are also

utilized for evaluating perspectives, where videos of various hu-

man movements on an indoor stage are recorded using 12 cameras

positioned at equal perspective intervals [19].

Evaluation Metrics. For object detection, performance is as-

sessed using the recall and F1 score metrics. We run the YOLOv5-x

model as the ground truth, with the detection confidence score set

to 0.25, and the intersection over the union threshold for calculat-

ing recall set at 0.5 aligning with [15, 71]. For semantic segmen-

tation, pixel accuracy is applied as the metric, and the complex

PP-HumanSegV1-Server [47] model is run as the ground truth [48].

Performance Variability of Visual Models. Fig. 1(a) reveals

image examples across daytime, nighttime, snowy, and dusky sce-

narios. The F1 scores of YOLOv5-n demonstrate fluctuations across

these four environments. In Fig. 1(b), a 135-second video depicting

a sudden heavy snowfall is analyzed, revealing a decline in perfor-

mance across all models as the intensity of the snowfall increases.

The images on T = 20s and T = 100s show a clear difference before

(a) Perspective 1 (0°) (b) Perspective 2 (30°) (c) Perspective 3 (60°)

Figure 3: Semantic segmentation across diverse camera per-

spectives for the same dancer.

and after the snowfall. Figs. 1(a) and 1(b) effectively illustrate our

argument with extensive examples across diverse environments

and utilizing various visual models: a single universal model faces
significant challenges when attempting to perform consistently in
dynamic environments. The models show performance fluctuations

of varying magnitudes depending on the environmental conditions.

Furthermore, we pre-retrain the YOLOv5-s model on a snowy-

day traffic road dataset[52] using four different learning rates and

training parameters under 100 epochs. we apply these models to a

scenario where snowfall gradually begins at 30 seconds and inten-

sifies by 45 seconds. As illustrated in Fig. 1(c), models pre-trained

for snowy conditions show improved performance as the snowfall

increases. However, their performance under normal weather con-

ditions is inferior to that of the standard YOLOv5-s model, likely

due to overtraining on snowy data. In Fig. 1(d), we further pre-train

models on the COCO dataset for 100 epochs under various light-

ing conditions and evaluate them using the same YouTube dataset.

Although models specifically pre-trained for certain environments

show enhanced performance, performance fluctuations also exist

(the second row). Moreover, the challenge of accurately quantifying

light levels in dynamic real-world environments complicates the di-

rect matching of these conditions with an appropriate visual model.

This underscores the complexity involved in dynamically adapting
visual models to suit changing environmental conditions.

Impact of Camera Perspective. We now turn our attention

to the significant effects of camera perspective on model selection.

Initially, we evaluate the F1 scores for object detection tasks us-

ing videos taken from different perspectives at the same traffic

intersection at the same time. Fig. 2(a) reveals that the F1 scores

significantly vary with the camera’s viewpoint. For instance, a direct
frontal view achieves an F1 score of 0.85, which drops to 0.61 when

the camera is positioned laterally. Furthermore, for the semantic

segmentation task, we explore the effects of camera perspective

through multi-angle videos of activities such as dancing, playing

badminton, and throwing a frisbee in an indoor environment, with

a specific example of dancing showcased in Fig. 3. According to Fig.

2(b), a frontal capture of a dancer yields a segmentation accuracy
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Figure 4: Overview of AxiomVision framework.

of 0.81, which surprisingly increases to 0.87 from a side angle. Ad-

ditional analysis of two other movements shows similar patterns

of accuracy variation. The intrinsic relationship between perspective
and model selection lies in the fact that certain perspectives may pose
challenges for a task, e.g., distant blurred perspective in object recog-
nition, requiring the use of more sophisticated models, whereas other
perspectives can be addressed using simpler visual models (Another
example is in Appendix B). Therefore, the influence of perspective

on model selection is a crucial factor that must be considered.

3 Model and Problem Formulation

In this section, we present the systemmodel and the problem setting

of our proposed AxiomVision framework. Our framework focuses

on the adaptive selection of visual models under dynamic envi-

ronmental changes and specific task demands, which utilizes a

hierarchical architecture for camera groups, edge nodes, and cloud

resources, and a continual video analytics pipeline to enhance visual

task performance. Fig. 4 depicts our overall framework design.

3.1 System Model

Tiered Edge-Cloud Architecture. Traditional methods typi-

cally put all visual tasks, denoted as Q, to the cloud for centralized

processing, which results in higher loads and longer response times

on the cloud servers. To address these issues and also for the de-

ployment of multiple visual models, we propose a hierarchical

architecture, which consists of three levels: (a) the video server, (b)

the edge nodes, and (c) the end camera groups. AxiomVision intro-

duces a tailored combination set M𝑞 of visual model models for

each distinct visual task 𝑞 ∈ Q to better accommodate external vari-

ables such as lighting conditions and movement dynamics. Taking

the object detection task as an example, lightweight models such

as MobileNet [24] are implemented on the resource-limited edge

nodes [78], while the deployment of more sophisticated models

is designated for the cloud center. The total set of cameras in our

system is represented by N with cardinality |N |.
Online Video Analytics Pipeline. Our system is designed to

adeptly handle the non-continuous and varied visual tasks through

a sequential, discrete-time round approach. To accommodate the

varied nature and frequency of task demands, we define the se-

quence of rounds for each visual task 𝑞 ∈ Q as T𝑞 . For a specific
visual task like facial temperature recognition, the duration be-

tween consecutive rounds may differ due to customer flow rates.

Similar to [68], we assume that individual tasks do not interfere

with one another, permitting each to operate in its designated round

independently. Within this, the operational cycle of the online video

analytics pipeline at each round involves the scheduling agent se-

lecting visual models, obtaining feedback on their outcomes, and

subsequently updating the evaluations for these models.

Visual Payoff Feedback. To dynamically adapt to evolving

conditions and task-specific demands, we propose a visual payoff

feedback mechanism, where payoff can be interpreted as the like-

lihood of meeting certain criteria, such as accuracy, recall, or F1

score. This process mainly focuses on the adjustment of perspective

weights 𝜽𝑛 for each camera 𝑛 ∈ N in response to task feedback of

the selected visual model, thus enabling the online optimization

of visual model efficacy.
1
For any given task 𝑞 ∈ Q, the expected

payoff 𝑟𝑚𝑡 ,𝑡 of the selected visual model𝑚𝑡 is expressed as:

E[𝑟𝑚𝑡 ,𝑡 |𝑚𝑡 ] = 𝜇 (𝒙⊤𝑚𝑡
𝜽𝑛), (1)

where 𝜇 establishes a nonlinear connection between the payoff

𝑟𝑚𝑡 ,𝑡 and the feature vector x𝑚𝑡
of the visual model𝑚𝑡 at round

𝑡 , incorporating the influence of the camera perspective through

the weight vector 𝜃𝑛 [16, 32]. An example of such a link function

is a neural network, wherein a final layer equipped with either

a sigmoid or ReLU activation function transforms the intricate

features derived into meaningful results [33, 67].

Combinatorial Model Selection. Unlike conventional works

that may only offer a single model choice per task, we develop a

“combinatorial model selection strategy” from a wide range of model

candidates, which increases the probability of meeting the task’s

requirements under diverse environmental conditions. Specifically,

a set of visual model options M𝑡 = {𝑚1, . . . ,𝑚 |K𝑡 | } ⊆ M𝑞 is

presented for each task 𝑞 at every round 𝑡 . K𝑡 with the size of |K𝑡 |
represents the selected visual model index at round 𝑡 , determined

by the first selected model with 𝑟𝑡 = 1. Here, if the accuracy of

the selected visual model surpasses the predefined threshold, the

resulting payoff value 𝑟𝑡 will be assigned a value of 1. Initially, to

conserve resources and ensure rapid response, priority is given to

models deployed at the edge. If these models fall short of the task’s

required accuracy threshold, the scheduling agent will choose more

complex models in the cloud. More importantly, the selection of

visual models is continually refined based on payoff feedback. Thus,

at each round 𝑡 , the aggregate payoff from these combinatorial

usages of visual modelsM𝑡 for camera 𝑛 is calculated as:

𝑅(M𝑛,𝑡 ) = 1 −
|K𝑡 |∏
𝑘=1

(1 − 𝑟𝑚𝑘,𝑡 ,𝑡 (𝑚𝑘,𝑡 )), where 𝑘 ∈ K𝑡 ,𝑚𝑘,𝑡 ∈ M𝑡 .

Note that we provide a combination of visual models based on the

tiered architecture to ensure accuracy. Moreover, we also strive to

ensure that the initially chosen visual model meets the requirements

as much as possible (see Section 4 for details).

1
For notation clarity, we initially focus on the impact characteristics related to model

selection from a singular camera perspective. Nonetheless, our forthcoming strategy

for evaluating and categorizing perspective impacts is readily scalable to accommodate

the diverse impact characteristics of changeable camera perspectives (see Section 5).
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Perspective-Based Grouping. For visual tasks that necessitate

inputs from multiple cameras, such as person tracking, the pro-

cess entails more than just evaluating how camera perspectives

influence the choice of visual models. It also presents a potential

opportunity to group cameras based on their overlapping perspec-

tive weights, where the increasing deployment of camera network

topologies inherently leads to a common occurrence of overlapping

perspectives [9]. Recognizing this, we propose to group cameras

with similar influence of perspective 𝜽𝑛 to adopt a similar visual

model selection. To distinguish cameras that cannot be grouped

together, we evaluate the dissimilarity between cameras using the

distance between the feature vectors representing camera perspec-

tive effects. This evaluation involves establishing a “dispersion”

criterion: cameras 𝑗, 𝑘 are considered for separate groups if:

∥𝜽 𝑗 − 𝜽𝑘 ∥2 ≥ 𝛾𝑞,∀𝑗, 𝑘 ∈ N , (2)

where 𝛾𝑞 signifies a predetermined positive dispersion constant

specific to task 𝑞. Based on the above criterion, the collective set of

camerasN can be divisible into smaller subsets, and we label them

as 𝐺1,𝐺2, . . . ,𝐺𝑔 , wherein cameras within the same subset adhere

to a unified visual model selection strategy. Note that neither which

camera belongs to which group, nor the precise number of grouped

cameras 𝑔 can be not known beforehand in our model.

3.2 Problem Formulation

The selection of an optimal visual model is influenced by the diverse

visual tasks, external environment, and internal deployment factors,

namely camera perspectives. As a result, the scheduling agent must

continually adapt the choice of visual model 𝑚𝑡 ∈ M for each

processed camera 𝑛𝑡 ∈ N at the round 𝑡 ∈ T𝑞 for visual task

𝑞, in alignment with the video analytics payoff. In this work, we

propose to dynamically adapt visual models in an online manner to

maximize the overall payoff across all rounds for any given visual

task 𝑞 ∈ Q. This objective is mathematically expressed as:

maxE

[∑︁
𝑡 ∈T

∑︁
𝑛∈N

1{𝑛𝑡 = 𝑛}𝑅(M𝑛𝑡 ,𝑡 )
]
, (3)

where 1{·} denotes the indicator function. Given the limited band-

width and computing resources, it is not possible to select the most

resource-intensive visual model option [28]. Furthermore, with the

growing deployment of extensive camera networks by various enti-

ties, an exploration into the impact of perspective similarity among

cameras is needed. By analyzing these perspective weight similari-

ties, we aim to identify and group cameras with similar perspective

influences, thereby reducing the number of subgroups needed for

visual model sharing. Nevertheless, this endeavor introduces sev-

eral challenges, including complex search spaces, varying effects of

camera perspectives, zero prior knowledge of optimal visual mod-

els, and the strategic deployment of camera groups. Addressing

these issues requires an adaptive algorithm capable of learning and

adjusting visual models online for diverse visual tasks, transcending

the limitations of static, offline model selection strategies.

4 Continual Learning of AxiomVision
In this section, we first present the algorithm design of AxiomVi-
sion, followed by a performance analysis. Specifically, a flexible

graph-based structure is utilized to mirror the natural undirected

connectivity found in camera cluster networks.
2

4.1 Algorithm Design

Algorithm 1 Continual Online Learning of AxiomVision

Require: Set of cameras N ; Parameter 𝛼 , 𝛽 ; Random 𝑝0 ∈ (0, 1).
Ensure: Visual model selection for all visual tasks.

1: Initialization: A complete graph 𝑈0= (N , 𝐸0); 𝑔1 = 1; 𝑇𝑛,0 =

0,∀𝑛 ∈ N .

2: for each 𝑞 ∈ Q, 𝑡 ∈ T𝑞 , independently do

3: Receive processed camera index 𝑛𝑡 ;

4: Identify group 𝐺𝑖𝑡 that contains 𝑛𝑡 ;

5: Estimate perspective weight
ˆ𝜽 𝑖𝑡 ,𝑡−1 based on Eq. (4);

6: Select the combinotorial model setM𝑡 ∈ M𝑞 according

to Eq. (5) until the predetermined threshold is satisfied;

7: Record payoff 𝑟𝑚𝑘 ,𝑡 of the selected visual model𝑚𝑘 , 𝑘 ∈ K𝑡 ;
8: Increment count of processed camera 𝑛𝑡 :𝑇𝑛𝑡 ,𝑡+1 = 𝑇𝑛𝑡 ,𝑡 + 1;
9: Delete from 𝐸𝑡 all (𝑛𝑡 , ℓ) if Eq. (6) holds and get the resulting

graph𝑈𝑡+1 = (N , 𝐸𝑡+1);
10: Update graph parameter: 𝑝𝑡 = 𝑝0/𝑡2;
11: Reconnect all edges in 𝐸𝑡+1 with probability 𝑝𝑡 ;

12: end for

Assigning Inferred Groups for Processed Cameras. Initially,

we employ some common clustering methods, e.g., 𝐾-means, to

group cameras with similar perspective impact weights. Within

each cluster, a fully connected graph is first established, reflecting

camera connectivity symmetry and dynamic adaptability for net-

work topology, facilitating continual online updates. In the absence

of initial perspective impact weight information, the entire camera

cluster can be initialized as an undirected fully connected graph

𝑈0 = (N , 𝐸0), maintained for visual task 𝑞 ∈ Q, where each camera

𝑚 ∈ N represents a node in the graph. Cameras sharing similar

learned perspective impact weights are interconnected via edges

in 𝐸0. At each round 𝑡 , the connected components within graph

𝑈𝑡 signify the inferred groups 𝐺1,𝐺2, . . . ,𝐺𝑔𝑡 with 𝑔𝑡 denoting the

the number of camera groups at 𝑡 . Initially, graph 𝑈1 is a complete

graph, with 𝑔1 = 1. For the processed camera 𝑛𝑡 , AxiomVision de-

termines camera 𝑛𝑡 ’s group index 𝑖𝑡 by identifying𝑈𝑡 = (N , 𝐸𝑡 ) to
find the group that camera 𝑛𝑡 belongs to, i.e., 𝑛𝑡 ∈ 𝐺𝑖𝑡 .

Perspective-aware Weight Estimation. To maximize the pay-

off as defined in Eq. (1), we propose to use the maximum likelihood

estimator
ˆ𝜽 𝑖𝑡 ,𝑡 to test whether cameras belonging to group 𝑖𝑡 . This

estimator is designed to yield a unique solution, expressed as:

𝑡−1∑︁
𝑗=1

1{𝑛 𝑗 ∈ 𝐺𝑖𝑡 }
|K𝑗 |∑︁
𝑘=1

(
𝑟𝑚𝑘 , 𝑗 − 𝜇 (𝒙⊤𝑚𝑘 , 𝑗

ˆ𝜽 𝑖𝑡 ,𝑡 )
)
𝒙𝑚𝑘 , 𝑗 = 0. (4)

Eq. (4) represents the condition for optimality, where the cumula-

tive discrepancy between the predicted payoff and actual payoff

sums to zero, as estimated by the membership indicator of cameras

within the same group 𝑖𝑡 . We use Newton’s method which allows

for efficient computation of the solution [16, 38]. The historical

2
For brevity, we focus on the algorithmic procedures for a singular visual task 𝑞 ∈ 𝑄 ,

noting that the procedures can be executed in parallel for multiple visual tasks𝑄 .
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feedback data from all cameras in the same group, not just camera

𝑛𝑡 , are used to update the estimation, emphasizing the value of

grouping for process acceleration. For the cases where the exact

value of 𝜇 is unknown, the process can be reduced to an estimation

process using 𝒙⊤
𝑚𝑘 , 𝑗

ˆ𝜽 𝑖𝑡 ,𝑡 (The subsequent visual model selection

component following the same method).

Selecting Visual Model with Optimistic Approach. Follow-

ing group assigning and estimation, the currently processed camera

undergoes optimization and reward feedback observations on the

selected visual model. Note that the greedy visual model selec-

tion strategy, i.e., argmax𝑚∈M𝑞
𝜇 (𝒙⊤𝑚𝜽𝑛𝑡 ), might result in insuffi-

cient exploration of undiscovered visual models, thereby failing to

ensure optimal model selection. We propose to address this chal-

lenge by adopting an “optimistic approach to encourage exploration”
among different visual models [34, 63]. Specifically, for any pro-

cessed camera 𝑛 ∈ N , we define the Gramian matrix as 𝑴𝑛,𝑡 =∑
𝑗≤𝑡
𝑛 𝑗=𝑛

∑ |K𝑗 |
𝑘=1

𝒙𝑚𝑘 , 𝑗𝒙
⊤
𝑚𝑘 , 𝑗

, and for the belonging group index 𝑖 of

camera 𝑛, denote 𝑴𝑖,𝑡 = 𝜁 𝐼𝑑 + ∑
𝑛∈𝐺𝑖

𝑴𝑛,𝑡 , where 𝜁 𝐼𝑑 is a regu-

larization term added to improve stability. Based on the estimated

ˆ𝜽 𝑖𝑡,𝑡−1 for group𝐺𝑖𝑡 , the visual model for round 𝑡 is selected via the

upper confidence bound strategy:

𝑚𝑡 = argmax

𝑚∈M𝑞

(
𝜇 (𝒙⊤𝑚 ˆ𝜽 𝑖𝑡 ,𝑡−1) + 𝛼 ∥𝒙𝑚 ∥𝑴−1

𝑖𝑡 ,𝑡−1

)
, (5)

where ∥𝒙 ∥𝑴 B
√
𝒙⊤𝑴𝒙 and 𝛼 is a positive parameter. Note that

Eq. (5) incorporates both empirical payoff exploitation from the first

term, as well as exploration of different visual models through the

upper confidence bound. The observed payoff 𝑟𝑚𝑡 ,𝑡 is then recorded

so to update the evaluated performance of visual model𝑚𝑡 .

Optimizing Selection for Adaptive Accuracy. Subsequently,

the agent selects a set of visual models M𝑡 = (𝑚1, . . . ,𝑚 |K𝑡 | ) for
the processed cameras using the above optimistic selection strategy.

It initially prioritizes visual models based on Eq. (5), by consider-

ation of their deployment on edge nodes and in the cloud. If the

accuracy does not meet the predetermined threshold, the process

continues with the next model, until a stopping criterion is met.

This strategy enables us to prioritize potentially high-performing

and lightweight models while ensuring accuracy even under unfore-

seen circumstances, such as sudden snowy weather. Additionally,

the scheduling agent updates its estimation of visual models based

on the received payoff feedback of each selected visual model, to

ensure that subsequent selections meet the accuracy requirements

on the first attempt as much as possible. Through this approach,

our proposed method can achieve rapid visual model adaptation

while ensuring adaptive accuracy across different conditions.

Updating Dynamic Graph for Grouping. For any processed

camera 𝑛 ∈ N , we define 𝑇𝑛,𝑡 =
∑
𝑗≤𝑡
𝑛 𝑗=𝑛

|K𝑗 | as the number of

effective feedbacks up to round 𝑡 . The dynamic graph structure is

then updated to reflect changes in camera grouping, particularly

adjusting based on the current inferred similarity in perspective

weights. An edge (𝑛𝑡 , ℓ) is removed if:𝜽𝑛𝑡 ,𝑡−1 − 𝜽 ℓ,𝑡−1

2
> 𝛽

(
𝑓 (𝑇𝑛𝑡 ,𝑡−1) + 𝑓 (𝑇ℓ,𝑡−1)

)
, (6)

with 𝑓 (𝑥) =

√︃
1+log(1+𝑥 )

1+𝑥 , 𝑥 ≥ 0. This deleting function stems

from a theoretical optimal graph structure threshold, modified here

for computational feasibility while still maintaining theoretical

validity [17]. Further comparisons will be illustrated in Section 5.

The updated graph𝑈𝑡 is utilized in the subsequent round.

Adaptive Graph Reconstruction Strategy. To avoid mistak-

enly removing edges that might be correct, the scheduling agent

reinstates the undirected complete graph at a certain probability.

As more payoff feedback is gathered, the accuracy of the estimated

groupings improves the perspective influence on visual models.

Consequently, there is a diminished need for frequent graph re-

constructions, and this motivates us to have a design where the

probability 𝑝𝑡 decreases over time. Initially, 𝑝0, set within the range

(0,1), is determined randomly (Line 10-11).

Note that our continual online design complements, rather than
competes with traditional offline methods. For example, if prior

knowledge exists about the effects of camera perspectives or the

choice of models via the offline methods, it can be easily assimilated

into our strategy and progressively refined based on AxiomVision.

4.2 Performance Analysis

For the ease of presenting our theoretical analysis, let ∥𝒙𝑚𝑡
∥2 ≤ 1

and ∥𝜽𝑛𝑡 ∥2 ≤ 1,𝑚𝑡 ∈ M𝑞 for all rounds. At each round 𝑡 , a camera

is randomly processed fromN with uniform probability for fairness,

independently of selections in previous rounds. For every visual

task 𝑞 ∈ Q, we evaluate our algorithms by measuring the greatest

difference in payoff between the theoretically ideal visual model

(not known beforehand) and the visual model actually chosen. This

difference is defined as “regret” [5, 34, 45], expressed as:

𝑅𝑒𝑔(𝑇𝑞) = E[
∑︁
𝑡 ∈T𝑞

∑︁
𝑛∈N,𝑛𝑡=𝑛

𝑅(M∗
𝑛𝑡
) − 𝑅(M𝑛𝑡 ,𝑡 )], (7)

where 𝑇𝑞 denotes the cardinality of T𝑞 and M∗
𝑛𝑡

denotes the "un-
known" optimal combinatorial set of visual models for task 𝑞.

In line with [17, 38, 44], we posit that E
[
𝒙𝑚𝑡

𝒙⊤𝑚𝑡

]
is full rank,

with a minimum eigenvalue 𝜆 > 0, and that 𝑥⊤𝑚𝑡
𝜽𝑛𝑡 exhibits a

sub-Gaussian tail with a variance not exceeding 𝜎2. Furthermore,

following [16, 38], we consider 𝜇 to be a strictly increasing, contin-

uously differentiable link function that is Lipschitz continuous with

constant 𝐿. We denote𝑚𝜇 = inf𝑎∈[−2,2] 𝜇
′ (𝑎) and assume𝑚𝜇 > 0.

Defining
˜𝜆 as the integral

∫ 𝜆
0
(1 − 𝑒−

(𝜆−𝑥 )2
2𝜎2 )𝐾𝑑𝑥 with 𝐾 indicat-

ing the maximum number of selected combinatorial visual models

across all rounds [64], we set the tuning parameters 𝛼 and 𝛽 as

follows: 𝛼 = 1

𝑚𝜇

√︃
8

˜𝜆
+ 𝑑 ln(𝑇 /𝑑) + 2 ln(4𝑔𝑇 ) and 𝛽 =

√︃
32𝑑/( ˜𝜆𝑚2

𝜇 ),
where 𝑑 and 𝑔 represent the dimension of the vector and the maxi-

mum number of camera groups under all adjustable perspectives,

respectively. Then, we give the following performance guarantee.

Theorem 1 (Regret Upper Bound). The regret of AxiomVision

throughout T𝑞 is bounded by 𝑅𝑒𝑔(𝑇𝑞) ≤ 𝑂
(
𝐿𝑑
𝑚𝜇

√︁
𝑔𝐾𝑇𝑞 ln(𝑇𝑞)

)
.

Remark: Theorem 1 suggests that the payoff from video analyt-

ics can approach near-optimal performance asymptotically over

rounds, signifying that lim𝑇𝑞→∞
𝑅𝑒𝑔 (𝑇𝑞 )
𝑇𝑞

= 0. The expected regret

of video analytics payoff, defined in Eq. (7), arises from two pri-

mary factors for a given visual task 𝑞: the rounds needed to gather

sufficient information for accurate camera attribute estimation and

grouping, and the practice of sharing the visual model within the
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Figure 6: Different deleting

function 𝑓 (𝑥) on regret.

same group instead of making independent selections. Compared

to the ideal scenario where camera grouping is known and cameras

have equal adjustable perspectives, the theoretical convergence

of AxiomVision is nearly optimal. This scenario is analogous to

managing 𝑔 independent groups, each undergoing 𝑇𝑞/𝑔 learning
rounds, resulting in a regret lower bound of Ω( 𝐿

𝑚𝜇

√︁
𝑑𝑔𝑇𝑞) [13].

Proof Sketch: For any camera 𝑛 with group index 𝑖 , denote the fre-

quency associated with group𝐺𝑖 up to round 𝑡 as𝑇𝑖,𝑡 =
∑
𝑛∈𝐺𝑖

𝑇𝑛,𝑡 ,

and 𝑔𝑖𝑡 ,𝑡 (𝜽 ) =
∑𝑡−1
𝑗=1 1{𝑛 𝑗 ∈ 𝐺𝑖𝑡 }

∑ |K𝑗 |
𝑘=1

𝜇 (𝒙⊤
𝑚𝑘 , 𝑗

𝜽 )𝒙𝑚𝑘 , 𝑗 . With Eq.

(4), then 𝑔𝑖𝑡 ,𝑡 ( ˆ𝜽 𝑖𝑡 ,𝑡−1) =
∑𝑡
𝑠=1 1{𝑖𝑠 ∈ 𝐼 }∑ |K𝑗 |

𝑘=1
𝑟𝑚𝑘 , 𝑗𝒙𝑚𝑘 , 𝑗 . With

probability at least 1 − 𝛿 , for some 𝑗 ≤ 𝑡 with 𝑴𝑖𝑡 , 𝑗 invertible:𝑔𝑖𝑡 ,𝑡 ( ˆ𝜽 𝑖𝑡 ,𝑡 ) − 𝑔𝑖𝑡 ,𝑡 (𝜽 𝑖𝑡 )2𝑴−1
𝑖𝑡 ,𝑡

≤ 𝑇𝑖𝑡 , 𝑗𝜆min (𝑴𝑖𝑡 ,𝑡 )−1+𝑑 ln
𝑇𝑖𝑡 ,𝑡

𝑑
+2 ln 1

𝛿
Here, 𝜆min (𝑀) denotes the minimum eigenvalue of matrix𝑀 . Then,

𝜶 (𝑡, 𝛿) = 1

𝑚𝜇

√︃
8

˜𝜆
+ 𝑑 ln 𝑡

𝑑
+ 2 ln

1

𝛿
, by the property of Lipschitz, we

can assert that the currently estimated group index 𝑖𝑡 for camera 𝑛𝑡
is correct. Consequently, the correct grouping can be formed based

on the deleting rule of Eq. (6). Consider the instantaneous regret

𝑅𝑒𝑔𝑡 at round 𝑡 for the selected visual model𝑚𝑡 under task 𝑞. Given

the correct grouping, we obtain: 𝑅𝑒𝑔𝑡 =𝜇 (𝑥⊤𝑚★𝜽𝑛𝑡 ) − 𝜇 (𝒙⊤𝑚𝑡
𝜽𝑛𝑡 )≤

2𝛼𝐿
𝒙𝑚𝑡


𝑴−1

𝑖𝑡 ,𝑡−1
. Finally, we derive:𝑅𝑒𝑔(𝑇𝑞) = E

[∑𝑇𝑞,0
𝑡=1
E𝑡 (𝑅𝑒𝑔𝑡 )

]
+

E
[∑𝑇𝑞

𝑡=𝑇𝑞,0+1 E𝑡 (𝑅𝑒𝑔𝑡 )
]
≤ 𝑂

(
𝐿𝑑
𝑚𝜇

√︁
𝑔𝐾𝑇𝑞 ln(𝑇𝑞)

)
.

5 Performance Evaluation

5.1 Implementation and Setup

Testbed. Leveraging public 360°VR camera feeds from [1–4], our

setup involves NVIDIA Jetson TX2, Nano, and TX2 NX end devices

handling |N | = 308 video segments from different perspectives,

with ENs powered by NVIDIA GeForce RTX 4060 and HPC Dell

PowerEdge R930 servers as the cloud center. Rectilinear images

are extracted from panorama to function as adjustable perspectives

[36]. Beyond the DNN model used in Section 2, we employ the

lightweight YOLOv5-s, trained on the COCO dataset under diverse

lighting, finally containing a total of 17 optional visual models.

Visual tasks, in line with [40, 66], include Classification, Counting,
Detection, and Aggregation. Utilizing approaches from [37, 44, 67],

we construct and decompose a performance payoff matrix for these

tasks across all video segments, extracting feature vectors for visual

model index representation. Camera bandwidth varies between 1

and 2 Mb/s, with EN to server uplink around 10 Mb/s [25, 41].

Metrics. We evaluate the following performance metrics: (a)

Accuracy: Assessed for the four visual tasks outlined in [40, 66]. (b)
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Figure 7: Influence of group-

ing cameras on acceleration.
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Figure 8: The benefit of in-

creased camera count.

Round: As described in Section 3. (c) Regret: Detailed in Eq. (7). (d)

Time: Encompasses the algorithm’s execution time, visual model

inference time (e.g., YOLOv5-s), and initial transmission time.

Notably, transmission and analysis are not sequential; initial data

upload incurs a startup latency, followed by continuous and parallel

transmission and analysis. (e) Bandwidth: Normalized bandwidth

usage for transmitting encoded video segments. Through both

theoretical and empirical analysis, AxiomVision parameters are set

to (𝛼, 𝛽) = (0.25, 0.1). Note that we periodically run YOLOV5-x

to acquire true bounding boxes for accuracy assessment (included

in the total consumption measurements), and additional extended

experiments can be found in Appendix B.

5.2 In-depth Analysis of Exploring Results

In pursuit of evaluating the effectiveness and rationale of certain

components within our AxiomVision design, we conduct a compre-

hensive series of experiments under the object detection task.

Perspective Effects. To underscore the importance of camera

perspective alongside server-side models, we design an AxiomVi-
sion variant without perspective consideration, w/o Perspective, and
compared it with a version integrating camera perspective, w/ Per-
spective, plus a greedy method providing fixed-perspective optimal

model across all feeds. As depicted in Fig. 5, results show w/ Perspec-
tive improvesmean accuracy by 2.7% overw/o Perspective. Moreover,

both w/o Perspective and w/ Perspective by facilitating online model

selection, surpass the greedy strategy by 2.3% and 5.6% in accuracy.

Deleting Function Evaluation. Based on [49, 51], we assess

various deleting functions: 𝑓1 (𝑥) =

√︃
1+ln(1+𝑥 )

1+𝑥 (ours), 𝑓2 (𝑥) =

1

(1+𝑥 )2 , 𝑓3 (𝑥) = 1√
1+𝑥

, 𝑓4 (𝑥) = 1

4
√
1+𝑥

, 𝑓5 (𝑥) = 1 + ln(1 + 𝑥), and

𝑓6 (𝑥) =
√︁
1 + ln(1 + 𝑥). We evaluate the regret incurred by different

functions at 15, 50, 200, and 850 rounds for each camera, with the

optimal strategy determined through the YOLOv5-x model. Fig. 6

shows that the function

√︃
1+log(1+𝑥 )

1+𝑥 consistently delivers optimal

performance across various rounds with minimal regret.

Grouping Impact on Acceleration. Exploring the effect of

camera grouping on acceleration within the AxiomVision frame-

work, we compare performances between ungrouped (w/o Group-
ing) and grouped (w/ Grouping) setups, as illustrated in Fig. 7. By

setting accuracy thresholds from 0.8 to 0.87, w/ Grouping signifi-

cantly reduces the total number of rounds across all cameras by

at least 1.27×, achieving an average acceleration of 3.23× and a

median of 2.18×. Additionally, we observe that increasing the num-

ber of cameras leads to a reduction in the required rounds while

achieving a similar level of accuracy, as shown in Fig. 8.
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Combinatorial Set Benefits. Referring to Section 3, we ad-

dress dynamic accuracy needs by assembling a combinatorial set

of visual models for selection, as illustrated in Fig. 9. Highlighting

this design’s benefits, we compare it with a non-combinatorial sys-

tem (w/o Combing), which, after applying w/ Combing, would run

subsequent high-load models at equal probability. The cumulative

distribution function (CDF) for accuracy of object detection in Fig.

9 shows that using the combinatorial set (w/ Combing) achieves a
median precision improvement over the non-combinatorial method

(w/o Combing) by 2.3%, with an average increase of 2.6%.

Graph Grouping Efficiency. In Algorithm 1, we implement a

graph-based camera grouping strategy, and a set-basedAxiomVision
algorithm is designed here. Through testing execution time across

various accuracy thresholds of 308 camera feeds, as depicted in

Fig. 10, the graph-based approach significantly reduces execution

time by factors of 1.13×, 3.62×, 9.82×, and 10.50×. Particularly in

high-round scenarios, this graph-based grouping method notably

surpasses the set-based grouping in time efficiency.

5.3 Benchmarking against State-of-the-Art

Benchmarks. Our comparison includes the following schemes.

(1) Chameleon, capable of dynamically selecting the visual model

based on temporal and spatial correlations [28]. (2) Dual-MS, in-
spired by [15], categorizes visual models into two layers: a simpler

model and a more complex model, for effective model selection. (3)

EAMU, standing for edge-assisted on model update in adverse envi-

ronments [31]. (4) Greedy, which, during the initial short segment

of analysis for all video sources offline, runs all models to identify

the one offering the highest average accuracy.
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Figure 12: Decomposition of

total time overhead.
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Figure 13: Accuracy with

varying bandwidth.

Accuracy on Fixed & Adjustable Perspectives. The average

accuracy of 2000 rounds is illustrated in Fig. 11. Across different

visual tasks for fixed perspectives, AxiomVision, which employs a

continuous online model selection, consistently outperforms EAMU,
Chameleon, Dual-MS and Greedy. Furthermore, under adjustable

perspectives, EAMU and Chameleon experience a deterioration in

accuracy due to their lack of consideration about the impact of

source-side camera perspectives.

Decomposition of Total Time. We compare our approach

under 𝑇𝑞 = 2000,∀𝑞 ∈ Q with Chameleon (setting its parameter in-

terval = 5 and top-𝑘 = 5 for re-profiling video pipelines, referred to

as execution time), and EAMU (calculating its average training cost

for retraining, also denoted as execution time). Fig. 12 indicate that

although our method leads to an increase in inference time due to

the adoption of a combinatorial design, it efficiently reduces execu-

tion time by eliminating the need for the re-profiling in Chameleon
and the retraining process in EAMU. In comparison, Chameleon
allocates nearly identical time for spatial-temporal profiling; EAMU
incurs a significant additional time cost due to its retraining pro-

cess. Moreover, the initiation time for transmission is markedly the

smallest in scale under 200 kbps bandwidth constraint.

Impact of Bandwidth Condition. In Fig. 13, we benchmark

our methodology against Chameleon across the above tasks (abbre-

viated as 𝑞1, 𝑞2, 𝑞3, 𝑞4). EAMU is omitted owing to its retraining

architecture, which diverges from the context of bandwidth. The

outcomes demonstrate that the strategic approach of AxiomVision,
which involves selectively deploying complex models for tasks

where accuracy is compromised, significantly boosts performance

across all visual tasks. This advantage becomes particularly promi-

nent in scenarios of limited bandwidth, underscoring our method’s

efficiency in bandwidth-restricted video analytics.

6 Conclusion

We propose AxiomVision, an innovative framework guaranteeing

performance for a wide range of environments and visual tasks.

AxiomVision leverages dynamic model selection and a tiered edge-

cloud architecture. With experiments based on extensive real-world

camera videos,AxiomVision introduces a novel approach to consider
camera perspective and unveils a group-based acceleration strategy

that capitalizes on camera cluster topology. Furthermore, AxiomVi-
sion is designed with a theoretical performance guarantee even

under the worst-case scenarios, that is, AxiomVision can asymptoti-

cally converge to the optimal model section policy. Tested on a built

platform, AxiomVision demonstrates superior performance over

existing works, and greatly improves adaptability and efficiency

across various video analytics applications.
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