Under review as a conference paper at ICLR 2025

COGNITIVE MAP FORMATION UNDER UNCERTAINTY
VIA LOCAL PREDICTION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cognitive maps are internal world models that enable adaptive behavior including
spatial navigation and planning. The Cognitive Map Learner (CML) has been re-
cently proposed as a model for cognitive map formation and planning. A CML
learns high dimensional state and action representations using local prediction
learning. While the CML offers a simple and elegant solution to cognitive map
learning, it is limited by its simplicity, applying only to fully observable envi-
ronments. To address this, we introduce the Partially Observable Cognitive Map
Learner (POCML), extending the CML to handle partially observable environ-
ments.

The POCML employs a superposition of states for probabilistic representation and
uses binding operations for state updates. Additionally, an associative memory is
incorporated to enable adaptive behavior across environments with similar struc-
tures. We derive local update rules tailored to the POCML’s probabilistic state
representation and associative memory. We demonstrate a POCML is capable of
learning the underlying structure of an environment via local next-observation pre-
diction learning. In addition, we show that a POCML trained on an environment
is capable of generalizing to environments with the same underlying structure
but with novel observations, achieving good zero-shot next-observation predic-
tion accuracy, significantly outperforming sequence models such as LSTMs and
Transformers. Finally, we present a case study of navigation in a two-tunnel maze
environment with aliased observations, showing that a POCML is capable of ef-
fectively using its probabilistic state representations for disambiguation of states
and spatial navigation.

1 INTRODUCTION

Cognitive maps are central to the adaptive behavior of intelligent agents, enabling capabilities rang-
ing from spatial navigation to planning to reasoning and abstraction; they are internal world models
that allow agents to predict the consequences of their actions (Behrens et al., 2018)). Known to be
responsible for spatial representations in the brain (Eichenbaum), 2017; Behrens et al., 2018)), the
hippocampal formation (HF), consisting of the hippocampus and the entorhinal cortex, is a primary
source of inspiration for models of cognitive map learning. While we do not know how exactly the
brain implements cognitive maps, there are various theoretical models of how this might be done at
an algorithmic level (Whittington et al.| 2020; (George et al., 2021} Stockl et al., 2024).

Recently, [Stockl et al.| (2024) proposed the Cognitive Map Learner (CML), a simple model that can
learn high-dimensional representations of states and actions that reflect the structure of the underly-
ing environment using local synaptic plasticity rules that minimize next-state prediction error. Using
these learned representations, a CML can subsequently perform online planning to reach a goal state
via a simple action selection heuristic; i.e. by choosing the action most similar to the vector formed
by the difference between the goal state and current state. Compared to probabilistic models, such
as the Tolman-Eichenbaum machine (TEM) (Whittington et al.l 2020) and clone-structured cog-
nitive graph (CSCG) (George et al., 2021), CML is more computationally efficient, geometrically
interpretable, and only requires local learning rules to train.

However, CML is limited by its simplicity, applying only to fully observable environments where
observations unambiguously distinguish different states. In comparison, models such as TEM and

Under review as a conference paper at ICLR 2025

CSCQG are more expressive and can handle partially observable environments due to their probabilis-
tic nature; that said, they are limited by their computational cost and limited interpretability.

To fill in this research gap, we introduce the Partially Observable CML (POCML), an extension of a
CML to partially observation environments. A POCML leverages random Fourier features to enable
the representation of a state in superposition. The superposition of states is used to represent states in
a probabilistic manner, to which a binding operation is used for updating these states simultaneously
and independently. To decouple the underlying environment structure and state-observation relation,
we endow the POCML with a memory storing state-observation associations to enable adaptive
behavior in different environments with the same underlying structure and derive corresponding
local update rules that take the new probabilistic state representation and associative memory into
consideration.

We demonstrate that when presented with sequences of actions and observations of random walks in
an environment, a POCML is capable of learning the underlying structure via local next-observation
prediction learning. In addition, we show that a POCML trained on an environment is capable of
generalizing to environments with the same underlying structure but with novel observations, achiev-
ing good zero-shot next-observation prediction accuracy, significantly outperforming sequence mod-
els such as LSTMs (Hochreiter & Schmidhuber, [1997)) and Transformers (Vaswani et al., [2017).
Finally, we present a case study of navigation in a two-tunnel maze environment with aliased obser-
vations, showing that a POCML is capable of effectively using its probabilistic state representations
for disambiguation of states and spatial navigation.

2 BACKGROUND

COGNITIVE MAP LEARNERS

Given a sequence of observations o; and actions a; produced by an agent acting in an environment,
a CML learns to predict the next observation based on the current observation and action taken by
the agent (Stockl et al.| 2024).

In a CML, observations o; € R" and actions a; € R"« are represented as one-hot vectors and
are embedded into a common high dimensional state space S C R™ via embedding matrices Q &€
R™*"e and V € R™*"a respectively. Here, n, is the number of observations, n, is the number of
actions, and n is the dimension of the state space. Both Q and V have entries sampled i.i.d. from
N(0,1) and are then normalized by 1/+/n.

Given an observation, the corresponding state representation is

st = Qo (D
and, in addition, given an action, the predicted next state is
St41 = s + Vay. ()

We want the state and action representations to be such that such that predicted next state S;y1
matches the actual next state s;41.

UPDATE RULES

Using local synaptic plasticity rules, we update Q and V to minimize the prediction error. To do so,
we compute the matrices

AQui1 = ng(841 — S141)0/ 4, (3)
AV = ny(seg1 — §t+1)a;r, “4)
where 74, 1, > 0 are learning rates at each time-step and update Q <+~ Q+AQand V < V+AV.

Iterative updates using these rules can lead to state and action representations consistent with the
structure of the underlying environment.

RANDOM FOURIER FEATURES

Rahimi & Recht (2007) proposed a method to approximate shift-invariant kernels by computing the
inner product between vectors produced by a random feature map ¢ as a consequence of Bochner’s

Under review as a conference paper at ICLR 2025

theorem (Rahimi & Recht,[2007)). We describe a mathematically equivalent though slightly different
approach in this section commonly used in the Vector Symbolic Architecture (VSA) literature (Plate,
2003; Kleyko et al., [2023)).

Suppose we are given vectors X,y € R™ and a random feature map

b(x) = [eVIWix . eVTIwpx] ¢ P, (5)
where w;; ~ pfori=1,...,Dandj = 1,...,n for some distribution p. We call the output of ¢ a
random Fourier feature vector. Then the similarity between ¢(x) and ¢(y) is
1
3(6(x), 8(y)) = L Re(6(x) ¢(y)) ~ K(x ~y) (6)

i.e. it is an unbiased estimate of the evaluation of a shift-invariant kernel K corresponding to the
Fourier transform of p at x — y. ¢(x)' denotes the Hermitian transpose of ¢(x).

As a special case, if p is the standard Gaussian distribution, then the corresponding kernel K is the
Gaussian (or radial basis function) kernel.

Another important property of the random feature map defined in Eq. [5that we will exploit is
$(x) © ¢(y) = d(x +) @)

which is a consequence of the additive law of exponents. Here, ® is the binding operation in VSA,
which, in this case, is implemented as element-wise multiplication.

3 CMLSsS IN PARTIALLY OBSERVABLE ENVIRONMENTS

A CML operates within a fully observable environment; i.e. it assumes that one can exactly infer
which state one is in just from a given observation. This assumption is reflected as a bijection
between observations o; and states s;: each observation corresponds exactly to one column of Q.

However, most environments do not have this property; they are partially observable. In this section,
we introduce an extension of a CML that can operate in partially observable environments, the
Partially Observable CML (POCML).

TwoO LEVELS OF REPRESENTATION

The POCML model considers two levels of representation: (1) the “standard” level as in a regular
CML, and (2) the “Fourier” level using random Fourier features. This extension of coupled repre-
sentation is motivated by the need to maintain the straightforward geometric interpretation of CML
while enabling the superposition of states.

In our model, we wish to represent uncertainty as a superposition of states. As a naive attempt, we
first consider directly superposing the states. If the model is unsure whether it is in state s; or so,
it can represent its estimated state as §; = s1 + so. However, if we apply Eq. [2|to predict the next
state, we obtain

§t+1 = ét + Vat =81 +8S2 + Vat. (8)

This causes an issue both in learning and in interpretation because the superposition of states shares
the same operation as a state transition. To address this issue, we propose to use binding instead of
addition to predict the next state, i.e.

St+1 =8t © Vay,)
then we can exploit the distributivity of the binding operation:
§t+1 :étQVat =83 @Vat+32®Vat. (10)
This approach does not guarantee the same geometric properties intrinsic to the standard represen-
tation.

To have the best of both worlds, we apply the random feature map ¢ to the standard representation s
to obtain a Fourier representation s. The state superposition and state update of Eq.[10|is applied to

Under review as a conference paper at ICLR 2025

A B Observed variable ' Hidden variable B 1 R 2 3
Action State Observation o

4 5 6
D

7 8 R, o

{(1,R,2),(2,D,5),(5.D.8), (8,R.9)}

C

Wom m
S AN A

State-observation mapping y is estimated using memory M,

7

s, Is estimated implicitly at the random Fourier feature level ¢(8,) (5,U.2), U1, (1,R.3), 3,L.6)}

Figure 1: A. General structure of the POCML model. B. 3-by-3 grid environment with a sample
trajectory. C. 3-level tree environment with a sample trajectory.

the Fourier representation such that the binding operation has the same interpretation at the standard
level thanks to Property

To elaborate, we denote §; as the estimated superposed state, which can be represented implicitly
as a (weighted) set. We extend ¢ naturally to the encoding of the set of states via superposition:
#(8¢) = ¢(s1) + &(s2) + 6 for some noise 6. Then, using Eq[9]to predict the next state, we get

P(8t11) = ¢(8t) © ¢(Vay) (11)
= qb(Sl) ® ¢(Vat) + ¢(52) ® ¢(Vat) (12)
= ¢(s1 + Va;) + ¢(s2 + Vay). (13)

This approach is similar to that used in (Kymn et al., 2024). The coupled representation allows
us to update all states in superposition while maintaining the desirable geometric properties of the
standard CML representation.

THE MODEL

Suppose, like in a standard CML, an agent explores an underlying environment and produces a
sequence of actions and observations.

GROUND TRUTH AND INTERNAL VARIABLES

Actions a; € R,,, observations o; € R,, , and states u; € R,,, are ground truth variables, where
a; and oy are observed (from the environment) while u; is unobserved, needing to be inferred. We
assume that o, uy, and a; are one-hot vectors. We need to distinguish between state and observation
here due to breaking the bijectivity (i.e. partial observability) assumption.

Under review as a conference paper at ICLR 2025

Figure [TA visualizes the POCML model structure and the relationship between the different vari-
ables. The corresponding standard-level internal model representations are

x; = f(or) (14)
u; = Q(Mt,Xt) (15)
st = Quy (16)
v; = Va,. (17

where Q € R"*"s and V € R"*"a_ f : R™ — R™ is an arbitrary map. The choice of f depends
on the nature of the observation. In this work, as we assume observations to be one-hot, we let
f be the identity. Thus, x; may be used interchangeably with o;. The state estimation from the
observation is handled by a function over the observation x; and a memory unit M,, discussed in
the next section. the same memory is used to estimate the next state (Figure[TA).

For the Fourier representation, we choose the random feature map ¢ such that it approximates the
Gaussian kernel by sampling w;; ~ N(0,1/a); i.e. 6(p(x), p(y)) ~ exp(—afx —y||?) = K(x —
y). For notational simplicity, let us denote sy, .. ., s, as the columns of Q. Moreover, let $(Q) =

[d)(sl)a ey ¢(Sng)}

We perform next-state predictions after applying the random feature map ¢ : R” — CP. As in
Eq.[TT] we predict the next state via binding:

D(8111) = (81) © P(vy). (18)
Here, ¢(S;) is a linear combination of states ¢(s1), ..., #(s,,) representing the expected state the
model is in. Note that S; is indexed by time while s; is indexed by column.

Given the expected state ¢(S;), we can estimate u; via

t sl
= Byl = e 9
Given an observation x; and state S;, we can infer the expected state
p(uel8e,x¢) o< p(xeue)p(ue[se) (20)
Finally, we let ¢(S;41) be the the superposition of states
D(St41) = H(Q) 41 21

HETERO-ASSOCIATIVE MEMORY

We endow the model with a hetero-associative memory
t—1
M, = ax] (22)
T=1
where M; = 0. Using this memory, given i, we can predict the observations based on experience:

X = By, i) [xe] = MY (2 © (1))) (23)

where N} = Zt;:ll U is a vector recording the expected state counts. In addition, given an obser-
vation x;, we can infer what the state should be based on experience:

u; = Ep(utlxt)[ut] = M;(x; © (nf)_l) (24)

t=1_ . . .
where nf =)", x, is a vector recording the observation counts.

UPDATE RULES

To perform local prediction, we want to update Q and V in order to match X, and x;41. We do
this by minimizing their cross entropy given by
L = —logp(X¢+1[le+1) = — logZp(xt+1|ui)p(ui|ét+1) (25)
i=1
(26)

Under review as a conference paper at ICLR 2025

Note that we can rewrite p(u;|$;41) as

0(¢(si), H(8141))

p(ugl$i41) = (27)
' 2201 6(&(si), B(811))
Uy]; exp ;
S ey o8
2oty 2252 [u]j exp b
where we denote s, = s; + v; and ¢;; = —a|s; — s||>. We can make the above approximation as

the random feature map ¢ approximates the Gaussian kernel. So we can express L as

Lrlogd > [yl expihi; —log > > p(xeya|ui)[fe]; exp b (29)
i=1 j=1 i=1 j=1
(30)
Taking the gradient, we get
Z:;H ;L 1 [0e]j exp iV ZZL;1 Z;L;1 p(xep1]u)[Ge]; exp ¥y Vi
VL~ s Mg Mg (31)
Z‘; Zj—1[ut]” exp ;; Zi;1 j=1 P(Xeq1|ug) [y] exp Yi;

ns M ,Qb(S;)) B p(xt+1|ui)6(¢(si),¢(sg.)) .)
- Z Z ((Sz) D(8141)) 2oity p(Xetr|ui)d(o(ss), ¢(é2+1))> (0] V7435
(32)

i=1 j=1

We do not take the derivative through p(x;+1|u;) as it is computed using a table of expected counts
M, 1. Computing the derivative with respect to Q and V, we get the update rules

AQit1 =1, ii%j[ﬁt]j(s;— —s;)u; (33)
=1 j=1
AV =1, ZZ%J [];(s; — s))a/ (34)
where
). 06(s) o) s
Y p(xea [w)d((si), B(8741)) Doisy 0(d(si), (8140))
4 RESULTS

NEXT OBSERVATION PREDICTION IN GRID AND TREE ENVIRONMENTS

We test the POCML model on both grid and tree environments. An environment can be represented
as a directed graph whose nodes are states and edges are actions. Thus, the underlying structure
of an environment is defined by its state-action transitions. Here, we consider environments in
which actions in general have the same effect across states (e.g. going up does the same thing in
every state of a grid). When traversing the environment, an agent receives different observations in
different states defined by a state-observation mapping. Two instances of an environment have the
same underlying structure but can have different state-observation mappings. We sample trajectories
{(x¢, a, X¢41) };F:_ll from the environment by choosing an initial state in the environment uniformly
randomly, then choosing uniformly random actions. Figure [[]A and [[B visualize a 3-by-3 grid
environment and a 3-level tree environment respectively along with example trajectories.

Given a collection of trajectories from an environment, we train the POCML model by applylng the
update rules given in Egs. [33]and 34, As mentioned in the previous section, doing so minimizes
the cross entropy between the predicted and actual observations, effectively performing local next
observation prediction.

Under review as a conference paper at ICLR 2025

A Grid Environment B Tree Environment

tate O

f\
?

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
Random feature dimension Random feature dimension Random feature dimension Random feature dimension

08

0.9
04 074, 0.65
08
0.3 06 0.60
0.7 02 05 o
0 .55

0.26 0.8

0.8

a a
. o024 07
07
0.85 022 06
0.80 0.20 05 H'\'/I 0.6
075 018 04

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
State dimension State dimension State dimension State dimension

= Test confidence SA confidence = SAdistance ratio

Figure 2: A. PCA visualization of learned state and action representations of a POCML trained in
a grid environment. B. PCA visualization of learned state and action representations of a POCML
trained in a tree environment. C. Plots of POCML evaluation metrics against various hyperparam-
eters in a grid environment. Error bars report standard deviation over 4 trials. D. Plots of POCML
evaluation metrics against various hyperparameters in a tree environment. Error bars report standard
deviation over 4 trials.

Learned state representations reflect underlying structure We perform principal component
analysis (PCA) to visualize the learned state representations QQ and action representations V, of the
POCML model trained in both grid and tree environments in two dimensions, shown in Figures
2JA and 2B respectively. Specifically, the points visualize each state representation projected onto
the first two principal components. Actions are visualized as line segments as they represent edges
in the underlying graph. They are visualized as the PC projection of the points (s,s + Va) for
each state and action in the environment. We find that the arrangement of states in the projected
2D space resembles the underlying structure of the environment. This suggests that the POCML
successfully learns the underlying structure of the environment in a self-supervised manner through
local next-observation prediction learning.

In addition, we use three evaluation metrics to measure the quality of the learned representations:
next-observation prediction confidence, state-action confidence, and state-action distance ratio.

Next-observation prediction confidence measures the average next-observation prediction probabil-
ities over the test trajectories.

State-action confidence measures the quality of state-action transitions by averaging the normalized
similarity between the predicted state ¢(s) ® ¢(Va) and the random feature representation of the
actual next state ¢(s’) over all state-action pair (s, a) in the environment.

~

Under review as a conference paper at ICLR 2025

Model trained on Model tested on environment
environment with novel observations

—> Training trajectory —» Exploration trajectory

> Test trajectory

Figure 3: Visualization of zero-shot experimental setup. The model is first trained in an environment
by optimizing for next-observation prediction accuracy. The model is tested in a different environ-
ment with novel observations. An exploration trajectory is given to populate its memory, while a
test trajectory is used to evaluate its next-observation prediction accuracy in the new environment.

State-action distance ratio is similar to state-action accuracy but operates in Euclidean space rather
than similarity space (i.e. “standard” level instead of “Fourier” level). The state-action distance ratio
is the quantity ||s’ — (s + Va)|| normalized by the distance ||s’ — s||, averaged over all state-action
pairs (s, a) in the environment. A good representation should have high next-observation prediction
confidence and state-action confidence as well as a low state-action distance ratio.

Figure PIC and 2D plots the three evaluation metrics for POCMLs with various hyperparameters on
grid and tree environments respectively. For each plot, we vary one hyperparameter while keep-
ing the others fixed. The plots show both mean and standard deviation over 4 trials. In the grid
environment, we notice that increasing inverse length-scale a and random feature dimension gen-
erally leads to better model performance, while there is no clear trend for the state dimension. On
the other hand, there is no clear trend in the tree environment. Thus, optimal hyperparameters are
environment-dependent.

POCMLs generalize to environments with different observations in a zero-shot manner We
test the zero-shot performance of POCML in environments with novel observations. To do this,
we generate multiple instances of the environment, where each instance has the same underly-
ing structure (e.g. grid, tree) but with observations that are randomly sampled from a uniform
distribution with replacement at each state. For example, in a 3-by-3 grid, we have possible ob-
servations xi,...,Xg. For each state in the grid, we choose the observation by sampling from
Unif(x1,...,Xg). Thus, the model initially has no information about what observations to expect
in these instances. The model must traverse the environment to gain information about the state-
observation mapping.

For each instance of an environment, we generate two trajectories. The model uses the first trajectory
for exploration in order to populate its memory about the novel environment. The second trajectory
is used to test the next observation prediction accuracy of the model. The initial state is provided in
both trajectories to ground the model. Note that there is zero training on these new instances so the
task is zero shot. Figure [3|describes the zero-shot experimental setup.

We compare the POCML model with both LSTMs (Hochreiter & Schmidhuber} |[1997) and Trans-
formers (Vaswani et al.l 2017). The LSTMs and Transformers are trained on the same dataset as
the POCML for next-observation prediction. Note that we train the LSTM and Transformer models
using backpropagation via the Adam optimizer (Kingma & Ba,[2017)) while the POCML model only
performs local prediction learning via the update rules given above.

Table [T] reports the zero-shot next observation prediction performance of POCML, LSTM, and
Transformer on both grid and tree environments. LSTMs and Transformers are chosen to have a
comparable number of trainable parameters as the POCML. As shown in the table, the POCML

Under review as a conference paper at ICLR 2025

Table 1: Zero shot performance in environments with novel observations

Model Environment # trainable parameters Accuracy
POCML Grid 450 0.980
LSTM Grid 493 0.121
Transformer Grid 451 0.117
POCML Tree 350 0.935
LSTM Tree 403 0.141
Transformer Tree 407 0.143

model significantly outperforms both LSTM and Transformer models in all respects. This is be-
cause the POCML is endowed with strong inductive biases about the environment structure as well
as the relation between observation and states, which LSTMs and Transformers lack. Transformers
and LSTMs with more (up to 100x) parameters yielded similar results.

POCMLs can disambiguate states with aliased observations We consider a two-tunnel maze
environment as a case study to investigate model behavior when observations are aliased (i.e. the
same observation occurs in two different states). Figure E]A visualizes the two-tunnel maze, while
Figure @B shows how we can model the maze structure and observations using a 3-by-3 grid envi-
ronment.

We place a goal state in the bottom left corner and provide the agent with a policy 7 : S — A to
reach the goal state, where S is the set of states and A is the set of actions, shown in Figure Ep
Given an estimated state 11, the agent acts according to the most likely state it’s in arg maxg, cs U;.
To test whether the POCML model can disambiguate between the two states, we place the agent in
the middle-right state and check if it can reach the goal state using the policy. As in the zero-shot
experiment above, the agent is given a exploration trajectory to populate its memory.

Figure [4[C also shows the trajectory of the agent, while Figure @D shows a heatmap of the agent’s
estimated state at each time step 1. Initially, the agent estimated state is a superposition of both left
and right tunnel states. After moving down one position, the estimated state collapses to the correct
state, and the agent proceeds to take the correct steps to reach the goal state.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced the Partially Observable Cognitive Map Learner (POCML), an extension
of the Cognitive Map Learner (CML) framework to partially observable environments. The POCML
distinguishes between two levels of representation and represents states probabilistically through a
superposition of states, which are updated via the binding operation. Additionally, we incorporate
an associative memory mechanism to support adaptive behavior across environments with shared
underlying structures. We derive local update rules for next-observation prediction that account for
both the probabilistic state representation and the associative memory.

We demonstrate that a POCML can successfully learn the underlying structure of an environment
using these update rules. Furthermore, we show that a POCML trained in one environment gen-
eralizes well to new environments with similar structures but novel observations, achieving high
zero-shot next-observation prediction accuracy and significantly outperforming models like LSTMs
and Transformers. Finally, we perform a case study on spatial navigation in a two-tunnel maze
with aliased observations. We show that the POCML effectively leverages its probabilistic state
representations for state disambiguation and spatial navigation.

For future work, it is of interest to extend the POCML framework to the continuous domain and
adapt the update rules to support a trainable observation encoding component. Given that a POCML
effectively learns a cognitive map of the environment, we would also like to investigate its integration
with model-based reinforcement learning methods.

Under review as a conference paper at ICLR 2025

A B
1 2 3
4 4
5 6
@ Agent [Aliased observations Bidirectional edge
Cod state Blocked edge
C D

Estimated state

=P Policy: action to take in state

Time

Trajectory of agent

Figure 4: A. Two tunnel maze environment. Red boxes indicate aliased observations. B. Modeling
the two-tunnel maze environment using a 3-by-3 grid environment. Blocked edges simulate walls,
while the repeated observation “4” models the aliased observation. C. Policy and trajectory visual-
ization of the agent. D. Heatmap of the agent’s estimated states over the trajectory.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Timothy E. J. Behrens, Timothy H. Muller, James C. R. Whittington, Shirley Mark, Alon B. Baram,
Kimberly L. Stachenfeld, and Zeb Kurth-Nelson. What Is a Cognitive Map? Organizing Knowl-
edge for Flexible Behavior. Neuron, 100(2):490-509, October 2018. ISSN 0896-6273. doi:
10.1016/j.neuron.2018.10.002.

Howard Eichenbaum. On the Integration of Space, Time, and Memory. Neuron, 95(5):1007-1018,
August 2017. ISSN 0896-6273. doi: 10.1016/j.neuron.2017.06.036.

Dileep George, Rajeev V. Rikhye, Nishad Gothoskar, J. Swaroop Guntupalli, Antoine Dedieu, and
Miguel Lazaro-Gredilla. Clone-structured graph representations enable flexible learning and vi-
carious evaluation of cognitive maps. Nature Communications, 12(1):2392, April 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-22559-5.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco0.1997.9.8.1735.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554-2558, April 1982. doi: 10.1073/
pnas.79.8.2554.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A Survey on Hyper-
dimensional Computing aka Vector Symbolic Architectures, Part I: Models and Data Transfor-
mations. ACM Computing Surveys, 55(6):1-40, July 2023. ISSN 0360-0300, 1557-7341. doi:
10.1145/3538531.

Christopher J. Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, E. Paxon Frady, Friedrich T.
Sommer, and Bruno A. Olshausen. Binding in hippocampal-entorhinal circuits enables composi-
tionality in cognitive maps, June 2024.

Tony A. Plate. Holographic Reduced Representation: Distributed Representation for Cognitive
Structures. Lecture Notes. Center for the Study of Language and Information, April 2003. ISBN
978-1-57586-430-3.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007.

Christoph Stockl, Yukun Yang, and Wolfgang Maass. Local prediction-learning in high-dimensional
spaces enables neural networks to plan. Nature Communications, 15(1):2344, March 2024. ISSN
2041-1723. doi: 10.1038/s41467-024-46586-0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

James C. R. Whittington, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil
Burgess, and Timothy E. J. Behrens. The Tolman-Eichenbaum Machine: Unifying Space and
Relational Memory through Generalization in the Hippocampal Formation. Cell, 183(5):1249—
1263.e23, November 2020. ISSN 0092-8674. doi: 10.1016/j.cell.2020.10.024.

A RELATED WORK

Comparison against other cognitive map models TEM is a computational model of the
hippocampal-entorhinal system (Whittington et al., 2020). Given sequences of sensory inputs and
actions in different environments, it can extract the shared structure between the environments. TEM
has two types of latent variables: g, which represents the abstract location at a particular point in the
sequence, and p, which represents a conjunction between sensory observation and abstract location.

11

Under review as a conference paper at ICLR 2025

TEM and POCML are similar in that both have a separation between abstract state and observation,
but TEM uses the conjunctive representation p in its memory component, an auto-associative Hop-
field network (Hopfield, |1982). In contrast, POCML uses a hetero-associative memory that asso-
ciates state and observation implemented as a table of expected counts. In addition, while TEM uses
recurrent neural networks (RNNs) to predict the next abstract state, POCML uses the binding oper-
ation. While RNNs are more expressive, the binding operation over RFF admits a non-parametric
kernel density estimation interpretation of the model. Moreover, the specific choice of Gaussian
kernel enables a geometric interpretation of the underlying learned state and action representations:
next state prediction can be performed by adding the action representation to the state representation
in this space. That said, TEM does learn grid-cell representations that reflect biology and explain
the remapping phenomenon; thus, it is valuable from a neuroscience perspective.

From a computational perspective, in both learning and inference, TEM requires iterative processing
to perform memory retrieval and state and observation inference, which produces a sizable compu-
tational overhead. POCML does not have this limitation.

Algorithmically, there is a comparatively greater difference between CSCG (George et al., [2021)
and POCML. Both models can be considered action-augmented hidden Markov models (HMMs)
though actions are treated slightly differently in both models. Moreover, CSCG uses a variant of an
HMM called a cloned HMM (CHMM). While CSCG represents state-transition probabilities via a
state-transition matrix, POCML does this through kernel density estimation (based on RFF). Given
that POCML uses vector representations for states and actions, it can easily be extended to larger
environments with the same regularity structure simply by keeping the action representations fixed.

Relation to reinforcement learning It is important to note that POCML learns the structure of
the environment in a reward-free manner, which sets it apart from value-based reinforcement learn-
ing (RL) techniques. That said, the structure of the environment learned by the POCML encodes
environment dynamics p(s'[s,a) o« §(¢(s'), #(s) © ¢(a)), which can subsequently be used for
model-based RL. The tunnel-maze experiment in the results section demonstrates a way in which
this model of the environment can be used given a policy. It is of interest to investigate the conse-
quence of a tighter coupling between model and policy in future work.

B LIMITATIONS

This work has several limitations. First, evaluation was performed on simplistic environments.
These experiments illustrate the properties and functionality of the POCML model but further work
is needed to demonstrate the practicality of the model in larger scale applications. However, we
would like to note that the purpose of this work is to introduce the POCML model and the novel
representational paradigm based on RFF for encoding uncertainty; we leave extending the model
to larger-scale environments for future work. Second, the POCML model here uses discrete ob-
servations. Third, as in the original CML work, action affordances have to be provided by the
environment.

12

	Introduction
	Background
	Cognitive Map Learners
	Update Rules

	Random Fourier Features

	CMLs in Partially Observable Environments
	Two Levels of Representation
	The Model
	Ground Truth and Internal Variables
	Hetero-associative Memory
	Update Rules

	Results
	Next observation prediction in grid and tree environments

	Conclusion and Future Directions
	Related Work
	Limitations

