
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COGNITIVE MAP FORMATION UNDER UNCERTAINTY
VIA LOCAL PREDICTION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cognitive maps are internal world models that enable adaptive behavior including
spatial navigation and planning. The Cognitive Map Learner (CML) has been re-
cently proposed as a model for cognitive map formation and planning. A CML
learns high dimensional state and action representations using local prediction
learning. While the CML offers a simple and elegant solution to cognitive map
learning, it is limited by its simplicity, applying only to fully observable envi-
ronments. To address this, we introduce the Partially Observable Cognitive Map
Learner (POCML), extending the CML to handle partially observable environ-
ments.
The POCML employs a superposition of states for probabilistic representation and
uses binding operations for state updates. Additionally, an associative memory is
incorporated to enable adaptive behavior across environments with similar struc-
tures. We derive local update rules tailored to the POCML’s probabilistic state
representation and associative memory. We demonstrate a POCML is capable of
learning the underlying structure of an environment via local next-observation pre-
diction learning. In addition, we show that a POCML trained on an environment
is capable of generalizing to environments with the same underlying structure
but with novel observations, achieving good zero-shot next-observation predic-
tion accuracy, significantly outperforming sequence models such as LSTMs and
Transformers. Finally, we present a case study of navigation in a two-tunnel maze
environment with aliased observations, showing that a POCML is capable of ef-
fectively using its probabilistic state representations for disambiguation of states
and spatial navigation.

1 INTRODUCTION

Cognitive maps are central to the adaptive behavior of intelligent agents, enabling capabilities rang-
ing from spatial navigation to planning to reasoning and abstraction; they are internal world models
that allow agents to predict the consequences of their actions (Behrens et al., 2018). Known to be
responsible for spatial representations in the brain (Eichenbaum, 2017; Behrens et al., 2018), the
hippocampal formation (HF), consisting of the hippocampus and the entorhinal cortex, is a primary
source of inspiration for models of cognitive map learning. While we do not know how exactly the
brain implements cognitive maps, there are various theoretical models of how this might be done at
an algorithmic level (Whittington et al., 2020; George et al., 2021; Stöckl et al., 2024).

Recently, Stöckl et al. (2024) proposed the Cognitive Map Learner (CML), a simple model that can
learn high-dimensional representations of states and actions that reflect the structure of the underly-
ing environment using local synaptic plasticity rules that minimize next-state prediction error. Using
these learned representations, a CML can subsequently perform online planning to reach a goal state
via a simple action selection heuristic; i.e. by choosing the action most similar to the vector formed
by the difference between the goal state and current state. Compared to probabilistic models, such
as the Tolman-Eichenbaum machine (TEM) (Whittington et al., 2020) and clone-structured cog-
nitive graph (CSCG) (George et al., 2021), CML is more computationally efficient, geometrically
interpretable, and only requires local learning rules to train.

However, CML is limited by its simplicity, applying only to fully observable environments where
observations unambiguously distinguish different states. In comparison, models such as TEM and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

CSCG are more expressive and can handle partially observable environments due to their probabilis-
tic nature; that said, they are limited by their computational cost and limited interpretability.

To fill in this research gap, we introduce the Partially Observable CML (POCML), an extension of a
CML to partially observation environments. A POCML leverages random Fourier features to enable
the representation of a state in superposition. The superposition of states is used to represent states in
a probabilistic manner, to which a binding operation is used for updating these states simultaneously
and independently. To decouple the underlying environment structure and state-observation relation,
we endow the POCML with a memory storing state-observation associations to enable adaptive
behavior in different environments with the same underlying structure and derive corresponding
local update rules that take the new probabilistic state representation and associative memory into
consideration.

We demonstrate that when presented with sequences of actions and observations of random walks in
an environment, a POCML is capable of learning the underlying structure via local next-observation
prediction learning. In addition, we show that a POCML trained on an environment is capable of
generalizing to environments with the same underlying structure but with novel observations, achiev-
ing good zero-shot next-observation prediction accuracy, significantly outperforming sequence mod-
els such as LSTMs (Hochreiter & Schmidhuber, 1997) and Transformers (Vaswani et al., 2017).
Finally, we present a case study of navigation in a two-tunnel maze environment with aliased obser-
vations, showing that a POCML is capable of effectively using its probabilistic state representations
for disambiguation of states and spatial navigation.

2 BACKGROUND

COGNITIVE MAP LEARNERS

Given a sequence of observations ot and actions at produced by an agent acting in an environment,
a CML learns to predict the next observation based on the current observation and action taken by
the agent (Stöckl et al., 2024).

In a CML, observations ot ∈ Rno and actions at ∈ Rna are represented as one-hot vectors and
are embedded into a common high dimensional state space S ⊆ Rn via embedding matrices Q ∈
Rn×no and V ∈ Rn×na , respectively. Here, no is the number of observations, na is the number of
actions, and n is the dimension of the state space. Both Q and V have entries sampled i.i.d. from
N (0, 1) and are then normalized by 1/

√
n.

Given an observation, the corresponding state representation is
st = Qot (1)

and, in addition, given an action, the predicted next state is
ŝt+1 = st +Vat. (2)

We want the state and action representations to be such that such that predicted next state ŝt+1

matches the actual next state st+1.

UPDATE RULES

Using local synaptic plasticity rules, we update Q and V to minimize the prediction error. To do so,
we compute the matrices

∆Qt+1 = ηq(ŝt+1 − st+1)o
⊤
t+1 (3)

∆Vt+1 = ηv(st+1 − ŝt+1)a
⊤
t , (4)

where ηq, ηv > 0 are learning rates at each time-step and update Q← Q+∆Q and V← V+∆V.
Iterative updates using these rules can lead to state and action representations consistent with the
structure of the underlying environment.

RANDOM FOURIER FEATURES

Rahimi & Recht (2007) proposed a method to approximate shift-invariant kernels by computing the
inner product between vectors produced by a random feature map ϕ as a consequence of Bochner’s

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

theorem (Rahimi & Recht, 2007). We describe a mathematically equivalent though slightly different
approach in this section commonly used in the Vector Symbolic Architecture (VSA) literature (Plate,
2003; Kleyko et al., 2023).

Suppose we are given vectors x,y ∈ Rn and a random feature map

ϕ(x) = [e
√
−1w⊤

1 x, . . . , e
√
−1w⊤

Dx] ∈ CD. (5)

where wij ∼ p for i = 1, . . . , D and j = 1, . . . , n for some distribution p. We call the output of ϕ a
random Fourier feature vector. Then the similarity between ϕ(x) and ϕ(y) is

δ(ϕ(x), ϕ(y)) :=
1

D
Re(ϕ(x)†ϕ(y)) ≈ K(x− y) (6)

i.e. it is an unbiased estimate of the evaluation of a shift-invariant kernel K corresponding to the
Fourier transform of p at x− y. ϕ(x)† denotes the Hermitian transpose of ϕ(x).

As a special case, if p is the standard Gaussian distribution, then the corresponding kernel K is the
Gaussian (or radial basis function) kernel.

Another important property of the random feature map defined in Eq. 5 that we will exploit is

ϕ(x)⊙ ϕ(y) = ϕ(x+ y) (7)

which is a consequence of the additive law of exponents. Here, ⊙ is the binding operation in VSA,
which, in this case, is implemented as element-wise multiplication.

3 CMLS IN PARTIALLY OBSERVABLE ENVIRONMENTS

A CML operates within a fully observable environment; i.e. it assumes that one can exactly infer
which state one is in just from a given observation. This assumption is reflected as a bijection
between observations ot and states st: each observation corresponds exactly to one column of Q.

However, most environments do not have this property; they are partially observable. In this section,
we introduce an extension of a CML that can operate in partially observable environments, the
Partially Observable CML (POCML).

TWO LEVELS OF REPRESENTATION

The POCML model considers two levels of representation: (1) the “standard” level as in a regular
CML, and (2) the “Fourier” level using random Fourier features. This extension of coupled repre-
sentation is motivated by the need to maintain the straightforward geometric interpretation of CML
while enabling the superposition of states.

In our model, we wish to represent uncertainty as a superposition of states. As a naive attempt, we
first consider directly superposing the states. If the model is unsure whether it is in state s1 or s2,
it can represent its estimated state as ŝt = s1 + s2. However, if we apply Eq. 2 to predict the next
state, we obtain

ŝt+1 = ŝt +Vat = s1 + s2 +Vat. (8)

This causes an issue both in learning and in interpretation because the superposition of states shares
the same operation as a state transition. To address this issue, we propose to use binding instead of
addition to predict the next state, i.e.

ŝt+1 = st ⊙Vat, (9)

then we can exploit the distributivity of the binding operation:

ŝt+1 = ŝt ⊙Vat = s1 ⊙Vat + s2 ⊙Vat. (10)

This approach does not guarantee the same geometric properties intrinsic to the standard represen-
tation.

To have the best of both worlds, we apply the random feature map ϕ to the standard representation s
to obtain a Fourier representation s. The state superposition and state update of Eq. 10 is applied to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

at

st

ut

at+1

st+1

ut+1

at−1

st−1

ut−1

Observed variable Hidden variable

Action State Observation

State-observation mapping is estimated using memory ψ Mt

 is estimated implicitly at the random Fourier feature level st ϕ(̂st)

xt xt+1xt−1

ψ

1 2 3

4

7

5 6

8 9

{(1,R,2), (2,D,5), (5,D,8), (8,R,9)}

R

D

D

R

1

2 3

4 5 6 7

U

U R

L

{(5,U,2), (2,U,1), (1,R,3), (3,L,6)}

A B

C

Figure 1: A. General structure of the POCML model. B. 3-by-3 grid environment with a sample
trajectory. C. 3-level tree environment with a sample trajectory.

the Fourier representation such that the binding operation has the same interpretation at the standard
level thanks to Property 7.

To elaborate, we denote ŝt as the estimated superposed state, which can be represented implicitly
as a (weighted) set. We extend ϕ naturally to the encoding of the set of states via superposition:
ϕ(ŝt) = ϕ(s1) + ϕ(s2) + δ for some noise δ.Then, using Eq.9 to predict the next state, we get

ϕ(ŝt+1) = ϕ(ŝt)⊙ ϕ(Vat) (11)
= ϕ(s1)⊙ ϕ(Vat) + ϕ(s2)⊙ ϕ(Vat) (12)
= ϕ(s1 +Vat) + ϕ(s2 +Vat). (13)

This approach is similar to that used in (Kymn et al., 2024). The coupled representation allows
us to update all states in superposition while maintaining the desirable geometric properties of the
standard CML representation.

THE MODEL

Suppose, like in a standard CML, an agent explores an underlying environment and produces a
sequence of actions and observations.

GROUND TRUTH AND INTERNAL VARIABLES

Actions at ∈ Rna
, observations ot ∈ Rno

, and states ut ∈ Rns
are ground truth variables, where

at and ot are observed (from the environment) while ut is unobserved, needing to be inferred. We
assume that ot, ut, and at are one-hot vectors. We need to distinguish between state and observation
here due to breaking the bijectivity (i.e. partial observability) assumption.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1A visualizes the POCML model structure and the relationship between the different vari-
ables. The corresponding standard-level internal model representations are

xt = f(ot) (14)
ut = g(Mt,xt) (15)
st = Qut (16)
vt = Vat. (17)

where Q ∈ Rn×ns and V ∈ Rn×na . f : Rno → Rm is an arbitrary map. The choice of f depends
on the nature of the observation. In this work, as we assume observations to be one-hot, we let
f be the identity. Thus, xt may be used interchangeably with ot. The state estimation from the
observation is handled by a function over the observation xt and a memory unit Mt, discussed in
the next section. the same memory is used to estimate the next state (Figure 1A ψ).

For the Fourier representation, we choose the random feature map ϕ such that it approximates the
Gaussian kernel by sampling wij ∼ N (0, 1/α); i.e. δ(ϕ(x), ϕ(y)) ≈ exp(−α∥x−y∥2) = K(x−
y). For notational simplicity, let us denote s1, . . . , sns

as the columns of Q. Moreover, let ϕ(Q) =
[ϕ(s1), . . . , ϕ(sns

)].

We perform next-state predictions after applying the random feature map ϕ : Rn → CD. As in
Eq. 11, we predict the next state via binding:

ϕ(ŝ′t+1) = ϕ(ŝt)⊙ ϕ(vt). (18)

Here, ϕ(ŝt) is a linear combination of states ϕ(s1), . . . , ϕ(sns) representing the expected state the
model is in. Note that ŝt is indexed by time while si is indexed by column.

Given the expected state ϕ(ŝt), we can estimate ut via

ût = Ep(ut|ŝt)[ut] =
Re[ϕ(Q)†ϕ(ŝ′t)]∑ns

i=1 Re[ϕ(si)
†ϕ(ŝ′t)]

(19)

Given an observation xt and state ŝt, we can infer the expected state

p(ut|ŝt,xt) ∝ p(xt|ut)p(ut|ŝt) (20)

Finally, we let ϕ(ŝt+1) be the the superposition of states

ϕ(ŝt+1) = ϕ(Q)ût+1. (21)

HETERO-ASSOCIATIVE MEMORY

We endow the model with a hetero-associative memory

Mt =

t−1∑
τ=1

ûtx
⊤
τ (22)

where M1 = 0. Using this memory, given ût, we can predict the observations based on experience:

x̂t = Ep(xt|ût)[xt] = M⊤
t (ût ⊙ (n̂u

t)
−1) (23)

where n̂u
t =

∑t−1
τ=1 ûτ is a vector recording the expected state counts. In addition, given an obser-

vation xt, we can infer what the state should be based on experience:

ũt = Ep(ut|xt)[ut] = Mt(xt ⊙ (nx
t)

−1) (24)

where nx
t =

∑t−1
τ=1 xτ is a vector recording the observation counts.

UPDATE RULES

To perform local prediction, we want to update Q and V in order to match x̂t+1 and xt+1. We do
this by minimizing their cross entropy given by

L = − log p(xt+1|ût+1) = − log

ns∑
i=1

p(xt+1|ui)p(ui|ŝt+1) (25)

(26)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that we can rewrite p(ui|ŝt+1) as

p(ui|ŝt+1) =
δ(ϕ(si), ϕ(ŝ

′
t+1))∑ns

i=1 δ(ϕ(si), ϕ(ŝ
′
t+1))

(27)

≈
∑ns

j=1[ût]j expψij∑ns

i=1

∑ns

j=1[ût]j expψij
, (28)

where we denote s′j = sj + vt and ψij = −α∥si − s′j∥2. We can make the above approximation as
the random feature map ϕ approximates the Gaussian kernel. So we can express L as

L ≈ log

ns∑
i=1

ns∑
j=1

[ût]j expψij − log

ns∑
i=1

ns∑
j=1

p(xt+1|ui)[ût]j expψij (29)

(30)

Taking the gradient, we get

∇L ≈
∑ns

i=1

∑ns

j=1[ût]j expψij∇ψij∑ns

i=1

∑ns

j=1[ût]j expψij
−

∑ns

i=1

∑ns

j=1 p(xt+1|ui)[ût]j expψij∇ψij∑ns

i=1

∑ns

j=1 p(xt+1|ui)[ût]j expψij
(31)

≈
ns∑
i=1

ns∑
j=1

(
δ(ϕ(si), ϕ(s

′
j))∑ns

i=1 δ(ϕ(si), ϕ(ŝ
′
t+1))

−
p(xt+1|ui)δ(ϕ(si), ϕ(s

′
j))∑ns

i=1 p(xt+1|ui)δ(ϕ(si), ϕ(ŝ′t+1))

)
[ût]j∇ψij .

(32)

We do not take the derivative through p(xt+1|ui) as it is computed using a table of expected counts
Mt+1. Computing the derivative with respect to Q and V, we get the update rules

∆Qt+1 = ηq

ns∑
i=1

ns∑
j=1

γij [ût]j(s
′
j − si)u

⊤
i (33)

∆Vt+1 = ηv

ns∑
i=1

ns∑
j=1

γij [ût]j(si − s′j)a
⊤
t (34)

where

γij =
p(xt+1|ui)δ(ϕ(si), ϕ(s

′
j))∑ns

i=1 p(xt+1|ui)δ(ϕ(si), ϕ(ŝ′t+1))
−

δ(ϕ(si), ϕ(s
′
j))∑ns

i=1 δ(ϕ(si), ϕ(ŝ
′
t+1))

. (35)

4 RESULTS

NEXT OBSERVATION PREDICTION IN GRID AND TREE ENVIRONMENTS

We test the POCML model on both grid and tree environments. An environment can be represented
as a directed graph whose nodes are states and edges are actions. Thus, the underlying structure
of an environment is defined by its state-action transitions. Here, we consider environments in
which actions in general have the same effect across states (e.g. going up does the same thing in
every state of a grid). When traversing the environment, an agent receives different observations in
different states defined by a state-observation mapping. Two instances of an environment have the
same underlying structure but can have different state-observation mappings. We sample trajectories
{(xt,at,xt+1)}T−1

t=1 from the environment by choosing an initial state in the environment uniformly
randomly, then choosing uniformly random actions. Figure 1A and 1B visualize a 3-by-3 grid
environment and a 3-level tree environment respectively along with example trajectories.

Given a collection of trajectories from an environment, we train the POCML model by applying the
update rules given in Eqs. 33 and 34. As mentioned in the previous section, doing so minimizes
the cross entropy between the predicted and actual observations, effectively performing local next
observation prediction.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

A B

C

Grid Environment Tree Environment

Test confidence SA confidence SA distance ratio

D

Figure 2: A. PCA visualization of learned state and action representations of a POCML trained in
a grid environment. B. PCA visualization of learned state and action representations of a POCML
trained in a tree environment. C. Plots of POCML evaluation metrics against various hyperparam-
eters in a grid environment. Error bars report standard deviation over 4 trials. D. Plots of POCML
evaluation metrics against various hyperparameters in a tree environment. Error bars report standard
deviation over 4 trials.

Learned state representations reflect underlying structure We perform principal component
analysis (PCA) to visualize the learned state representations Q and action representations V, of the
POCML model trained in both grid and tree environments in two dimensions, shown in Figures
2A and 2B respectively. Specifically, the points visualize each state representation projected onto
the first two principal components. Actions are visualized as line segments as they represent edges
in the underlying graph. They are visualized as the PC projection of the points (s, s + Va) for
each state and action in the environment. We find that the arrangement of states in the projected
2D space resembles the underlying structure of the environment. This suggests that the POCML
successfully learns the underlying structure of the environment in a self-supervised manner through
local next-observation prediction learning.

In addition, we use three evaluation metrics to measure the quality of the learned representations:
next-observation prediction confidence, state-action confidence, and state-action distance ratio.

Next-observation prediction confidence measures the average next-observation prediction probabil-
ities over the test trajectories.

State-action confidence measures the quality of state-action transitions by averaging the normalized
similarity between the predicted state ϕ(s) ⊙ ϕ(Va) and the random feature representation of the
actual next state ϕ(s′) over all state-action pair (s,a) in the environment.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model trained on
environment

Model tested on environment
with novel observations

Training trajectory Exploration trajectory
Test trajectory

Figure 3: Visualization of zero-shot experimental setup. The model is first trained in an environment
by optimizing for next-observation prediction accuracy. The model is tested in a different environ-
ment with novel observations. An exploration trajectory is given to populate its memory, while a
test trajectory is used to evaluate its next-observation prediction accuracy in the new environment.

State-action distance ratio is similar to state-action accuracy but operates in Euclidean space rather
than similarity space (i.e. “standard” level instead of “Fourier” level). The state-action distance ratio
is the quantity ∥s′ − (s+Va)∥ normalized by the distance ∥s′ − s∥, averaged over all state-action
pairs (s,a) in the environment. A good representation should have high next-observation prediction
confidence and state-action confidence as well as a low state-action distance ratio.

Figure 2C and 2D plots the three evaluation metrics for POCMLs with various hyperparameters on
grid and tree environments respectively. For each plot, we vary one hyperparameter while keep-
ing the others fixed. The plots show both mean and standard deviation over 4 trials. In the grid
environment, we notice that increasing inverse length-scale α and random feature dimension gen-
erally leads to better model performance, while there is no clear trend for the state dimension. On
the other hand, there is no clear trend in the tree environment. Thus, optimal hyperparameters are
environment-dependent.

POCMLs generalize to environments with different observations in a zero-shot manner We
test the zero-shot performance of POCML in environments with novel observations. To do this,
we generate multiple instances of the environment, where each instance has the same underly-
ing structure (e.g. grid, tree) but with observations that are randomly sampled from a uniform
distribution with replacement at each state. For example, in a 3-by-3 grid, we have possible ob-
servations x1, . . . ,x9. For each state in the grid, we choose the observation by sampling from
Unif(x1, . . . ,x9). Thus, the model initially has no information about what observations to expect
in these instances. The model must traverse the environment to gain information about the state-
observation mapping.

For each instance of an environment, we generate two trajectories. The model uses the first trajectory
for exploration in order to populate its memory about the novel environment. The second trajectory
is used to test the next observation prediction accuracy of the model. The initial state is provided in
both trajectories to ground the model. Note that there is zero training on these new instances so the
task is zero shot. Figure 3 describes the zero-shot experimental setup.

We compare the POCML model with both LSTMs (Hochreiter & Schmidhuber, 1997) and Trans-
formers (Vaswani et al., 2017). The LSTMs and Transformers are trained on the same dataset as
the POCML for next-observation prediction. Note that we train the LSTM and Transformer models
using backpropagation via the Adam optimizer (Kingma & Ba, 2017) while the POCML model only
performs local prediction learning via the update rules given above.

Table 1 reports the zero-shot next observation prediction performance of POCML, LSTM, and
Transformer on both grid and tree environments. LSTMs and Transformers are chosen to have a
comparable number of trainable parameters as the POCML. As shown in the table, the POCML

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Zero shot performance in environments with novel observations

Model Environment # trainable parameters Accuracy
POCML Grid 450 0.980
LSTM Grid 493 0.121
Transformer Grid 451 0.117

POCML Tree 350 0.935
LSTM Tree 403 0.141
Transformer Tree 407 0.143

model significantly outperforms both LSTM and Transformer models in all respects. This is be-
cause the POCML is endowed with strong inductive biases about the environment structure as well
as the relation between observation and states, which LSTMs and Transformers lack. Transformers
and LSTMs with more (up to 100×) parameters yielded similar results.

POCMLs can disambiguate states with aliased observations We consider a two-tunnel maze
environment as a case study to investigate model behavior when observations are aliased (i.e. the
same observation occurs in two different states). Figure 4A visualizes the two-tunnel maze, while
Figure 4B shows how we can model the maze structure and observations using a 3-by-3 grid envi-
ronment.

We place a goal state in the bottom left corner and provide the agent with a policy π : S → A to
reach the goal state, where S is the set of states and A is the set of actions, shown in Figure 4C.
Given an estimated state û, the agent acts according to the most likely state it’s in argmaxsi∈S ûi.
To test whether the POCML model can disambiguate between the two states, we place the agent in
the middle-right state and check if it can reach the goal state using the policy. As in the zero-shot
experiment above, the agent is given a exploration trajectory to populate its memory.

Figure 4C also shows the trajectory of the agent, while Figure 4D shows a heatmap of the agent’s
estimated state at each time step ût. Initially, the agent estimated state is a superposition of both left
and right tunnel states. After moving down one position, the estimated state collapses to the correct
state, and the agent proceeds to take the correct steps to reach the goal state.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced the Partially Observable Cognitive Map Learner (POCML), an extension
of the Cognitive Map Learner (CML) framework to partially observable environments. The POCML
distinguishes between two levels of representation and represents states probabilistically through a
superposition of states, which are updated via the binding operation. Additionally, we incorporate
an associative memory mechanism to support adaptive behavior across environments with shared
underlying structures. We derive local update rules for next-observation prediction that account for
both the probabilistic state representation and the associative memory.

We demonstrate that a POCML can successfully learn the underlying structure of an environment
using these update rules. Furthermore, we show that a POCML trained in one environment gen-
eralizes well to new environments with similar structures but novel observations, achieving high
zero-shot next-observation prediction accuracy and significantly outperforming models like LSTMs
and Transformers. Finally, we perform a case study on spatial navigation in a two-tunnel maze
with aliased observations. We show that the POCML effectively leverages its probabilistic state
representations for state disambiguation and spatial navigation.

For future work, it is of interest to extend the POCML framework to the continuous domain and
adapt the update rules to support a trainable observation encoding component. Given that a POCML
effectively learns a cognitive map of the environment, we would also like to investigate its integration
with model-based reinforcement learning methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 2 3

4

5

4

6

Bidirectional edge
Blocked edge

Aliased observations

Goal state

Agent

A B

C

Policy: action to take in state
Trajectory of agent Time

Es
tim

at
ed

 st
at

e

D

Figure 4: A. Two tunnel maze environment. Red boxes indicate aliased observations. B. Modeling
the two-tunnel maze environment using a 3-by-3 grid environment. Blocked edges simulate walls,
while the repeated observation “4” models the aliased observation. C. Policy and trajectory visual-
ization of the agent. D. Heatmap of the agent’s estimated states over the trajectory.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Timothy E. J. Behrens, Timothy H. Muller, James C. R. Whittington, Shirley Mark, Alon B. Baram,
Kimberly L. Stachenfeld, and Zeb Kurth-Nelson. What Is a Cognitive Map? Organizing Knowl-
edge for Flexible Behavior. Neuron, 100(2):490–509, October 2018. ISSN 0896-6273. doi:
10.1016/j.neuron.2018.10.002.

Howard Eichenbaum. On the Integration of Space, Time, and Memory. Neuron, 95(5):1007–1018,
August 2017. ISSN 0896-6273. doi: 10.1016/j.neuron.2017.06.036.

Dileep George, Rajeev V. Rikhye, Nishad Gothoskar, J. Swaroop Guntupalli, Antoine Dedieu, and
Miguel Lázaro-Gredilla. Clone-structured graph representations enable flexible learning and vi-
carious evaluation of cognitive maps. Nature Communications, 12(1):2392, April 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-22559-5.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, April 1982. doi: 10.1073/
pnas.79.8.2554.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Denis Kleyko, Dmitri A. Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A Survey on Hyper-
dimensional Computing aka Vector Symbolic Architectures, Part I: Models and Data Transfor-
mations. ACM Computing Surveys, 55(6):1–40, July 2023. ISSN 0360-0300, 1557-7341. doi:
10.1145/3538531.

Christopher J. Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, E. Paxon Frady, Friedrich T.
Sommer, and Bruno A. Olshausen. Binding in hippocampal-entorhinal circuits enables composi-
tionality in cognitive maps, June 2024.

Tony A. Plate. Holographic Reduced Representation: Distributed Representation for Cognitive
Structures. Lecture Notes. Center for the Study of Language and Information, April 2003. ISBN
978-1-57586-430-3.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007.

Christoph Stöckl, Yukun Yang, and Wolfgang Maass. Local prediction-learning in high-dimensional
spaces enables neural networks to plan. Nature Communications, 15(1):2344, March 2024. ISSN
2041-1723. doi: 10.1038/s41467-024-46586-0.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

James C. R. Whittington, Timothy H. Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil
Burgess, and Timothy E. J. Behrens. The Tolman-Eichenbaum Machine: Unifying Space and
Relational Memory through Generalization in the Hippocampal Formation. Cell, 183(5):1249–
1263.e23, November 2020. ISSN 0092-8674. doi: 10.1016/j.cell.2020.10.024.

A RELATED WORK

Comparison against other cognitive map models TEM is a computational model of the
hippocampal-entorhinal system (Whittington et al., 2020). Given sequences of sensory inputs and
actions in different environments, it can extract the shared structure between the environments. TEM
has two types of latent variables: g, which represents the abstract location at a particular point in the
sequence, and p, which represents a conjunction between sensory observation and abstract location.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

TEM and POCML are similar in that both have a separation between abstract state and observation,
but TEM uses the conjunctive representation p in its memory component, an auto-associative Hop-
field network (Hopfield, 1982). In contrast, POCML uses a hetero-associative memory that asso-
ciates state and observation implemented as a table of expected counts. In addition, while TEM uses
recurrent neural networks (RNNs) to predict the next abstract state, POCML uses the binding oper-
ation. While RNNs are more expressive, the binding operation over RFF admits a non-parametric
kernel density estimation interpretation of the model. Moreover, the specific choice of Gaussian
kernel enables a geometric interpretation of the underlying learned state and action representations:
next state prediction can be performed by adding the action representation to the state representation
in this space. That said, TEM does learn grid-cell representations that reflect biology and explain
the remapping phenomenon; thus, it is valuable from a neuroscience perspective.

From a computational perspective, in both learning and inference, TEM requires iterative processing
to perform memory retrieval and state and observation inference, which produces a sizable compu-
tational overhead. POCML does not have this limitation.

Algorithmically, there is a comparatively greater difference between CSCG (George et al., 2021)
and POCML. Both models can be considered action-augmented hidden Markov models (HMMs)
though actions are treated slightly differently in both models. Moreover, CSCG uses a variant of an
HMM called a cloned HMM (CHMM). While CSCG represents state-transition probabilities via a
state-transition matrix, POCML does this through kernel density estimation (based on RFF). Given
that POCML uses vector representations for states and actions, it can easily be extended to larger
environments with the same regularity structure simply by keeping the action representations fixed.

Relation to reinforcement learning It is important to note that POCML learns the structure of
the environment in a reward-free manner, which sets it apart from value-based reinforcement learn-
ing (RL) techniques. That said, the structure of the environment learned by the POCML encodes
environment dynamics p(s′|s, a) ∝ δ(ϕ(s′), ϕ(s) ⊙ ϕ(a)), which can subsequently be used for
model-based RL. The tunnel-maze experiment in the results section demonstrates a way in which
this model of the environment can be used given a policy. It is of interest to investigate the conse-
quence of a tighter coupling between model and policy in future work.

B LIMITATIONS

This work has several limitations. First, evaluation was performed on simplistic environments.
These experiments illustrate the properties and functionality of the POCML model but further work
is needed to demonstrate the practicality of the model in larger scale applications. However, we
would like to note that the purpose of this work is to introduce the POCML model and the novel
representational paradigm based on RFF for encoding uncertainty; we leave extending the model
to larger-scale environments for future work. Second, the POCML model here uses discrete ob-
servations. Third, as in the original CML work, action affordances have to be provided by the
environment.

12

	Introduction
	Background
	Cognitive Map Learners
	Update Rules

	Random Fourier Features

	CMLs in Partially Observable Environments
	Two Levels of Representation
	The Model
	Ground Truth and Internal Variables
	Hetero-associative Memory
	Update Rules

	Results
	Next observation prediction in grid and tree environments

	Conclusion and Future Directions
	Related Work
	Limitations

