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Abstract. Diagnosing multiple sclerosis (MS) accurately is highly chal-
lenging due to symptom overlap with other demyelinating diseases. Here,
we present DemyeliNeXt, an explainable few-shot learning framework de-
signed to classify MS and other demyelinating diseases from MRI scans.
This framework employs a prototypical network with a 3D DenseNet-121
backbone and uses Deep SHAP for feature importance visualization. We
train our DemyeliNeXt on a dataset from African populations and we
test it for different datasets including MICCAI MSSEG2 public dataset.
Our findings demonstrate robust performance across diverse datasets
highlighting the model’s potential to enhance diagnosis accuracy and
generalizability in various clinical settings.
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1 Introduction

Multiple sclerosis (MS) is a complex neurological condition that is often misdi-
agnosed due to its symptom overlap with other conditions such as vasculitis and
vascular leukoencephalopathy. Studies indicate that over half of the patients were
misdiagnosed for a period exceeding three years. Moreover, 70% of these patients
had been administered disease-modifying therapies (DMTs), and 31% suffered
unnecessary morbidity due to the incorrect diagnosis and treatment [2,13]. This
diagnostic challenge results in a prolonged time to achieve a definitive diag-
nosis, often exceeding several months. Hence, accurate and timely diagnosis is
crucial for effective management and treatment planning in MS patients. Ad-
vanced imaging techniques and biomarker analyses are increasingly important
in differentiating MS from other similar presenting conditions, thereby reducing
diagnostic errors and improving patient outcomes. Machine learning provides a
robust approach for the analysis of medical images and the diagnosis of MS.

In this context, several studies have employed machine learning models for
MS classification. For instance, Wang et al. [15] employed a multi-layer convolu-
tional neural network (CNN) with data augmentation techniques to classify MS.
However, the model’s lack of explainability raises concerns about the potential
misclassification of MS scans due to reliance on spurious correlations. To address
this issue, Zhang et al. [17] proposed a classification model for MS subtypes
based on VGG19 [11] with global average pooling and utilized Grad-CAM++
[1] for model explanation. While effective in performance and interpretability,
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this approach did not account for the diversity of MS data, particularly by not
comparing it with other similar demyelinating diseases such as RON and vas-
culitis. To rectify this concern, Huang et al. [3] leveraged a Transformer-based
model with a Multiple Instance Learning (MIL) strategy to discriminate between
MS and various demyelinating diseases. The authors used Grad-CAM to visu-
alize feature extraction through activation heatmaps. Nevertheless, their study
did not incorporate data from low-income countries, such as datasets from the
African population. This omission underscores a critical gap, as regional genetic
and environmental factors influence disease onset and progression [16]. These
factors impact the timeliness and accuracy of MS diagnosis, thereby potentially
threatening the patient’s life.

In this paper, we introduce DemyeliNeXt, an explainable few-shot learning
framework for the classification of MS and other demyelinating diseases. Our
approach employs a prototypical network with a 3D DenseNet-121 backbone,
which integrates spatial information from FLAIR (Fluid Attenuated Inversion
Recovery) MR (Magnetic Resonance) images to classify them as MS vs other
demyelinating diseases (NON-MS). Additionally, the framework provides model
interpretability through the Deep SHAP model for visualizing the most im-
portant features leading to the classification of the input MRI. The primary
contributions of our work are as follows:

1. Application of Few-Shot Learning: We apply few-shot learning for the de-
tection of multiple sclerosis (MS).

2. Emphasis on Explainability: Our method integrates explainability mecha-
nisms to enhance interpretability, making it more suitable for clinical set-
tings.

3. Utilization of African 3D MRI Data: We trained our model using 3D MRI
data from African populations, which are often underrepresented in medical
datasets. By benchmarking our model against MICCAI MS public dataset,
we demonstrated its robust performance, thereby validating its generaliz-
ability across diverse populations.

2 Proposed Method

In this section, we explain the key building blocks of our proposed DemyeliNeXt
architecture for explainable MS identification from other demyelinating diseases.
Table 1 displays the key mathematical notations used throughout our paper.

2.1 Architecture overview

In this study, we introduce DemyeliNeXt, a four-stage pipeline designed for the
classification of multiple sclerosis (MS) and other demyelinating diseases from
MRI scans, while also providing model interpretability. Figure 1 illustrates the
first stage (Section 2.2), which involves a preprocessing pipeline for FLAIR MRI
scans. Here, raw FLAIR images are normalized, while noise and artifacts are
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Fig. 1. DemyeliNeXt Pipeline. (A) Preprocessing MRI scans: includes skull stripping,
bias correction normalization, and FLAIR MRI smoothing. (B) Data splitting into
support and query sets. (C) Training a prototypical network with 3D DenseNet-121
backbone. (D) Model testing on unseen MRIs with explanations provided using Deep
SHAP.

reduced. In the second stage, the MRI scans are divided into training, validation,
and testing sets. Each set contains a support set (S) with labeled examples
to update model parameters and a query set (Q) with unlabeled examples for
performance evaluation.

The third stage (Section 2.3) involves training a 3D DenseNet-based (DenseNet-
121) [4] prototypical network to classify the preprocessed MRIs. The training
process utilizes N tr training tasks, each comprising Nshots support examples for
model weight updates and Nquery query examples for performance assessment.
In the final stage, we employ Deep SHAP [8] to approximate the model for inter-
pretability. Deep SHAP, inspired by DeepLIFT [10], assigns importance scores
to each input feature by propagating neuron contributions backward through the
network. These scores are based on the difference from a reference input, known
as the "baseline" or "background" input, representing a typical or neutral state
for the input features. The importance scores are computed via the combination
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of the model’s weights, the actual input and the baseline input. After training the
explainer, we use the model and explainer to predict and interpret new examples
of MS and other demyelinating diseases during inference.

Table 1. Major mathematical notations

Mathematical notation Definition
K Number of classes
S Support set
Sk Support set labeled with class k
Q Query set
Qk Query set labeled with class k
N Number of labeled examples
N tr Number of training tasks/episodes
Nval Number of validation tasks/episodes
N ts Number of testing tasks/episodes

Nshots Number of learning shots
Nquery Number of query examples

x Input image
f Deep learning model

ϕ(f, y) Explanation model

2.2 Preprocessing Pipeline

We begin our preprocessing pipeline by anonymizing DICOM MRI scans, con-
verting them to NIfTI format. This process removes patient metadata and con-
solidates each volume into a single file. Next, we perform skull stripping using the
ROBEX algorithm [5] to eliminate non-brain tissues. We then apply bias field
correction using the N4ITK algorithm [14] to remove low-frequency intensity
non-uniformities. Following this, we normalize MRI intensities to a range of 0 to
1. We reduce the noise using a Gaussian filter. Finally, we reorient the images
to the "IPL" (Inferior, Posterior, Left) orientation, resample them to isotropic
voxels, and resize them to a standard format.

2.3 Few shot learning

Prototypical network. Prototypical Networks [12] seek to find a metric space
in which samples from the same class are close to one another. This approach
makes the model particularly useful in settings with limited labeled data. Based
on the prototype concept [12], the model depicts each class using the mean of its
embedded support set S. Prototypical Networks then determine query samples Q
based on their proximity to these prototypes. To generate the image embeddings,
we use a 3D DenseNet-121 [4] as a backbone. We create dataset tasks using a
sampler that follows uniform distribution to load data from the dataset for each
label.
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Loss function We use binary cross-entropy loss:

L = − [y log(p) + (1− y) log(1− p)] (1)

where y and p are the MS label and the predicted probability of MS from the
model respectively. We use ADAM [7] as an optimizer with step LR scheduler
to decay the learning rate.

2.4 Explainability with Deep SHAP

Deep SHAP [8] approximates explanations for deep neural network models using
SHAP (SHapley Additive exPlanations) values to quantify feature importance.
This method integrates concepts from a deep learning explanation technique
called DeepLIFT [10] that uses Shapley values [9]. We apply Deep SHAP to in-
terpret our trained 3D DenseNet-based ProtoNet model using preprocessed MRI
scans from the testing dataset. This approach creates a simplified explanation
model, assessing the importance of each voxel in our testing MRIs, visualized
through feature importance plots.

2.5 Model inference and explanation

After training and evaluating the model, we perform inference on unseen exam-
ples where we pass them to the explainer to check the used feature importance
of the model on the classification of the new examples.

3 Results and discussion

In this section, we provide a quantitative evaluation of our model on three dis-
tinct datasets and we display the findings of the used Deep SHAP.

3.1 Evaluation datasets

In this work, we utilized three datasets, summarized in Table 2. We trained,
validated, and tested using a set that comprises 184 FLAIR MRI scans from 110
patients with multiple sclerosis (MS) and other demyelinating diseases (NON-
MS) which we split into three different sets as follows: 70% for training, 15%
for validation and 15% for testing. This dataset is sourced from the radiology
department at CHU X (disclosed upon acceptance). It includes 92 3D and axial
scans: 56 from MS and 36 from other demyelinating diseases such as vasculitis
and vascular leukopathy.

We tested our model on a set containing 91 FLAIR MRI scans from 34 MS
patients, obtained from the MRI center of CHU Y (anonymized). Additionally,
we used 80 3D FLAIR MRI scans from 40 patients in the MICCAI 2021 MS Seg-
mentation Challenge (MSSEG-2) as a benchmark dataset. We randomly sampled
data from each set to create tasks consisting of a support set and a query set.
Prior to training, gamma correction was applied to all scans using γ = 2.5. No
further data augmentation was performed.
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Table 2. Datasets statistics

Source Number of patients Number of scans Age Gender
CHU X(anonymized) 54 MS / 56 NON-MS 92 21-63 21M / 32F
CHU Y(anonymized) 34 MS 91 NA 4M / 31F
MSSEG-2 40 MS 80 NA NA

3.2 Experimental settings.

Parameter settings For model training, we used an ADAM optimizer [6] with
a learning rate of 0.001. We applied learning rate decay for every single step by
0.1 using a step scheduler. As for Deep SHAP explainer training, we adopted 90
background examples. We trained our model and our explainer on the Nvidia
RTX 3090 GPU.

Hyperparameter Settings We conducted three distinct training experiments
using 2-way (K = 2) classification. Validation was performed with 100 tasks
(Nval = 100) every 500 training tasks. Testing was also conducted with 100
tasks. Each training lasted for 1000 episodes. Detailed hyperparameters for each
experiment are listed below:

– Experiment A: Trained with 5 examples in both support and query sets
(Nshots = 5, Nquery = 5) for 1000 episodes.

– Experiment B: Trained with 3 examples in both support and query sets
(Nshots = 3, Nquery = 3).

– Experiment C: Trained with 1 example in both support and query sets
(Nshots = 1, Nquery = 1).

– Experiment D: We used the saved model from Experiment A, to test on
datasets from CHU Y MS and CHU X NON-MS.

– Experiment E: We used the saved model from Experiment A to test on
datasets from MSSEG-2 and CHU X NON-MS.

Table 3. Experiments results

Experiments Accuracy Precision Recall Specificity F1-score
A: 5 shots 5 queries (Dataset: CHU X) 72.2% 0.77 0.63 0.82 0.69
B: 3 shots 3 queries (Dataset: CHU X) 76.17% 0.75 0.79 0.73 0.77
C: 1 shot 1 query (Dataset: CHU X) 61.5% 0.63 0.57 0.66 0.6
D: 5 shots 5 queries
(Dataset: CHU Y MS
+ CHU X NON-MS) 75.4% 0.75 0.75 0.76 0.76
E: 5 shots 5 queries
(Dataset: MSSEG-2
+ CHU X NON MS) 98.2% 0.98 0.98 0.98 0.98
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3.3 DemyeliNeXt evaluation

Table 3 shows the classification accuracy, precision, recall, specificity, and F1
scores for the different experiments detailed in Section 3.2. Across all experi-
ments, Experiment E, which involved training on an African dataset and testing
on a combination of African and European datasets, achieved the highest classi-
fication accuracy. This result may indicate that our model has the ability to gen-
eralize well across different populations despite the differences in socio-economic
conditions between the subjects in each of the datasets.

In contrast, Experiment C, which utilized only one shot and one query,
demonstrated the lowest performance. This indicates that reducing the num-
ber of shots below a certain threshold adversely affects model accuracy. These
findings suggest that while reducing shots can decrease computational demands,
maintaining an adequate number of shots is critical for reliable performance (see
experiments A and B). In particular, one could generally recommend using the
models trained in Experiments A and B as a guide for practitioners in balancing
computational efficiency with diagnosis accuracy for MS.

Fig. 2. Deep SHAP Explanation for NON-MS Example. The left panel displays an
annotated MRI section of a patient with a NON-MS demyelinating disease. The center
panel highlights the features identified by our model for classifying the case as NON-
MS using Deep SHAP. The right panel shows the features identified for classification as
MS using Deep SHAP. Lesions’ locations are highlighted with orange rectangles across
all panels. For the two right hand side panels, blue indicates the features excluded by
the model, while red shows the important features for each class

Figure 2 illustrates the explanation of our model on an unseen NON-MS
example with lesion annotation. The plot highlights the features utilized by our
trained ProtoNet model for classification that are explained by the Deep SHAP
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method. The Deep SHAP explainer seems to identify some of the key features
for classification. However, it also included features that are deemed irrelevant
to clinicians. This could indicate that while the model is effective in feature
identification, there is a need for further refinement to align its outputs with
clinical relevance.

Limitations and future studies. Despite the promising results, Demye-
liNeXt has a few limitations that warrant further investigation. For instance, our
approach currently utilizes only FLAIR MRI scans; incorporating other imaging
modalities like T1-weighted and T2-weighted MRIs could potentially enhance
diagnostic accuracy. While Deep SHAP provides some level of explainability,
the clinical relevance of the highlighted features remains uncertain, indicating a
need for further refinement. In future studies we aim to focus on expanding the
dataset to include diverse minority populations, integrating multimodal imaging
techniques, as well as developing more clinically relevant explainability methods.

4 Conclusion

In this study, we introduced DemyeliNeXt, an explainable few-shot learning
framework designed for the classification of multiple sclerosis (MS) and other
demyelinating diseases in an African population. By incorporating the Deep
SHAP model, we provided visual explanations for the model’s decisions, enhanc-
ing its interpretability. Our findings, derived from MRI data of underrepresented
African populations, demonstrate that this approach can generalize effectively to
non-African datasets. Although the classification accuracy decreases with fewer
shots, the method remains computationally efficient and can aid practitioners in
improving diagnostic accuracy. In future work, we aim to extend our framework
by including more minority populations and integrating additional neuroimaging
modalities, thereby enhancing the generalizability and robustness of our model.

Code availability. We provide the code repository of our method on GitHub
at this link: https://github.com/.../

Acknowledgments. Disclosed upon acceptance
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