
Under review as a conference paper at ICLR 2022

ESTIMATING INSTANCE-DEPENDENT LABEL-NOISE
TRANSITION MATRIX USING DNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

In label-noise learning, estimating the transition matrix is a hot topic as the matrix
plays an important role in building statistically consistent classifiers. Tradition-
ally, the transition from clean labels to noisy labels (i.e., clean label transition
matrix) has been widely exploited to learn a clean label classifier by employing
the noisy data. Motivated by that classifiers mostly output Bayes optimal labels for
prediction, in this paper, we study to directly model the transition from Bayes opti-
mal labels to noisy labels (i.e., Bayes label transition matrix) and learn a classifier
to predict Bayes optimal labels. Note that given only noisy data, it is ill-posed to
estimate either the clean label transition matrix or the Bayes label transition ma-
trix. But favorably, Bayes optimal labels have less uncertainty compared with the
clean labels, i.e., the class posteriors of Bayes optimal labels are one-hot vectors
while those of clean labels are not. This enables two advantages to estimate the
Bayes label transition matrix, i.e., (a) we could theoretically recover a set of noisy
data with Bayes optimal labels under mild conditions; (b) the feasible solution
space is much smaller. By exploiting the advantages, we estimate the Bayes label
transition matrix by employing a deep neural network in a parameterized way,
leading to better generalization and superior classification performance.

1 INTRODUCTION

The study of classification in the presence of noisy labels has been of interest for three decades
(Angluin & Laird, 1988), but becomes more and more important in weakly supervised learning
(Thekumparampil et al., 2018; Li et al., 2020b; Guo et al., 2018; Xiao et al., 2015; Zhang et al.,
2017a; Yang et al., 2021b;a). The main reason behind this is that datasets are becoming bigger
and bigger. To improve annotation efficiency, these large-scale datasets are often collected from
crowdsourcing platforms (Yan et al., 2014), online queries (Blum et al., 2003), and image engines
(Li et al., 2017), which suffer from unavoidable label noise (Yao et al., 2020a). Recent researches
show that the label noise significantly degenerates the performance of deep neural networks, since
deep models easily memorize the noisy labels (Zhang et al., 2017a; Yao et al., 2020a).

Generally, the algorithms for combating noisy labels can be categorized into statistically inconsis-
tent algorithms and statistically consistent algorithms. The statistically inconsistent algorithms are
heuristic, such as selecting possible clean examples to train the classifier (Han et al., 2020; Yao et al.,
2020a; Yu et al., 2019; Han et al., 2018b; Malach & Shalev-Shwartz, 2017; Ren et al., 2018; Jiang
et al., 2018), re-weighting examples to reduce the effect of noisy labels (Ren et al., 2018), correcting
labels (Ma et al., 2018; Kremer et al., 2018; Tanaka et al., 2018; Reed et al., 2015), or adding regu-
larization (Han et al., 2018a; Guo et al., 2018; Veit et al., 2017; Vahdat, 2017; Li et al., 2017; 2020b;
Wu et al., 2020). These approaches empirically work well, but there is no theoretical guarantee that
the learned classifiers can converge to the optimal ones learned from clean data. To address this lim-
itation, algorithms in the second category aim to design classifier-consistent algorithms (Yu et al.,
2017; Zhang & Sabuncu, 2018; Kremer et al., 2018; Liu & Tao, 2016; Northcutt et al., 2017; Scott,
2015; Natarajan et al., 2013; Goldberger & Ben-Reuven, 2017; Patrini et al., 2017; Thekumparampil
et al., 2018; Yu et al., 2018; Liu & Guo, 2020; Xu et al., 2019; Xia et al., 2020b), where classifiers
learned on noisy data will asymptotically converge to the optimal classifiers defined on the clean
domain.
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The label transition matrix T (x) plays an important role in building statistically consistent algo-
rithms. Traditionally, the transition matrix T (x) is defined to relate clean distribution and noisy dis-
tribution, where T (x) = P (Ỹ | Y,X = x) andX denotes the random variable of instances/features,
Ỹ as the variable for the noisy label, and Y as the variable for the clean label. The above ma-
trix is denoted as the clean label transition matrix, which is widely used to learn a clean label
classifier by employing the noisy data. The learned clean label classifier is expected to predict a
probability distribution over a set of pre-defined classes given an input, i.e. clean class posterior
probability P (Y | X). The clean class posterior probability is the distribution from which clean
labels are sampled. However, Bayes optimal labels Y ∗, i.e., the class labels that maximize the
clean class posteriors Y ∗ | X := argmaxY P (Y | X), are mostly used as the predicted labels
and for computing classification accuracy. Motivated by this, in this paper, we propose to directly
model the transition matrix T ∗(x) that relates Bayes optimal distribution and noisy distribution, i.e.,
T ∗(x) = P (Ỹ | Y ∗, X = x), where Y ∗ denotes the variable for Bayes optimal label. The Bayes
optimal label classifier can be learned by exploiting the Bayes label transition matrix directly.

Studying the transition between Bayes optimal distribution and noisy distribution is consid-
ered advantageous to that of studying the transition between clean distribution and noisy dis-
tribution. The main reason is due to that the class posteriors of Bayes optimal labels
are one-hot vectors while those of clean labels are not. Two advantages can be intro-
duced by this to better estimate the instance-dependent transition matrix: (a) We can col-
lect a set of examples with theoretically guaranteed Bayes optimal labels out of noisy data.
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Figure 1: The noisy class
posterior is learned from
noisy data. Bayes opti-
mal label can be inferred
from the noisy class pos-
terior if the noisy rate
is controlled. Also, the
Bayes optimal label is
less uncertain since the
Bayes class posterior is
one-hot vector.

The intrinsic reason that Bayes optimal labels can be inferred from the
noisy data while clean labels cannot is that Bayes optimal labels are the
labels that maximize the clean class posteriors while clean labels are
sampled from the clean class posteriors. In the presence of label noise,
the labels that maximize the noisy class posteriors could be identical to
those that maximize the clean class posteriors (Bayes optimal labels)
under mild conditions (Cheng et al., 2020). Therefore some instances’
Bayes optimal labels can be inferred from their noisy class posteriors
while their clean labels are impossible to infer since the clean class pos-
teriors are unobservable, as shown in Figure 1. (b) The feasible solution
space of the Bayes label transition matrix is much smaller than that of
the clean label transition matrix. This is because that Bayes optimal la-
bels have less uncertainty compared with the clean labels. The transition
matrix defined by Bayes optimal labels and the noisy labels is therefore
sparse and can be estimated more efficiently with the same amount of
training data.

These two advantages naturally motivate us to collect a set of examples
with their theoretically guaranteed Bayes optimal labels out of the noisy
data to learn to approximate the Bayes label transition matrix T ∗(x).
Due to the high complexity of the instance-dependent matrix T ∗(x), we
simplify its estimation by parameterizing it using a deep neural network.
The collected examples, inferred Bayes optimal labels, and their noisy
labels are served as data points to optimize the deep neural network to approximate the T ∗(x).
Compared with the previous method (Xia et al., 2020a), which made assumptions and leveraged
hand-crafted priors to approximate the instance-dependent transition matrices, we train a deep neural
network to estimate the instance-dependent label transition matrix with a reduced feasible solution
space, which achieves lower approximation error, better generalization, and superior classification
performance.

2 RELATED WORK

Noise model. Currently, there are several typical label noise models. Specifically, the random clas-
sification noise (RCN) model assumes that clean labels flip randomly with a constant rate (Biggio
et al., 2011; Manwani & Sastry, 2013; Natarajan et al., 2013). The class-conditional label noise
(CCN) model assumes that the flip rate depends on the latent clean class (Patrini et al., 2017; Xia
et al., 2019; Ma et al., 2018). The instance-dependent label noise (IDN) model considers the most
general case of label noise, where the flip rate depends on its instance/features (Cheng et al., 2020;
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Xia et al., 2020a; Zhu et al., 2020). Obviously, the IDN model is more realistic and applicable. For
example, in real-world datasets, an instance whose feature contains less information or is of poor
quality may be more prone to be labeled wrongly. The bounded instance dependent label noise
(BIDN) (Cheng et al., 2020) is a reasonable extension of IDN, where the flip rates are dependent
on instances but upper bounded by a value smaller than 1. However, with only noisy data, it is a
non-trivial task to model such realistic noise without any assumption (Xia et al., 2020a). This paper
focuses on the challenging BIDN problem setting.

Learning clean distributions. It is significant to reduce the side effect of noisy labels by inferring
clean distributions statistically. The label transition matrix plays an important role in such an infer-
ence process, which is used to denote the probabilities that clean labels flip into noisy labels. We
first review prior efforts under the class-dependent condition (Patrini et al., 2017). By exploiting the
class-dependent transition matrix T , the training loss on noisy data can be corrected. The transition
matrix T can be estimated in many ways, e.g., by introducing the anchor point assumption (Liu &
Tao, 2016), by exploiting clustering (Zhu et al., 2021), by minimizing volume of T (Li et al., 2021),
and by using extra clean data (Hendrycks et al., 2018; Shu et al., 2020). To make the estimation
more accurately, a slack variable (Xia et al., 2019) or a multiplicative dual T (Yao et al., 2020b) can
be introduced to revise the transition matrix. As for the efforts on the instance-dependent transition
matrix, existing methods rely on various assumptions, e.g., the noise rate is bounded (Cheng et al.,
2020), the noise only depends on the parts of the instance (Xia et al., 2020a), and additional valu-
able information is available (Berthon et al., 2020). Although the above advanced methods achieve
superior performance empirically, the introduction of strong assumptions limit their applications in
practice. In this paper, we propose to infer Bayes optimal distribution instead of clean distribution,
as Bayes optimal distribution is less uncertain and easy to be inferred under mild conditions.

Other approaches. Other methods exist with more sophisticated training frameworks or pipelines,
including but not limited to robust loss functions (Zhang & Sabuncu, 2018; Xu et al., 2019; Liu
& Guo, 2020), sample selection (Han et al., 2018b; Wang et al., 2019; Lyu & Tsang, 2020), label
correction (Tanaka et al., 2018; Zhang et al., 2021; Zheng et al., 2020), (implicit) regularization (Xia
et al., 2021; Zhang et al., 2017b; Liu et al., 2020), and semi-supervised learning (Li et al., 2020a;
Nguyen et al., 2020).

3 PRELIMINARIES

We introduce the problem setting, some important definitions, and the formulation of the proposed
Bayes label transition matrix in this section.

Problem setting. This paper focuses on a classification task given a training dataset with Instance
Dependent Noise (IDN), which is denoted by S̃ = {(xi, ỹi)}ni=1. We consider that training examples
{(xi, ỹi)}ni=1 are drawn according to random variables (X, Ỹ ) ∼ D̃, where D̃ is a noisy distribution.
The noise rate for class y is defined as ρy(x) = P (Ỹ = y | Y 6= y,x). This paper focuses on a
reasonable IDN setting that the noise rates have upper bounds ρmax as in (Cheng et al., 2020), i.e.,
∀(x) ∈ X , 0 ≤ ρy(x) ≤ ρmax < 1. Note that the problem in (Cheng et al., 2020) is defined on
binary classification task while we extend the problem setting to multi-class classification. Our aim
is to learn a robust classifier only from the noisy data, which could assign accurate labels for test
data.

Clean distribution. For the observed noisy training examples, all of them have corresponding clean
labels, which are unobservable. The clean training examples are denoted by S = {(xi, yi)}ni=1,
which are considered to be drawn according to random variables (X,Y ) ∼ D. The term D denotes
the underlying clean distribution.

Bayes optimal distribution. Given X , its Bayes optimal label is denoted by Y ∗, Y ∗ | X :=
argmaxY P (Y | X), (X,Y ) ∼ D. The distribution of (X,Y ∗) is denoted by D∗. Note the
Bayes optimal distribution D∗ is different from the clean distribution D when P (Y |X) /∈ {0, 1}.
Like clean labels, Bayes optimal labels are unobservable due to the information encoded between
features and labels is corrupted by label noise (Zhu et al., 2020). Note that it is a non-trivial task
to infer D∗ only with the noisy training dataset S̃. Also, the noisy label ỹ, clean label y, and Bayes
optimal label y∗, for the same instance x may disagree with each other (Cheng et al., 2020).
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Other definitions. The classifier is defined as f : X → Y , where X and Y denote the in-
stance and label spaces respectively. Let 1[·] be the indicator function. Define the 0-1 risk
of f as 1(f(X), Y ) , 1[f(X) 6= Y ]. Define the Bayes optimal classifier f∗ as f∗ ,
argminf 1(f(X), Y ). Note that there is NP-hardness of minimizing the 0-1 risk, which is neither
convex nor smooth (Bartlett et al., 2006). We can use the softmax cross entropy loss as the surro-
gate loss function to approximately learn the Bayes optimal classifier (Bartlett et al., 2006; Cheng
et al., 2020). We aim to learn a classifier f from the noisy distribution D̃ which also approximately
minimizes E[1(f(X), Y )].

Bayes label transition matrix. Traditional instance-dependent label transition matrix encodes the
probabilities that clean labels flip into noisy labels given input instances. However, due to the reasons
that clean labels have more uncertainty, estimating the clean label transition matrix is relatively
harder. In this paper, we focus on studying the transition from Bayes optimal labels to noisy labels.
We define the Bayes label transition matrix that bridges the Bayes optimal distribution and noisy
distribution as follows,

T ∗i,j(X) = P (Ỹ = j | Y ∗ = i,X), (1)

where T ∗i,j(X) denotes the (i, j)-th element of the matrix T ∗(X), indicating the probability of a
Bayes optimal label i flipped to noisy label j for inputX . Given the noisy class posterior probability
P (Ỹ | X = x) = [P (Ỹ = 1 | X = x), . . . , P (Ỹ = C | X = x)] (which can be learned
from noisy data) and the Bayes label transition matrix T ∗ij(x) = P (Ỹ = j|Y ∗ = i,X = x),
the Bayes class posterior probability P (Y∗|X = x) can be inferred, i.e., P (Y∗ | X = x) =(
T ∗(X = x)>

)−1
P (Ỹ | X = x).

4 METHOD

The feasible solution space of the Bayes label transition matrix is much smaller since Bayes optimal
labels are deterministic. Therefore, we propose to estimate a Bayes label transition matrix for each
input instance in a parameterized way. We firstly collect a distilled dataset (is defined in Defina-
tion 1) with theoretically guaranteed Bayes optimal labels out of the noisy dataset (Section 4.1).
Then, we can train a deep neural network (Bayes label transition network) on the collected distilled
dataset to learn the transition between Bayes optimal labels and noisy labels (Section 4.2). The
learned Bayes label transition network is then fixed and used to train a classification network on the
noisy dataset in a F-Correction (Patrini et al., 2017) fashion (Section 4.3).

4.1 COLLECTING DISTILLED EXAMPLES

In this subsection, we show how to construct a distilled dataset consists of distilled examples. We
formally introduce the concept of distilled examples first and then present how to collect distilled
examples automatically. The collected distilled examples can be used for training the Bayes label
transition network.
Definition 1 (Distilled examples (Cheng et al., 2020)). An example (x, ỹ, y∗) is defined to be a
distilled example if y∗ is identical to the one assigned by the Bayes optimal classifier under the
clean data, i.e., y = f∗D(x).

The distilled examples can be collected out of noisy examples automatically with the following
guarantee,

Theorem 1 ((Cheng et al., 2020)). Denote by η̃y(x) the noisy class posterior probability PD̃(Ỹ =
y|X = x) and ηy(x) = PD(Y = y|X = x) the clean class posterior probability. ∀(x) ∈ X , we
have

η̃y(x) >
1 + ρmax

2
=⇒ ηy(x) >

1

2
=⇒ (x, ỹ, Y ∗ = y) is distilled; (2)

where ρmax is the noise rate upper bound. Theorem 1 can be proved in a similar way as did in (Cheng
et al., 2020) (Theorem 2 therein). Note the original theorem in (Cheng et al., 2020) was built on
binary-classification task, we extend it to the multi-class classification problem, the extension is
straightforward.
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According to Theorem 1, we can obtain distilled examples by collecting all noisy examples (x, ỹ)
whose x satisfies η̃y(x) > 1+ρmax

2 and then assigning the label y to it as its Bayes optimal label
y∗. After that, we obtain an instance of distilled example (xdistilled, ỹ, ŷ∗), the ỹ indicates the noisy
label while the ŷ∗ indicates the inferred Bayes optimal label. The ŷ∗ may disagree with the ỹ.
The conditional probability η̃y can be estimated as ˆ̃ηy by several methods, such as the probabilistic
classification methods (logistic regression and deep neural networks).

4.2 ESTIMATING BAYES LABEL TRANSITION MATRICES USING DISTILLED EXAMPLES

Bayes Label 
Transition Network𝑥!"#$"%%&!

𝜃

#𝑦𝑦∗

∗(𝑥!"#$"%%&!)%

As discussed in Section 4.1, we can collect a set of dis-
tilled examples (xdistilled, ỹ, ŷ∗) from noisy data. Now
we proceed to train a Bayes label transition network
parameterized by θ to estimate the instance-dependent
label-noise (IDN) transition matrices, which model the
probability of observing a noisy label ỹ given input im-
age x and its Bayes optimal label y∗:

ˆT ∗i,j(x
distilled; θ) = P (Ỹ = j|Y ∗ = i,xdistilled; θ),

(3)
Specifically, the Bayes label transition network takes
xdistilled as input and output an estimated Bayes label
transition matrix T̂ ∗(xdistilled; θ) ∈ RC×C , where C is
the number of classes. Note T̂ ∗(xdistilled; θ) is an approximation to T ∗(xdistilled) and it might be
not exactly the same as the definition of Bayes label transition matrix. We can use the collected
Bayes labels ŷ∗ and the estimated Bayes label transition matrix T̂ ∗(xdistilledi ; θ) to infer the noisy
labels. The following empirical risk on the inferred noisy labels and the ground-truth noisy labels
are minimized to learn the network’s parameter θ:

R̂1(θ) = −
1

n

n∑
i=1

ỹi log(ŷ∗
i · T̂ ∗(x

distilled
i ; θ)), (4)

where ỹi and ŷ∗
i are ỹi and ŷ∗i in the form of one-hot vectors, ỹi ∈ R1×C and ŷ∗

i ∈ R1×C ,
respectively. Note that if we have a distilled example for the i-th class, we can only make use of it to
learn the i-th row of the transition matrix. For the other rows, they will not contribute to calculating
the loss of the current training example. However, it does not mean that they will be random or
not learnable. Their information will be learned by exploiting distilled examples from the non-i-th
classes. More specifically, the parameters of the network can be divided into row-specific parameters
and commonly shared parameters. By assuming that we have distilled examples for each class, both
the row-specific parameters and commonly shared parameters will be optimized.

4.3 TRAINING CLASSIFICATION NETWORK WITH BAYES LABEL TRANSITION MATRICES

Our goal is to train a classification network f(·|w) that predicts Bayes class posterior probability
P (Y ∗ = i|x;w) parameterized by w. In the training stage, we cannot observe the Bayes optimal
label Y ∗. Instead, we only have access to noisy label Ỹ . The probability of observing a noisy label
Ỹ given input image x is:

P (Ỹ = j | x;w, θ) =
k∑
i=1

P (Ỹ = j | Y ∗ = i,x; θ)P (Y ∗ = i | x;w), (5)

With the trained Bayes label transition network, we can get ˆT ∗i,j(x; θ) = P (Ỹ = j | Y ∗ = i,x; θ)
for each input x. We exploit F-Correction (Patrini et al., 2017), which is a typical classifier-
consistent algorithm, to train the classification network. To be specific, fix the learned Bayes label
transition network parameter θ, we minimize the empirical risk as follows to optimize the classifi-
cation network parameter w:

R̂2(w) = −
1

n

n∑
i=1

ỹi log(f(xi;w) · T̂ ∗(xi; θ)), (6)
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Algorithm 1 Bounded Instance-dependent Label Noise Generation.

Require: Clean examples {(xi, yi)}ni=1;
Require: Noise rate ρ;
Require: Noise rate upper bound ρmax;
1: Sample instance flip rates qi from the truncated normal distributionN (ρ, 0.12, [0, ρmax]);

//mean γ, variance 0.12, range [0,ρmax]
2: Independently sample w1, w2, . . . , wc from the standard normal distributionN (0, 12);
3: for i = 1, 2, . . . , n do
4: p = xi × wyi ; //generate instance-dependent flip rates
5: pyi = −∞; //only consider entries that are different from the true label
6: p = qi × softmax(p); //make the sum of the off-diagonal entries of the yi-th row to be qi
7: pyi = 1− qi; //set the diagonal entry to be 1-qi
8: Randomly choose a label from the label space according to the possibilities p as noisy label ỹi;
9: end for

10: return Noisy samples {(xi, ỹi)}ni=1

Bayes Label 
Transition Network

𝜃

"𝑦Classification Network

𝑤

𝑥 𝑦∗
𝑇∗(𝑥)where f(xi;w) ∈ R1×C . The F-Correction

has been proved to be a classifier-consistent
algorithm, the minimizer of R̂2(w) under the
noisy distribution is the same as the minimizer
of the original cross-entropy loss under the
Bayes optimal distribution (Patrini et al., 2017),
if the transition matrix T̂ ∗ is estimated unbi-
ased. Note the Bayes label transition network
is trained on a biased set, i.e., the set of distilled examples. The network will generalize to the
non-distilled examples if they share the same pattern with the distilled examples which causes la-
bel noise. A recent study (Xia et al., 2020a) empirically verified that the patterns that cause label
noise are commonly shared. Our empirical experiments further show that the network T̂ ∗(x; θ)
generalizes well to unseen examples and thus helps achieve superior classification performance.

5 EXPERIMENTS

In this section, we first introduce the experiment setup (Section 5.1) including the datasets used
(Section 5.1.1) and the compared methods (Section 5.1.2). Next, we analyse the hyper-parameter
sensitivity in Section 5.2. Finally, we present and analyze the experimental results on synthetic
and real-world noisy datasets to show the effectiveness of the proposed method (Section 5.3). The
implementation details and more ablation studies are included in the Appendix.

5.1 EXPERIMENT SETUP

In this section, we introduce the datasets we used and the baseline methods we compared with.

5.1.1 DATASETS

We conduct the experiment on four datasets to verify the effectiveness of our proposed method,
where three of them are manually corrupted, i.e., F-MNIST, CIFAR-10, and SVHN, one of them is
real-world noisy datasets, i.e., Clothing1M. F-MNIST has 28 × 28 grayscale images of 10 classes
including 60,000 training images and 10,000 test images. CIFAR-10 dataset contains 50,000 color
images from 10 classes for training and 10,000 color images from 10 classes for testing both with
shape of 32× 32× 3. SVHN has 10 classes of images with 73,257 training images and 26,032 test
images. We manually corrupt the three datasets, i.e., F-MNIST, CIFAR-10 and SVHN with bounded
instance-dependent label noise according to Algorithm 1, which is modified from (Xia et al., 2020a).
In noise generation, the noise rate upper bound ρmax in Algorithm 1 is set as 0.6 for all experiments.
All experiments on those datasets with synthetic instance-dependent label noise are repeated five
times to guarantee reliability. The Clothing1M has 1M images with real-world noisy labels for

6



Under review as a conference paper at ICLR 2022

0.1 0.2 0.3 0.4 0.5 0.6
Distillation threshold 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ap
pr

ox
im

at
io

n 
er

ro
r

Class-dependent
T-Revision
Ours-F
Ours-F-V

(a)

0.1 0.2 0.3 0.4 0.5 0.6
Distillation threshold 

50

55

60

65

70

75

80

85

Te
st

 a
cc

ur
ac

y

IDN-10%
IDN-20%
IDN-30%
IDN-40%
IDN-50%

(b)

Figure 2: Illustration of the transition matrix approximation error and the hyperparameter sensitivity.
Figure (a) illustrates how the distillation threshold ρ affects the approximation error for the instance-
dependent transition matrix. Figure (b) illustrates how the distillation threshold ρ affects the test
classification performance. The error bar for standard deviation in each figure has been shaded.

training and 10k images with the clean label for testing. 10% of the noisy training examples of all
datasets are left out as a noisy validation set for model selection.

5.1.2 COMPARISON METHODS

We compare the proposed method with several state-of-the-art approaches: (1) CE, which trains
the classification network with the standard cross-entropy loss on noise datasets. (2) GCE (Zhang &
Sabuncu, 2018), which unites the mean absolute error loss and the cross-entropy loss to combat noisy
labels. (3) APL (Ma et al., 2020), which combines two mutually reinforcing robust loss functions,
we employ its combination of NCE and RCE for comparison. (4) Decoupling (Malach & Shalev-
Shwartz, 2017), which trains two networks on samples whose predictions from two networks are
different. (5) MentorNet (Jiang et al., 2018), Co-teaching (Han et al., 2018b), and Co-teaching+ (Yu
et al., 2019) mainly handle noisy labels by training networks on instances with small loss values. (6)
Joint (Tanaka et al., 2018), which jointly optimizes the network parameters and the sample labels.
The hyperparameters α and β are set to 1.2 and 0.8, respectively. (7) DMI (Xu et al., 2019), which
proposes a novel information-theoretic loss function for training neural networks robust to label
noise. (8) Forward (Patrini et al., 2017), Reweight (Liu & Tao, 2016), and T-Revision (Xia et al.,
2019) utilize a class-dependent transition matrix T to correct the loss function. (9) PTD (Xia et al.,
2020a), estimates instance-dependent transition matrix by combing part-dependent transition matri-
ces, which is the most related work to our proposed method. We also provide comparison results
between our method and DivideMix(Li et al., 2020a), which is a hybrid algorithm that combines
multiple powerful techniques, e.g. Gaussian Mixture Model, MixMatch, MixUp, regularization and
asymmetric noise penalty in Appendix. As for our method, we simply model the instance-dependent
matrix by employing a neural network.

5.2 HYPER-PARAMETER SENSITIVITY

The quality of the distilled dataset relies on the choice of distillation threshold ρ̂max (denoted as
ρ̂ in the following paragraph) in Theorem 1. To further explore the effect of ρ̂, we conduct hyper-
parameter sensitivity studies on CIFAR-10 in this section.

In Figure 2(a), we show the instance-dependent transition matrix approximation error when em-
ploying the class-dependent transition matrix, the revised class-dependent transition matrix, and our
proposed instance-dependent transition matrix estimation method. The error is measured by `1 norm
between the ground-truth transition matrix and the estimated transition matrix. For each instance,
we only analyze the approximation error of a specific row because the noisy label is generated by
one row of the instance-dependent transition matrix. The ”Class-dependent” represents the class-
dependent transition matrix learning methods (Patrini et al., 2017), the ‘T-Revision’ indicates the
class-dependent transition matrix is revised by a learnable slack variable (Xia et al., 2019). Our pro-
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Table 1: Means and standard deviations (percentage) of classification accuracy on F-MNIST with
different label noise levels. ‘-V’ indicates matrix revision (Xia et al., 2019).

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 88.65 ± 0.45 88.31 ± 0.37 85.22 ± 0.56 76.56 ± 2.50 67.42 ± 3.91
GCE 90.86 ± 0.38 88.59 ± 0.26 86.64 ± 0.76 76.93 ± 1.64 66.69 ± 1.07
APL 86.46 ± 0.27 85.32 ± 0.88 85.59 ± 0.85 74.66 ± 2.77 62.82 ± 0.44

Decoupling 89.83 ± 0.45 86.29 ± 1.13 86.01 ± 1.01 78.78 ± 0.53 67.33 ± 1.33
MentorNet 90.35 ± 0.64 87.92 ± 0.83 87.24 ± 0.99 79.01 ± 2.30 66.44 ± 2.97
Co-teaching 90.65 ± 0.58 88.77 ± 0.41 86.98 ± 0.67 78.92 ± 1.36 67.66 ± 2.42

Co-teaching+ 90.47 ± 0.98 89.15 ± 1.77 86.15 ± 1.04 79.23 ± 1.30 63.49 ± 2.94
Joint 80.19 ± 0.99 78.46 ± 1.24 72.73 ± 2.44 65.93 ± 2.08 50.93 ± 3.52
DMI 91.58 ± 0.46 90.33 ± 0.66 85.96 ± 1.52 77.77 ± 2.15 68.02 ± 1.59

Forward 89.65 ± 0.24 88.61 ± 0.77 85.01 ± 0.43 78.59 ± 0.38 67.11 ± 1.46
Reweight 90.33 ± 0.27 88.81 ± 0.44 84.93 ± 0.42 76.07 ± 1.93 67.66 ± 1.65

S2E 91.04 ± 0.92 89.93 ± 1.08 86.77 ± 1.15 76.12 ± 1.21 70.24 ± 2.64
T-Revision 91.36 ± 0.59 90.24 ± 1.01 85.59 ± 1.77 78.24 ± 1.12 69.04 ± 2.92

PTD 92.03 ± 0.33 90.78 ± 0.64 87.86 ± 0.78 79.46 ± 1.58 73.38 ± 2.25

Ours 96.06 ± 0.71 94.97 ± 0.33 91.47 ± 1.36 82.88 ± 2.72 76.35 ± 3.79
Ours-V 96.93 ± 0.31 95.55 ± 0.59 92.24 ± 1.87 83.43 ± 1.72 76.89 ± 4.26

Table 2: Means and standard deviations (percentage) of classification accuracy on CIFAR-10 with
different label noise levels. ‘-V’ indicates matrix revision (Xia et al., 2019).

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 73.54 ± 0.14 71.49 ± 1.35 67.52 ± 1.68 58.63 ± 4.92 51.54 ± 2.70
GCE 74.24 ± 0.89 72.11 ± 0.43 69.31 ± 0.18 56.86 ± 0.92 53.44 ± 1.28
APL 71.12 ± 0.19 68.89 ± 0.27 65.17 ± 0.35 53.22 ± 2.21 47.31 ± 1.41

Decoupling 73.91 ± 0.37 74.23 ± 1.18 70.85 ± 1.88 54.73 ± 1.02 52.04 ± 2.09
MentorNet 74.93 ± 1.37 73.59 ± 1.29 72.32 ± 1.04 57.85 ± 1.88 52.96 ± 1.98
Co-teaching 75.49 ± 0.47 75.93 ± 0.87 74.86 ± 0.42 59.07 ± 1.03 55.62 ± 3.93

Co-teaching+ 74.77 ± 0.16 75.14 ± 0.61 71.92 ± 2.13 59.15 ± 0.87 53.02 ± 3.34
Joint 75.97 ± 0.98 76.45 ± 0.45 75.93 ± 1.65 63.22 ± 5.37 55.84 ± 3.25
DMI 74.65 ± 0.13 73.49 ± 0.88 73.93 ± 0.34 60.22 ± 3.47 54.35 ± 2.28

Forward 72.35 ± 0.91 70.98 ± 0.32 66.53 ± 1.96 58.63 ± 1.25 52.33 ± 1.65
Reweight 73.55 ± 0.32 71.49 ± 0.57 68.76 ± 0.37 60.32 ± 1.03 52.03 ± 1.70

S2E 75.93 ± 1.01 75.53 ± 0.32 71.21 ± 2.51 64.62 ± 0.68 56.03 ± 1.07
T-Revision 74.01 ± 0.45 73.42 ± 0.64 71.15 ± 0.43 59.93 ± 1.33 55.67 ± 2.07

PTD 76.33 ± 0.38 76.05 ± 1.72 75.42 ± 1.33 65.92 ± 2.33 56.63 ± 1.88

Ours 81.73 ± 0.56 80.26 ± 0.63 77.69 ± 1.37 71.96 ± 2.27 59.15 ± 3.11
Ours-V 82.16 ± 1.01 80.37 ± 1.98 78.82 ± 1.07 72.93 ± 4.00 60.33 ± 5.29

posed method estimates an instance-dependent transition matrix for each input. It can be observed
that our proposed method can achieve a much lower approximation error. Figure 2(b) shows the
classification performance of our proposed method when choosing various distillation threshold ρ̂s.
When ρ̂ is not too large or too small, our method is not sensitive to the choice of ρ̂. More experi-
mental results on the quality of distilled dataset when applying different values of ρ̂ are included in
the appendix B. We manually set ρ̂ = 0.3, a decent trade-off between distillation accuracy and the
number of distilled examples, in all experiments later to avoid laborious hyper-parameter tuning and
access to the true noise rate.

5.3 COMPARISON WITH THE STATE-OF-THE-ARTS

Results on synthetic noisy datasets. Table 1,2 and 3 report the classification accuracy on the
datasets of F-MNIST,CIFAR-10, and SVHN, respectively.

For F-MNIST, our method surpasses all the baseline methods by a large margin. Equipping the
transition matrix revision (-V) (Xia et al., 2019) can further boost the performance of our method.
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Table 3: Means and standard deviations (percentage) of classification accuracy on SVHN with dif-
ferent label noise levels. ‘-V’ indicates matrix revision (Xia et al., 2019).

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

CE 90.39 ± 0.13 89.04 ± 1.32 85.65 ± 1.84 79.94 ± 2.71 61.01 ± 5.41
GCE 90.82 ± 0.15 89.35 ± 0.94 86.43 ± 0.63 81.66 ± 1.58 54.77 ± 0.25
APL 71.78 ± 0.76 89.48 ± 1.67 83.46 ± 2.17 77.90 ± 2.31 55.25 ± 3.77

Decoupling 90.55 ± 0.83 88.74 ± 0.77 85.03 ± 1.63 83.36 ± 2.73 56.76 ± 1.87
MentorNet 90.28 ± 0.52 89.09 ± 0.95 85.89 ± 0.73 82.63 ± 1.73 55.27 ± 4.14
Co-teaching 91.05 ± 0.33 89.56 ± 1.77 87.75 ± 1.37 84.92 ± 1.59 59.56 ± 2.34

Co-teaching+ 92.83 ± 0.87 90.73 ± 1.39 86.37 ± 1.66 75.24 ± 3.77 54.58 ± 3.46
Joint 88.39 ± 0.62 85.37 ± 0.44 81.56 ± 0.43 78.98 ± 2.98 59.14 ± 3.22
DMI 92.11 ± 0.49 91.63 ± 0.87 86.98 ± 0.36 81.11 ± 0.68 63.22 ± 3.97

Forward 90.01 ± 0.78 89.77 ± 1.54 86.70 ± 1.44 80.24 ± 2.77 57.57 ± 1.45
Reweight 91.06 ± 0.19 92.01 ± 1.04 87.55 ± 1.71 83.79 ± 1.11 55.08 ± 1.25

S2E 92.70 ± 0.51 92.02 ± 1.54 88.77 ± 1.77 83.06 ± 2.19 65.39 ± 2.77
T-Revision 93.07 ± 0.79 92.67 ± 0.88 88.49 ± 1.44 82.43 ± 1.77 67.64 ± 2.57

PTD 93.77 ± 0.33 92.59 ± 1.07 89.64 ± 1.98 83.56 ± 2.21 71.57 ± 3.32

Ours 96.05 ± 0.32 94.97 ± 0.58 93.99 ± 1.24 87.67 ± 1.29 78.13 ± 4.62
Ours-V 96.37 ± 0.77 95.12 ± 0.40 94.69 ± 0.24 88.13 ± 3.23 78.71 ± 4.37

For SVHN and CIFAR-10, the superiority of our method is gradually revealed along with the noise
rate increase, which shows that our method can handle the extremely hard situation much better.
Specifically, the classification accuracy of our method is 5.83% higher than PTD (the best statisti-
cally consistent baseline) on CIFAR-10 in the IDN-10% case, and the performance gap is enlarged
to 7.01% in the IDN-40% case. On the SVHN, the classification accuracy of our method is 2.60%
higher than PTD in the IDN-10% case, 5.05% higher than PTD in the IDN-30% case, and 7.14%
higher than PTD in the most challenging IDN-50% case.

5.3.1 RESULTS ON REAL-WORLD DATASETS

The noise model of real-world datasets is more likely to be instance-dependent. Our proposed
method also performs favorably on the challenging Clothing1M dataset (Table 4), which proves that
our method is more flexible to handle such real-world noise problem .

Table 4: Classification accuracy on Clothing1M. In the experiments, only noisy samples are ex-
ploited to train and validate the deep model.

CE Decoupling MentorNet Co-teaching Co-teaching+ Joint DMI

68.88 54.53 56.79 60.15 65.15 70.88 70.12
Forward Reweight T-Revision PTD PTD-V Ours Ours-V

69.91 70.40 70.97 70.07 70.26 73.33 73.39

6 CONCLUSION

In this paper, we focus on training the robust classifier with the challenging instance-dependent label
noise. To address the issues of existing clean label transition matrix, we propose to directly build
the transition between Bayes optimal labels and noisy labels. By reducing the feasible solution of
the transition matrix estimation, we prove that the instance-dependent label transition matrix that
relates Bayes optimal labels and noisy labels can be directly learned using deep neural networks.
The main limitation of our method comes from that the distilled examples are collected out of noisy
data leading to unavoidable data distribution bias to the transition matrix estimation. Experimental
results demonstrate that the proposed method is more superior in dealing with instance-dependent
label noise, especially for the case of high-level noise rates.
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A IMPLEMENTATION DETAILS

We use ResNet-18 (He et al., 2016) for F-MNIST, ResNet-34 networks (He et al., 2016) for CIFAR-
10 and SVHN. We first use SGD with momentum 0.9, batch size 128, and an initial learning rate
of 0.01 to warm up the network for five epochs on the noisy dataset. For Clothing1M, we use a
ResNet50 pretrained on ImageNet, and the learning rate is set as 1e-3. Then, we use the warm-
upped network to collect distilled examples from noisy datasets according to Section 4.1. After
distilled examples collection, we train the instance-dependent transition matrix estimator network on
the distilled dataset for 5 epochs. The Bayes label transition network is the same architecture as the
classification network, but the last linear layer is modified according to the transition matrix shape.
The optimizer of the Bayes label transition network is SGD, with a momentum of 0.9 and a learning
rate of 0.01. Then, we fix the trained Bayes label transition network to train the classification
network. The Bayes label transition network is used to generate a transition matrix for each input
image; the transition matrix is used to correct the outputs of the classification network to bridge the
Bayes posterior and the noisy posterior. The classification network is trained on the noisy dataset
for 50 epochs for F-MNIST, CIFAR-10 and SVHN and for 10 epochs for Clothing1M using Adam
optimizer with a learning rate of 5e − 7 and weight decay of 1e − 4. We also apply the transition
matrix revision technique (Xia et al., 2019) to boost the performance. Note for a fair comparison,
we do not use any data augmentation technique in all experiments as in (Xia et al., 2020a). All the
codes are implemented in PyTorch 1.6.0 with CUDA 10.0, and run on NVIDIA Tesla V100 GPUs.

B THE QUALITY OF DATASET DISTILLATION

The distillation threshold ρ̂ controls how many examples can be collected out of noisy dataset and the
quality of the distilled dataset. We analyse the effect of ρ̂ on the CIFAR-10 dataset in Table. 5. The
distillation accuracy is computed by counting how many inferred Bayes optimal labels are consistent
with their corresponding clean labels among all distilled examples.

Noise rate ρ̂ = 0.3 ρ̂ = 0.5
distill. acc. # of distilled examples distill. acc. # of distilled examples

IDN-10% 98% 27983 / 50000 99% 19983 / 50000
IDN-30% 96% 17673 / 50000 99% 10673 / 50000
IDN-50%. 94% 8029 / 50000 98% 5098 / 50000

Table 5: Distillation quality analysis on CIFAR-10, with total 50,000 examples in the original non-
distilled dataset.

C ABLATION ON BAYES LABEL TRANSITION MATRIX

To verify the effectiveness of the estimated Bayes label transition matrix, we compare our method
with some ablated variants, e.g. directly train a classifier on the distilled dataset and relabel the noisy
dataset using the classifier trained on distilled dataset.

CIFAR-10 IDN-10% CIFAR-10 IDN-30% Clothing1M

Training classifier on distilled dataset 74.56 67.42 62.37
Relabeling noisy dataset 76.68 70.73 64.98
Ours 82.16 78.82 73.39

D COMPARISION WITH DIVIDEMIX

DivideMix has a much more complicated pipeline than us and is not a statistically consistent al-
gorithm. We compare our method with DivideMix to further show the effectiveness and flexibility
of our proposed method. Compared with DivideMix, our method exhibit competitive performance
when noise rate is low and surpass DivideMix by a large margin on the worst noise cases (3.22%
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performance improvement on CIFAR-10 and 4.38% on SVHN, both under IDN-50% ), with a much
simpler and flexible algorithm design.

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

DivideMix 96.37 ± 0.72 95.92 ± 0.73 90.37 ± 0.83 80.92 ± 2.32 74.63 ± 3.76
Ours 96.93 ± 0.31 95.55 ± 0.59 92.24 ± 1.87 83.43 ± 1.72 76.89 ± 4.26

Table 6: F-MNIST

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

DivideMix 83.31 ± 0.23 81.42 ± 0.28 80.73 ± 1.28 70.29 ± 1.97 57.11 ± 3.64
Ours 82.16 ± 1.01 80.37 ± 1.98 78.82 ± 1.07 72.93 ± 4.00 60.33 ± 5.29

Table 7: CIFAR10

IDN-10% IDN-20% IDN-30% IDN-40% IDN-50%

DivideMix 96.02 ± 0.45 95.73 ± 0.48 92.07 ± 1.47 85.69 ± 2.47 74.33 ± 4.07
Ours 96.37 ± 0.77 95.12 ± 0.40 94.69 ± 0.24 88.13 ± 3.23 78.71 ± 4.37

Table 8: SVHN
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