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ABSTRACT

Learning from on-device data has enabled intelligent mobile applications rang-
ing from smart keyboards to apps that predict abnormal heartbeats. However,
due to the sensitive and distributed nature of such data, it is onerous to acquire
the expert annotations required to train traditional supervised machine learning
pipelines. Consequently, existing federated learning techniques that learn from
on-device data mostly rely on unsupervised approaches, and are unable to cap-
ture expert knowledge via data annotations. In this work, we explore how to
codify this expert knowledge using programmatic weak supervision, a principled
framework that leverages labeling functions (i.e., heuristic rules) in order to an-
notate vast quantities of data without direct access to the data itself. We intro-
duce Weak Supervision Heuristics for Federated Learning (WSHFL1), a method
that interactively mines and leverages labeling functions to annotate on-device
data in cross-device federated settings. We conduct experiments across two data
modalities: text and time-series, and demonstrate that WSHFL achieves competi-
tive performance compared to fully supervised baselines without the need for di-
rect data annotations. Our code is available at https://anonymous.4open.
science/r/wshfl_pipeline-A13C/

1 INTRODUCTION

Learning from on-device data has the potential to enable increasingly intelligent mobile applica-
tions (McMahan et al., 2017), from smart keyboards that boost usability (Hard et al., 2018) to health
apps that improve patient outcomes (Fitzpatrick et al., 2017; Bui & Liu, 2021). Nevertheless, on-
device data cannot be annotated by external experts (Wang et al., 2021a): it is too large in scale to
justify point-by-point labeling, and it is too sensitive to be transmitted and peeked at. Thus, previ-
ous efforts to train models on this type of data have mostly relied on unsupervised methods (Hard
et al., 2018; Lu et al., 2021) or have used user-contextual signals as supervision (Yang et al., 2018).
However, for some critical applications, these approaches fall short.

As a motivating example, consider training an arrhythmia detection model using electrocardiogram
(ECG) data obtained with smart watches. This task requires both respecting the sensitive nature
of the data and capturing clinicians’ expertise, e.g., via annotations of the ECG waveforms. In
this work, we consider federated learning to accomplish the former: keeping the data isolated on-
device and, instead, exchanging model parameters (McMahan et al., 2017; Wang et al., 2021a). The
question of how to capture the clinicians’ expertise into the federated model, however, is an active
area of research (Jeong et al., 2020; Liu et al., 2021; Zhuang et al., 2021a; Wu et al., 2021) that is
central to our work.

In this paper, we explore a particular new strategy for codifying expert knowledge into cross-device
federated models: using Labeling Functions (LFs), functions that assign potentially imperfect labels
to subsets of the data and that can be used to automatically label training data (Ratner et al., 2017;
Rühling Cachay et al., 2021). Encoding supervision through LFs is referred to as Programmatic
Weak Supervision (PWS) (Ratner et al., 2016; Zhang et al., 2022), and it has had success in central-
ized settings (Fries et al., 2019; Dunnmon et al., 2020; Goswami et al., 2021; Dey et al., 2022). To
the best of our knowledge, PWS has not been explored in federated scenarios, where the focus for

1pronounced as in wishful.
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Figure 1: Visualization of WSHFL’s strategy for generating LFs. Using on-device data, (a) candidate
LFs λ are generated alongside an estimate û of how probable an expert would find them useful.
These candidates and estimates are then sent over to the server, where they are (b) aggregated before
(c) one candidate is selected to be inspected by an expert. This (d) expert feedback is then used to
generate future estimates û.

encoding expert supervision has been on semi-supervised and self-supervised approaches for image
and text data (Jeong et al., 2020; Liu et al., 2021; Zhuang et al., 2021a; Wu et al., 2021).

We introduce Weak Supervision Heuristics for Federated Learning (WSHFL), a method for mining
and leveraging LFs in a cross-device federated setting. WSHFL proceeds in two stages: (i) the mining
of LFs (or heuristics) and (ii) the training of the PWS model. In the first step, illustrated in Figure 1,
WSHFL automates the crafting of LFs (Varma & Ré, 2018; Boecking et al., 2020), incorporating
expert feedback on the generated LFs they consider useful. In this step, only parameterized LFs are
exchanged, while the data is kept isolated on-device. In the second step, WSHFL trains a PWS model
given the LFs from the previous step (Rühling Cachay et al., 2021).

In particular, we argue that the main challenge of adopting PWS into cross-device federated methods
is the crafting of LFs. In practice, crafting these functions is a data-dependent process, as experts
rely on available validation data in order to extract and assess dataset-specific heuristics (Varma &
Ré, 2018; Boecking et al., 2020; Zhang et al., 2022). In federated learning, however, experts cannot
freely explore the on-device data. To tackle this obstacle, we automatically generate LFs based on
the distributed data and expert feedback at the central server (Boecking et al., 2020).

The key contributions of our work are as follows:

1. We introduce PWS into the federated setting, with the objective of encoding experts’ knowledge
into federated models through their inspection of candidate LFs that are mined from the on-device
data. To this end, we propose approaches for two components of a standard PWS workflow for
the federated set-up: the generation of candidate LFs, and the training of a model given LFs
selected by the expert (Zhang et al., 2022).

2. We conduct experiments on three datasets across two data modalities, text and time-series,
demonstrating the feasibility of the proposed approach compared to a fully supervised baseline.
We also investigate each of its components, demonstrating their independent utility.

3. Our work is amongst the first to learn classification models from unlabeled distributed time-series
data. Previous similar work has assumed access to labels (Zhang et al., 2020; Xu et al., 2021;
Choudhury et al., 2019), while we only consider expert supervision over LFs.

2 RELATED WORK

Programmatic Weak Supervision. Programmatic weak supervision (PWS) has been proposed
as an alternative to the expensive and time-consuming process of point-by-point labeling used for
supervised machine learning. PWS leverages multiple sources of potentially noisy supervision,
expressed as LFs, to label large quantities of data (Zhang et al., 2022). LFs, such as the one presented
in Fig. 2, can be imperfect and may generate mutually conflicting labels on certain data points. Thus,
a label model (Ratner et al., 2016; Rühling Cachay et al., 2021) is used to aggregate the noisy votes
of labeling functions into training labels. These labels are then used to train an end model, which
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learns to generalize the relationship between features and the estimated labels. Recent studies have
also explored end-to-end approaches that couple the label and end models, leading to remarkable
performance (Rühling Cachay et al., 2021). To the best of our knowledge, the PWS literature has
only focused on centralized settings so far.

Figure 2: Example of a labeling
function. If the unigram “nice” ap-
pears in a review, then it votes for
the positive class, otherwise it ab-
stains from voting.

Automatic Mining of LFs. Existing methods have aimed to
automate the creation of LFs given some extra supervision
such as seed LFs (Li et al., 2021), labeled data (Varma &
Ré, 2018; Awasthi et al., 2020), class descriptors (Gao et al.,
2022), or instance-wise expert feedback (Nashaat et al., 2020).
Boecking et al. (2020) introduced an algorithm that learns use-
ful heuristics from user feedback at the LF level. WSHFL
leverages this particular type of expert supervision while tack-
ling challenges inherent to the federated scenario.

Semi-supervised and Self-supervised methods in Federated
Learning. One can also codify expert knowledge into feder-
ated models by using self-supervised or semi-supervised learn-
ing. Recent works that have studied these alternatives rely on a centralized dataset available for
annotation by the experts, and augment the federated learning procedure with techniques such as
consistency regularization (Jeong et al., 2020; Liu et al., 2021) and contrastive learning (Zhuang
et al., 2021a; Wu et al., 2021). However, these techniques usually depend on the ability to augment
their data at scale, and have thus been mostly used on image data (Jeong et al., 2020; Zhuang et al.,
2021a; Wu et al., 2021; Liu et al., 2021). We provide an deeper discussion of these methods and
their limitations in Appendix A.7 .

Time-series federated learning with expert supervision. Federated learning from time-series data
is an active area of research (Ding et al., 2022). Nevertheless, prior work on federated learning with
time-series is limited to semi-supervised or unsupervised problems such as anomaly detection (Liu
et al., 2020; Huong et al., 2021), regression (Brophy et al., 2021) and forecasting (Tonellotto et al.,
2021). While some studies have considered supervised classification in a cross-silo setting, they
assume access to labels with a primary emphasis on privacy preservation (Zhang et al., 2020; Xu
et al., 2021; Choudhury et al., 2019).

3 WEAK SUPERVISION HEURISTICS FOR FEDERATED LEARNING

3.1 PROBLEM FORMULATION

We aim to train an end model f from unlabeled data distributed across devices or clients These
clients communicate with a server that has no access to the clients’ data and orchestrates training.
We assume stateless clients as is the norm in cross-device federated learning. For each client k,
let (xk, yk) ∼ Dk,Dk ∼ P be the data generating distribution, where xk

i ∈ X = Rd and the
yk ∈ Y = {1, . . . , C}. As is common in the federated setting, we assume the data between clients
is not identically distributed, but all clients share the same feature and label space, i.e. ∀k, xk

i ∈
X , yk ∈ Y . Each client only observes a sample Xk = {xk

i }
nk
i=1 of nk unlabeled data points. We

also have access to an expert located at the server who is able to determine the utility of a given LF.
In Section 3.2, we formalize a notion of utility.

Our ultimate goal is to collaboratively train an end model f : X → Y . To this end, WSHFL first
uses the distributed data to generate candidate LFs λ = λ(x) ∈ {0} ∪ Y , where 0 means that the
LF abstained from labeling any class. Then, WSHFL identifies a set of useful LFs L∗ based on the
expert’s feedback (Boecking et al., 2020). Finally, WSHFL uses L∗ to train a PWS model on the
clients’ data, obtaining the resulting end model f .

3.2 AUTOMATIC MINING OF LFS

In this step, WSHFL sequentially shows candidate LFs to the expert at the server. In each step t, the
expert inspects a given candidate λt and assigns it an expert label ut ∈ {0, 1} corresponding to
whether they believe its accuracy αt = P (λt(x) = y|λt(x) ̸= 0) is better than random. This step
finally returns those LFs that the expert believed were accurate: L∗ = {λj ∈ QT : uj = 1}.
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Algorithm 1 describes our general procedure. The main challenges to highlight are (1) the generation
of candidates LFs in a federated scenario (lines 18 and 13), and (2) the selection of the LFs we show
to the expert (line 14).

GENERATION OF CANDIDATE LFS

Algorithm 1: WSHFL mining of labeling
functions
Input: Number of expert queries T , seeds S.

1 Q0 ← S
2 for t = 1, . . . , T do
3 λt ←

FederatedAcquisition(Qt−1)
4 ut ← ExpertQuery(λt)
5 Qt ← Qt−1 ∪ (λt, ut)

Output: {λj ∈ QT : uj = 1}
6 Function FederatedAcquisition(Q)
7 L0 ← ∅
8 for r = 1, . . . , R do
9 Select K clients at random.

10 retrieve from each client
11 Lk ← TrainClient(Q)

12 Lr = Lr−1 ∪
⋃K

k=1 Lk

13 L′ ← Aggregate(LR).
14 λ← SelectBest(L′).
15 Return λ

16 Function TrainClient(Q)
17 Train neural network hk : τk(λ)→ u

using Q.
18 Generate candidate LFs Lk = {λk

j }
pk
j=1.

19 Use hk to estimate ûk
j for λk

j ∈ Lk.
20 Return {(λk

j , û
k
j )}

pk
j=1

To generate candidate LFs in a federated setting,
WSHFL leverages two domain specific processes:
(i) A client process that takes the unlabeled data
{xk

i }
nk
i=1 and produces candidate heuristics Lk =

{λk
j }

pk

j=1 in each individual client (see line 18 in Al-
gorithm 1). And (ii) a server process that aggregates
similar candidates proposed across clients into G
LFs L′ = {λ′

j}Gj=1 (see line 13 in Algorithm 1).

A parameterization of the Lk generated at the
clients is shared with the server. In Section 4, we
describe this parameterization, as well propose dif-
ferent generation and aggregation methods for the
two data modalities we work with.

SELECTION OF NEXT LF TO INSPECT

We cast this task as an active search prob-
lem (Boecking et al., 2020; Garnett et al., 2012),
where we sequentially inspect the candidate LFs
in order to discover those that the expert would as-
sign expert label uj = 1 . To do this , at time
step t, we require access to the posterior probability
P (u = 1|λ,Qt−1), where Qt−1 = {(λj , uj)}t−1

j=1
corresponds to the previously inspected candidates
and their expert labels.

To estimate this probability, WSHFL trains a
model hk in each client that predicts uj given the client-specific representation τk(λj) =
(λj(x

k
1), . . . , λj(x

k
nk
)), for all elements of Qt−1. This model is then used to obtain estimates of

ûk
j = h(τk(λ

k
j )) for the candidates that the client generates, which are shared with the server along-

side the proposed candidates. We describe this in function TrainClient in Algorithm 1.

When WSHFL aggregates similar candidates at the server into λ′ ∈ L′, it also aggregates their
accuracy estimates ûj , treating them as sample estimates of P (u′ = 1|λ′, Qt−1). More concretely,
let A be the collection of candidates being aggregated, to estimate our posterior probability, we use
a 1− δ lower confidence bound on the mean

P (u′ = 1|λ′, Qt−1) =
1

|A|
∑
j∈A

ûj −

√
log( 2δ )

2|A|
.

We use a lower bound to account for the variance of the simple mean when collections of candidates
have different support, i.e., |A|. Finally, we use a one-step look-ahead search strategy, picking the
aggregate λ′ ∈ L′ with the highest P (u′ = 1|λ′, Qt−1). Because of the way we constructed our
posterior, we will pick an aggregate with high estimated mean accuracy and high support. This is
especially relevant in scenarios with heterogeneous data distributions.

3.3 TRAINING OF THE PWS MODEL

Once we have L∗, we can use these LFs to train label model g and the resulting end model f on
the clients’ unlabeled data. In this work, we leverage the Weakly Supervised End-to-end Learner
(WeaSEL) proposed by Rühling Cachay et al. (2021), a state-of-the-art PWS model. Like most PWS
models, WeaSEL was proposed for centralized data. However, it’s architecture makes it amenable
to be learned in a distributed setting.
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The key idea of WeaSEL is to use a two-player cooperative game between two models with different
views of the unobserved label through the lens of the features and the LF votes, minimizing a pair
of objectives of the form

Lf (D) = ED[L(yf ,stop-grad(yg))] and Lg(D) = ED[L(yg,stop-grad(yf ))]

where L is a noise-aware loss (e.g., cross-entropy), yf = f(x) and yg = P (y|λ) are probabilistic
labels generated by the label model g that takes both features x, LF outputs λ(x) and class balances
P (y) as input. To intuitively understand this game, first assume that the probabilistic labels supplied
by g are accurate. WeaSEL can then train end model f to generalize the relationship between
these labels and the features of the data. On the other hand, assume end model f already provides
accurate predictions for our data. These predictions can thus be used as supervision to train g to
output correct probabilistic labels. The stop-grad operation naturally encodes this interpretation
i.e. each model treats the other’s prediction as the target.

In this work, we train WeaSEL in a federated setting, where the objectives become

LF = EDk∼P [Lf (Dk)] and LG = EDk∼P [Lg(Dk)].

Because we have access to a finite number of clients, and a finite sample of examples per client, we
use empirical risk minimization to solve for these objectives.

We exchange f , g and L∗ throughout training. We assume global class balances P (y) to be known,
as is frequent in related work (Boecking et al., 2020; Ratner et al., 2019; Fu et al., 2020; Chen et al.,
2021). Other works in centralized settings have proposed ways of estimating this quantity from
validation data or from LF responses (Ratner et al., 2019). We leave the problem of estimating P (y)
from federated data as a direction of future work, and explore the interaction between a global class
balance P (y) and local client balances Pk(y) in Section 6.2.

ASSUMPTIONS

WSHFL relies on the ability to generate candidate LFs of varying quality, for which we use domain-
specific processes. Previous work in mining LFs has observed that this generation process is possible
for several applications (Varma & Ré, 2018; Boecking et al., 2020). We also rely on the ability of
experts to determine whether a given LF is accurate. Once again, prior work has shown that domain
experts are able to exercise this judgment, either while providing feedback of this type (Boecking
et al., 2020), or while crafting LFs from scratch (Goswami et al., 2021; Dey et al., 2022; Fries et al.,
2019; Dunnmon et al., 2020).

In this work we assume that the parameterized LFs can be freely shared with the server and, after
aggregation and inspection by the expert, with other clients. We also assume estimates ûj , j ∈ A,
for a given A to be independent in order to construct our lower bound on the posterior P (u′ =
1|λ′, Q). This independence will not hold, for example, if the distribution over clients P changes
over time (Kairouz et al., 2021).

4 LABELING FUNCTION GENERATION

Text LFs. We propose LFs that assign a label if a unigram is present in the data point, e.g., Figure 2.
Otherwise, the LF abstains. Previous studies have found unigrams to be excellent sources of weak
supervision (Gao et al., 2022; Boecking et al., 2020). A client k can automatically generate Lk from
the cross product of the set of possible labels and the unigrams in its vocabulary within a document
frequency range2. In the server, we aggregate candidates with the same unigram and label.

Time-series LFs. These LFs are fully-parameterized by (τ, dτ , l), where τ ∈ Rd is a time-series
template, dτ ∈ R is a distance threshold, and l ∈ Y denotes the label. Given these parameters, and
a distance function d : Rd × Rd → R, and a probability threshold p, each time-series LF has the
following functional form:

λ(x; τ, dτ , l) =

{
l, F(dτ ,d(x, τ)) ≥ p

0, otherwise
, where F(x, x0) =

1

1 + exp−{x− x0}
.

2The document frequency of a unigram is defined as the fraction of documents which contain at least one
occurrence of the unigram.
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p = 0.25 p = 0.5 p = 0.75 p = 1.0
Labeling function ( ) Data point (x)

Figure 3: Example of a time-series labeling function repre-
senting an arrhythmia. We show 4 data points with increas-
ing probabilities of belonging to the given class. These ex-
amples will be labeled as arrhythmias as we vary our prob-
ability threshold p.

Intuitively, the more a time-series x
looks like template τ , the higher the
probability it has of being assigned
label l. We present an example of
our time-series LFs in Figure 3. In
this study, we use normalized eu-
clidean distance as the distance func-
tion d (Ding et al., 2008; Mueen
et al., 2009).

We generate Lk by taking the cross-
product of the set of possible labels
and representative templates we find
by clustering the data in each client. We define dτ to be the distance of the cluster member farthest
from the centroid. On the server, to aggregate these candidates, we cluster LFs with the same label
from multiple clients. Each cluster then represents an aggregate LF: the cluster centroid serves as
the template τ , and the maximum dτ serves as the new distance threshold.

5 EXPERIMENTAL SETUP

Datasets. For text, we use the Amazon product reviews dataset (Ni et al., 2019) and the IMDb
movie reviews dataset (Maas et al., 2011). With both of these datasets we target a binary sentiment
analysis task. In the Amazon dataset, we treat each unique reviewer as a different client, whereas
on the IMDb dataset, we split reviews uniformly at random between clients. For time-series, we
use the Massachusetts Institute of Technology – Beth Israel Hospital Arrhythmia Database (MIT
BIH) (Moody & Mark, 2001; Goldberger et al., 2000). In this dataset, we solve a binary classifica-
tion task of discriminating normal heart beats from arrhythmias, treating each patient as a different
client. In Appendix A.4, we provide further details about our datasets.

Methods and Models. We featurize our text data using a pre-trained open-source sentence trans-
former (Reimers & Gurevych, 2019). For our arrhythmia detection task, we use the Modified Lead
II from the raw ECG data sampled at 360Hz. Client models hk and label model g are each two-
layer perceptrons. For our text datasets, the end model f is also a two-layer perceptron, while for
our time-series data we use a one-dimensional CNN. We optimize our parameters on a validation
dataset, and report the ROC AUC on a separate test dataset. We simulate an expert using an oracle
that labels a LF as useful if it has a training accuracy of at least 0.7. We provide further details about
our models and hyper-parameters in Appendix A.4 and Appendix A.5. We also perform experiments
with different expert thresholds, summarizing their results in Appendix A.2.

Unless mentioned otherwise, we repeat each experiment five times with different random seeds and
report the mean and standard deviation.

Baselines. To the best of our knowledge, no prior work on federated learning has explored how
to interactively encode expert supervision into on-device data. Hence, to evaluate WSHFL, we com-
pare its predictive performance against 3 practical baselines. We also compare WSHFL with recent
federated semi-supervised learning baselines with labels at the server on the IMDb dataset in Ap-
pendix A.7.

Random: First, we consider the scenario where the expert is shown randomly aggregated LFs,
without considering their accuracy. This corresponds to changing line 14 in Algorithm 1 to λ ←
SelectRandom(L′).

Naive Greedy: Next, we consider the setting where at each time-step t, the expert is shown
the LFs with the highest P (u′ = 1|λ′, Qt−1) =

1
|A|

∑
j∈A ûj . Simple mean estimates are natural in

federated settings. However, we have to account for their variance due to our aggregating procedure.

Supervised: Finally, we compare WSHFL to the ideal setting where each device has access to
ground truth labels and models are trained using FedAvg (McMahan et al., 2017). This baseline
serves as an empirical upper bound for WSHFL’s performance.
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6 RESULTS AND DISCUSSION

6.1 AUTOMATIC MINING OF LFS

uj = 1

Percentage Coverage
Amazon

WSHFL 30.13 +/- 5.27 % 1.94 +/- 2.28 %
Greedy 20.93 +/- 4.70 % 0.04 +/- 0.04 %
Random 9.20 +/- 3.55 % 0.03 +/- 0.06 %

IMDb
WSHFL 34.13 +/- 8.33 % 3.47 +/- 3.40 %
Greedy 43.07 +/- 3.63 % 0.03 +/- 0.03 %
Random 21.20 +/- 3.55 % 0.07% +/- 0.37 %

MIT BIH
WSHFL 97.80 +/- 1.40 % 2.41 +/- 3.87 %
Greedy 96.40 +/- 2.50 % 3.83 +/- 6.46 %
Random 44.20 +/- 6.60 % 0.63 +/- 2.47 %

Table 1: Percentage of LFs labeled as uj = 1 out
of those inspected by the expert, and their mean
coverage. We can see how WSHFL mines both
high accuracy and high coverage LFs for all of our
datasets. In bold, the highest mean per dataset.

Previous work on automatic mining of LFs
has shown the importance of obtaining candi-
dates with both high coverage and a high accu-
racy gap above chance (Boecking et al., 2020),
where the coverage lj = P (λj(x) ̸= 0) is the
frequency at which λj does not abstain. We plot
these two quantities for the LFs inspected by
the expert in Figure 8. Likewise, in Table 1, we
present the percentage of LFs labeled as uj = 1
out of those inspected, and their mean coverage.
We observe how WSHFL promotes the mining
of both high accuracy and high coverage heuris-
tics across data modalities. Meanwhile, our
greedy baseline fails to find high coverage LFs
for our text dataset, successfully mining high
coverage LFs only in our time-series experi-
ments with the MIT BIH dataset.

To understand this behaviour, in Appendix A.3
we sketch the distribution of the proposed
candidates’ accuracies and coverages for our
datasets. We observe how, for Amazon and IMDb, high accuracy candidates tend to have low
coverage. Hence, the naive greedy baseline will end up with low coverage LFs. However, this is
not the case for MIT BIH, where candidates with high accuracy also have good coverage. For this
dataset, we expect greedy to be a competitive baseline.

In Figure 4, we use the mined LFs in a simple setting: a centralized majority vote label model.
This is a simpler scenario than the PWS model we eventually want to train, which allows us to
directly evaluate the quality of the mined LFs, and is a competitive baseline in the PWS litera-
ture (Rühling Cachay et al., 2021; Gao et al., 2022; Dey et al., 2022). We see how only WSHFL
shows any meaningful improvement for our text datasets (Amazon and IMDb) while it performs
comparably to our greedy baseline on the MIT BIH dataset.
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Figure 4: Results for a majority vote classifier given mined LFs. We observe how, as we present more
LFs to the expert, WSHFL outperforms our baselines on our text datasets, and performs comparably
to greedy on MIT BIH. Time-step 0 corresponds to an initialization as described in Appendix A.8.

6.2 TRAINING OF THE PWS MODEL

We validate that we can successfully train a WeaSEL model as proposed by Rühling Cachay et al.
(2021) (Section 3.3) in a federated manner. For these experiments, we use a pre-curated set of
LFs which we describe in Appendix A.6. In Figure 6, we show the results of our experiments.
We present two baselines: the fully supervised baseline described above and an additional baseline
corresponding to training WeaSEL in a centralized manner. With the latter, we aim to corroborate
the utility of the used LFs in a previously studied setting of reduced complexity.
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Figure 5: Results of training
WeaSEL in a federated setting on
the IMDb dataset, given a set of
curated LFs. We achieve consis-
tent results as we vary the class
distributions in each client, from
one class per client (α → 0) to
balanced classes (α → ∞). We
present the test ROC AUC of the
end model vs. the number of
rounds of federated training.

We study the behavior of federated training with three different
algorithms: FedAvg, FedProx, and FedAdam. We observe
how, for Amazon and IMDb, all three algorithms match the
centralized performance after sufficient number of communi-
cation rounds. For the MIT BIH dataset, the best performing
algorithm (FedAvg) achieves an ROC AUC of 82.66% vs.
92.08% of the centralized performance.

We also explore the effects of class imbalance on the perfor-
mance of federated training. We use the method proposed
by Hsu et al. (2019), which parameterizes the class distribu-
tion on a client by a vector q ∼ Dir(αp) from a Dirichlet
distribution, where p is a uniform prior and α > 0 controls
how much the class distributions across clients resemble each
other. In Figure 5, we show results for training WeaSEL using
FedAvg on the IMDb dataset. We observe how our results
are consistent as we vary α: when clients have identical class
distributions (α→∞), when clients have only one class each
(α → 0), and for intermediate values. These results also sug-
gest that it may be sufficient to specify the global class balance
P (y) even when the clients’ class balances Pk(y) differ.

6.3 PUTTING IT ALL TOGETHER

Finally, we demonstrate that we can (1) automatically generate useful LFs and (2) use them to
successfully train a federated PWS model. Notice that this is a setting with higher complexity than
the one in Figure 4. We show our results in Figure 7, training the PWS model using FedAvg. In our
text datasets (Amazon and IMDb), we see how WSHFL is both more effective and efficient than our
baselines at leveraging the expert’s supervision. Meanwhile, for the MIT BIH dataset, it performs
comparably to our greedy baseline. We also found WSHFL to outperform recent recent federated
semi-supervised learning algorithms on the IMDb dataset (Fig.16).

7 CONCLUSIONS AND FUTURE WORK

Our work encodes expert supervision into on-device data in a scalable and distributed manner,
extending the benefits of PWS to cross-device federated learning. We demonstrate how to train
competitive federated models based on expert feedback at the LF level, avoiding both data-sharing
and point-by-point labeling. Moreover, we investigate time-series modeling in federated settings, a
modality that has been under-explored despite its prevalence in high-stakes scenarios.

Societal Impact. As with most federated learning algorithms, WSHFL makes frequent exchanges
between clients and a central server in the form of parameterized models and LFs. There exists
the risk of private information leaking through these exchanges. Understanding and mitigating
the harms of exchanging model parameters is an active area of study (McMahan & Ramage, 2017;
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Figure 6: Results of training WeaSEL in a federated setting given a set of curated LFs. We observe
that, given enough rounds of communication, we can match or come close to the performance of a
centralized training scheme.
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Figure 7: Results for WSHFL on our datasets. We observe how, as we present more LFs to the expert,
WSHFL outperforms our baselines on our text datasets, and performs comparably to greedy on MIT
BIH. Time-step 0 corresponds to an initialization as described in Appendix A.8.
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Figure 8: Training accuracies vs. coverages for all LFs inspected by the expert across five repetitions.
We qualitatively observe how WSHFL promotes high accuracy and high coverage LFs across our
three datasets. The black dotted line is the threshold at which our oracle starts labeling uj = 1 in a
LF, which we set to 0.7.

Bonawitz et al., 2022; Li et al., 2019). Depending on the LF parameterization, some LF families may
adhere to privacy formalisms such as differential privacy, e.g., low-accuracy parametric classifiers.
For other families, such as unigram LFs, these harms may not be fully understood and future work
should mitigate them through techniques such as using a pre-set vocabulary (Chen et al., 2019).

Studies in specific application domains. To further establish the utility of the proposed approach,
future work should study its performance and viability in applications and modalities beyond those
explored in this work, e.g., clinical tabular or image data. A salient challenge in these studies will be
the definition of LFs that can be easily inspected by experts. This research direction will also benefit
from conducting user studies to evaluate the proposed LF generation mechanisms (Boecking et al.,
2020). Immediate future work could conduct a study with clinical experts to evaluate our proposed
time-series LFs.

Improve selection of LFs. We validate that WSHFL mines both accurate and high coverage LFs.
However, future work could extend the active search formulation presented in this work using non-
myopic strategies (Jiang et al., 2017) in the federated setting. Future studies could also equip this
formulation with exploration capabilities, as is common in other sequential decision making set-
tings (Sutton & Barto, 2018). Finally, we could conceive an active search formulation that is aligned
with the performance of the end model itself, or with other properties of LFs, e.g., LF overlaps.
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REPRODUCIBILITY STATEMENT

All our experiments were carried in a computing cluster with a typical machine having 128 AMD
EPYC 7502 CPUs, 503 GB of RAM, and 8 NVIDIA 280 RTX A6000 GPUs. The code to reproduce
our results will be open sourced upon acceptance. We have made an anonymous codebase avail-
able for review at https://anonymous.4open.science/r/wshfl_pipeline-A13C/
To further aid reproducibility, we report the exhaustive set of hyper-parameters used in our exper-

iments in Appendix. A.5. All datasets are also publicly available. The Amazon and IMDb datasets
are can be downloaded from https://nijianmo.github.io/amazon/index.html and
https://huggingface.co/datasets/imdb, respectively. The MIT-BIH dataset can
be accessed from https://www.physionet.org/content/mitdb/1.0.0/ and prepro-
cessed using https://github.com/physhik/ecg-mit-bih. We
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A APPENDIX

A.1 WSHFL OVERVIEW
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Figure 9: Visualization of WSHFL’s strategy for generating LFs. Using on-device data, (a) candidate
LFs λ are generated alongside an estimate û of how probable an expert would find them useful. To
generate candidate LFs, WSHFL leverages domain specific processes introduced in Sec. 4. Examples
of generated text and time-series LFs are presented in App. A.10. The probability that a LF λ will be
found useful by the expert is estimated using a neural network hk in each client. hk leverages client-
specific representations of λ, τ(λ), and the set of previously adjudicated LFs Qt−1 = {(λj , uj)}t−1

j=1

to estimate û. These candidates and estimates are then sent over to the server, where similar can-
didate LFs are (b) aggregated using modality-specific processes described in Sec. 4. For e.g., text
LF candidates with the same unigram and label are aggregated. Next, the server estimates the prob-
ability that an aggregated candidate LF will be found useful by the expert, and (c) one candidate
is selected for their inspection. The (d) expert assigns an expert label u ∈ {0, 1} corresponding to
whether they believe its accuracy is better than random, and this feedback is then used to generate
future estimates û.

A.2 ADDITIONAL RESULTS AND ABLATIONS

We investigate the behavior of our end-to-end WSHFL experiments with experts of different con-
fidence levels. To do this, we vary the threshold at which our oracle labels a LF with u = 1. In
Figure 10, we observe how WSHFL is robust to experts with different confidence levels, starting to
degrade for Amazon and IMDb once the expert starts accepting LFs with accuracies close to random.
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Figure 10: Results of our ablation experiments on WSHFL, where we vary the threshold of the oracle
we use as an expert. We observe how our experiments are robust to a range of thresholds, yet may
start to degrade when experts accept LFs too close to random.
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Figure 11: Training accuracies vs. coverages for all LFs inspected by the expert across five repeti-
tions. We qualitatively observe how WSHFL promotes high accuracy and high coverage LFs across
our three datasets. The black dotted line is the threshold at which our oracle starts labeling uj = 1
in a LF, which we set to 0.7.
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A.3 PROPOSED CANDIDATES DISTRIBUTION

In Figure 13, we plot the accuracies and coverages for all the aggregated candidates at the server.
This illustrates the distribution of LFs over which our method and baselines are sampling over. For
all datasets, we intuitively observe a bimodal distribution of LFs based on their accuracy. This is
because we exhaustively assign all classes to keyword/templates to generate LFs, hence for every
accurate LF, we also have an equally inaccurate LF candidate. However, we found that the distri-
bution of the accuracy of candidate LFs is different for text and time-series datasets. In particular,
time-series LF candidates either had high or low accuracy, with few intermediate values.

A.4 DATASETS AND MODELS

We provide a description of the datasets and models used in our work. We use federated versions
of three different datasets: the Amazon product reviews dataset (Ni et al., 2019), the IMDb movie
reviews dataset (Maas et al., 2011) and the Massachusetts Institute of Technology – Beth Israel
Hospital Arrhythmia Database (MIT BIH) dataset (Moody & Mark, 2001; Goldberger et al., 2000).
Statistics on the number of clients and examples in the different splits of these datasets are given in
Table 2.

Num.
Examples

Num.
Clients

Mean Examples
per Client (std)

Fraction of
Positive Class

Amazon
Train 119,725 738 162.22 (73.36) 0.54
Val 20,090 123 - 0.54
Test 60,366 369 - 0.55

IMDb
Train 20,000 1000 20.0 (0.0) 0.50
Val 5,000 - - 0.49
Test 25,000 - - 0.50

MIT BIH
Train 21,008 36 583.55 (461.72) 0.58
Val 2,939 4 - 0.72
Test 4,153 8 - 0.60

Table 2: Details for datasets and partitions used in our experiments. We treat the validation and test
partition as if it were centralized in the server.

A.4.1 AMAZON

We use a subset of the Amazon product reviews dataset (Ni et al., 2019), solving a binary senti-
ment classification task. To construct our federated dataset, we first aggregate all categories with
more than 100k, and constructed clients k based on the available reviewer ids. We then sampled
reviewers in ascending order based on quantity |Pk(y = 1) − 0.5| until we had at least 200k re-
views. Intuitively, we looked for reviewers with class balances close to 0.5. Finally, we performed a
60/10/30 train/val/test split. We featurize this data using a pre-trained open-source sentence trans-
former (Reimers & Gurevych, 2019; Sentence Transformers, 2019), which outputs a feature vector
of 768 dimensions. Our end model is a multilayer perceptron with two hidden layers of size 20 and
RELU activations.

A.4.2 IMDB

We use the IMDb movie reviews dataset (Maas et al., 2011). This dataset has 25k training examples
and 25k test examples. We further split the training set into 20k examples for training and 5k
examples for validation, and create 1k training clients by splitting the reviews in the training set
uniformly at random. We use the same featurization and end model as for the Amazon dataset.
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Finally, in Figure 14, we show the distribution of local class balances Pk(y) as we vary the parameter
alpha (see Section 6.2).

A.4.3 MIT BIH

The MIT BIH dataset comprises of 48 half-hour excerpts of two-lead ambulatory ECG recordings
from 47 subjects. The dataset contains beat-level annotations for a wide range of heart beats, ranging
from normal to arrhythmia (e.g., left bundle branch block, premature ventricular contraction, etc).
Since detecting all varieties of arrhythmia is challenging and not the primary goal of our study, we
solved a simpler binary classification task of discriminating normal heart beats from arrhythmias.

On the MIT BIH dataset, we treat each patient as a different client. The patients used in each of the
partitions in Table 2 are as follows:

Validation: 102, 115, 123, 202
Test: 101, 105, 114, 118, 124, 201, 210, 217

Train: All other patients

In Figure 15, we illustrate the parameterization of the LFs we use for this dataset. As an end model,
we train a one-dimensional convolutional neural network. Figure 21 shows the definition of the
model we use. As input into our model, we use the Modified Limb lead II (MLII) obtained by
placing electrodes on the chest, as is done in prior work (Goswami et al., 2021). We output a
prediction for each window of 256 samples (sampled at 360Hz) around peaks given by previous
preprocessing. Finally, we use early stopping based on our validation ROC AUC to avoid overfitting
when training WeaSEL (Figure 6, Figure 7) and as the expert inspects the LFs (Figure 7).

A.4.4 ADDITIONAL MODELS

Our label model is always a multi-layer perceptron with two hidden layers of size 20 and ReLU
activations. When training this model, we set the class balance P (y) to 0.5. Models hk : τk(λ)→ u
are multilayer perceptrons with two hidden layers of size 10 and ReLU activations.

A.5 EXPERIMENT HYPERPARAMETERS

We describe the hyperparameters used for our experiments in Section 6. Section A.5.1 presents
the parameters used in the experiments presented in Table 1, Figure 4, Figure 7 and Figure 11.
Meanwhile, Section A.5.2 presents the parameters used in Figure 6 and Figure 7.

A.5.1 AUTOMATIC MINING OF LFS

When generating time-series LFs as described in Section 4, we use the following parameters:

Probability threshold (p) : 0.2
Number of clusters in client k : 3 if nk < 20 else ⌊nk/5⌋

Number of clusters in server : 500

When running Algorithm 1 to mine LFs, we train model hk in each client k with the Adam opti-
mizer (Kingma & Ba, 2014), using early stopping on the training loss. The hyperparameters that we
use for this algorithm are as follow:

Delta (δ) : 0.05
Clients per round (K) : 10

Batch size : 64
Maximum number of epochs : 200

Learning rate : 1e−3
Weight decay : 1e−4

Due to the difference in the total number of clients between datasets, in
FederatedAcquisition, we use a different number of rounds R per data modality. For
text, we set R to 10, while for time-series we set it to 1.
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A.5.2 TRAINING OF THE PWS MODEL

Throughout these experiments, we compare the performance of training a federated version of
WeaSEL using FedAvg, FedProx and FedAdam. For FedAvg and FedAdam, the client opti-
mizer is mini-batch SGD, while for FedProx it includes a proximal term with weighted by µ > 0.
For all algorithms, we tune the hyperparameters using random search, exploring 20 sets of parame-
ters and choosing the set with the best ROC AUC on the validation dataset. We perform this tuning
once using the pre-curated set of LFs presented in Appendix A.6.

The hyperparameters that we explore are the following:

log10(client learning rate) : Unif[−2,−1]
Temperature of WeaSEL model : Unif[10, 25]

Number of client epochs : Unif{1, 3, 5}
Client momentum : 0.9
Server momentum : 0.9

Batch size : 64
Clients per round : 10

For FedProx we tune µ in Unif{1e−3, 1e−2, 1e−1, 1}. For FedAvg and FedProx, we explore
a log10(server learning rate) in Unif{−2,−1, 0}. For FedAdam, we explore the same hyperparam-
eter in the range Unif[−5,−4] for Amazon and IMDb, and in the range Unif{−4,−3,−2} for MIT
BIH.

In Table 3 we present the hyperparameters chosen after performing random search over the grids
presented in Appendix A.5.2.

Client lr Server lr Temperature Epochs µ

FedAvg
Amazon 3.35e−2 0.01 14.37 5 -
IMDb 4.15e−2 1.00 24.75 1 -
MIT BIH 2.66e−2 0.10 18.20 3 -

FedProx
Amazon 3.70e−2 0.01 24.54 3 0.01
IMDb 4.60e−2 0.10 16.38 3 0.01
MIT BIH 6.81e−2 1.00 23.64 3 1.00

FedAdam
Amazon 8.12e−2 1.81e−5 19.94 3 -
IMDb 4.82e−2 4.07e−5 22.50 5 -
MIT BIH 2.66e−2 1.00e−3 18.20 3 -

Table 3: Hyperparameters chosen after performing random search over the grids presented in Ap-
pendix A.5.2.

A.5.3 BASELINES

We tune the hyperparameters for two baselines in our experiments: a fully supervised baseline that
we train using FedAvg, and a centralized version of WeaSEL. For both baselines, we tune their
hyperparameters using random search, exploring 10 sets of parameters and choosing the set with the
best ROC AUC on the validation dataset. For the WeaSEL baseline, we perform this tuning using
the pre-curated set of LFs presented in Appendix A.6.

For our supervised (FedAvg) baseline, the hyperparameters that we explore are the following:

For our centralized (WeaSEL) baseline, the hyperparameters that we explore are the following:

In Table 4 we present the hyperparameters chosen after performing random search over the grids
presented in Appendix A.5.3.
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log10(client learning rate) : Unif[−4,−2]
log10(server learning rate) : Unif{−2,−1, 0}

Number of client epochs : Unif{1, 3, 5}
Client momentum : 0.9
Server momentum : 0.9

Batch size : 64
Clients per round : 10

log10(learning rate) : Unif[−4,−3]
Temperature of WeaSEL model : Unif[10, 25]

Momentum : 0.9
Number of epochs : 200

Batch size : 64

Supervised (FedAvg)
client lr server lr epochs

Amazon 5.26e−3 1.00 3
IMDb 5.26e−3 1.00 3
MIT BIH 2.15e−3 1.00 1

Centralized (WeaSEL)
lr temperature

Amazon 3.06e−4 18.89
IMDb 8.75e−4 22.99
MIT BIH 8.75e−4 22.99

Table 4: Hyperparameters chosen after performing random search over the grids presented in Ap-
pendix A.5.3.

A.6 LABELING FUNCTIONS USED FOR FEDERATED WEASEL

For our experiments in Section 6.2, we use a set of pre-curated LFs. For Amazon and IMDb, we
use the LFs reported by Boecking et al. (2020), which correspond to examples of heuristics that
real users found useful when asked for the same type of feedback as the one described in this work.
Meanwhile, for MIT BIH, we adopted an automated procedure to identify these LFs: using the
method proposed by Boecking et al. (2020) in a centralized setting, using the same oracle as our
experiments. The LFs used are detailed below.

• Amazon:
– Positive: amazing, awesome, beautiful, beautifully, best, captivating, comfy, com-

pliments, delightful, durable, easy, excellent, expected, fantastic, favorite, gorgeous,
great, interesting, love, loves, perfect, perfectly, pleasantly, stars, strong, value, won-
derful.

– Negative: awful, bad, beware, boring, crap, disappointing, garbage, horrible, joke,
junk, mess, money, poor, poorly, refund, sent, terrible, unusable, useless, waste,
wasted, worse, worthless, worst, yuck, zero.

• IMDb:
– Positive: amazing, art, beautiful, beautifully, breathtaking, brilliant, captures, delight,

delightful, enjoyed, excellent, masterpiece, fantastic, favorites, finest, flawless, intel-
ligent, joy, light, perfect, perfection, refreshing, superb, superbly, terrific, underrated,
wonderful, wonderfully.

– Negative: atrocious, awful, bad, boring, crap, decent, dreck, dull, failed, horri-
ble, lame, laughable, lousy, mistake, pointless, poor, reason, redeeming, ridiculous,
stinker, stupid, terrible, unfunny, unwatchable, waste, worst.

• MIT BIH: Figure 12 shows the LFs we use for our MIT-BIH experiments.
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A.7 COMPARISONS AGAINST SEMI-SUPERVISED FEDERATED LEARNING

A.7.1 RELATED WORK

Previous studies on federated learning make an unrealistic assumption that clients have ground-truth
labels for their data (Kairouz et al., 2021). This is impractical as clients may not have time, re-
sources, or the expertise to label task-specific on-device data. Recently, some studies have explored
the possibility of combining semi-supervised learning with federated learning to enable clients with-
out ground-truth labels to collaboratively train models. Below, we summarize recent advances in
federated semi- and self-supervised learning, and highlight how they cannot be directly applied to
our problem setting.

Labels-at-client setting. Some studies on semi-supervised federated learning assume that clients
have partially labeled data (Wang et al., 2021b; Fan et al., 2022; Lin et al., 2022; Li et al., 2023;
Liang et al., 2022; Lin et al., 2021; Yan et al., 2023). In our problem setting, clients do not have the
expertise to annotate their own data.

Labels-at-server setting and self-supervised FL. Most related to our work is the research on semi-
supervised federated learning with labels at the server. Techniques that work in the former setting
assume that clients posses unlabeled data and that the server has access to a limited amount of
annotated data (Zhang et al., 2021a; Diao et al., 2022; Long et al., 2020; Liang et al., 2022; Zhang
et al., 2021b). Self-supervised studies do not assume access to any labels, and aim to learn task-
agnostic representations from unlabeled distributed data (Makhija et al., 2022; Zhuang et al., 2021b).
These methods, however, still require labeled data for the subsequent fine-tuning process.

Limitations of current work. Existing studies in semi- and self-supervised federated learning are
designed for and evaluated on image datasets, and rely on modality-specific strong and weak data
augmentation techniques such RandAugment (Cubuk et al., 2020), image shifting, and flipping, etc.
Finding similar data augmentation techniques for text and time-series, the two modalities that we
consider in this work, remains an area of open exploration (Bayer et al., 2022; Yue et al., 2022).

A.7.2 COMPARISONS

We compare WSHFL on the IMDb dataset against two semi-supervised algorithms for federated
learning with labels at server: SemiFL (Diao et al., 2022) and FRDG (Zhang et al., 2021b). We
modify these baselines and use the identity function instead of weak and strong augmentations, and
use the implementation provided by Diao et al. (2022). We present our results in Figure 16, and
observe how WSHFL is closer to our fully supervised baseline than both SemiFL and FRDG.

For the semi-supervised experiments, we used 300 labeled examples at the server. This is equivalent
to the number of times we query the expert in our experiments in Figure 7 for IMDb3. All federated
experiments in this setting use the same number of training clients (1000) and clients per round (10).
For SemiFL and FRDG, we use the hyperparameters suggested in the implementation by Diao et al.
(2022), but set the local epochs to 3 after initial experimentation.

A.8 LABELING FUNCTION SEEDS

In our experiments, we initialize Algorithm 1 at time-step 0 with a set S of seed LFs. We use
four seeds, two for each class, with a training accuracy above 0.7 and thus labeled with u = 1.
Furthermore, for our text datasets, in each repetition, we randomly sample four additional seeds
in hopes of discovering LFs marked with u = 0. We don’t perform this random sampling for the
time-series modality as it heavily increased the variance of the ROC AUC at time-step 0.

The seeds that were used throughout the experiments were:

• Amazon:
– Positive: adorable, thoughtful.
– Negative: stereotypical, horrible.

3Notice that these annotations refer to different entities: while WSHFL annotates LFs, SemiFL and FRDG
require annotated examples.
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• IMDb:
– Positive: adorable, witty.
– Negative: stereotypical, hated.

• MIT BIH: Figure 17 shows LFs we use as seeds for our MIT-BIH experiments. These LFs
were chosen by the authors from the pool in Appendix A.6 based on visual inspection.

A.9 EXAMPLES OF INSPECTED LABELING FUNCTIONS

We show examples of LFs considered useful by our simulated oracle, i.e., labeled with u = 1, on
our three datasets. For Amazon and IMDb, we show the five heuristics most frequently annotated
as useful, and break ties at random. For MIT BIH, we show the most accurate LFs found useful by
the oracle, and break ties by selecting candidates that are visually dissimilar. The list of example
heuristics is presented below:

• Amazon:
– WSHFL:

* Positive: size, love, recommend, perfect, highly.
* Negative: poor, worse, boring, total, worst.

– Greedy:
* Positive: pastiche, pointofview, preschool, leveling, elm.
* Negative: inarticulate, purchases, catnip, dart, selfabsorbed.

– Random:
* Positive: guitars, cliffhanger, break, domicile, define.
* Negative: capable, tend, whichfacilitate, itunes, notable.

• IMDb:
– WSHFL:

* Positive: shows, performance, perfect, fun, excellent.
* Negative: money, annoying, badly, awful, lame.

– Greedy:
* Positive: wordplay, caps, adoree, accelerated, ardour.
* Negative: cadet, appendage, accuses, blueprints, beanies.

– Random:
* Positive: poltergeist, conversation, brawny, damages, 30mins.
* Negative: critiquing, approved, effortless, completely, banner.

• MIT BIH:
– WSHFL: We plot three labeling functions inspected by the expert using WSHFL in

Figure 18.
– Greedy: We plot three labeling functions inspected by the expert using our greedy

baseline in Figure 19.
– Random: We plot three labeling functions inspected by the expert using our random

baseline in Figure 20.

A.10 EXAMPLES OF LABELING FUNCTION GENERATION

Section 4 describes how LFs are generated in each client. Below we provide examples of how
labeling functions are generated in each client for our text and time-series datasets.

Text LFs. Each client first identifies a set of unigrams (i.e., words) within a certain document
frequency range. For example, say the client identifies 2 unigrams in their vocabulary: [nice, bad].
To create labeling functions, each client takes the cross product of these unigrams and the set of
possible labels. If the set of possible labels is [negative sentiment, positive sentiment], then the client
generates 4 LFs: [nice→ positive sentiment, nice→ negative sentiment, bad→ positive sentiment,
bad → negative sentiment]. To find keywords, we use the CountVectorizer4 implementation
in scikit-learn. Fig. 2 shows a programmatic representation of unigram LFs.

4https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html
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Time-series LFs. In each client, we first cluster time-series into k clusters using k-means clus-
tering and normalized euclidean distance (Ding et al., 2008; Mueen et al., 2009). We use the
TimeSeriesKMeans5 implementation of tslearn to find time-series clusters. We refer to the
cluster representatives (τ , or the mean time-series) of these clusters as representative templates (see
Fig. 12 and the red time-series in Fig. 15). To construct labeling functions, we take the cross product
of these representative templates and the set of possible labels. As shown in Fig. 3, the closer a time-
series is to a representative template, the more likely it is to be assigned to the class corresponding
to the representative template.

A.11 TABLE OF SYMBOLS

Symbols Description
k Index for client

X = Rd d-dimensional feature space of data captured by each client.
Y = {1, . . . , C} Label space for each client. Each data point belongs to one of C

classes.
u ∈ {0, 1} The utility of a LF. An expert assigns a LF u = 1 if they believe that

its accuracy is better than random.
f : X → Y Downstream classifier. We use an MLP for text data, and ConvNet for

time-series data.
λ = λ(x) ∈ {0} ∪ Y Given data as input, a LF votes for a particular class or abstains from

voting (λ(x) = 0)
L∗ A set of useful LFs for a given dataset . WSHFL identifies a set of

useful LFs based on the expert feedback.
t ∈ {0, . . . , T} Time-steps

α = P (λ(x) = y|λ(x) ̸= 0) Accuracy of the LF λ
Qt = {(λj , uj)}tj=1 The set of LFs inspected by the expert at the server along with their

utility labels at time t
nk Number of data points in client k

Lk = {λk
j }

pk

j=1 A set of pk candidate LFs for client k
L′ = {λ′

j}Gj=1 Result of aggregation similar candidates proposed across clients into
G LFs

P (u = 1|λ,Qt−1) The probability that λ is useful, given the set of LFs already inspected
by client until time-step t− 1.

τk(λ) = (λ(xk
1), . . . , λj(x

k
nk
)) Client-specific representation of λj . The representation of a LF is a

vector of its responses on each of its data point.
ûk
j = h(τk(λ

k
j )) hk is a neural network, which given the representations of a LF, pre-

dicts whether it would be deemed useful by the expert on the server.
g : {L} → Y Programmatic weak supervision label model.

Table 5: List of symbols and equations used in Section 3.

5https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/
tslearn.clustering.TimeSeriesKMeans.html
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Figure 12: Visualization of the LFs used when training WeaSEL in a federated manner, using the
MIT BIH dataset.
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Figure 13: Training accuracies vs. coverages for the LFs aggregated at the server. We plot the
candidates for the last time-step in one repetition chosen at random.
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Figure 14: Histogram of local class balances Pk(y) as we vary α for the IMDb dataset.
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Figure 15: A time-series LF λ is parameterized using a three-tuple (τ, dτ , l). The template τ shown
in red is the centroid of a cluster, represented using the dashed lines −−. dτ is the radius of the
cluster and corresponds to the distance of the cluster member farthest from τ . Depending on the
probability threshold p, this LF λ will label data points x as belonging to class l, or it will abstain
from voting. This labeling threshold is denoted by the outer concentric circle · · · .
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Figure 16: Comparisons against semi-supervised methods in federated learning, FRDG and SemiFL,
for our IMDb dataset. We repeat each experiment five times and draw box plots with all repetitions.
We observe how WSHFL outperforms the semi-supervised methods, and is closer in performance to
the fully supervised baseline.
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Figure 17: Visualization of the seeds used in our MIT BIH experiments. In our set up, arrhythmia
corresponds to the positive class.
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Figure 18: Visualization of the most accurate candidates inspected by the expert when using WSHFL
with the MIT BIH dataset. We present the three top candidates per class and break ties by selecting
candidates that are visually dissimilar.
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Figure 19: Visualization of the most accurate candidates inspected by the expert when using our
greedy baseline with the MIT BIH dataset. We present the three top candidates per class and break
ties by selecting candidates that are visually dissimilar.
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Figure 20: Visualization of the most accurate candidates inspected by the expert when using our
random baseline with the MIT BIH dataset. We present the three top candidates per class and break
ties by selecting candidates that are visually dissimilar.
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class ConvNet(nn.Module):
def __init__(self, input_dim: int, output_dim: int,

n_feature_maps: int = 4, name: str = ’convnet’):
super().__init__()
self.n_feature_maps = n_feature_maps
self.output_dim = output_dim
self.input_dim = input_dim
self.name = name

self.conv_block = nn.Sequential(*self._build_conv_modules())
self.output_layer = nn.Sequential(*self._build_output_layer())

def _build_conv_modules(self):
return [
nn.Conv1d(
in_channels=self.input_dim,
out_channels=self.n_feature_maps,
kernel_size=8,
stride=1,
padding=’same’),

nn.BatchNorm1d(num_features=self.n_feature_maps),
nn.ReLU(inplace=True),

nn.Conv1d(
in_channels=self.n_feature_maps,
out_channels=self.n_feature_maps,
kernel_size=5,
stride=1,
padding=’same’),

nn.BatchNorm1d(num_features=self.n_feature_maps),
nn.ReLU(inplace=True),

nn.Conv1d(
in_channels=self.n_feature_maps,
out_channels=self.n_feature_maps,
kernel_size=3,
stride=1,
padding=’same’),

nn.BatchNorm1d(num_features=self.n_feature_maps),
nn.ReLU(inplace=True),

]

def _build_output_layer(self):
return [
nn.Linear(in_features=self.n_feature_maps, out_features=self.

output_dim),
nn.Softmax(dim=1)

]

def forward(self, x, get_features=False):
x = torch.unsqueeze(x, dim=1)
output_conv_block = self.conv_block(x)

output_avg_pool = nn.AvgPool1d(
kernel_size=output_conv_block.shape[2],
stride=1)(output_conv_block).squeeze()

return self.output_layer(output_avg_pool)

Figure 21: Definition of the one-dimensional convolutional network used for the MIT BIH dataset.
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