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Abstract001

Accurate machine translation (MT) is essential002
for medical communication, particularly in low-003
resource languages like Luganda. However, ex-004
isting models struggle with clinical precision,005
terminology consistency, and cultural adapta-006
tion. This study evaluates the performance007
of transformer-based MT models—MarianMT,008
NLLB-200, M2M-100, Mistral-7B, Google009
Translate, and fine-tuned medical models—on010
English–Luganda medical translation, with011
a focus on malaria diagnostics and commu-012
nity health communication. We introduce013
a clinician-validated parallel corpus and em-014
ploy a hybrid evaluation framework combining015
BLEU, METEOR, TER, and direct expert as-016
sessments to measure clinical adequacy.017

Fine-tuning NLLB-1.3B with LoRA demon-018
strated significant improvements, achieving the019
highest BLEU and METEOR scores while re-020
ducing computational costs. However, error021
analysis revealed persistent challenges in termi-022
nology alignment and contextual accuracy. Our023
findings highlight the limitations of generic MT024
models for medical use and emphasize the need025
for domain adaptation strategies. Future work026
will focus on expanding expert-driven evalua-027
tions, integrating human-in-the-loop feedback,028
and optimizing model architectures to enhance029
medical MT reliability in clinical settings.030

1 Introduction031

Accurate medical translation is critical for global032

healthcare equity, yet current machine transla-033

tion (MT) systems face significant challenges in034

preserving clinical precision, contextual fidelity,035

and cultural appropriateness—particularly for low-036

resource languages. As MT adoption grows in037

multilingual healthcare settings, shortcomings in038

domain-specific performance risk exacerbating dis-039

parities in diagnosis accuracy, treatment adherence,040

and health literacy. This issue is especially acute041

in sub-Saharan Africa, where linguistic diversity042

intersects with high disease burdens and resource 043

constraints, creating urgent demands for reliable 044

translation tools tailored to local contexts. 045

Medical translation diverges fundamentally from 046

general-purpose translation due to three core chal- 047

lenges: (1) the lexical complexity of specialized 048

terminology with sparse cross-lingual equivalen- 049

cies (Khoong and Rodriguez, 2022); (2) the clinical 050

consequences of contextual ambiguity in symptom 051

descriptions or dosage instructions; and (3) the cul- 052

tural framing of health communication strategies. 053

While neural machine translation (NMT) archi- 054

tectures like MarianMT (Junczys-Dowmunt et al., 055

2018), NLLB-200 (Costa-jussà et al., 2022), and 056

M2M-100 (Fan et al., 2021) have advanced mul- 057

tilingual capabilities, their effectiveness remains 058

constrained by insufficient medical domain adap- 059

tation and evaluation. Recent large language mod- 060

els (LLMs) (Rios, 2024) show promise for contex- 061

tual understanding but lack systematic benchmark- 062

ing against clinical translation requirements (Phan 063

et al., 2022). 064

The limitations of current approaches are am- 065

plified in low-resource languages like Luganda, 066

Uganda’s most widely spoken Bantu language, 067

where parallel medical corpora remain scarce and 068

MT evaluation often relies on generic metrics like 069

BLEU scores that poorly correlate with clinical 070

outcomes (Skianis et al., 2020). This creates a dan- 071

gerous feedback loop: inadequate training data per- 072

petuates translation errors that undermine health- 073

care provider trust, while the absence of culturally 074

validated benchmarks hinders model improvement. 075

Prior studies highlight how mistranslations of terms 076

like "malaria prophylaxis" or "drug resistance" can 077

directly impact public health campaigns and indi- 078

vidual treatment plans (Kreienbrinck et al., 2024). 079

Contributions This study addresses these gaps 080

through three primary contributions: 081

• We benchmark six MT systems—MarianMT, 082
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NLLB-200, M2M-100, Mistral LLM, Google083

Translate, and fine-tuned medical models—on084

their ability to handle English–Luganda medi-085

cal translations.086

• We introduce the first expert-curated parallel087

corpus for malaria-related content, validated088

by Ugandan clinicians and Luganda linguists089

to ensure clinical relevance and cultural ap-090

propriateness.091

• Moving beyond traditional automated metrics,092

we implement a hybrid evaluation combining093

BLEU, METEOR, TER, and direct clinician094

assessments of semantic preservation and er-095

ror criticality.096

Focusing on malaria diagnostics and community097

health guidance—a priority area in Uganda’s dis-098

ease burden—our analysis reveals systematic chal-099

lenges in translating symptom descriptions, medi-100

cation instructions, and preventive measures. The101

findings demonstrate that even state-of-the-art mod-102

els like NLLB-200 achieve low clinical adequacy103

for complex medical sentences, with error patterns104

disproportionately affecting drug dosage numerals105

and anatomical references.106

This work carries implications across three do-107

mains: (1) guiding AI developers toward effective108

medical domain adaptation strategies; (2) equip-109

ping healthcare providers with evidence-based cri-110

teria for MT tool selection; and (3) informing pub-111

lic health policymakers on optimizing multilingual112

health communication. By bridging the evaluation113

gap between computational linguistics and clinical114

practice, we establish foundations for developing115

context-aware MT systems that meet World Health116

Organisation (WHO) standards for health informa-117

tion reliability.118

2 Related Work119

MT has evolved significantly through statistical,120

neural, and hybrid architectures. However, eval-121

uating translation quality—especially in special-122

ized domains like medicine—remains a persis-123

tent challenge. This section synthesizes advances124

in MT evaluation methodologies, their applica-125

tion to medical domains, and innovations for low-126

resourced languages, with a focus on Ugandan lan-127

guages. Our analysis aggregates insights from 72128

papers (2015–2024) sourced from ACL Anthology,129

arXiv, and Google Scholar, emphasizing precision-130

oriented evaluation frameworks.131

2.1 Evaluation Methods for Machine 132

Translation 133

MT evaluation methodologies are broadly classi- 134

fied into automated metrics, human assessments, 135

and linguistic analyses (Table 1). While automated 136

metrics dominate scalability, human evaluations 137

remain critical for nuanced quality judgments. 138

2.1.1 Automated Metrics in Medical Domains 139

Automated metrics like BLEU and COMET are 140

widely adopted (Fig. 1) but struggle with medical 141

terminology due to their reliance on surface-level 142

n-gram matching. Recent work highlights the lim- 143

itations of BLEU in capturing clinical semantics, 144

where minor errors (e.g., "benign" vs. "malignant") 145

can critically alter meaning (Wieting et al., 2019). 146

Contextual metrics like COMET and BERTScore 147

show promise in aligning with expert judgments 148

for biomedical texts (Croxford et al., 2024), though 149

their dependence on pre-trained language models 150

risks bias toward high-resourced languages. 151

Figure 1: Usage Frequency of Automated Metrics

Human evaluation remains the gold standard but 152

faces scalability barriers. In medical MT, annota- 153

tors require domain expertise to assess adequacy, 154

amplifying costs. Studies report that direct assess- 155

ment (DA) by clinicians improves reliability com- 156

pared to crowdworkers (Bentivogli et al., 2018). 157

However, only 26% of surveyed works employ 158

post-editing effort metrics (Table 2), which quan- 159

tify practical utility in clinical workflows. 160

Method Usage Frequency (%)
Direct Assessment (DA) 46
Pairwise Ranking 36
Post-Editing Effort 26

Table 2: Human Evaluation Methods

2.1.2 Linguistic Analyses for Error Typology 161

Linguistic methods identify systematic errors, such 162

as medication dosage mistranslations (Macketanz 163
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Evaluation Type Examples Strengths Limitations
Automated Metrics BLEU, METEOR, TER, chrF, COMET, BERTScore Fast, scalable Lacks context
Human Evaluation DA, Pairwise Ranking, Post-Editing Effort Accurate Costly, subjective
Linguistic Analyses Error Analysis, Contrastive Evaluation Identifies errors Labor-intensive

Table 1: Summary of Machine Translation Evaluation Methods

et al., 2017). Contrastive evaluations reveal that164

neural MT models excel in general domains but165

falter with rare medical terms (Fig. 2). This gap un-166

derscores the need for domain-specific evaluation167

lexicons.168

Figure 2: Usage Frequency of Linguistic Analyses

Low-resourced languages pose unique chal-169

lenges due to sparse parallel corpora. Techniques170

like transfer learning, back-translation, and multi-171

lingual modeling (Magueresse et al., 2020) mitigate172

data scarcity but risk dialect dilution. For instance,173

multilingual models trained on Swahili often un-174

derperform for closely related Ugandan languages175

like Luganda due to lexical divergence (Adebara176

et al., 2022). Evaluation in these contexts is fur-177

ther complicated by the absence of gold-standard178

medical terminologies.179

Uganda’s linguistic diversity (over 40 indige-180

nous languages) and limited digital resources make181

MT development arduous. Recent initiatives like182

Masakhane (Nekoto et al., 2020) focus on Luganda,183

yet evaluations rely heavily on BLEU, which inad-184

equately captures agglutinative structures. Hybrid185

frameworks combining automated metrics with186

community-driven feedback loops show potential187

but require robust validation.188

While BLEU remains prevalent (93%), context-189

aware metrics like COMET and hybrid frameworks190

are critical for medical MT. Human evaluation must191

prioritize domain expertise, and linguistic analyses192

should target error typologies in specialized texts.193

For low-resourced languages, future work should:194

• Develop adaptive metrics for agglutinative195

and code-switched medical texts,196

• Integrate federated learning to leverage dis- 197

tributed clinical data responsibly, 198

• Create participatory evaluation pipelines with 199

native speakers and healthcare workers. 200

3 Method 201

3.1 Data Collection and Preprocessing 202

Machine translation for medical communication in 203

low-resource languages presents significant chal- 204

lenges, particularly due to the lack of high-quality 205

parallel corpora. To build a reliable dataset for 206

training and evaluating machine translation mod- 207

els for English–Luganda, we collected and curated 208

data from multiple sources. The primary datasets 209

included the UFAL Medical Corpus (Rasheed et al., 210

2021), which contains a range of medical phrases 211

and clinical notes in English, and the Makerere 212

Parallel Corpus (Nakatumba-Nabende et al., 2024), 213

a general-purpose bilingual dataset. We also in- 214

corporated the No Language Left Behind (NLLB) 215

Corpus(Costa-jussà et al., 2022), a large-scale mul- 216

tilingual dataset that includes Luganda, and a man- 217

ually curated Malaria Corpus, consisting of 500 218

sentences specifically focused on malaria symp- 219

toms, prevention, and treatment. 220

To ensure data quality, the collected corpus un- 221

derwent rigorous preprocessing. Data cleaning in- 222

volved removing duplicate entries, misaligned sen- 223

tence pairs, and sentences containing irrelevant or 224

noisy text. Text normalization was applied to stan- 225

dardize punctuation, spelling variations, and med- 226

ical abbreviations. Tokenization was performed 227

using the SentencePiece model, which was par- 228

ticularly effective in handling out-of-vocabulary 229

words in Luganda. Further, we employed back- 230

translation to artificially expand the dataset by 231

translating English medical text into Luganda us- 232

ing a baseline machine translation model and then 233

back-translating it to English for quality valida- 234

tion. The final dataset was split into training (80%), 235

validation (10%), and test (10%) sets to ensure a 236

balanced and reliable evaluation. 237
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Corpus Sentences Source Tokens Target Tokens Source Chars Target Chars
No Language Left Behind (NLLB) 2,848,359 30,844,927 26,798,173 137,721,018 159,892,207
UFAL Medical Corpus 124,162 2,292,674 2,480,321 12,451,331 13,929,358
Makerere Parallel Corpus 56,734 567,709 433,780 2,927,299 2,944,079

Table 3: Statistics of Different Parallel Corpora

3.2 Model Architectures and Training238

For this study, we explored transformer-based ar-239

chitectures capable of handling low-resource ma-240

chine translation with domain adaptation tech-241

niques. The models were fine-tuned using Hugging242

Face’s Transformers library and optimized for the243

task of English-to-Luganda medical translation.244

3.2.1 Fine-Tuning NLLB-1.3B245

NLLB model, specifically the 1.3 billion param-246

eter version, was selected as the baseline trans-247

former model due to its multilingual capabili-248

ties and pretraining on low-resource languages,249

including Luganda. Fine-tuning was conducted250

using the Sunbird AI translation checkpoint as251

an initialization point. The model’s tokenizer,252

NllbTokenizerFast, was configured with the253

source language set to English and the target lan-254

guage to Luganda.255

Optimization followed a structured approach,256

utilizing a cross-entropy loss function with label257

smoothing to improve generalization. The learn-258

ing rate was set to 5e−5 with a linear warm-up259

strategy, and training was conducted with a batch260

size of 8 using gradient accumulation over 8 steps.261

Mixed precision training was applied to enhance262

efficiency, leveraging FP16 computation to reduce263

memory consumption. To prevent overfitting, early264

stopping and checkpointing were implemented,265

with model weights saved every 10,000 steps.266

3.2.2 Efficient Fine-Tuning with LoRA267

Given the computational limitations associated268

with fine-tuning large-scale models, we employed269

Low-Rank Adaptation (LoRA)(Hu et al., 2021),270

which enables selective fine-tuning of specific lay-271

ers while keeping most of the model parameters272

frozen. This method significantly reduces the num-273

ber of trainable parameters while maintaining adap-274

tation efficiency.275

LoRA fine-tuning was performed on the NLLB-276

1.3B model, targeting only the key projection lay-277

ers (q_proj and v_proj). The LoRA configuration278

used a rank of 8, an alpha scaling factor of 32, and a279

dropout rate of 0.1 to mitigate overfitting. Training280

followed the same dataset split and optimization281

schedule as the full fine-tuning approach but re- 282

quired significantly fewer computational resources, 283

allowing for faster iterations and experimentation. 284

3.2.3 Adaptive Fine-Tuning of Mistral-7B 285

Mistral-7B, a decoder-only autoregressive model, 286

was fine-tuned using both LoRA and quantiza- 287

tion techniques to adapt it for English–Luganda 288

translation (Moslem et al., 2023). Unlike the 289

encoder-decoder models like NLLB, Mistral lever- 290

ages context more effectively, making it particu- 291

larly suited for handling complex sentence struc- 292

tures and context-aware translations. 293

To optimize memory efficiency, NF4 4-bit quan- 294

tization was applied using bitsandbytes. Train- 295

ing incorporated a prompt-based fine-tuning strat- 296

egy .The training schedule involved a single epoch, 297

a batch size of 32, and a learning rate of 2e−3 with 298

weight decay set to 0.01. 299

4 Results 300

4.1 Evaluation Metrics 301

The performance of the trained machine translation 302

models was assessed using both automated and 303

human evaluation metrics. The BLEU (Bilingual 304

Evaluation Understudy) score was computed to 305

measure the n-gram overlap between the generated 306

translations and reference translations. In addition, 307

METEOR (Metric for Evaluation of Translation 308

with Explicit ORdering) was used to account for 309

synonym matches and word stem variations. To 310

assess the effort required for post-editing, Transla- 311

tion Edit Rate (TER) was calculated, reflecting the 312

number of insertions, deletions, and substitutions 313

necessary to match a reference translation. 314

Beyond automated metrics, a panel of bilingual 315

medical professionals and linguists conducted a 316

manual evaluation of translation quality. Transla- 317

tions were rated based on clinical accuracy, fluency, 318

and terminology consistency. Clinical accuracy fo- 319

cused on preserving the correct medical meaning of 320

the source sentence, while fluency measured gram- 321

matical correctness and naturalness. Terminology 322

consistency ensured that domain-specific medical 323

terms were translated correctly across different sen- 324

tences. 325
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4.2 Model Performance326

The results from both automatic and human evalua-327

tions demonstrate notable improvements in transla-328

tion quality following fine-tuning. Table 4 presents329

the comparative results.330

Results indicate that full fine-tuning of NLLB-331

1.3B improved BLEU scores by 3.6 percentage332

points over the baseline, with a corresponding333

reduction in TER. However, fine-tuning using334

LoRA achieved nearly similar performance while335

significantly reducing computational costs. The336

best-performing model, Mistral-7B fine-tuned with337

LoRA, achieved the highest BLEU score of 57.4338

and the lowest TER of 34.5. Furthermore, expert339

evaluations confirmed that Mistral-7B translations340

retained the highest clinical accuracy and fluency341

3.342

Figure 3: Translation Errors (Insertions, Deletions, Mis-
alignments) Direct Assessment (DA)

4.3 Key Observations343

The results suggest that LoRA is an effective344

method for adapting large-scale models while mini-345

mizing resource constraints. The higher BLEU and346

expert accuracy scores of Mistral-7B indicate that347

decoder-only architectures with context-aware fine-348

tuning strategies may be more suitable for complex349

medical translations. Additionally, expert evalua-350

tions revealed that Mistral-7B was better at han-351

dling long-form medical descriptions and maintain-352

ing terminology consistency across sentence pairs.353

5 Conclusion354

This study explored multiple fine-tuning strategies355

for machine translation in low-resource medical set-356

tings. While traditional full fine-tuning improved357

translation quality, LoRA provided comparable re-358

sults with significantly reduced computational over-359

head. The success of Mistral-7B in this task high-360

lights the importance of leveraging decoder-based361

architectures for adaptive medical translation. Fu-362

ture work will focus on integrating human-in-the- 363

loop training for further refinement and deploying 364

the models in real-world healthcare applications. 365

6 Discussion 366

The evaluation results indicate that fine-tuning ap- 367

proaches, particularly LoRA-based adaptations, 368

significantly improve translation quality while 369

maintaining efficiency in low-resource settings. In 370

this section, we analyze the strengths and weak- 371

nesses of different models, discuss observed trans- 372

lation errors, and assess semantic preservation and 373

clinical applicability. 374

6.1 Comparative Analysis of Translation 375

Performance 376

A detailed comparison of translation outputs high- 377

lights both systematic and model-specific errors. 378

Table 5 presents qualitative assessments of key 379

translation hypotheses compared to reference sen- 380

tences, with errors categorized based on omission, 381

mistranslation, and untranslated terms. 382

6.2 Translation Error Analysis 383

A closer examination of translation hypotheses re- 384

veals common error patterns: 385

• Google Translate: 386

– plasmodium parasites remains untrans- 387

lated, failing to localize the medical ter- 388

minology. 389

• NLLB-1.3: 390

– Plasmodium remains untranslated. 391

– kulumwa ensiri (mosquito bite) is 392

phrased unnaturally but retains meaning. 393

• Fine-Tuned Mistral: 394

– guggibwa mu nkooda z’ensiri eziyitibwa 395

Picia introduces an entirely incorrect 396

translation, significantly distorting medi- 397

cal meaning. 398

6.2.1 Error Categories 399

• Omissions (orange): Missing critical words 400

like "akawuka ka" (parasite) in NLLB-1.3 401

LoRA and "Omusujja" (malaria) in Fine- 402

Tuned Mistral weaken semantic complete- 403

ness. 404
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Model BLEU (%) chrF (%) TER (%) METEOR (%)
NLLB-1.3B (Sunbird AI) 0.56 28.29 103.36 4.87
NLLB-1.3B (Fine-Tuned) 6.70 46.00 79.89 20.88
NLLB-1.3B (LoRA) 16.54 55.64 68.52 34.78
Mistral-7B 0.03 8.92 99.27 20.56
MarianMT 1.40 27.42 104.65 7.20
M2M100 0.04 7.91 139.60 0.71
Google Translate 5.96 44.40 81.77 18.52
NLLB-600M 1.76 28.95 126.96 10.51

Table 4: Performance comparison of different machine translation models on English–Luganda medical text.

Language Sentence
English (en) Malaria is caused by Plasmodium parasites transmitted through

mosquito bites.

Reference (lg) Omusujja gw’ensiri guleetebwa akawuka ka pulasimoodiyamu
akasaasaanyizibwa ng’ensiri erumye omuntu.

Google Translate Omusujja guva ku buwuka obuyitibwa plasmodium parasites obuy-
isibwa nga buyita mu nsiri.

NLLB-1.3 w/c
LoRA

Omusujja gw’ensiri guva ku biwuka ebiyitibwa Plasmodium ebisi-
igibwa ensiri nga biyita mu kulumwa ensiri.

Finetune Mistral Omusa gw’ensiri guggibwa mu nkooda z’ensiri eziyitibwa Picia.

Table 5: Comparison of Reference and Hypothesis Sentences with MQM Error Highlighting

• Untranslated Words (blue): Plasmodium405

remained untranslated in NLLB-1.3 outputs,406

demonstrating inconsistent handling of medi-407

cal terminology.408

• Mistranslations (red): Mistral failed by gen-409

erating "Picia", which does not correspond to410

any meaningful term.411

6.3 Semantic Preservation and Clinical412

Accuracy413

A key measure of translation success is whether414

critical medical meaning is preserved. The trans-415

lations produced by NLLB-1.3 w/ LoRA largely416

maintain semantic fidelity, despite minor paraphras-417

ing differences. The highlighted sections in green418

within Table 5 indicate phrases that use different419

wording while conveying the correct meaning.420

However, the reliance on automatic metrics421

alone may not fully capture semantic nuances.422

While BLEU and METEOR scores improved, man-423

ual evaluations revealed that terminology consis-424

tency and long-form description handling were425

superior in decoder-based architectures such as426

Mistral-7B.427

6.4 Computational Efficiency and 428

Adaptability 429

One of the most notable advantages observed in this 430

study is the efficiency of LoRA fine-tuning. Com- 431

pared to full fine-tuning, LoRA achieved nearly 432

equivalent performance at a fraction of the compu- 433

tational cost. This is particularly valuable for real- 434

world deployment in low-resource environments, 435

where access to extensive compute resources is 436

limited. 437

Decoder-based architectures such as Mistral-7B 438

demonstrated better context handling for complex 439

medical sentences. However, their performance 440

was highly dependent on proper fine-tuning. The di- 441

rect fine-tuned Mistral model exhibited critical mis- 442

translations (e.g., "Picia"), highlighting the need 443

for further refinements. 444

6.5 Implications for Medical Translation 445

Systems 446

The results suggest that hybrid ap- 447

proaches—combining LoRA for efficient 448

adaptation with human-in-the-loop validation—are 449

promising for improving machine translation in 450

medical contexts. Expert evaluations confirmed 451

that: 452

• NLLB-1.3 LoRA provides a balance of effi- 453
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ciency and accuracy, making it suitable for454

constrained environments.455

• Mistral-7B has potential for high-quality trans-456

lation, but requires careful fine-tuning to miti-457

gate hallucinations.458

• Domain-specific terminology alignment re-459

mains a challenge, necessitating continuous460

adaptation with domain-adapted datasets.461

6.6 Future Directions462

Moving forward, key areas for improvement in-463

clude:464

• Expanding training datasets with more diverse465

medical texts to enhance domain adaptation.466

• Implementing reinforcement learning from467

human feedback (RLHF) to correct system-468

atic translation errors.469

• Deploying these models in clinical pilot stud-470

ies to assess real-world applicability.471

In conclusion, LoRA-based fine-tuning demon-472

strated a significant advancement in low-resource473

medical translation, particularly in its ability to474

achieve high performance while minimizing com-475

putational costs. Future research will focus on fur-476

ther enhancing clinical applicability through expert-477

in-the-loop methodologies and robust evaluation478

pipelines.479

Limitations480

This study faced three main limitations. First,481

we could not conduct a full MQM evaluation482

due to high costs, relying instead on automated483

metrics and limited clinician assessments. Sec-484

ond, our evaluation dataset was constrained, as485

obtaining expert validation was expensive and time-486

consuming, limiting the scope of manual assess-487

ments. Third, while LoRA fine-tuning improved488

efficiency, further analysis is needed to enhance489

terminology consistency and contextual accuracy.490

Future work should integrate MQM assessments,491

clinician-involved evaluations, and human-in-the-492

loop feedback to refine medical translations.493
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