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ABSTRACT

Modern earphones come equipped with microphones and inertial measurement
units (IMU). When a user wears the earphone, the IMU can serve as a second
modality for detecting speech signals. Specifically, as humans speak to their
earphones (e.g., during phone calls), the throat’s vibrations propagate through the
skull to ultimately induce a vibration in the IMU. The IMU data is heavily distorted
(compared to the microphone’s recordings), but IMUs offer a critical advantage
— they are not interfered by ambient sounds. This presents an opportunity in
multi-modal speech enhancement, i.e., can the distorted but uninterfered IMU
signal enhance the user’s speech when the microphone’s signal suffers from strong
ambient interference and mitigate the need of labeled data for model development?
We combine the best of both modalities (microphone and IMU) by designing a
cooperative and self-supervised network architecture that does not rely on clean
speech data from the user. Instead, using only noisy speech recordings, the IMU
learns to give hints on where the target speech is likely located. The microphone
uses this hint to enrich the speech signal, which then trains the IMU to improve
subsequent hints. This iterative approach yields promising results, comparable to a
supervised denoiser trained on clean speech signals. When clean signals are also
available to our architecture, we observe promising SI-SNR improvement. We
believe this result can aid speech-related applications in earphones and hearing
aids, and potentially generalize to others, like audio-visual denoising.

1 INTRODUCTION

Speech enhancement/denoising are long-standing problems in audio analysis. The recent deep
learning approaches have successfully broken through the performance walls, to the extent that even
pre-trained voice assistants like Siri, Alexa, Google are remarkably successful (Tulsiani et al., 2020).
It is not surprising that the bar on speech enhancement is getting raised, with newer form-factors
and more challenging use-cases in the horizon. A growing domain of interest is in the context of
“earables” (e.g., earphones, hearing aids, and glasses). Even though the user speaks from close to the
earphone, the problem is particularly challenging because: (1) the background interference can be
high in real-world public environments (e.g., restaurants, airports, busses, trains) (Schwartz, 2022).
(2) Users tend to speak softly, lest they disturb others around them. Finally, (3) the relatively fewer
microphones on earable devices must forgo some of the array processing gains (compared to, say,
table-top devices such as Amazon Alexa or teleconferencing systems). In sum, the SINR (Signal to
Interference Noise Ratio) of the target speech signal can be very low in real-world scenarios.

Although challenging, unique opportunities emerge as well. Modern earphones are equipped with
IMUs that sense the vibrations due to human speech (Jabra, 2022). Of course, the IMU’s sampling
rate is ≈ 400 Hz, hence the recording of the human speech is heavily aliased and distorted by
the non-linear human bone-channel (Blue et al., 2013). However, ambient sounds do not induce
vibrations in the IMU, implying that the IMU signal remains immune to external interference. The
microphone on the other hand records a high quality signal from the user’s mouth (44 kHz), but can
be heavily polluted by ambient interference. Non-stationary interference, such as voices of other
people, are difficult to denoise; even today’s best denoisers (Wang & Chen, 2018), that perform
remarkably well on stationary noise or on pre-trained distributions, falter against speech and music.
Moreover, existing techniques mostly require clean speech for training the models. With multi-modal
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Figure 1: Earphone measurements: (a) Audio signal recorded without interference, (b) Audio
recording with interference, (c) IMU recording from earphone. (d) Zoomed in view of IMU signal.

data from both the microphone and IMU (see spectrograms in Fig. 1), we see an opportunity to close
gaps in speech enhancement and remove the necessity of collecting clean and labeled speech.

We propose a self-supervised architecture that does not rely on clean speech data to train the network.
Instead, we utilize the everyday, noisy recordings from the earphone that the user can record on the
fly. The key idea is to develop a cooperation between the IMU and the microphone, so each modality
can teach and learn from the other. To this end, our architecture, called IMU-to-Voice (IMUV), is
composed of two separate models — a Translator and a Denoiser.

Briefly, the Translator translates the distorted IMU signal to higher-resolution audio, and then
constructs a time-frequency mask to crudely identify the locations of user’s speech. The Denoiser,
which only has noisy speech signals, uses this crude mask to slightly enrich the user’s speech
signal. The Denoiser’s output — the slightly enriched speech signal — now offers a reference to
the Translator to learn a better mask, which is in turn fed back to the Denoiser to further enrich the
speech signal. The iterations converge to an SNR-enhanced voice signal at the output of the Denoiser,
even in the presence of strong interference. Importantly, no clean speech is needed to bootstrap or
train this network; the noisy voice signal can even be at 0 dB SINR.

Zooming out to a higher level, the results are not surprising. Given that the IMU is completely
unaffected by strong interference, it should be able to guide the audio Denoiser down the correct path
of gradient descent. The only risk emerges from the fact that the IMU has no way to validate whether
its guidance is correct, and given the IMU is heavily distorted, it is easy to make mistakes. However,
this is where we find that even a noisy voice recording gives the needed validation to the IMU, so the
Translator and Denoiser can teach each other and independently descend in the right direction.

We show that our proposed two-step model actually inherits the structure of expectation maximization
(EM) (?), with the likelihood and posterior functions estimated by neural networks. EM is known
to be sensitive to its initial condition, similar to how the initial mask from the Translator is crucial
for downstream convergence. Although our Translator is able to provide one acceptable mask,
the question around the optimal mask (upper bound), or the minimally adequate mask to ensure
convergence (lower bound), remains open. We leave this to future research.

Summary of Results: With help from 4 volunteers, we gathered IMU and microphone data from
earphones, and injected interference from a public audio dataset into the microphone data stream. The
self-supervised IMUV model is trained on this unclean dataset (at varying SINR levels). We evaluate
the final denoised signal using two metrics: scale invariant signal to noise ratio (SI-SNR), and word
error rate (WER) from an automatic speech recognizer (ASR) (Yu & Deng, 2016). Results show that
in terms of WER, self-supervised IMUV is comparable with the supervised audio Denoiser (trained
with clean voice data), achieving less than 1% difference. When we allow IMUV to also train on
clean signals, supervised IMUV exceeds self-supervised IMUV by 5%. Finally, when using SI-SNR
as the metric, the gains are higher and more consistent with both supervised and self-supervised
IMUV. In closing, we find that IMU extends only one of two advantages — we can either choose to
improve denoising performance, or relieve the user from collecting clean voice data.

2 MULTI-MODAL SELF-SUPERVISION

2.1 PROBLEM STATEMENT

We consider two input streams: a high-resolution audio signal H from the microphone, and a
low-resolution surface-vibration signal L from the IMU. Since all recordings are from everyday
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environments, H is composed of three parts: the speech signal from the target user, HT , the interfering
signals from nearby people, HI , and the hardware/ambient noises, HN . Thus, H = HT +HI +HN .
We assume no knowledge of HT , HI , or HN .

The IMU signal L consists of only two parts: the target vibration from the user, LT , and the hardware
noise, LN . We assume no knowledge of either LT or LN . Also, since the vibrations are essentially
an outcome of the user’s speech, LT is a non-linear projection of HT , i.e., LT = f(HT ). This
projection is expected to be different across users, depending on each user’s bone, muscle, and tissue
conduction properties.

The final output of our model is expected to be a denoised high-resolution audio signal ĤT , containing
only the speech of the target user, T .

2.2 NETWORK ARCHITECTURE

Translator design: Figure 2 shows the proposed network architecture, with a Translator on top and
a Denoiser below it. For self-supervision, the Translator needs to supply a reference signal to the
Denoiser. This means the vibration signal L at 400 Hz needs to be translated to an audio signal H

′

T

that approximates the target speech signal. Since H
′

T needs to be at, say, 16 kHz, the Translator’s
task is that of super-resolution. This large up-sampling factor from 400 Hz to 16KHz is prone to
overfitting with a conventional auto-encoder. Hence, we design the network as a guided autoencoder
to inherit earlier successes in (Lai et al., 2017). The idea is to up-sample the signal in multiple stages,
each stage with a small up-scaling factor and a corresponding stage loss. Using a 3-stage decoder,
we up-sample L, represented in the time-frequency (TF) domain, from 400 Hz to 800, 3200, and
finally to 16 KHz. The final loss is regularized by the individual stage losses to curb the decoder
from overfitting. Of course, the reference signal for computing loss is the noisy audio signal H from
the microphone (but in subsequent rounds, becomes the output of the Denoiser). Though we train the
translator with noisy audio as ground truth, we observed that the translated audio (mask) does not
contain high energy for noises. As the noises are absent in the IMU data and are random, i.e, they
have different sources and are at various places for different samples, the translator can not learn the
noise signals. On the other hand, the translator can identify the target audio as its aliased version is
present in the IMU data.

IMU vibrations 𝐿
IMU

spectrogram

Guided 
auto-encoder

Mask 𝑀
Translator: 𝐿 → 𝐻𝑇′

Denoiser: (𝐻, 𝐿) → 𝐻𝑇

Noisy audio 𝐻
& IMU vibrations 𝐿

Audio & IMU
spectrogram Deep auto-encoder

Denoised audio 𝐻𝑇

ℒ𝑡𝑟𝑎𝑛𝑠

Masked noisy 
audio 𝐻𝑇′

ℒ1𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑟

⋮

ℒ2𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑟

Figure 2: Proposed architecture composed of a Translator on top, that attempts super-resolution
from L to H , and generates a mask. The model below is a multimodal Denoiser that uses the mask
to enhance the target audio. The enhanced target audio is returned to the Translator to improve the
super-resolution, resulting in an improved mask. This iteration continues.

Mask generation: The heavy up-sampling, and that too with a noisy reference signal, cannot be
expected to yield fine-grained speech (with accurate amplitude and phase in each time-frequency (TF)
bin). Instead, the spectrogram can only be expected to have marked TF bins where the target audio
dominates. Hence, we treat the output spectrogram of the guided auto-encoder as an mask (Vaswani
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et al., 2017) for HT — this map M gives us p(HT |ĤT ) for each TF bin. To derive an approximate
audio signal, H

′

T , we pass the mask through a Sigmoid function to first generate a mask, and then
multiply the mask element-wise with the denoiser’s output ĤT to obtain H

′

T = ĤT ⊙ σ(M). Of
course, in the initial round of mask generation, ĤT = H .

Denoiser design: The Denoiser’s input is both H and L and the output should be the denoised signal
ĤT . One option is to train a network to learn the end-to-end mapping from the input data (H,L) to
the desired output ĤT . However, without clean audio data, this mapping does not converge well, or
is slow and data hungry. More importantly, we know that a consistent mapping exists between audio
and IMU, dictated by the bone channel that conducts the throat’s vibration. Our network architecture
must incorporate this knowledge.

We design an auto-encoder (AE) using only the audio H as input, however, we force part of the latent
space to match the IMU signal L. Specifically, we design the AE’s latent space as Z = {ZL, ZH}
(see Fig. 3) and force ZL to match the IMU data L (we detail the loss terms in the next section).
Since the IMU only contains low frequencies (≤ 400Hz) and contains no interference, we intend the
remaining latent space ZH = Z \ ZL to capture the gap between audio and IMU. Hence, we model
ZH = {Z(hi)

T , Z
(all)
I }, where Z

(hi)
T is a representation of the target’s high frequency components,

and Z
(all)
I is a very compressed representation of all the interfering signals.

Assuming the interference is uncorrelated to the target user’s speech, we add a loss term between
Z

(all)
I and the IMU signal L to enforce contrast between them. We also add another loss term between

Z
(hi)
T and L to enforce their correlation. Finally, the decoder uses only {ZL, Z

(hi)
T } to reconstruct

the denoised audio signal, ĤT , and trains it against the Translator’s output, H
′

T .
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Figure 3: Denoiser architecture: The audio is encoded into a latent space, one part of which mimics
the IMU and the other parts are representations of high frequency speech signals and interference.

The Denoiser is almost ready, except for one small detail. To utilize the IMU data L during test time
as well, we concatenate L as a second channel, alongside ZL. The 2 channels serve as the first layer
of the decoder. To match the dimensions, ZH progresses through one additional layer of decoding.
Although we design ZL to match L, it’s important to concatenate L because it does not contain any
ambient noises. Since ZL and L both represents the low-frequency target signal, subsequent layers
will learn the weights from both modalities.

Training: The Translator begins by training against the noisy audio H . After Nt = 25 epochs, we
freeze the Translator and use its output (i.e., the masked audio H

′

T ) to train the Denoiser for the next
Nd = 75 epochs. We denote (Nt +Nd) epochs as a training cycle. We then start the next cycle by
freezing the Denoiser and using the denoised signal ĤT from the previous cycle to train the Translator.
The iteration is performed for C = 3 cycles.

Fig. 4 shows snapshots from the start and end of the training process. The first column in Fig. 4 plots
the spectrogram of clean target speech HT on top, and the interfered audio H at the bottom. The top
of the second column shows the Translator’s mask after the first training cycle; evidently, IMU offers
a crude map M at this time. The bottom of the second column plots the Denoiser’s output when it
has been trained using the masked audio, H

′

T = H ⊙ σ(M). The top of the third column shows
the mask after the last training cycle – the improvement is visible. We observe that the Translator
converges reasonably well because the interference varies over time, preventing the Translator from
overfitting to the interference. Finally, the bottom of column 3 shows the denoised audio ĤT using
the final mask; this is our final output.
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Figure 4: (Column 1) Spectrogram of clean target signal HT on top, and the
noisy microphone signal H at the bottom. (Column 2) Translator’s mask after
the first cycle on top, and the Denoiser’s output after the first cycle at the bottom.
(Column 3) Translator’s mask after the last cycle on top, and the Denoiser’s
output after the last cycle at the bottom.

Figure 5: IMU
placement for
data collection

2.3 LOSS FUNCTIONS

Translator’s loss function: Aggressive up-sampling is prone to overfitting, so the Translator incorpo-
rates a loss function at each stage of the guided auto-encoder. The final loss is a convex combination
of Mean Absolute Error (MAE):

Ltrans = Ex∼p(x)

∑n
i=1 wi ||D−1(x )i − T (x )i ||1∑n

i=1 wi
(1)

where n is the number of scale-up stages; wi is the weight for stage i ; D−1(x )i is the Denoiser’s
output, down-sampled to match stage i ; and T (x )i is the Translator’s output after stage i .

The Denoiser’s loss function is composed of three terms as follows:

Ldenoiser = LH + λ1 ∗ LL + λ2 ∗ LC (2)

where LH denotes the audio reconstruction loss; LL is the IMU loss from the latent space; LC is the
correlation loss, and λ is the weighing scalar. The loss functions are defined as:

LH = Ex∼p(x)||T (x )−D(x )||1 LL = Ex∼p(x)||L− ZL||1 (3)

LC = Ex∼p(x)

∑
i,j

abs(corrcoef(Li, Z
(all)
I,j ))−

∑
i,k

abs(corrcoef(Li, Z
(hi)
T,k )) (4)

The Correlation loss LC aims to capture the uncorrelated relationship between the IMU signal L
and the interference Z

(all)
I , as well as the correlation between the IMU L and the high frequency

components of the speech, Z(hi)
T . The negative sign for the second term indicates that higher

correlation reduces the loss function (and vice versa for the first term). In the equation, i, j, k are
the indices of the dimensions of L, Z(all)

I , and Z
(hi)
T . We calculate the absolute value of correlation

coefficients to account for harmonic behaviors in the speech signals. Algorithm 1 shows the pseudo-
code for training self-supervised IMUV.

2.4 ITERATIVE BEHAVIOR

Our iterative training process inherently mimics the Expectation-Maximization framework (Dempster
et al., 1977). For ease of explanation, consider L and H denoting the spectrogram of IMU and audio
(instead of the time domain signals). Observe that the Translator poses as the first E-step; it calculates
the distribution of the latent variable, which is the mask M = {mi} for each TF bin i. Given the
low-resolution vibration data L as well as ĤT from the Denoiser, it outputs p({mi}|L, ĤT ), where
mi = p(HT |H)i is the mask of the target signal. By injecting the denoiser loss into the distribution,
we get the E-step function:

QĤT,new|ĤT
= EM |L,ĤT

[Ldenoiser]

= EM |L,ĤT
[F (ĤT,new; ĤT ,M)]
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Algorithm 1 Self-supervised IMUV Training (H ,L, Translator, Denoiser)

1: ĤT ← H
2: for c← 0 to C do
3: Translator.loss← Ltrans(w, ĤT )
4: Translator.train(input← L, epoch← Nt)
5: M ← Translator.predict(L)
6: HT

′ ← H ⊙ σ(M)
7: // Freeze the translator and train the denoiser
8: Denoiser.loss← Ldenoiser(HT

′)
9: Denoiser.train(input← (H,L), epoch← Nd)

10: ĤT ← Denoiser.predict(H,L)
11: // Freeze denoiser and train translator in next cycle
12: end for

where ĤT,new is the Denoiser’s output in the new cycle, and F (ĤT,new; ĤT ,M) = ||ĤT,new −
ĤT ⊙M ||1. Lastly, the Denoiser training can be viewed as the M-step, where we find the best target
signal estimation ĤT,new minimizing the expected loss Q.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENT SETUP:

Dataset Construction. We recruit 4 volunteers and ask them to wear a normal earphone and a
separate IMU (Fem, 2022) near their ears – Figure 5 shows the set-up. A separate IMU is needed
since today’s earphones do not make the recorded IMU data accessible. Each volunteer speaks 39
different keywords prescribed by the Google’s Speech Command dataset (Warden, 2018), as well as
wakewords like Google, Siri, Bixby, and Alexa – each word is repeated 10 times. The measurements
are performed in a quiet room, and serve as HT . The earphone’s microphone samples the audio at
44.1KHz and we sub-sample to 4KHz to mimic phone calls over earphones (Lee et al., 2016). The
IMU is sampled at 400Hz. We have currently published the dataset on GitHub anonymously (IMU,
2022b). To the best of our knowledge, this is the first speech dataset composed of synchronized audio
and IMU vibrations from the ear-location.

To synthesize noisy signals H , we randomly draw audio samples from Google’s speech command
dataset (Warden, 2018), containing voices of 2, 618 human speakers. These samples serve as HI .
Unless specified otherwise, we synthesize H at 5 dB SIR. The IMU signals, on the other hand, need
no synthesis, so we automatically have L. The total dataset ⟨H,L⟩ is now ready and extends over
990 hours.

Performance Metrics.
(i) We use scale invariant signal to noise ratio (SI-SNR) as the main evaluation metric (Le Roux
et al., 2019). SI-SNR is computed as the ratio between the correlation of our output signal with the
target signal, as follows:

SI-SNR = 10log10
|| Ĥ

∗
THT

||HT ||2HT ||2

|| Ĥ
∗
THT

||HT ||2HT − Ĥ∗
T ||2

.

(ii) We also report the word recognition accuracy of the denoised signal, using Google’s Key Word
Spotting Classifier (KWS) with 10 and 35 classes, denoted as KWS10 and KWS35, respectively
(Rybakov et al., 2020; Goo, 2022). We re-trained the KWS models using 4 KHz audio data.

Models for Comparison.
(1) Unprocessed: The raw audio without denoising
(2) Supervised Denoiser: A recent speech enhancement model (Park & Lee, 2016)

trained on clean speech; 216K parameters.
(3) Supervised IMUV: Our proposed model trained on clean speech; 60K parameters.
(4) Self-Supervised IMUV: Our proposed iterative model in Figure 2; 180K parameters.
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For fairness, we train all the above models using the same dataset. We employ a “no overlapped
words between training and testing set” policy. Around 16% of the dataset is set aside for testing and
the rest for training. We also ensure that HT and HI are different words. We publish the codes in the
GitHub Repository (IMU, 2022b), and denoised audio samples on the GitHub site (IMU, 2022a).

3.2 RESULTS

Overall performance: Table 1 reports comparative results across all metrics and models. Unsurpris-
ingly, supervised IMUV substantively outperforms all models across all metrics. On the other hand,
self-supervised IMUV is comparable to supervised Denoiser, outperforming marginally in SI-SNR
but is weaker in KWS metrics. This distills the contribution of IMUV to speech enhancement as
follows: we can either choose to obtain 0.6 – 1 (personal) to 0.2 – 3.1 (general) SI-SNR gain while
requiring the user to provide clean speech data or relieve the user from the data collection burden at
the cost of sacrificing that same performance gain. Both are not possible yet.

Table 1: Performance comparison across models and metrics.

Personal Model General Model

Models SI-SNR
(dB)

Accuracy(%)
KWS10

Acc.(%)
KWS35

SI-SNR
(dB)

Acc.(%)
KWS10

Acc.(%)
KWS35

Unprocessed 5.3 49.24 48.92 5.3 49.24 48.92
Supervised Denoiser 8.3 65.72 64.02 2.9 51.37 46.22
Supervised IMUV 9.9 69.02 66.78 6.0 55.27 52.96
Self-supervised IMUV 9.3 64.45 62.83 5.8 48.67 45.19

Personalized versus generalized models: Table 1 compares the accuracy of a personalized model
(where training data is drawn from the target user) and a generalized model (where the training data
is drawn from users other than the target user). Understandably, the accuracy improves across all
models when the training data is personalized, however, the self-supervised IMUV performs slightly
better than the supervised Denoiser for generalized models. This implies that the marginal gain from
the IMU is higher in generalized models, since with personalized models, the supervised Denoiser
may be able to learn user-specific voice patterns (e.g., base frequency, pitch, prosody, harmonics,
etc.) Observe that the generalized models are valuable during the phase when on-the-fly data is being
gathered for self-supervision. In the case of earphones, for example, the user would buy an earphone
with the pre-installed generalized model and personalize it over time by training with recorded data
from everyday life.

Variation across users: Figure 6 plots both the SI-SNR and KWS accuracy across 4 users. supervised
IMUV consistently benefits from both the IMU and the clean-data supervision, and as expected, the
supervised Denoiser and self-supervised IMUV are mostly comparable. With users who tend to
produce high frequency voices/sounds, the gain from IMU is relatively less since the IMU does not
capture these frequencies; the supervised Denoiser avails an advantage for these voice characteristics.
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Figure 6: Performance across different users for (a) SI-SNR, (b) KWS 10, (c) KWS 35 accuracy.

Varying mix of clean and interfered data: self-supervised IMUV has trained entirely on interfered
data. Figure 7 shows the effect of some fraction of the training data being clean; the testing data
also follows the same training data distribution. This is likely to be the average case in our earphone
application, where the user may sometimes speak in a silent environment. In such settings, the gain
of self-supervised IMUV over supervised Denoiser is not affected by the fraction of clean data.
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Varying interference: Figure 8 plots SI-SNR against varying SIR (Signal to Interference Ratio) of
the training/testing data. The contribution of IMU grows as the SIR drops since the additional IMU
modality becomes more valuable under more noisy environments. This explains why self-supervised
IMUV outperforms supervised Denoiser at low SIRs, but is worse at higher SNRs where the gain
from IMU’s guidance is offset by the penalty of self-supervision.
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Figure 7: IMUV offers gain with increasing
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Figure 8: Performance versus SIR regimes.

Effects of the skip connection in the Denoiser Architecture: Although our network is configured
by several hyper-parameters, we report the performance variation against one of them — the weights
assigned to skip connections. In a conventional auto-encoder (AE), skip connections are used to
mitigate vanishing gradients in the deep network (Tong et al., 2017). However, in this work, we are
injecting the IMU input L in the latent space, which will be “skipped” by the skip connections. Hence,
we analyze the effect of regulating the skip connection in IMUV. Table 2 compares the performance
for different skip connection weights in the Denoiser network. Since the skip connection carries some
fine-grained speech patterns (that may not be captured in the latent space), the SI-SNR drops if we
remove the skip connection (0%). Here, 0% skip means that we do not change the hierarchy but just
change the weights of the skip connections to 0%, when it joins the latent space. On the other hand,
increasing the skip connection weights (100%) reduces the gain from clean IMU in the latent space.
Consequently, we use a moderate skip connection weight in IMUV.

Table 2: Performance for varying weights on the skip connection in the Denoiser. The metrics are
[SI-SNR(dB) / KWS 10 accuracy(%) / KWS 35 accuracy(%)]. P% denotes the skip connection
contributes P% weight when joining the decoder latent space. 100% setting ignores all inputs from
the latent space, and only takes the results from the skip connection.

0% 10% 50% 100%
Self-S. IMUV 11.0 / 68.4 / 70 13.9 / 74.2 / 73.7 12.1 / 65.3 / 68.6 11.1 / 65.1 / 70.1
Super. IMUV 12.1 / 80.2 / 79.8 14 / 81.4 / 77.8 12.5 / 82.5 / 82.16 13.6 / 83.0 / 83.0

4 RELATED WORK

Multi-modal speech enhancement: The closest work to this paper is SEANet (Tagliasacchi et al.,
2020) that uses both audio and IMU through a wave-to-wave convolutional generator and discrimina-
tor architecture. The core architecture builds on (Kumar et al., 2019) and achieves promising SI-SDRi
(Scale Invariant Signal to Distortion Ratio Improvement). SEANet uses accelerometer data which is
unaffected by ambient noise to partially reconstruct user speech. The key difference between SEANet
and our work is that, SEANet assumes the availability of clean speech reference which places a
considerable onus on the user to acquire which is impractical. Our work leverages the self-supervision
provided by the IMU to create the clean reference without additional burden on the user.

Another work that is closely related to ours is (Wang et al., 2021). This work uses "alias unfolding"
to reconstruct user speech from low resolution IMU motion signals. This work is not multi-modal as
the core idea of this work is reconstruction of spoken words from IMU signal. This is different from
our work which uses IMU to denoise noisy audio. However, one commonality is that, our translator
does the job of "anti-aliasing" to upsample a low resolution signal (IMU) to a high resolution signal
(speech) which is similar to "alias unfolding" of (Wang et al., 2021).
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Multi-modality learning: In recent years, many ideas have used synchronized audio and visual
modalities(Hou et al., 2018; Gabbay et al., 2018; Ephrat et al., 2018; Afouras et al., 2018; Lu et al.,
2019) for speech related applications (e.g., enhancement and source separation). IMUV targets a
different scenario (e.g., outdoor, mobile) where a camera is unavailable to record the user’s face/lips.

Self-supervision: Several work (Chen et al., 2021; Kashyap et al., 2021) have incorporated self-
supervision in audio processing. Authors in (Wang et al., 2020) learn a latent representation of a
limited set of clean speech and uses noisy speech to share a latent representation with the clean
examples, reducing the burden of clean data. This bears similarity to IMUV, however, we face the
challenge of not having initial clean information to descend down the correct gradient. The work
done by (Kashyap et al., 2021) uses a 20 layered Deep Complex U-Net to perform self-supervised
speech denoising with noisy speech targets. The authors leverage two key conditions that the noise
distribution must adhere to: (1) The input and target noises are sampled from zero-mean distributions
and are uncorrelated to the speech input. (2) The correlation between the noise in the input and
in the target is close to zero. In contrast, in IMUV we make no such assumptions about the noise
distribution as the availability of another modality (IMU) provides more information.

Input Representation: The performance of any denoiser is impacted by the representation of the
speech signal. Authors in (Nossier et al., 2020) compare the impact of TF representations on noise
reduction. Most deep learning approaches can be broadly classified based on whether they operate
on raw audio waveforms (Kolbæk et al., 2020; Pandey & Wang, 2019) and WaveNets for raw audio
waveforms (Germain et al., 2018), STFT spectrograms (Kumar & Florencio, 2016; Lu et al., 2013),
or other audio representations like Mel Frequency Cepstral Coefficients (MFCC) (Pirhosseinloo &
Brumberg, 2018). Our work uses STFT spectrograms as one possible compact feature representation.

5 LIMITATIONS, GENERALIZATION, AND CONCLUSION

Mutual information between multiple-modes: The IMU signal L is a projection of the audio signal
H onto a lower dimensional space. This paper shows a very specific instance in which the projected
(low-dimensional) signal can teach/optimize the higher dimensional signal without any supervision.
The generalization of this question is of interest, i.e., how low does the lower dimensional projection
need to be before (self-supervised) convergence fails. Perhaps mutual information I(L;H) could shed
light on this line of questioning, leading to a possible notion around the “capacity of self-supervision”.
We leave this to future work.

Alternating epochs between Translator and Denoiser: We have empirically chosen the
number of epochs for the Translator and Denoiser as they alternate in a cycle. Although
rigorously designing hyperparameters is difficult, we believe there is room to make this decision
tighter, or adaptive. One idea is to model them in the explore–exploit framework, where running (the
Translator or Denoiser) for longer epochs is the exploration phase, and switching is exploitation. We
leave this to future work as well.

Beyond Audio and IMU: We envision generalization of IMUV in audio-visual speech enhancement
as well. Consider a laptop camera visually recording the user’s lip movements (e.g., in a video call),
and the microphone recording her voice signal, polluted by ambient interference. Observe that the
lip movement is akin to IMU in IMUV, where it is uninterfered and a low-dimensional projection of
actual speech. We believe our self-supervised architecture is relevant here, offering the possibility to
relax the need for clean audio data.

Multi-modal signal synthesis: This paper has aimed to enhance the target speech signals where the
signal exists (only interference has polluted them). In other applications, the target signal may be
absent (e.g., clouds completely occluding a satellite image, or a night vision camera unable to see
some parts of the environment). The guidance from the second, low-dimensional, modality (e.g., RF
radar that penetrates through the cloud) would help the denoiser learn the latent distribution of the
target object. This learned distribution could be harnessed to synthesize/reconstruct the occluded
parts, perhaps by training a GAN on top of the Denoiser.

Conclusion: This paper presents IMUV, a self-supervised speech denoising network that leverages a
low resolution (IMU) modality. With an iterative network design, we show that the low-modality
signal effectively guides the multi-modal denoiser. Results are promising, and could aid wearable-
audio applications in the near term, and other multi-modal mixture-models in the future.
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