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ABSTRACT

Large Vision-Language Models (LVLMs) have shown promising performance
in vision-language understanding and reasoning tasks. However, whether they
truly understand the input image remain underexplored. A fundamental question
arises: to what extent do LVLMs rely on visual input, and which image regions
contribute to their responses? It is non-trivial to interpret the free-form generation
of LVLMs due to their complicated visual architecture (e.g., multiple encoders and
multi-resolution) and variable-length outputs. In this paper, we extend existing
heatmap visualization methods for classification tasks to support LVLMs for open-
ended visual question answering. We propose a method to select visually relevant
tokens that reflect the relevance between generated responses and the input image.
Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on
benchmarks designed to require visual information to answer. Our findings offer
several insights into LVLM behavior, including the relationship between focus
region and answer correctness, differences in visual attention across architectures,
and the impact of LLM scale on visual understanding. The code and data will be
released.

1 INTRODUCTION

The emerging Large Vision-Language Models (LVLM) (Li et al., 2024a; Bai et al., 2023; Team
et al., 2023; Dai et al., 2023) have exhibited strong visual instruction following abilities and achieved
remarkable performance on multimodal tasks, such as Visual Question Answering (VQA) (Antol et al.,
2015). Despite different design and implementation details, most LVLMs follow the representative
visual instruction tuning (Liu et al., 2024b) paradigm to align the visual features from pre-trained
vison encoders (Radford et al., 2021; Oquab et al., 2024) to a pre-trained LLM (Touvron et al., 2023;
Zheng et al., 2023). This enables LVLMs to incorporate visual understanding while retaining the rich
knowledge and reasoning abilities of LLMs.

However, the underlying mechanisms behind the visual understanding capabilities of LVLMs remain
unclear. Beyond evaluating model performance on various benchmarks, it is crucial to interpret where
the LVLM focuses on when generating responses, as it can provide insights into why an answer is
correct or incorrect and facilitate targeted improvements for multimodal tasks. For instance, as shown
in Figure 1, an LVLM may attend to the correct region but still misinterpret the content (e.g., the
top-right example), fail to locate the relevant region entirely (e.g., bottom-right), or even produce
correct answers based on irrelevant regions (e.g., bottom-left), which can lead to poor generalization.

Before the era of LVLMs, a popular way to interpret visual models is to derive a saliency heatmap
of the input image, representing the relevance of the image regions to the output (Selvaraju et al.,
2017; Chefer et al., 2021b; Barkan et al., 2023). Despite the rapid growth of LVLM research, little
effort has been made to interpret LVLMs. Existing works (Ben Melech Stan et al., 2024; Giulivi &
Boracchi, 2024) often explain single-label outputs or individual tokens within a sentence. However,
LVLMs generate open-ended responses consisting of multiple tokens with variable lengths, requiring
a holistic interpretation of the entire output rather than isolated components. Interpreting open-
ended responses of LVLMs has several challenges, (1) Vision-Language Interaction: LVLMs involve
intricate interactions between vision and language modalities, and often exhibit strong bias towards
language priors. Hence it is hard to determine the contribution of each modality to the response. (2)
Autoregressive Generation: Unlike classification models, LVLMs autoregressively generate free-form
text, making it difficult to interpret the model behavior considering the entire output. (3) Model
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Q: How many fire hydrants
are in the image?

A: There are two fire
hydrants in the image

Wrong answerCorrect answer

Correct

Wrong

Q: How many clocks are
in the image?

A: There are two clocks
in the image

Q: How many clocks are
in the image?

A: There are two clocks
in the image

Q: How many horses are
in the image?

A: There is only one
horse in the image

focus

focus

Figure 1: Focus regions of LLaVA-1.5 when answering counting questions. The model may correctly
focus on the relevant region and produce the correct answer (top left), or it may fail despite attending
to the right region due to misinterpretation (top right). In some cases, incorrect focus leads to wrong
answers (bottom right), while occasionally, the model answers correctly despite attending to irrelevant
regions (bottom left), highlighting challenges in visual grounding and generalization.

Architecture Complexity: Current LVLMs often use multi-resolution or multi-encoder architectures,
making it unreliable to align the features across layers to specific spatial regions in the image.

To address these issues, we propose a method that enables model interpretation for LVLMs and
open-ended responses. It reveals the significant image regions that lead to the generated response,
providing insights into the reasoning process. To the best of our knowledge, this is the first heatmap
visualization method that applies to any LVLM structure and generates a global interpretation for
open-ended responses. Using this method, we conduct in-depth studies of state-of-the-art LVLMs
on benchmarks designed to evaluate the visual understanding, and obtain several insights related to
the model behaviors. (1) LVLMs do look at images more often than not on vision-centric datasets:
our experiment shows that in more than 75% of the cases removing visual information significantly
reduces the answer probability; (2) Impact of Vision Architecture: Different vision architectures
could lead to different attention patterns and mechanisms of visual decision-making. But in most
cases, the focus regions are reflected in the answers, even when the answer is wrong; (3) Different
LLMs or simply increasing the LLM size do not significantly alter the visual attention behavior of
the model. Our main contributions are:

• We extended existing visual interpretation methods designed for image classification to
interpret LVLMs with free-form text output.

• We proposed to extract visually relevant tokens from the open-ended responses, which are
representative of the vision-related parts of the variable-length responses.

• We conducted in-depth studies of LVLM visual behavior, analyzing how different models
attend to image regions when answering visual-related questions.

2 RELATED WORK

Visual Instruction Tuning. Benefiting from the advancement of LLM, current LVLMs often seek to
equip LLMs with visual understanding capabilities, which is achieved by visual instruction tuning (Liu
et al., 2024b). They utilize a modality connector to align the visual embeddings into prompts that the
language models can comprehend (Li et al., 2023a;b). Despite the great progress, existing LVLMs
still suffer from hallucination (Jiang et al., 2024a; Liu et al., 2023; Zhang et al., 2023; Zhou et al.,
2023) due to insufficient visual understanding capabilities. Improving the visual capabilities of
LVLMs is crucial to their further improvement and application, and several benchmarks (Tong et al.,
2024a;b; Chen et al., 2024) have been proposed to highlight the growing attention to this issue.
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Visual Attention Visualization. We mainly focus on a popular family of interpretation methods,
which aims to highlight the image regions most relevant to the model’s output with a heatmap.
Heatmap visualization methods include gradient-based approaches (e.g. (Selvaraju et al., 2017;
Zhang et al., 2018)) and perturbation-based approaches (Dabkowski & Gal, 2017; Khorram et al.,
2021; Qi et al., 2019; Fong & Vedaldi, 2017). Gradient-based methods often backpropagate the output
of the model and generate the heatmap using variants of the gradients (Barkan et al., 2023; Chefer
et al., 2021a) and they succeeded in some earlier metrics such as the pointing game (Zhang et al.,
2018). However, localization metrics such as the pointing game can be gamed by outputting significant
boundaries (Samek et al., 2019; Fuxin et al., 2021), and most gradient-based methods will output
the same heatmap even with randomized networks, hence cannot pass the sanity check (Adebayo
et al., 2018). Perturbation-based methods deduce region importance by introducing perturbations
and analyzing their impact on model output. They often optimize for a mask to the input image
to identify the most influential regions. Importantly, perturbation-based methods, such as iGOS++
satisfy the sanity check (Khorram et al., 2021) and do not suffer from the impossibility theorems
that would apply to gradient-based algorithms (Bilodeau et al., 2024). Another line of work aligns
the model attention with human attention (Chen et al., 2021; Das et al., 2016; Sood et al., 2023)
for better grounding. However, deep networks often make decisions with mechanisms different
from humans (and even different among different networks (Jiang et al., 2024b) hence cannot be
all consistent with humans). Unlike them, we analyze the intrinsic behavior of LVLMs. Traditional
model interpretation methods are still limited to interpreting a single output, and can not directly
apply to free-form generative models. Besides, current LVLMs often involve complex multi-modal
structures with multi-resolution and multiple vision encoders, which makes the gradient-based and
transformer interpretation methods (Chefer et al., 2021b; Hao et al., 2021) hard to apply.

LVLM Interpretation. Recently the interpretation of LVLMs has drawn increasing interest, as
it provides valuable guidance for model development. A pipeline (Ben Melech Stan et al., 2024)
has been proposed to visualize the attention of LLaVA (Liu et al., 2024b). Besides, some works
visualize the model attention across different layers and either propose to improve the efficiency of
LVLMs by pruning the redundant image tokens (Chen et al., 2025; Zhang et al., 2024), or alleviate
the hallucination problem through modifying the decoding process (Huang et al., 2024). However,
these methods mainly interpret the LVLMs from internal attention. The relevance of different regions
on the input image to the output remains under-explored. A recent work (Giulivi & Boracchi, 2024)
combines an open-world localization model with the LVLM to generate object localization for the
output tokens using the vision embedding, while still limited to object-centric interpretation.

3 METHOD

In this section, we first formulate the task and introduce background knowledge on heatmap visual-
ization methods. Next, we propose a visually relevant token selection strategy and generalize the
visualization methods to open-ended responses of LVLMs.

3.1 PRELIMINARIES

Task Formulation. Given an input image I and question Q about the image, an LVLM generates
an open-ended answer a in natural language. The answers are generated autoregressively and may
vary in length. In autoregressive text generation, words are tokenized and sequentially predicted
conditioned on previous tokens. Suppose the answer a consists of l tokens, represented as a sequence
a = [a1, a2 · · · al]. At each step t, the model samples the next token at according to:

at ∼ P (at|a1, a2 · · · at−1; I,Q) (1)

To investigate where the model focuses while generating the answer, we aim to obtain a heatmap
M that highlights the importance of each image pixel to the model output. In the next section we
introduce the common attention-based and optimization-based heatmap visualization methods.

Attention-based Heatmap Visualization. GradCAM (Selvaraju et al., 2017) is a simple and famous
approach that obtains gradients at the last layer of convolution. It first computes channel importance
by global average pooling the gradient of image classification w.r.t. each output channel (across the
image). The importance of the image region is then computed as a weighted average of the activation
at an image region across different channels using the channel importance weights.
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T-MM Chefer et al. (2021a) aggregates attention from multiple attention layers. For each layer, the
attention map is defined as the gradient from the desired category yt multiplied with the attention

Ā = Eh

[
ReLU(

∂yt
∂A

⊙A)

]
(2)

where the expectation is taken on the multiple heads of the transformer, and ⊙ represents element-
wise product. Finally, multi-layer transformer attention is computed as (I + ĀL) . . . (I + Ā2)Ā1

where I is the identity matrix and Āl is the attention map at layer l.

IIA Barkan et al. (2023) is an extension of T-MM by incorporating the idea of integrated gradients.
With integrated gradients, it computes multiple interpolations between the input image I and a
baseline image B as: rI + (1− r)B with r = [0, 0.1, . . . , 1] and average the gradients of all these
images to prevent the gradient of the input image being inaccurate.

Optimization-based Heatmap Visualization. iGOS++ Khorram et al. (2021) derive the heatmap M
by solving an optimization problem. Suppose the model predicts a score f for the output given I,Q,
the optimization has two main objectives: deletion and insertion. Deletion progressively removes
pixels from I in the order of their heatmap values, aiming to minimize the model’s prediction score f .
Insertion starts with a baseline image Ĩ without visual information (e.g., fully blurred image) and
gradually restores pixels according to their heatmap values, optimizing the heatmap to maximize f .
Hence the resulting heatmap highlights the most influential regions that contribute to the model’s
final prediction. The insertion and deletion operation can be denoted as:

Φ(I, Ĩ,M) = I ⊙M + Ĩ ⊙ (1−M) (3)

where ⊙ denotes the Hadamard product. Defining deletion and insertion masks Mx and My for
each objective, the final heatmap M is obtained as their combination: M = Mx ⊙My. The whole
objective function is as follows:

min
M=(Mx,My)

f(Φ(I, Ĩ,Mx))− f(Φ(I, Ĩ, 1−My)) + f(Φ(I, Ĩ,M))− f(Φ(I, Ĩ, 1−M)) + g(M)

where g(M) = λ1∥1−M∥1 + λ2BTV (M) (4)

g(M) is a regularization term consisting of an L1 norm to promote sparsity and a Bilateral Total
Variation (BTV) norm (Khorram et al., 2021) to enforce smoothness. The objective minimizes the
deletion scores when applying Mx and M , and maximizes the insertion scores with My and M .

However, existing heatmap visualization methods cannot directly apply to the open-ended responses
of LVLMs, since these models do not inherently produce a single prediction score. We will discuss
how to generalize this approach to open-ended responses in Section 3.2 and our changes to the
optimization method in Section 3.3.

3.2 VISUALLY RELEVANT TOKEN SELECTION

To extend heatmap visualization methods to free-form text outputs, a representative prediction score f
is required for optimization. A simple way is to average all token probabilities. However, empirically
with this approach we have observed less consistent explanations and heatmaps that are harder to
interpret. We believe this is because autoregressive text generation produces responses of variable
length, where token-image correlations may vary significantly. Specifically, token probabilities are
influenced by both sentence structure and subword composition. As illustrated in Figure 2, conditional
probabilities of most tokens remain largely unchanged under input blur, particularly those that can
be inferred from syntax or context (e.g., punctuation, painting, was, by) and the subsequent tokens
within a word (e.g. ardo, da, V, inci). In contrast, the first token in the sentence and visually relevant
tokens often exhibit a notable probability drop, as the first token in the response often decide the
subsequent sentence structure, and the visually relevant tokens highly depend on the specific visual
input. To this end, we propose to extract the most visually relevant tokens and derive the prediction
score from them to achieve a representative interpretation of the whole output.

Due to the autoregressive nature of LVLMs, the probability of generating answer a can be decomposed
as the joint probability of its tokens. For simplicity, we omit I , Q and denote the conditional
probability of the next token as P (at|a1 · · · at−1). The probability of the whole sentence is then:

P (a|I,Q) = P (a1)P (a2|a1) · · ·P (al|a1 · · · al−1) (5)

4
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To measure the influence of visual information, we introduce a baseline image Ĩ that does not
provide any visual information to answer the question. The probability of generating the original
answer a given Ĩ is denoted as: P (a|Ĩ , Q) = P̃ (a1) · · · P̃ (al|a1 · · · al−1), where P̃ (at|a1 · · · at−1)

represents P (at|a1 · · · at−1; Ĩ , Q). This term can be efficiently computed in a single forward pass by
concatenating Q and a as the textual prompt to the model. The difference in confidence is quantified
by the log-likelihood ratio Barnett & Bossomaier (2012); Woolf (1957) between the prediction with
and without visual information:
LLR = logP (a|I,Q)− logP (a|Ĩ , Q) = log

∏
t

P (at|a1 · · · at−1)− log
∏
t

P̃ (at|a1 · · · at−1)

=
∑
t

logP (at|a1 · · · at−1)−
∑
t

log P̃ (at|a1 · · · at−1) :=
∑
t

LLRt(at) (6)

Question: Do you know who paint this?

Answer: Yes, the painting was
created by Leonardo da Vinci.

Answer: The image is a painting
by the artist Vincent Van Gogh.

Figure 2: Top: answers generated by LLaVA-
1.5 given the original image and fully blurred
baseline image. Bottom: conditional probability
of the original answer given input image and
baseline image. Most tokens in the response are
not very dependent on the visual information.

where LLRt(at) = logP (at|a1 · · · at−1) −∑
t log P̃ (at|a1 · · · at−1). Therefore, to identify

tokens most influenced by visual information, we
apply a threshold to filter those with the highest
log-likelihood ratio. The set of crucial tokens K
is selected as K = {ak|LLRk > α}.

Finally, we define the prediction score f as the
cumulative log-likelihood of the crucial tokens.
It ensures that only visually relevant parts of the
response contribute to the interpretation, filtering
out the influence of linguistic structures and lead-
ing to a more faithful interpretation of the model’s
reliance on visual information:

f =
∑
ak∈K

logP (ak|a1 . . . ak−1). (7)

3.3 ADAPTATION TO LVLMS

We introduce some additional measures to adapt
heatmap visualization approaches to LVLMs with
different model architectures.

Multi-encoder and Multi-resolution. Current LVLMs often leverage multiple vision encoders (Tong
et al., 2024a) or multi-resolution (Li et al., 2024a;b) to enhance visual understanding, which introduces
challenges when applying the mask in optimization-based method. In the cases where the input
image is processed by multiple vision encoders before integrating their features, we apply a single
unified mask to the input image before passing it through all encoders, ensuring consistency across
different feature extractors. Multi-resolution methods often crop the input image into variable-sized
patches according to the original resolution, where the operation is nondifferentiable and obstructs
the optimization. We implement an equivalent differentiable cropping operation (replace pillow and
numpy operations with tensor operations), ensuring that the mask undergoes the same transformation
as the image patches. This allows us to apply the multi-resolution mask to the corresponding image
patches while maintaining differentiability. Besides, for attention-based methods, we only calculate
the gradients to the image, eliminating the influence of the textual input. We also use gradient
checkpointing to reduce the memory requirement when interpreting large-scale models.

Improvement on iGOS++. In practice, the heatmap optimization is non-convex and difficult to
converge. Besides, the reasoning process of LVLMs is complicated, with responses often related to
multiple image regions, leading to scattered attention maps that are hard to optimize. For simplicity,
we directly optimize a single mask M for both deletion and insertion objectives. To further improve
stability, we incorporate graduated non-convexity (Hazan et al., 2016) (GNC) to reduce the risk
of getting into local optima and the oscillations during optimization. Instead of directly solving
a non-convex problem, GNC begins with a convex approximation as a more stable starting point,
and gradually introduces non-convexity into the optimization process. Specifically, we add an
exponentially decayed L2 norm to the objective function, yielding the final formulation:
minM f(Φ(I, Ĩ,M))− f(Φ(I, Ĩ, 1−M)) + λ1∥1−M∥1 + λ2e

−γt∥1−M∥2 + λ3BTV (M) (8)
and we set λ1 = 1, λ2 = 0.1, λ3 = 10 as the default value.
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4 EXPERIMENT

We now experiment with heatmap visualization approaches extended to interpret open-ended output
of LVLMs. First, we evaluate different interpretation methods using quantitative metrics. Next, to
gain insights into the visual behavior of state-of-the-art open-source LVLMs, we conduct quantitative
and qualitative experiments focusing on the following key research questions. Q1: Do LVLMs rely
on the input image when answering visual questions? Q2: Where do different LVLMs attend when
generating variable-length responses? Q3: What is the relationship between answer correctness and
focus region? Q4: How do the vision encoder and LLM components influence visual behavior?

4.1 EXPERIMENT SETTINGS

We evaluate LVLMs that employ representative strategies to improve visual instruction following
capabilities: LLaVA-1.5 (Liu et al., 2024a) leverages a fully connected cross-modal adapter and
incorporates academic-related data (Goyal et al., 2017) to enhance visual instruction tuning. LLaVA-
OneVision (LLaVA-OV) (Li et al., 2024a) employs multi-resolution input images, hence captures
finer image details. Cambrian (Tong et al., 2024a) proposes a Spatial Vision Aggregator to integrate
visual features from multiple encoders.

We select recent datasets that target at evaluating the visual instruction following capabilities of
LVLMs: MMStar (Chen et al., 2024) contains 1,500 human-reviewed vision-dependent questions that
most LVLMs fail to answer correctly without visual input. CV-Bench (Tong et al., 2024a) constructs
a “vision-centric” benchmark with 2,638 manually verified image-related questions. MMVP (Tong
et al., 2024b) selects a subset of 300 questions with the images that CLIP (Radford et al., 2021) fails
to distinguish. In Appendix A.3 we compare the peak GPU memory usage and the average runtime
per sample of our method adapted to different heatmap visualization methods.

4.2 STATISTICAL ANALYSIS Table 1: Percentage (%) of samples that the answer
probability decreases by less than 30% / 30%-70%
without visual information.

CV-Bench MMStar MMVP
LLaVA-1.5 8.9 / 18.5 7.5 / 10.4 25.3 / 16.3
LLaVA-OV 13.6 / 20.2 4.7 / 5.7 16.3 / 15.0
Cambrian 1.1 / 2.3 4.2 / 5.0 3.3 / 7.3

To investigate Q1 (whether LVLMs rely on vi-
sual input), we first conduct a statistical analy-
sis comparing the models’ responses with and
without visual information. Using the visual
relevance metric in Eq. 6, we compute the prob-
ability of an answer given the original image
versus a fully blurred image. Table 1 reports the percentage of samples where the answer probability
decreases by less than 30% or between 30%-70% without visual information. The results indicate
that most responses are affected by the image to varying degrees. Notably, LLaVA-1.5 exhibits lower
reliance on visual input on MMStar and MMVP; with 25.3% MMVP samples showing a probability
drop of less than 30% when the image is blurred. The responses of Cambrian are more influenced by
the visual contents; with answer probabilities decreasing by more than 70% for ∼ 90% of samples
across datasets. Most compared models have lower density of small probability drops on MMStar,
suggesting they rely more heavily on image when answering MMStar questions.

4.3 COMPARISON OF VISUALIZATION METHODS

Our proposed token selection method can be applied to various interpretation methods and extend them
to open-ended responses of LVLMs. However, some interpretation techniques are not well-suited for
LVLMs. We applied our token selection method to the gradient-based method Grad-CAM (Selvaraju
et al., 2017), transformers interpretation methods T-MM (Chefer et al., 2021a) and IIA (Barkan et al.,
2023), and our improved optimization-based method based on IGOS++ (Khorram et al., 2021).

Evaluation Metric. We follow the commonly used deletion and insertion (Petsiuk, 2018) scores to
assess the heatmaps. Deletion removes pixels from the original image in descending order of their
heatmap values, and calculates the output scores given the intermediate image to derive a deletion
curve. The deletion score is the area under the curve (AUC). Similarly, the insertion score measures
how quickly the output score increases when adding pixels to a baseline image. Lower deletion
score and higher insertion score indicate heatmap that better reflects areas the model attends to. For
fair comparison across models with varying prediction score distributions, we normalize the scores
according to those of the original image and baseline image, following Jiang et al. (2024b).

Data Selection. For subsequent studies, we filter out the samples where models’ answers are largely
independent of the image, as it is infeasible to study where the model attends if it does not need the

6
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Table 2: Quantitative comparison of interpretation methods in terms of Deletion score (lower is
better), Insertion score (higher is better) on the filtered dataset using different LVLMs. The bold
numbers denote the best results for each model and dataset.

MMVP MMStar CV-Bench LLaVA-Bench
LVLM Method Del ↓ Ins ↑ Del ↓ Ins ↑ Del ↓ Ins ↑ Del ↓ Ins ↑

LLaVA-1.5-7b

Grad-CAM 0.679 0.441 0.689 0.372 0.651 0.587 0.685 0.379
T-MM 0.778 0.418 0.869 0.283 0.869 0.461 0.808 0.378
IIA 0.401 0.805 0.333 0.870 0.457 0.884 0.371 0.824
iGOS++ 0.366 0.811 0.292 0.953 0.402 0.965 0.358 0.864

LLaVA-OV-7b

Grad-CAM 0.341 0.501 0.406 0.550 0.443 0.562 0.334 0.549
T-MM 0.528 0.589 0.575 0.620 0.594 0.630 0.589 0.655
IIA 0.576 0.551 0.621 0.578 0.660 0.553 0.541 0.612
iGOS++ 0.305 0.778 0.317 0.870 0.295 0.924 0.301 0.803

Cambrian-8b Grad-CAM 0.416 0.513 0.391 0.656 0.471 0.599 0.452 0.582
iGOS++ 0.375 0.657 0.334 0.860 0.340 0.849 0.372 0.786

image. We keep the samples where all models have clear probability differences with and without
visual information, remaining 35% samples from MMVP, 47% of MMStar samples, and 34% of CV-
Bench. The original datasets are multiple-choice questions, so we remove the choices and instructions
to relax them into open-ended questions. Additionally, we evaluate on LLaVA-Bench (Liu et al.,
2024b) designed for open-ended VQA.

Question: What are the words in the image?
LLaVA-1.5: The words in the image are "Happy Easter."

Input image Grad-CAM T-MM IIA iGOS++

Figure 3: Qualitative comparison of different explana-
tion methods. The tokens in red denote the selected
crucial tokens.

Experiment Results. With the selected data, we
generate heatmaps using different interpretation
methods and compare their deletion and inser-
tion scores in Table 2. As Cambrian uses mul-
tiple vision encoders including non-transformer-
based models, T-MM and IIA are not applica-
ble. iGOS++ consistently outperforms all other
methods, with the lowest deletion scores and
highest insertion scores across datasets and mod-
els. Qualitative heatmap visualizations shown in Figure 3 also show that iGOS++ generates more
precise heatmap than attention-based methods. Hence, we choose iGOS++ for subsequent analyses.

4.4 ABLATION STUDY Table 3: Ablation study of token selection strategy.
The bold numbers denote the best and underlined
denote second-best results.

MMVP MMStar CV-Bench
Del ↓ Ins ↑ Del ↓ Ins ↑ Del ↓ Ins ↑

Proposed 0.366 0.811 0.292 0.953 0.402 0.965
Joint prob. 0.403 0.784 0.286 0.906 0.409 0.967
Keywords 0.367 0.809 0.302 0.931 0.402 0.899

We conduct ablation studies to demonstrate the
effectiveness of the proposed token selection
strategy, as an important contribution of our
method is handling long-sentence responses by
identifying visually relevant tokens based on
the log-likelihood ratio. We compare with (1)
Computing the joint probability of the whole
sentence. (2) Detecting keywords using off-the-shelf tagging method (Campos et al., 2018; 2020).
As shown in Table 3, our proposed token selection approach leads to the most relevant heatmaps
across all datasets, improving over joint probability by 2.7% on MMVP and 4.7% on MMStar, and
improving over keywords by 6.6% on CV-Bench. We also include the ablation studies of the GNC
norm in Eq. 8, token selection threshold α and baseline image selection for optimization-based
method in Appendix A.1.

4.5 FOCUS REGION ANALYSIS

Heatmap Visualization. We present qualitative results in Figure 4 to address Q2 about the focus
region of different LVLMs when generating outputs. We highlight the visually relevant tokens in
red. The results lead to several observations: (1) Cambrian reveals more compositional (Jiang et al.,
2024b) image understanding, which means it tends to jointly consider the entire image and may
include more comprehensive information in its responses (e.g., in example (b) Cambrian provides
more information about the mountainous landscape). In contrast, LLaVA-OV shows more disjunctive
behaviors and often focuses on specific regions. This aligns well with their respective architectures:
Cambrian aggregates multiple vision encoders to extract broader visual information, while LLaVA-
OV adopts a multi-resolution strategy to extract detailed features. (2) The responses of the models
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(a) Question: Who is wearing black pants in the image?

Input image LLaVA-1.5
A man is

wearing black
pants in the

image.

LLaVA-OV
The man playing

the accordion

Cambrian
The individual
wearing black

pants in the
image is the

person playing
the accordion.

(b) Question: Is the sky in the background dark blue or light blue?

Input image LLaVA-1.5
The sky in the
background is

light blue.

LLaVA-OV
The sky in the

background is a
light blue color.

Cambrian
The sky in the
background is
light blue, pro-
viding a serene
backdrop to the

mountainous
landscape.(c) Question: What color are the flowers in the background?

Input image LLaVA-1.5
The flowers in
the background

are purple.

LLaVA-OV
yellow.

Cambrian
The flowers in
the background

are purple.

(d) Question: How many trucks are in the image?

Input image LLaVA-1.5
There are two
trucks in the

image.

LLaVA-OV
One

Cambrian
There is one
truck in the

image.

Figure 4: Comparison of the generated response and focus region of different LVLMs. Tokens in red are the
selected visual relevant tokens.

Spatial Attribute Count Global Reasoning

Figure 5: Answer correctness and focus region plausibility across four quadrants. Each color stands
for a different question category, including spatial, attribute, counting, global context, and reasoning.

may include different contents since they attend to different image regions. For instance, in example
(a) LLaVA-1.5 only attends to the man’s face but LLaVA-OV also looks at the accordion he plays,
hence has “playing the accordion" in its answer. (3) When LVLMs give incorrect answers, their focus
regions could reveal the underlying cause. In example (c), LLaVA-OV locates the pistil instead of the
petal hence answers yellow for the color of the flower. In example (d), LLaVA-1.5 mistakenly attends
to the sedan and counts it as a truck. More visualization results are included in the supplemental.

Answer vs. Focus Region. To address Q3, we conduct a subjective analysis on the relationship
between answer correctness and focus region plausibility (i.e., whether the focus region aligns with
human intuition). We randomly select 100 samples for and categorize them into spatial, attribute,
counting, global context, and reasoning questions. The results are summarized in Figure 5, where we
classify model behaviors into four quadrants and calculate the percentage of samples in each quadrant.
The key observations include: (1) All models tend to provide correct answers with plausible focus
regions when answering global context questions. Conversely, models often fail to answer reasoning
and spatial questions even when attending to the right regions. (2) LLaVA-1.5 has lower chance to
locate the most relevant regions. LLaVA-OV has better focus plausibility on most question types,
though it does not necessarily lead to better accuracy. Cambrian performs well on counting questions,
yet often attends to regions that do not align with human intuition. These findings suggest that focus
region plausibility does not always correlate with answer correctness. In Appendix A.2, we provide
additional experiments to compare the model focus and human attention.

Influence of Vision Architecture and LLM. Since LVLMs consist of vision encoders and LLM,
we investigate their impact on the focus region, respectively. To study the influence of LLM scale,
we compare LLaVA-OV 0.5b, 7b, 72b and Cambrian 3b, 8b, 13b. For models with the same LLM
but different vision architectures, we further include Mini-Gemini Li et al. (2024b) as they provide
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Table 4: Comparison of models with different LLM scales and vision architectures. It can be seen that
the scores are consistent within the same model family. For Cambrian models, they use a combination
of 4 vision encoders: CLIP ViT-L (Radford et al., 2021), SigLIP ViT (Zhai et al., 2023), OpenCLIP
ConvNeXt-XXL (Ilharco et al., 2021) and DINOv2 ViT-L (Oquab et al., 2024). For Mini-Gemini
models, HD denotes high resolution.

Model LLM Vision Encoder Del↓ Ins↑
Comparison of models with different LLMs

LLaVA-OV-0.5b Qwen2-0.5b SigLIP 0.313 0.792
LLaVA-OV-7b Qwen2-7b SigLIP 0.305 0.778
LLaVA-OV-72b Qwen2-72b SigLIP 0.304 0.754
Cambrian-3b Phi-3-3.8B Multi-encoder 0.424 0.664
Cambrian-8b LLaMA3-8B Multi-encoder 0.375 0.657
Cambrian-13b Vicuna1.5-13B Multi-encoder 0.415 0.692

Comparison of models with different vision architectures
LLaVA-1.5-7b Vicuna1.5-7B CLIP 0.366 0.811
Mini-Gemini-7b Vicuna1.5-7B CLIP-L 0.474 0.669
Mini-Gemini-7b-HD Vicuna1.5-7B ConvNext-L 0.478 0.661
Cambrian-13b Vicuna1.5-13B Multi-encoder 0.415 0.692
Mini-Gemini-13b Vicuna1.5-13B CLIP-L 0.473 0.674
Mini-Gemini-13b-HD Vicuna1.5-13B ConvNext-L 0.471 0.671

(d) Question: How many cup(s) of drink are there in the image?

Input image Cambrian-3b
There are two
cup(s) of drink
in the image.

Cambrian-8b
2

Cambrian-13b
2

(b) Question: Where is the yellow animal’s head lying in this image?

Input image LLaVA-1.5-7b
The yellow

animal’s head is
lying on the floor

in this image.

Mini-Gemini-7b
The yellow

animal’s head is
lying on the floor

in this image.

Mini-Gemini-
7b-HD

The yellow
animal’s head is
lying on the floor

in the image.

Figure 6: Comparison of models with different LLM scales and vision architectures. The first group compares
models with varying LLM sizes while keeping the vision architecture fixed, showing that increasing the LLM
scale has minimal impact on visual behavior. The second group compares models with the same LLM but
different vision encoders, indicating vision architectures may affect the focus region.

high-resolution models (denoted as HD) with an additional vision encoder. The compared models
cover wide range of mainstream LLM structures including Qwen Yang et al. (2024), Phi Abdin et al.
(2024), LLaMA Dubey et al. (2024) and Vicuna Zheng et al. (2023). The quantitative results are
shown in Table 4.We show qualitative examples in Figure 6. From both quantitative and qualitative
results, it can be observed that merely increasing the LLM scale does not essentially change the focus
region (p=0.121), despite the differences in response phrasing. In contrast, given the same LLM,
varying the vision architecture significantly affects the focus regions (p=0.0008). On the other hand,
the LLaVA family shows similar deletion/insertion scores and generally display disjunctive behavior
while Cambrian and Mini-Gemini have similar scores and generally display compositional behavior.
We show more visualization results in supplementary materials.

5 CONCLUSION

In this paper we propose a method to generalize existing visual interpretation methods to support the
autoregressive, open-ended responses of LVLMs. We introduce a visually relevant token selection
strategy that detects the crucial tokens in variable-length outputs and associates them with specific
image regions. With the interpretation method, we conduct a comprehensive analysis of state-of-the-
art open-source LVLMs with diverse model structures on visual instruction following benchmarks
that require visual information. The experiment results provide several insights into model behaviors,
including the relevance of the responses to visual input, relationship between answer correctness and
focus region, influence of vision architectures and LLM scales. Despite some limitations discussed in
Appendix A.7, these findings emphasize the need for evaluation beyond standard accuracy metrics,
offering insights into potential improvements of LVLMs.
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A APPENDIX

In Section A.1 we conduct ablation studies on the GNC norm of Eq. 8, token selection threshold
α and baseline image selection in the optimization-based heatmap visualization. In Section A.2
we compare the generated model focus region with human attention. In Section A.3 we show
the maximum GPU memory usage and average inference time of different heatmap visualization
methods extended by our proposed token selection strategy. The experiment results are conducted
without LLM inference optimization. We provide additional qualitative examples in Section A.4,
A.5, A.6 to better demonstrate the observations in the main paper, comparing different model
structures, LLM scales and vision architectures. For each example, we show the generated responses
of LVLMs, the detected visually relevant tokens and the corresponding focus regions. We compare
the visual behaviors of different model structures and model sizes. In Section A.7 we include a short
discussion about the limitations of this work. We also provide the code with guidance to reproduce
the experiment results in the supplementary materials.

A.1 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate the impact of the GNC norm, α for to-
ken selection threshold and baseline image selection. We use LLaVA-1.5-7b for the following
experiments.

GNC norm. To achieve better optimization stability, we introduce graduated non-convexity (GNC)
by adding an exponentially decayed L2 norm. Here we conduct parameter studies to evaluate the
impact of the weight of the L2 norm. We vary the scale of the L2 norm λ2 among [0.0, 0.1, 1.0, 10.0]
and compare the deletion and insertion scores on different datasets, as shown in Table 5. It shows that
introducing a proper scale of L2 norm can benefit the optimization and obtain better results in terms
of the deletion and insertion. Extremely large values of the regularization may disturb the objective
function and degrade the performance.

Table 5: Parameter study of the scale of the L2 norm in graduated non-convexity. The bolded numbers
denote the best results among the compared parameter settings. In the main experiments we select
λ2 = 0.1.

MMVP MMStar CV-Bench
λ2 Del↓ Ins↑ Del↓ Ins↑ Del↓ Ins↑
0.0 0.381 0.794 0.295 0.953 0.398 0.965
0.1 0.366 0.811 0.292 0.953 0.402 0.965
1.0 0.514 0.705 0.420 0.846 0.524 0.885
10.0 0.513 0.735 0.412 0.858 0.520 0.894

Token Selection Threshold. We also compare the interpretation performance given different token
selection threshold α and show the results in Table 6. Small threshold α may select too many tokens
and introduce noise, while large threshold causes the interpretation to miss relevant content in the
output.

Table 6: Ablation study of the token selection threshold α on MMVP dataset. The bolded numbers
denote the best results.

α Deletion ↓ Insertion ↑
0.5 0.414 0.774
1.0 0.366 0.811
2.0 0.425 0.792

Baseline Image. In the optimization-based visualization method, the baseline image Ĩ should contain
minimal visual information (Fong & Vedaldi, 2017), while maintaining a distribution consistent with
natural images to avoid introducing adversarial artifacts. We compare different choices of the baseline
image in Table 7, including blurred image, all-zero input, and random noise, where we make sure
that the average probability of the selected tokens is lower than 5% on the blurred image. Results
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indicate that the blurred baseline image achieves the best balance, minimally disturbing the input
image distribution.

Table 7: Ablation study of the baseline image selection. The bolded numbers denote the best results.

Del ↓ Ins ↑ Del ↓ Ins ↑ Del ↓ Ins ↑
Blurred 0.366 0.811 0.292 0.953 0.402 0.965
Blank 0.407 0.644 0.317 0.805 0.403 0.837
Noise 0.381 0.696 0.295 0.838 0.392 0.884

A.2 COMPARISON WITH HUMAN ATTENTION

In this paper we mainly investigate the intrinsic behavior of the LVLMs in terms of the focus region
when generating the open-ended responses. The model attention is an objective fact which does not
need to be aligned with human attention/behavior. However, we conduct experiments to compare the
model behavior with human attention to gain deeper insights. We evaluate the LVLMs on VQA-HAT
dataset Das et al. (2016), which consists of human visual attention maps over the images in the VQA
dataset Antol et al. (2015). In Table 8 we show the soft IOU and rank correlation between the focus
region of LLaVA-1.5/LLaVA-OV and human attention labels on VQA-HAT dataset. IOU measures
the overlap between the model attention maps and human attention maps, defined as the ratio of
their intersection to their union and the range is between 0 and 1. Rank correlation is a statistical
measure that quantifies the similarity between the rankings of two variables, commonly used to assess
monotonic relationships. The results indicate that the focus regions of LVLMs can significantly differ
from human attention, with small IOU and negative rank correlation values.

Table 8: Comparison of model focus region with human attention on VQA dataset, evaluated by the
IOU and rank correlation.

IOU Rank correlation
LLaVA-1.5 0.010 -0.201±0.003
LLaVA-OV 0.012 -0.195±0.004

A.3 COMPUTATION COST

In this section, we conduct experiments to compare the maximum GPU memory usage and average
inference time of different heatmap visualization methods extended by our proposed token selection
strategy. The results are shown in Table 9. Although the optimization-based method iGOS++ achieves
better performance in terms of deletion and insertion scores, it requires the longest inference time,
while still in an acceptable range. Using inference optimization methods like vllm Kwon et al. (2023),
SGLang Zheng et al. (2024) may further reduce the memory requirement and computation time.

Table 9: Comparison of different visualization methods by maximum GPU memory usage and
inference time per sample.

Method Max GPU Memory Time per sample
iGOS++ 31 GB ∼7.0 s
Grad-CAM 20 GB ∼1.0 s
T-MM 36 GB ∼2.7 s
IIA 22 GB ∼4.7 s

A.4 COMPARISON OF DIFFERENT MODEL STRUCTURES

In Figure 7, 8, 9 we show more qualitative results, comparing the responses and focus regions
of LLaVA-1.5-7b, LLaVA-OV-7b, Cambrian-8b and Mini-Gemini-7b. We mainly categorize the
questions into spatial, attribute, counting, global and reasoning questions according to their knowledge
types. Figure 7 shows attribute questions that ask about specific information about the objects or
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elements in the images. Figure 8 (a) and (b) show counting questions, (c) and (d) spatial relationship
questions. Figure 9 (a) and (b) show global questions that require understanding of the whole scene,
(c) and (d) show reasoning questions that involve external knowledge and reasoning beyond the visual
information to answer. In general, it can be observed that LLaVA-1.5 and LLaVA-OV are more
disjunctive, focusing on most relevant regions in the image. In contrast, Mini-Gemini and Cambrian
show more compositional visual attention, which means they tend to look at the entire image when
answering the questions.

A.5 COMPARISON OF MODELS WITH DIFFERENT LLM SCALES

With the increasing scale of vision and language models, many recent approaches aim to improve
performance by enlarging the model’s parameter size. Motivated by this trend, we investigate how
model scale—specifically, the scale of LLMs—affects visual focus regions and multimodal behavior.
In Figure 10, we compare the responses and corresponding focus region of LLaVA-OV 0.5b, 7b,
72b. In Figure 11, we compare the responses and corresponding focus region of Cambrian 3b, 8b,
13b. In each group of compared models, they have the same vision architecture and multimodal
interaction, but different LLM scales. It can be observed that the responses of the models with
different LLM scales may have different expressions, but the corresponding focus regions often have
similar structures. It indicates that the focus region is not significantly affected by the scale of the
LLM. Instead, the LLM scale primarily influences the linguistic expression of the responses.

A.6 COMPARISON OF MODELS USING THE SAME LLM

In this section we provide more examples to compare the LVLMs with different vision architectures
but using the same LLM. In Figure 12 we compare LLaVA-1.5-7b, Mini-Gemini-7b, and Mini-
Gemini-7b-HD since they use the same LLM (i.e., Vicuna-1.5-7b). Mini-Gemini-7b-HD provides
a high-resolution version that leverages additional vision encoder. Compared with the influence of
LLM scale discussed in Section A.5, vision architecture may have more significant influence on the
focus region related to the model outputs. It indicates that when aiming to control the visual attention
of the LVLMs, we may need to develop targeted design for the vision architecture.

A.7 LIMITATIONS

In this paper we propose a visually relevant token selection method and extend existing interpretation
methods to support open-ended responses of LVLMs with several technical improvements. It
illustrates the model generation by deriving a heatmap of the focus region on the image, and can
be applied to various model structures with multi-encoder and multi-resolution. In this section, we
discuss about the potential limitations of our proposed method. Since the objective function aims to
minimize the deletion score (i.e., replacing pixels in the original image with those in the baseline
image) and maximize the insertion score (i.e., replacing pixels in the baseline image with those in
the original image), the optimization may not be effective when the output scores given the original
image and baseline image do not have significant difference. This is also natural that we can not get
the focus region if the responses of the model are not highly related to the input image. In such cases,
other interpretation methods can be used as complementary.

A.8 CODE AND REPRODUCTION

We also provide the full source code in the supplementary material. To reproduce all the experiments
in this paper, please follow the instructions in README.

A.9 LLM USAGE

We leveraged LLMs to polish the writing of this paper. In particular, LLMs were used to:

1. Check grammar and improve readability.
2. Fix typos.

No LLMs were used for generating ideas, designing methods, or conducting experiments.
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(a) Question: The image captures a woman running from:

Input image LLaVA-1.5-7b
The image captures a

woman running from the
sunset, as she is seen

running on a hill during
the sunset

LLaVA-OV-7b
The image captures a

woman running from the
left side of the frame

towards the right.

Mini-Gemini-7b
The image captures a

woman running from the
sunset.

Cambrian-8b
The image captures a

woman running from the
sun, which is setting in the

background.

(b) Question: What are all the letter in the image?

Input image LLaVA-1.5-7b
The letters in the image

are "Sugar."

LLaVA-OV-7b
The letters in the image

are "UGA".

Mini-Gemini-7b
The letters in the image
are "S", "U", "G", "A",

"R", "A".

Cambrian-8b
The image contains the

letters ’SUGAR’ spelled in
a stylized manner using

what appears to be
powdered sugar.

(c) Question: What does the center button say?

Input image LLaVA-1.5-7b
The center button says

"OK" or "Select."

LLaVA-OV-7b
The center button on the

remote control in the
image is labeled "OK

SELECT."

Mini-Gemini-7b
The center button on the

remote control says "OK."
This is a standard feature
on many remote controls,
used to confirm selections
or to return to the main

menu of a device.

Cambrian-8b
The center button on the
remote control is labeled

’OK SELECT’. This button
is typically used to confirm
selections on a television

menu or to navigate
through options.

(d) Question: Is the elderly person standing or sitting in the picture?

Input image LLaVA-1.5-7b
The elderly person is

sitting on a bench in the
picture.

LLaVA-OV-7b
The elderly person is

sitting on a wooden bench
in the picture.

Mini-Gemini-7b
The elderly person is
sitting in the picture.

Cambrian-8b
The elderly person is

sitting on a bench in the
picture.

Figure 7: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,
LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions ask about specific attributes of the elements in the image.
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(a) Question: How many persons are in the image?

Input image LLaVA-1.5-7b
There are two persons in

the image.

LLaVA-OV-7b
two

Mini-Gemini-7b
There are two persons in

the image.

Cambrian-8b
There are two persons in

the image.

(b) Question: How many cup(s) of drink are there in the image?

Input image LLaVA-1.5-7b
There are two glasses of

drink in the image.

LLaVA-OV-7b
two

Mini-Gemini-7b
There are two cups of

drink in the image.

Cambrian-8b
2.

(c) Question: Considering the relative positions of the person (annotated by the red box) and the chandelier in the image provided, where is
the person (annotated by the red box) located with respect to the chandelier?

Input image LLaVA-1.5-7b
The person (annotated by

the red box) is located
under the chandelier in

the image.

LLaVA-OV-7b
The person (annotated by

the red box) is located
directly below the

chandelier.

Mini-Gemini-7b
The person is located to
the left of the chandelier
when viewing the image.

The chandelier is
positioned centrally above
the billiard table, and the
person is standing on the

left side of the table,
closer to the foreground of

the image.

Cambrian-8b
The person is located

directly below the
chandelier. The chandelier
is hanging from the ceiling,

and the person is
positioned at the pool

table, which is situated
directly beneath the

chandelier.

(d) Question: Considering the relative positions of the bird and the boat in the image provided, where is the bird located with respect to the
boat?

Input image LLaVA-1.5-7b
The bird is located in the
water, floating near the

boat.

LLaVA-OV-7b
The bird is located in the
water to the right of the

boat.

Mini-Gemini-7b
The bird is located in the
water, closer to the boat

than the camera’s
perspective. It is

positioned to the right of
the boat, swimming in the

water.

Cambrian-8b
The bird is located in the
water, floating near the

boat.

Figure 8: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,
LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions in (a) and (b) are counting questions, (c) and (d) are spatial relationship questions.
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(a) Question: What is the dominant feature in the image?

Input image LLaVA-1.5-7b
The dominant feature in

the image is a tall building,
which is a skyscraper,
located near a body of

water.

LLaVA-OV-7b
The dominant feature in

the image is a tall
skyscraper with a unique,

wavy facade.

Mini-Gemini-7b
The dominant feature in

the image is a tall building,
which is a skyscraper.

Cambrian-8b
The dominant feature in

the image is a tall building
with a blue and white

color scheme.

(b) What is the predominant feature in the image?

Input image LLaVA-1.5-7b
The predominant feature

in the image is a large city
with a mountain range in

the background.

LLaVA-OV-7b
The predominant feature

in the image is a mountain
range.

Mini-Gemini-7b
The predominant feature

in the image is a large
hillside with houses and
buildings situated on it.

Cambrian-8b
The predominant feature
in the image is a city with

many buildings and
houses.

(c) In the diagram shown, which organism consumes small fish as food?

Input image LLaVA-1.5-7b
In the diagram, the large
shark consumes small fish

as its food source.

LLaVA-OV-7b
In the diagram, the

mackerel consumes small
fish as food.

Mini-Gemini-7b
The organism that

consumes small fish as
food is the large shark.
This is indicated by the
arrow pointing from the
small fish to the large

shark, showing the flow of
energy from the small fish

to the shark.

Cambrian-8b
The organism that

consumes small fish as
food is the mahi mahi. It is
depicted as a larger fish
with a streamlined body

and a forked tail,
positioned at the bottom of
the food chain, indicating
its role as a predator in
this marine ecosystem.

(d) What is the man in the suit doing on the soccer field?

Input image LLaVA-1.5-7b
The man in the suit is

celebrating and jumping
on the soccer field, likely
after a successful play or

goal.

LLaVA-OV-7b
The man in the suit is

gesturing with his hands,
possibly communicating

with the players or
directing their movements.

Mini-Gemini-7b
The man in the suit is

jumping up and down on
the soccer field, likely
celebrating a goal or a

victory.

Cambrian-8b
The man in the suit is
standing on the soccer

field, possibly watching or
coaching the game.

Figure 9: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,
LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions in (a) and (b) are global understanding questions, (c) and (d) are reasoning questions.
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(a) Question: From which angle is this image taken?

Input image LLaVA-OV-0.5b
The image is taken from a

side angle, showing the
snake’s profile.

LLaVA-OV-7b
The image is taken from a
side angle, slightly above

the snake. The snake’s
body is visible in profile,
and its head is turned
towards the camera,

giving a clear view of its
eye and the pattern on its

skin.

LLaVA-OV-72b
The image is taken from a
side angle, slightly above

the level of the snake’s
body. This perspective

allows for a clear view of
the snake’s profile and the

texture of its scales.

(b) Question: Is the following statement correct: There are different colors of grapes in the image.

Input image LLaVA-OV-0.5b
Yes, the image shows a

variety of grapes in
different colors.

LLaVA-OV-7b
The statement is correct.

The image shows grapes in
two different colors: green

and purple.

LLaVA-OV-72b
No, the grapes in the
image are all green.

(c) Question: What are the words in the image?

Input image LLaVA-OV-0.5b
The words in the image

are "Happy Easter!"

LLaVA-OV-7b
The words in the image

are "Happy Easter!"

LLaVA-OV-72b
Happy Easter!

(d) Question: Are the butterfly’s feet visible?

Input image LLaVA-OV-0.5b
Yes, the butterfly’s feet are

visible.

LLaVA-OV-7b
Yes, the butterfly’s feet are

visible in the image.

LLaVA-OV-72b
Yes, the butterfly’s feet are
visible. They are perched
on a leaf and can be seen

clinging to it.

Figure 10: Comparison of the responses and focus region of LLaVA-OV with different LLM scales. The tokens
in red denote the selected crucial tokens. The responses of the models with different scales often have different
expressions, but the corresponding focus regions are often similar.
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(a) Question: Can you see the dorsal fin of the animal?

Input image Cambrian-3b
Yes, the dorsal fin is visible

on the shark, which is a
distinctive feature used for
identification and helps in
maintaining balance in the

water.

Cambrian-8b
Yes, the dorsal fin is visible
on the top of the animal’s

back, which is a
characteristic feature of

sharks.

Cambrian-13b
No, the dorsal fin is not
visible in the image. The

perspective is such that the
top of the shark’s body is

not shown, focusing
instead on the side profile.

(b) Question: How many spots are on the animal in the image?

Input image Cambrian-3b
There are three spots on
the animal in the image.

Cambrian-8b
There are three spots on
the animal in the image.

Cambrian-13b
There are three spots on
the animal in the image.

(c) Question: What are the words in the image?

Input image Cambrian-3b
The words in the image

are "Happy Easter!"

Cambrian-8b
The words in the image

are "Happy Easter."

Cambrian-13b
Happy Easter!

(d) Question: Can you see letter "J" in the image?

Input image Cambrian-3b
Yes, the letter ’J’ is clearly

visible on the keyboard,
located in the second row
from the top and the third

column from the left.

Cambrian-8b
Yes, the letter "J" is clearly

visible in the image,
located on the keyboard.

Cambrian-13b
Yes, the letter "J" is clearly
visible on the keyboard. It
is on the top row, second
from the left. The "J" key

is white with black
lettering, which is a

standard color scheme for
keys on many keyboards.
The key is in focus and

there are no obstructions.

Figure 11: Comparison of the responses and focus region of Cambrian with different LLM scales. The tokens in
red denote the selected crucial tokens. Cambrian often tend to attend to the whole image for more comprehensive
visual understanding.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Question: How would you describe the background of the image?

Input image LLaVA-1.5-7b
The background of the
image features a city
skyline, with a large

building and a bridge
visible in the distance.

Mini-Gemini-7b
The background of the
image features a city

skyline with buildings, a
bridge, and a highway.

The city appears to be in a
state of disrepair, with a

sense of abandonment and
destruction.

Mini-Gemini-7b-HD
The background of the
image features a city

skyline with tall buildings,
a bridge, and a highway.

The city appears to be in a
state of disrepair, with the

buildings and
infrastructure showing
signs of damage and

decay.

(b) Question: What are the words in the image?

Input image LLaVA-1.5-7b
The words in the image

are "Happy Easter."

Mini-Gemini-7b
The words in the image

are "Happy Easter.

Mini-Gemini-7b-HD
The words in the image

are "Happy Easter."

(c) Question: Is it a slice of cake or a whole cake in the picture?

Input image LLaVA-1.5-7b
The image shows a whole
pumpkin pie sitting on a

table.

Mini-Gemini-7b
The image shows a whole
pumpkin pie, not a slice of

cake.

Mini-Gemini-7b-HD
The image shows a whole
pumpkin pie, not a slice of

cake.

(d) Considering the relative positions of the sports ball and the person in the image provided, where is the sports ball located with respect to
the person?

Input image LLaVA-1.5-7b
The sports ball is located
above the person’s head,
as the person is reaching
up to hit it with a tennis

racket.

Mini-Gemini-7b
The sports ball is located
above the person’s head,
slightly to the left side of
the person’s body. The

person is reaching
upwards with their tennis
racket, indicating that they

are In the process or
hitting the ball.

Mini-Gemini-7b-HD
The sports ball is located
above the person’s head

and slightly to the left side
of the frame. It is

positioned in front of the
person, who is reaching

upwards to hit it with their
tennis racket.

Figure 12: Comparison of the focus region of LVLMs with different vision architectures but using the same
LLM. LLaVA-1.5-7b, Mini-Gemini-7b and Mini-Gemini-7b-HD all use Vicuna-1.5-7b as the LLM backbone.
The tokens in red denote the selected crucial tokens. HD denotes the high-resolution vision encoder.
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