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ABSTRACT

Large Vision-Language Models (LVLMs) have shown promising performance
in vision-language understanding and reasoning tasks. However, whether they
truly understand the input image remain underexplored. A fundamental question
arises: to what extent do LVLMs rely on visual input, and which image regions
contribute to their responses? It is non-trivial to interpret the free-form generation
of LVLMs due to their complicated visual architecture (e.g., multiple encoders and
multi-resolution) and variable-length outputs. In this paper, we extend existing
heatmap visualization methods for classification tasks to support LVLMs for open-
ended visual question answering. We propose a method to select visually relevant
tokens that reflect the relevance between generated responses and the input image.
Furthermore, we conduct a comprehensive analysis of state-of-the-art LVL.Ms on
benchmarks designed to require visual information to answer. Our findings offer
several insights into LVLM behavior, including the relationship between focus
region and answer correctness, differences in visual attention across architectures,
and the impact of LLM scale on visual understanding. The code and data will be
released.

1 INTRODUCTION

The emerging Large Vision-Language Models (LVLM) (Li et al., 2024a; Bai et al.| [2023; [Team
et al., 2023} Dai et al., [2023)) have exhibited strong visual instruction following abilities and achieved
remarkable performance on multimodal tasks, such as Visual Question Answering (VQA) (Antol et al.,
2015). Despite different design and implementation details, most LVLMs follow the representative
visual instruction tuning (Liu et al., 2024b)) paradigm to align the visual features from pre-trained
vison encoders (Radford et al.,[2021;|Oquab et al.,|2024) to a pre-trained LLM (Touvron et al., 2023}
Zheng et al.,[2023)). This enables LVLMs to incorporate visual understanding while retaining the rich
knowledge and reasoning abilities of LLMs.

However, the underlying mechanisms behind the visual understanding capabilities of LVLMs remain
unclear. Beyond evaluating model performance on various benchmarks, it is crucial to interpret where
the LVLM focuses on when generating responses, as it can provide insights into why an answer is
correct or incorrect and facilitate targeted improvements for multimodal tasks. For instance, as shown
in Figure [} an LVLM may attend to the correct region but still misinterpret the content (e.g., the
top-right example), fail to locate the relevant region entirely (e.g., bottom-right), or even produce
correct answers based on irrelevant regions (e.g., bottom-left), which can lead to poor generalization.

Before the era of LVLMs, a popular way to interpret visual models is to derive a saliency heatmap
of the input image, representing the relevance of the image regions to the output (Selvaraju et al.|
2017} |Chefer et al., 2021b; Barkan et al., [2023)). Despite the rapid growth of LVLM research, little
effort has been made to interpret LVLMs. Existing works (Ben Melech Stan et al., 2024; |Giulivi &
Boracchil [2024)) often explain single-label outputs or individual tokens within a sentence. However,
LVLMs generate open-ended responses consisting of multiple tokens with variable lengths, requiring
a holistic interpretation of the entire output rather than isolated components. Interpreting open-
ended responses of LVLMs has several challenges, (1) Vision-Language Interaction: LVLMs involve
intricate interactions between vision and language modalities, and often exhibit strong bias towards
language priors. Hence it is hard to determine the contribution of each modality to the response. (2)
Autoregressive Generation: Unlike classification models, LVLMs autoregressively generate free-form
text, making it difficult to interpret the model behavior considering the entire output. (3) Model
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Figure 1: Focus regions of LLaVA-1.5 when answering counting questions. The model may correctly
focus on the relevant region and produce the correct answer (top left), or it may fail despite attending
to the right region due to misinterpretation (top right). In some cases, incorrect focus leads to wrong
answers (bottom right), while occasionally, the model answers correctly despite attending to irrelevant
regions (bottom left), highlighting challenges in visual grounding and generalization.

Architecture Complexity: Current LVLMs often use multi-resolution or multi-encoder architectures,
making it unreliable to align the features across layers to specific spatial regions in the image.

To address these issues, we propose a method that enables model interpretation for LVLMs and
open-ended responses. It reveals the significant image regions that lead to the generated response,
providing insights into the reasoning process. To the best of our knowledge, this is the first heatmap
visualization method that applies to any LVLM structure and generates a global interpretation for
open-ended responses. Using this method, we conduct in-depth studies of state-of-the-art LVLMs
on benchmarks designed to evaluate the visual understanding, and obtain several insights related to
the model behaviors. (1) LVLMs do look at images more often than not on vision-centric datasets:
our experiment shows that in more than 75% of the cases removing visual information significantly
reduces the answer probability; (2) Impact of Vision Architecture: Different vision architectures
could lead to different attention patterns and mechanisms of visual decision-making. But in most
cases, the focus regions are reflected in the answers, even when the answer is wrong; (3) Different
LLMs or simply increasing the LLM size do not significantly alter the visual attention behavior of
the model. Our main contributions are:

* We extended existing visual interpretation methods designed for image classification to
interpret LVLMs with free-form text output.

* We proposed to extract visually relevant tokens from the open-ended responses, which are
representative of the vision-related parts of the variable-length responses.

* We conducted in-depth studies of LVLM visual behavior, analyzing how different models
attend to image regions when answering visual-related questions.

2 RELATED WORK

Visual Instruction Tuning. Benefiting from the advancement of LLM, current LVLMs often seek to
equip LLMs with visual understanding capabilities, which is achieved by visual instruction tuning
2024b). They utilize a modality connector to align the visual embeddings into prompts that the
language models can comprehend (Li et al.| 2023afb). Despite the great progress, existing LVLMs
still suffer from hallucination (Jiang et al., 20244} [Liu et al/, 2023}, [Zhang et alJ, 2023} [Zhou et al,
due to insufficient visual understanding capabilities. Improving the visual capabilities of
LVLMs is crucial to their further improvement and application, and several benchmarks
2024aljb; [Chen et al.} 2024) have been proposed to highlight the growing attention to this issue.
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Visual Attention Visualization. We mainly focus on a popular family of interpretation methods,
which aims to highlight the image regions most relevant to the model’s output with a heatmap.
Heatmap visualization methods include gradient-based approaches (e.g. (Selvaraju et al., 2017}
Zhang et al., [2018))) and perturbation-based approaches (Dabkowski & Gall [2017; | Khorram et al.|
2021;|Q1 et al.L|2019; [Fong & Vedaldil [2017). Gradient-based methods often backpropagate the output
of the model and generate the heatmap using variants of the gradients (Barkan et al.| 2023} Chefer
et al.,[2021a)) and they succeeded in some earlier metrics such as the pointing game (Zhang et al.|
2018)). However, localization metrics such as the pointing game can be gamed by outputting significant
boundaries (Samek et al.,|2019; [Fuxin et al., 2021)), and most gradient-based methods will output
the same heatmap even with randomized networks, hence cannot pass the sanity check (Adebayo
et al.,[2018)). Perturbation-based methods deduce region importance by introducing perturbations
and analyzing their impact on model output. They often optimize for a mask to the input image
to identify the most influential regions. Importantly, perturbation-based methods, such as iGOS++
satisfy the sanity check (Khorram et al.,|2021) and do not suffer from the impossibility theorems
that would apply to gradient-based algorithms (Bilodeau et al.||2024). Another line of work aligns
the model attention with human attention (Chen et al.| 2021} Das et al.l, 2016; Sood et al., [2023))
for better grounding. However, deep networks often make decisions with mechanisms different
from humans (and even different among different networks (Jiang et al., [2024b) hence cannot be
all consistent with humans). Unlike them, we analyze the intrinsic behavior of LVLMs. Traditional
model interpretation methods are still limited to interpreting a single output, and can not directly
apply to free-form generative models. Besides, current LVLMs often involve complex multi-modal
structures with multi-resolution and multiple vision encoders, which makes the gradient-based and
transformer interpretation methods (Chefer et al.,2021b; |Hao et al.| 2021) hard to apply.

LVLM Interpretation. Recently the interpretation of LVLMs has drawn increasing interest, as
it provides valuable guidance for model development. A pipeline (Ben Melech Stan et al., [2024)
has been proposed to visualize the attention of LLaVA (Liu et al.| [2024b)). Besides, some works
visualize the model attention across different layers and either propose to improve the efficiency of
LVLMs by pruning the redundant image tokens (Chen et al., [2025}; |[Zhang et al., 2024, or alleviate
the hallucination problem through modifying the decoding process (Huang et al., [2024)). However,
these methods mainly interpret the LVLMs from internal attention. The relevance of different regions
on the input image to the output remains under-explored. A recent work (Giulivi & Boracchil [2024)
combines an open-world localization model with the LVLM to generate object localization for the
output tokens using the vision embedding, while still limited to object-centric interpretation.

3 METHOD

In this section, we first formulate the task and introduce background knowledge on heatmap visual-
ization methods. Next, we propose a visually relevant token selection strategy and generalize the
visualization methods to open-ended responses of LVLM:s.

3.1 PRELIMINARIES

Task Formulation. Given an input image I and question () about the image, an LVLM generates
an open-ended answer a in natural language. The answers are generated autoregressively and may
vary in length. In autoregressive text generation, words are tokenized and sequentially predicted
conditioned on previous tokens. Suppose the answer a consists of [ tokens, represented as a sequence
a = [ay, as - - - a;]. At each step t, the model samples the next token a; according to:

ay ~ Plaglar,az---a;-1;1,Q) M

To investigate where the model focuses while generating the answer, we aim to obtain a heatmap
M that highlights the importance of each image pixel to the model output. In the next section we
introduce the common attention-based and optimization-based heatmap visualization methods.

Attention-based Heatmap Visualization. GradCAM (Selvaraju et al.,2017) is a simple and famous
approach that obtains gradients at the last layer of convolution. It first computes channel importance
by global average pooling the gradient of image classification w.r.t. each output channel (across the
image). The importance of the image region is then computed as a weighted average of the activation
at an image region across different channels using the channel importance weights.
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T-MM |Chefer et al.|(2021a)) aggregates attention from multiple attention layers. For each layer, the
attention map is defined as the gradient from the desired category y; multiplied with the attention

1 Oy
A=E, |ReLU(== 0 A 2
| reruGy o) @
where the expectation is taken on the multiple heads of the transformer, and © represents element-
wise product. Finally, multi-layer transformer attention is computed as (I + Ar) ... (I + A2)A4;
where I is the identity matrix and A; is the attention map at layer [.

ITA Barkan et al.|(2023)) is an extension of T-MM by incorporating the idea of integrated gradients.
With integrated gradients, it computes multiple interpolations between the input image [ and a
baseline image B as: rI + (1 — r) B with r = [0,0.1, ..., 1] and average the gradients of all these
images to prevent the gradient of the input image being inaccurate.

Optimization-based Heatmap Visualization. iGOS++ Khorram et al.[(2021) derive the heatmap M
by solving an optimization problem. Suppose the model predicts a score f for the output given I, (),
the optimization has two main objectives: deletion and insertion. Deletion progressively removes
pixels from I in the order of their heatmap values, aiming to minimize the model’s prediction score f.
Insertion starts with a baseline image I without visual information (e.g., fully blurred image) and
gradually restores pixels according to their heatmap values, optimizing the heatmap to maximize f.
Hence the resulting heatmap highlights the most influential regions that contribute to the model’s
final prediction. The insertion and deletion operation can be denoted as:

O I,M)=IoM+16(1-M) 3)

where © denotes the Hadamard product. Defining deletion and insertion masks M, and M, for
each objective, the final heatmap M is obtained as their combination: M = M, ©® M,. The whole
objective function is as follows:

]W:(In]\/[ijl,My) f(q)(laiaMr))*f(q)(lvjalfMy))+f((1)(lvf’M>)7f((I)(IvjvliM))+g(M)

where g(M) = Aq||1 — M||; + A\ BTV (M) “)

g(M) is a regularization term consisting of an L1 norm to promote sparsity and a Bilateral Total
Variation (BTV) norm (Khorram et al.} 2021)) to enforce smoothness. The objective minimizes the
deletion scores when applying M, and M, and maximizes the insertion scores with M, and M.

However, existing heatmap visualization methods cannot directly apply to the open-ended responses
of LVLMs, since these models do not inherently produce a single prediction score. We will discuss
how to generalize this approach to open-ended responses in Section [3.2] and our changes to the
optimization method in Section[3.3]

3.2 VISUALLY RELEVANT TOKEN SELECTION

To extend heatmap visualization methods to free-form text outputs, a representative prediction score f
is required for optimization. A simple way is to average all token probabilities. However, empirically
with this approach we have observed less consistent explanations and heatmaps that are harder to
interpret. We believe this is because autoregressive text generation produces responses of variable
length, where token-image correlations may vary significantly. Specifically, token probabilities are
influenced by both sentence structure and subword composition. As illustrated in Figure[2] conditional
probabilities of most tokens remain largely unchanged under input blur, particularly those that can
be inferred from syntax or context (e.g., punctuation, painting, was, by) and the subsequent tokens
within a word (e.g. ardo, da, V, inci). In contrast, the first token in the sentence and visually relevant
tokens often exhibit a notable probability drop, as the first token in the response often decide the
subsequent sentence structure, and the visually relevant tokens highly depend on the specific visual
input. To this end, we propose to extract the most visually relevant tokens and derive the prediction
score from them to achieve a representative interpretation of the whole output.

Due to the autoregressive nature of LVLMs, the probability of generating answer a can be decomposed
as the joint probability of its tokens. For simplicity, we omit I, () and denote the conditional
probability of the next token as P(at|a; - - - a;—1). The probability of the whole sentence is then:

P(alI,Q) = P(a1)P(az]ar) - Plajlay - - - a;—1) 5)
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To measure the influence of visual information, we introduce a baseline image I that does not
provide any visual information to answer the question. The probability of generating the original
answer a given I is denoted as: P(all,Q) = P(a1)--- P(aj|la; - --a;—1), where P(at|a; -+ a;—1)
represents P(a¢|ay - - - az—1;1, Q). This term can be efficiently computed in a single forward pass by
concatenating () and a as the textual prompt to the model. The difference in confidence is quantified
by the log-likelihood ratio Barnett & Bossomaier| (2012); Woolf| (1957)) between the prediction with
and without visual information:

LLR =log P(a|I, Q) —log P(a|I,Q) = log [ [ Plasar -~ a;1) —log [ [ Placlar -+ ar—1)
¢ ¢
= Zlog P(atlay - -as—1) — Zlogﬁ(at\m Cee@pq) = ZLLRt(at) 6)
¢ 1 t

where LLRt (at) — log P(at ‘al Cee 1) — Question: Do you know who paint this?
>, log P(at|ay - - - a;—1). Therefore, to identify
tokens most influenced by visual information, we
apply a threshold to filter those with the highest
log-likelihood ratio. The set of crucial tokens XC

18 SeleCted as IC = {ak‘ LLRk? > Oé}. Answer: Yes, the painting was ~ Answer: The image is a painting
. L. created by Leonardo da Vinci. by the artist Vincent Van Gogh.
Finally, we define the prediction score f as the = --- - ----mmrmrommmmmmmoo e

cumulative log-likelihood of the crucial tokens.
It ensures that only visually relevant parts of the
response contribute to the interpretation, filtering
out the influence of linguistic structures and lead-

o
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ing to a more faithful interpretation of the model’s oo = wol vision
reliance on visual information: S & &o@e’ G S
f= Z log P(akl|ay .. .ak—1). @) ¢
ar€e Figure 2: Top: answers generated by LLaVA-
1.5 given the original image and fully blurred
3.3 ADAPTATION TO LVLMS baseline image. Bottom: conditional probability

We introduce some additional measures to adapt Of the original answer given input image and

heatmap visualization approaches to LVLMs with ~baseline image. Most tokens in the response are
different model architectures. not very dependent on the visual information.

Multi-encoder and Multi-resolution. Current LVLMs often leverage multiple vision encoders (Tong
et al.,[2024a)) or multi-resolution (Li et al.,[2024azb)) to enhance visual understanding, which introduces
challenges when applying the mask in optimization-based method. In the cases where the input
image is processed by multiple vision encoders before integrating their features, we apply a single
unified mask to the input image before passing it through all encoders, ensuring consistency across
different feature extractors. Multi-resolution methods often crop the input image into variable-sized
patches according to the original resolution, where the operation is nondifferentiable and obstructs
the optimization. We implement an equivalent differentiable cropping operation (replace pillow and
numpy operations with tensor operations), ensuring that the mask undergoes the same transformation
as the image patches. This allows us to apply the multi-resolution mask to the corresponding image
patches while maintaining differentiability. Besides, for attention-based methods, we only calculate
the gradients to the image, eliminating the influence of the textual input. We also use gradient
checkpointing to reduce the memory requirement when interpreting large-scale models.

Improvement on iGOS++. In practice, the heatmap optimization is non-convex and difficult to
converge. Besides, the reasoning process of LVLMs is complicated, with responses often related to
multiple image regions, leading to scattered attention maps that are hard to optimize. For simplicity,
we directly optimize a single mask M for both deletion and insertion objectives. To further improve
stability, we incorporate graduated non-convexity (Hazan et al., [2016) (GNC) to reduce the risk
of getting into local optima and the oscillations during optimization. Instead of directly solving
a non-convex problem, GNC begins with a convex approximation as a more stable starting point,
and gradually introduces non-convexity into the optimization process. Specifically, we add an
exponentially decayed L2 norm to the objective function, yielding the final formulation:

miny f(®(I,1,M)) — f(O(, 1,1 — M)) + A ||1 — M|y + Aee "|[1 — M||s + A3BTV (M) (8)
and we set Ay = 1, Ay = 0.1, A3 = 10 as the default value.
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4 EXPERIMENT

We now experiment with heatmap visualization approaches extended to interpret open-ended output
of LVLMs. First, we evaluate different interpretation methods using quantitative metrics. Next, to
gain insights into the visual behavior of state-of-the-art open-source LVLMs, we conduct quantitative
and qualitative experiments focusing on the following key research questions. Q1: Do LVLMs rely
on the input image when answering visual questions? Q2: Where do different LVLMs attend when
generating variable-length responses? Q3: What is the relationship between answer correctness and
focus region? Q4: How do the vision encoder and LLM components influence visual behavior?

4.1 EXPERIMENT SETTINGS

We evaluate LVLMs that employ representative strategies to improve visual instruction following
capabilities: LLaVA-1.5 (Liu et al.| [2024a)) leverages a fully connected cross-modal adapter and
incorporates academic-related data (Goyal et al.| 2017) to enhance visual instruction tuning. LLaVA-
OneVision (LLaVA-OV) (Li et al.} 20244l employs multi-resolution input images, hence captures
finer image details. Cambrian (Tong et al.l 2024a) proposes a Spatial Vision Aggregator to integrate
visual features from multiple encoders.

We select recent datasets that target at evaluating the visual instruction following capabilities of
LVLMs: MMStar (Chen et al.,[2024) contains 1,500 human-reviewed vision-dependent questions that
most LVLMs fail to answer correctly without visual input. CV-Bench (Tong et al.| 2024al) constructs
a “vision-centric” benchmark with 2,638 manually verified image-related questions. MM VP (Tong
et al.| [2024b) selects a subset of 300 questions with the images that CLIP (Radford et al.,|2021)) fails
to distinguish. In Appendix [A.3]we compare the peak GPU memory usage and the average runtime
per sample of our method adapted to different heatmap visualization methods.

4.2  STATISTICAL ANALYSIS Table 1: Percentage (%) of samples that the answer
probability decreases by less than 30% / 30%-70%

To investigate Q1 (whether LVLMs rely on vi-  yithout visual information.

sual input), we first conduct a statistical analy-

sis comparing the models’ responses with and CV-Bench MMStar  MMVP
without visual information. Using the visual ~ LLaVA-1.5 89/185 75/104 253/16.3
relevance metric in Eq.[6] we compute the prob- LLaVA-OV  13.6/20.2 4.7/57 16.3/15.0
ability of an answer given the original image _C2mbrian 11/23 42/50 33773
versus a fully blurred image. Table[T|reports the percentage of samples where the answer probability
decreases by less than 30% or between 30%-70% without visual information. The results indicate
that most responses are affected by the image to varying degrees. Notably, LLaVA-1.5 exhibits lower
reliance on visual input on MMStar and MMVP; with 25.3% MMYVP samples showing a probability
drop of less than 30% when the image is blurred. The responses of Cambrian are more influenced by
the visual contents; with answer probabilities decreasing by more than 70% for ~ 90% of samples
across datasets. Most compared models have lower density of small probability drops on MMStar,
suggesting they rely more heavily on image when answering MMStar questions.

4.3 COMPARISON OF VISUALIZATION METHODS

Our proposed token selection method can be applied to various interpretation methods and extend them
to open-ended responses of LVLMs. However, some interpretation techniques are not well-suited for
LVLMs. We applied our token selection method to the gradient-based method Grad-CAM (Selvaraju
et al., 2017), transformers interpretation methods T-MM (Chefer et al.,|[2021a) and ITA (Barkan et al.,
2023)), and our improved optimization-based method based on IGOS++ (Khorram et al.,[2021)).

Evaluation Metric. We follow the commonly used deletion and insertion (Petsiuk,|[2018)) scores to
assess the heatmaps. Deletion removes pixels from the original image in descending order of their
heatmap values, and calculates the output scores given the intermediate image to derive a deletion
curve. The deletion score is the area under the curve (AUC). Similarly, the insertion score measures
how quickly the output score increases when adding pixels to a baseline image. Lower deletion
score and higher insertion score indicate heatmap that better reflects areas the model attends to. For
fair comparison across models with varying prediction score distributions, we normalize the scores
according to those of the original image and baseline image, following Jiang et al.|(2024b).

Data Selection. For subsequent studies, we filter out the samples where models’ answers are largely
independent of the image, as it is infeasible to study where the model attends if it does not need the
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Table 2: Quantitative comparison of interpretation methods in terms of Deletion score (lower is
better), Insertion score (higher is better) on the filtered dataset using different LVLMs. The bold
numbers denote the best results for each model and dataset.

MMVP MM Star CV-Bench LLaVA-Bench

LVLM Method Del] Inst Dell Ins?T Del] Ins?t Dell Ins?
Grad-CAM 0.679 0441 0.689 0.372 0.651 0.587 0.685 0.379

LLaVA-1.5-7b T-MM 0.778 0.418 0.869 0.283 0.869 0.461 0.808 0.378
ITA 0.401 0.805 0.333 0.870 0457 0.884 0.371 0.824

iGOS++ 0.366 0.811 0.292 0.953 0.402 0965 0.358 0.864

Grad-CAM 0.341 0.501 0406 0.550 0443 0.562 0.334 0.549

T-MM 0.528 0.589 0.575 0.620 0.594 0.630 0.589 0.655

LLaVA-OV-7b 10 0576 0551 0621 0578 0660 0553 0541 0612

iGOS++ 0.305 0.778 0.317 0.870 0.295 0.924 0.301 0.803
Grad-CAM 0416 0.513 0391 0.656 0471 0.599 0452 0.582
iGOS++ 0.375 0.657 0.334 0.860 0.340 0.849 0.372 0.786

Cambrian-8b

image. We keep the samples where all models have clear probability differences with and without
visual information, remaining 35% samples from MMVP, 47% of MMStar samples, and 34% of CV-
Bench. The original datasets are multiple-choice questions, so we remove the choices and instructions
to relax them into open-ended questions. Additionally, we evaluate on LLaVA-Bench (Liu et al.|
2024b) designed for open-ended VQA.

Question: What are the words in the image?

Experiment Results. With the selected data’ we LLaVA-1.5: The words in the image.are "Happy Easter."
generate heatmaps using different interpretation . 1 z B
methods and compare their deletion and inser-
tion scores in Table 2l As Cambrian uses mul- Y W |
tiple vision encoders including non-transformer- [yputimage Grad-CAM  T-MM A iGOS++
based models, T-MM and ITA are not applica-

ble. iGOS++ consistently outperforms all other Figure 3: Qualitative comparison of different explana-
methods, with the lowest deletion scores and tion methods. The tokens in red denote the selected
highest insertion scores across datasets and mod- crucial tokens.

els. Qualitative heatmap visualizations shown in Figure 3] also show that iGOS++ generates more
precise heatmap than attention-based methods. Hence, we choose iGOS++ for subsequent analyses.

4.4  ABLATION STUDY Table 3: Ablation study of token selection strategy.
The bold numbers denote the best and underlined

‘We conduct ablation studies to demonstrate the
denote second-best results.

effectiveness of the proposed token selection

strategy, as an important contribution of our MMVP MMStar CV-Bench
method is handling long-sentence responses by Del] Inst Del{ Ins? Del{ Inst

- e . Proposed  0.366 0811 0.292 0953 0.402 0.965
identifying visually relevant tokens based on .~ prob. 0403 0784 0286 0906 0409 0.967
the log-likelihood ratio. We compare with (1) Keywords 0.367 0.809 0.302 0.931 0.402 0.899
Computing the joint probability of the whole

sentence. (2) Detecting keywords using off-the-shelf tagging method (Campos et al., 2018;2020).
As shown in Table 3] our proposed token selection approach leads to the most relevant heatmaps
across all datasets, improving over joint probability by 2.7% on MMVP and 4.7% on MMStar, and
improving over keywords by 6.6% on CV-Bench. We also include the ablation studies of the GNC
norm in Eq. [8] token selection threshold o and baseline image selection for optimization-based
method in Appendix [A-T]

4.5 FoOCUS REGION ANALYSIS

Heatmap Visualization. We present qualitative results in Figure ] to address Q2 about the focus
region of different LVL.Ms when generating outputs. We highlight the visually relevant tokens in
red. The results lead to several observations: (1) Cambrian reveals more compositional (Jiang et al.,
2024b) image understanding, which means it tends to jointly consider the entire image and may
include more comprehensive information in its responses (e.g., in example (b) Cambrian provides
more information about the mountainous landscape). In contrast, LLaVA-OV shows more disjunctive
behaviors and often focuses on specific regions. This aligns well with their respective architectures:
Cambrian aggregates multiple vision encoders to extract broader visual information, while LLaVA-
OV adopts a multi-resolution strategy to extract detailed features. (2) The responses of the models
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(b) Question: Is the sky in the background dark blue or light blue?

(a) Question: Who is wearing black pants in the image?

» )

Input ifnage LLaVA-1.5 LLaVA-OV Cambrian Input imge LLaVA-1.5 LLaVA-OV Cambrian

A man is The man playing The individual The sky inthe ~ The sky inthe  The sky in the
wearing black  the accordion — wearing black background is  background is a  background is
pants in the pants in the light blue. light blue color.  light blue, pro-
image. image is the viding a serene
person playing backdrop to the
the accordion. mountainous
(c) Question: What color are the flowers in the background? landscape.

(d) Question: How many trucks are in the image?

e &

" 9 o
LLaVA-1.5 LLaVA-OV Cambrian

Input imag Input imae LLaVA-1.5 LLaVA-OV Cambrian

The flowers in yellow. The flowers in There are two One There is one
the background the background trucks in the truck in the
are purple. are purple. image. image.

Figure 4: Comparison of the generated response and focus region of different LVLMs. Tokens in red are the
selected visual relevant tokens.

Plausible Plausible
‘Wrong — Correct Wrong S +( Correct Wrong
Unplausible Unplausible
LLaVA-1.5 LLaVA-OV Cambrian
Spatial Attribute Count Global Reasoning

Figure 5: Answer correctness and focus region plausibility across four quadrants. Each color stands
for a different question category, including spatial, attribute, counting, global context, and reasoning.

may include different contents since they attend to different image regions. For instance, in example
(a) LLaVA-1.5 only attends to the man’s face but LLaVA-OV also looks at the accordion he plays,
hence has “playing the accordion" in its answer. (3) When LVLMs give incorrect answers, their focus
regions could reveal the underlying cause. In example (c), LLaVA-OV locates the pistil instead of the
petal hence answers yellow for the color of the flower. In example (d), LLaVA-1.5 mistakenly attends
to the sedan and counts it as a truck. More visualization results are included in the supplemental.

Answer vs. Focus Region. To address Q3, we conduct a subjective analysis on the relationship
between answer correctness and focus region plausibility (i.e., whether the focus region aligns with
human intuition). We randomly select 100 samples for and categorize them into spatial, attribute,
counting, global context, and reasoning questions. The results are summarized in Figure 5] where we
classify model behaviors into four quadrants and calculate the percentage of samples in each quadrant.
The key observations include: (1) All models tend to provide correct answers with plausible focus
regions when answering global context questions. Conversely, models often fail to answer reasoning
and spatial questions even when attending to the right regions. (2) LLaVA-1.5 has lower chance to
locate the most relevant regions. LLaVA-OV has better focus plausibility on most question types,
though it does not necessarily lead to better accuracy. Cambrian performs well on counting questions,
yet often attends to regions that do not align with human intuition. These findings suggest that focus
region plausibility does not always correlate with answer correctness. In Appendix [A.2] we provide
additional experiments to compare the model focus and human attention.

Influence of Vision Architecture and LLM. Since LVLMs consist of vision encoders and LLM,
we investigate their impact on the focus region, respectively. To study the influence of LLM scale,
we compare LLaVA-OV 0.5b, 7b, 72b and Cambrian 3b, 8b, 13b. For models with the same LL.M
but different vision architectures, we further include Mini-Gemini as they provide
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Table 4: Comparison of models with different LLM scales and vision architectures. It can be seen that
the scores are consistent within the same model family. For Cambrian models, they use a combination
of 4 vision encoders: CLIP ViT-L (Radford et al., 2021), SigL.IP ViT 2023), OpenCLIP
ConvNeXt-XXL (Ilharco et al.,[2021) and DINOv2 ViT-L (Oquab et al.,[2024). For Mini-Gemini
models, HD denotes high resolution.

Model LLM Vision Encoder Del|  Inst
Comparison of models with different LLMs
LLaVA-OV-0.5b Qwen2-0.5b SigLIP 0313 0.792
LLaVA-OV-7b Qwen2-7b SigLIP 0.305 0.778
LLaVA-OV-72b Qwen2-72b SigLIP 0.304 0.754
Cambrian-3b Phi-3-3.8B Multi-encoder 0.424  0.664
Cambrian-8b LLaMA3-8B Multi-encoder  0.375 0.657
Cambrian-13b Vicunal.5-13B  Multi-encoder 0.415 0.692
Comparison of models with different vision architectures
LLaVA-1.5-7b Vicunal.5-7B CLIP 0.366 0.811
Mini-Gemini-7b Vicunal.5-7B CLIP-L 0.474 0.669
Mini-Gemini-7b-HD Vicunal.5-7B ConvNext-L 0.478 0.661
Cambrian-13b Vicunal.5-13B  Multi-encoder 0.415 0.692
Mini-Gemini-13b Vicunal.5-13B CLIP-L 0473 0.674

Mini-Gemini-13b-HD  Vicunal.5-13B ConvNext-L 0471 0.671

(d) Question: How many cup(s) of drink are there in the image?  (b) Question: Where is the yellow animal’s head lying in this image?

A
Input image Cambrian-3b Cambrian-8b  Cambrian-13b

There are two 2 2 The yellow The yellow 7b-HD
cup(s) of drink animal’s head is animal’s head is  The yellow
in the image. lying on the floor lying on the floor animal’s head is
in this image. in this image. lying on the floor
in the image.

Figure 6: Comparison of models with different LLM scales and vision architectures. The first group compares
models with varying LLM sizes while keeping the vision architecture fixed, showing that increasing the LLM
scale has minimal impact on visual behavior. The second group compares models with the same LLM but
different vision encoders, indicating vision architectures may affect the focus region.

high-resolution models (denoted as HD) with an additional vision encoder. The compared models
cover wide range of mainstream LLM structures including Qwen |Yang et al.[(2024), Phi|Abdin et al.
(2024), LLaMA Dubey et al|(2024) and Vicuna [Zheng et al.| (2023). The quantitative results are
shown in Table ] We show qualitative examples in Figure|6| From both quantitative and qualitative
results, it can be observed that merely increasing the LLM scale does not essentially change the focus
region (p=0.121), despite the differences in response phrasing. In contrast, given the same LLM,
varying the vision architecture significantly affects the focus regions (p=0.0008). On the other hand,
the LLaVA family shows similar deletion/insertion scores and generally display disjunctive behavior
while Cambrian and Mini-Gemini have similar scores and generally display compositional behavior.
We show more visualization results in supplementary materials.

5 CONCLUSION

In this paper we propose a method to generalize existing visual interpretation methods to support the
autoregressive, open-ended responses of LVLMs. We introduce a visually relevant token selection
strategy that detects the crucial tokens in variable-length outputs and associates them with specific
image regions. With the interpretation method, we conduct a comprehensive analysis of state-of-the-
art open-source LVLMs with diverse model structures on visual instruction following benchmarks
that require visual information. The experiment results provide several insights into model behaviors,
including the relevance of the responses to visual input, relationship between answer correctness and
focus region, influence of vision architectures and LLM scales. Despite some limitations discussed in
Appendix [A77] these findings emphasize the need for evaluation beyond standard accuracy metrics,
offering insights into potential improvements of LVLMs.
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A APPENDIX

In Section[A.T| we conduct ablation studies on the GNC norm of Eq. [§] token selection threshold
« and baseline image selection in the optimization-based heatmap visualization. In Section
we compare the generated model focus region with human attention. In Section [A.3] we show
the maximum GPU memory usage and average inference time of different heatmap visualization
methods extended by our proposed token selection strategy. The experiment results are conducted
without LLM inference optimization. We provide additional qualitative examples in Section [A.4]
[A.5] [A.6]to better demonstrate the observations in the main paper, comparing different model
structures, LLM scales and vision architectures. For each example, we show the generated responses
of LVLMs, the detected visually relevant tokens and the corresponding focus regions. We compare
the visual behaviors of different model structures and model sizes. In Section [A7] we include a short
discussion about the limitations of this work. We also provide the code with guidance to reproduce
the experiment results in the supplementary materials.

A.1 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate the impact of the GNC norm, « for to-
ken selection threshold and baseline image selection. We use LLaVA-1.5-7b for the following
experiments.

GNC norm. To achieve better optimization stability, we introduce graduated non-convexity (GNC)
by adding an exponentially decayed L2 norm. Here we conduct parameter studies to evaluate the
impact of the weight of the L2 norm. We vary the scale of the L2 norm Ay among [0.0, 0.1, 1.0, 10.0]
and compare the deletion and insertion scores on different datasets, as shown in Table E} It shows that
introducing a proper scale of L2 norm can benefit the optimization and obtain better results in terms
of the deletion and insertion. Extremely large values of the regularization may disturb the objective
function and degrade the performance.

Table 5: Parameter study of the scale of the L2 norm in graduated non-convexity. The bolded numbers
denote the best results among the compared parameter settings. In the main experiments we select
Ay =0.1.

MMVP MMStar CV-Bench
Ao Del]l Inst Dell Inst Dell Inst
0.0 0381 0.794 0.295 0.953 0.398 0.965
0.1 0.366 0.811 0.292 0.953 0.402 0.965
1.0 0514 0.705 0.420 0.846 0.524 0.885
10.0 0.513 0.735 0412 0.858 0.520 0.894

Token Selection Threshold. We also compare the interpretation performance given different token
selection threshold a and show the results in Table[6] Small threshold o may select too many tokens
and introduce noise, while large threshold causes the interpretation to miss relevant content in the
output.

Table 6: Ablation study of the token selection threshold o on MMVP dataset. The bolded numbers
denote the best results.

« Deletion |  Insertion T
0.5 0414 0.774
1.0 0.366 0.811
2.0 0.425 0.792

Baseline Image. In the optimization-based visualization method, the baseline image I should contain
minimal visual information (Fong & Vedaldi, 2017), while maintaining a distribution consistent with
natural images to avoid introducing adversarial artifacts. We compare different choices of the baseline
image in Table[7] including blurred image, all-zero input, and random noise, where we make sure
that the average probability of the selected tokens is lower than 5% on the blurred image. Results
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indicate that the blurred baseline image achieves the best balance, minimally disturbing the input
image distribution.

Table 7: Ablation study of the baseline image selection. The bolded numbers denote the best results.

Del], 1InstT Del] InstT Dell Inst
Blurred 0.366 0.811 0.292 0.953 0.402 0.965
Blank 0.407 0.644 0.317 0.805 0.403 0.837
Noise 0.381 0.696 0.295 0.838 0.392 0.884

A.2 COMPARISON WITH HUMAN ATTENTION

In this paper we mainly investigate the intrinsic behavior of the LVLMs in terms of the focus region
when generating the open-ended responses. The model attention is an objective fact which does not
need to be aligned with human attention/behavior. However, we conduct experiments to compare the
model behavior with human attention to gain deeper insights. We evaluate the LVLMs on VQA-HAT
dataset|Das et al.|(2016), which consists of human visual attention maps over the images in the VQA
dataset|Antol et al.| (2015)). In Table[§] we show the soft IOU and rank correlation between the focus
region of LLaVA-1.5/LLaVA-OV and human attention labels on VQA-HAT dataset. IOU measures
the overlap between the model attention maps and human attention maps, defined as the ratio of
their intersection to their union and the range is between 0 and 1. Rank correlation is a statistical
measure that quantifies the similarity between the rankings of two variables, commonly used to assess
monotonic relationships. The results indicate that the focus regions of LVLMs can significantly differ
from human attention, with small IOU and negative rank correlation values.

Table 8: Comparison of model focus region with human attention on VQA dataset, evaluated by the
IOU and rank correlation.

IOU  Rank correlation
LLaVA-1.5 0.010 -0.201+0.003
LLaVA-OV 0.012 -0.195+£0.004

A.3 COMPUTATION COST

In this section, we conduct experiments to compare the maximum GPU memory usage and average
inference time of different heatmap visualization methods extended by our proposed token selection
strategy. The results are shown in Table[0] Although the optimization-based method iGOS++ achieves
better performance in terms of deletion and insertion scores, it requires the longest inference time,
while still in an acceptable range. Using inference optimization methods like vilm |Kwon et al.| (2023)),
SGLang |Zheng et al.|(2024) may further reduce the memory requirement and computation time.

Table 9: Comparison of different visualization methods by maximum GPU memory usage and
inference time per sample.

Method Max GPU Memory Time per sample

iGOS++ 31 GB ~7.0s
Grad-CAM 20 GB ~1.0s
T-MM 36 GB ~2.7s
IIA 22 GB ~4.7s

A.4 COMPARISON OF DIFFERENT MODEL STRUCTURES

In Figure [9 we show more qualitative results, comparing the responses and focus regions
of LLaVA-1.5-7b, LLaVA-OV-7b, Cambrian-8b and Mini-Gemini-7b. We mainly categorize the
questions into spatial, attribute, counting, global and reasoning questions according to their knowledge
types. Figure[/|shows attribute questions that ask about specific information about the objects or
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elements in the images. Figure[§](a) and (b) show counting questions, (c) and (d) spatial relationship
questions. Figure[9](a) and (b) show global questions that require understanding of the whole scene,
(c) and (d) show reasoning questions that involve external knowledge and reasoning beyond the visual
information to answer. In general, it can be observed that LLaVA-1.5 and LLaVA-OV are more
disjunctive, focusing on most relevant regions in the image. In contrast, Mini-Gemini and Cambrian
show more compositional visual attention, which means they tend to look at the entire image when
answering the questions.

A.5 COMPARISON OF MODELS WITH DIFFERENT LLM SCALES

With the increasing scale of vision and language models, many recent approaches aim to improve
performance by enlarging the model’s parameter size. Motivated by this trend, we investigate how
model scale—specifically, the scale of LLMs—affects visual focus regions and multimodal behavior.
In Figure [I0] we compare the responses and corresponding focus region of LLaVA-OV 0.5b, 7b,
72b. In Figure[T1] we compare the responses and corresponding focus region of Cambrian 3b, 8b,
13b. In each group of compared models, they have the same vision architecture and multimodal
interaction, but different LLM scales. It can be observed that the responses of the models with
different LLM scales may have different expressions, but the corresponding focus regions often have
similar structures. It indicates that the focus region is not significantly affected by the scale of the
LLM. Instead, the LLM scale primarily influences the linguistic expression of the responses.

A.6 COMPARISON OF MODELS USING THE SAME LLM

In this section we provide more examples to compare the LVLMs with different vision architectures
but using the same LLM. In Figure [I2] we compare LLaVA-1.5-7b, Mini-Gemini-7b, and Mini-
Gemini-7b-HD since they use the same LLM (i.e., Vicuna-1.5-7b). Mini-Gemini-7b-HD provides
a high-resolution version that leverages additional vision encoder. Compared with the influence of
LLM scale discussed in Section[A.3] vision architecture may have more significant influence on the
focus region related to the model outputs. It indicates that when aiming to control the visual attention
of the LVLMs, we may need to develop targeted design for the vision architecture.

A.7 LIMITATIONS

In this paper we propose a visually relevant token selection method and extend existing interpretation
methods to support open-ended responses of LVLMs with several technical improvements. It
illustrates the model generation by deriving a heatmap of the focus region on the image, and can
be applied to various model structures with multi-encoder and multi-resolution. In this section, we
discuss about the potential limitations of our proposed method. Since the objective function aims to
minimize the deletion score (i.e., replacing pixels in the original image with those in the baseline
image) and maximize the insertion score (i.e., replacing pixels in the baseline image with those in
the original image), the optimization may not be effective when the output scores given the original
image and baseline image do not have significant difference. This is also natural that we can not get
the focus region if the responses of the model are not highly related to the input image. In such cases,
other interpretation methods can be used as complementary.

A.8 CODE AND REPRODUCTION

We also provide the full source code in the supplementary material. To reproduce all the experiments
in this paper, please follow the instructions in README.

A.9 LLM USAGE
We leveraged LLMs to polish the writing of this paper. In particular, LLMs were used to:

1. Check grammar and improve readability.

2. Fix typos.

No LLMs were used for generating ideas, designing methods, or conducting experiments.
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(a) Question: The image captures a woman running from:

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The image captures a The image captures a The image captures a The image captures a
woman running from the ~woman running from the woman running from the woman running from the
sunset, as she is seen left side of the frame sunset. sun, which is setting in the
running on a hill during towards the right. background.
the sunset

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The letters in the image  The letters in the image  The letters in the image  The image contains the
are "Sugar." are "UGA". are "S", "U", "G", "A", letters 'SUGAR’ spelled in
"R", "A". a stylized manner using

what appears to be
powdered sugar.

(c) Question: What does the center button say?

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The center button says  The center button on the — The center button on the  The center button on the
"OK" or "Select." remote control in the  remote control says "OK." remote control is labeled
image is labeled "OK  This is a standard feature 'OK SELECT’. This button
SELECT.” on many remote controls, is typically used to confirm
used to confirm selections selections on a television
or to return to the main menu or to navigate
menu of a device. through options.

(d) Question: Is the elderly person standing or sitting in the picture?

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The elderly person is The elderly person is The elderly person is The elderly person is
sitting on a bench in the  sitting on a wooden bench  sitting in the picture. sitting on a bench in the
picture. in the picture. picture.

Figure 7: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,
LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions ask about specific attributes of the elements in the image.
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(a) Question: How many persons are in the image?

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
There are two persons in two There are two persons in  There are two persons in
the image. the image. the image.

(b) Question: How many cup(s) of drink are there in the image?

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
There are two glasses of two There are two cups of 2.
drink in the image.

drink in the image.

(c) Question: Considering the relative positions of the person (annotated by the red box) and the chandelier in the image provided, where is
the person (annotated by the red box) located with respect to the chandelier?

Input image LLaVA-1.5-7b
The person (annotated by The person (annotated by
the red box) is located the red box) is located  the left of the chandelier directly below the
under the chandelier in directly below the when viewing the image. chandelier. The chandelier
the image. chandelier. The chandelier is is hanging from the ceiling,
positioned centrally above and the person is
the billiard table, and the  positioned at the pool
person is standing on the  table, which is situated

LLaVA-OV-7b Mini-Gemini-7b

Cambrian-8b
The person is located to The person is located

left side of the table, directly beneath the
closer to the foreground of chandelier.
the image.

(d) Question: Considering the relative positions of the bird and the boat in the image provided, where is the bird located with respect to the
boat?

Input image LLaVA-1.5-7b
The bird is located in the
water, floating near the — water to the right of the

LLaVA-OV-7b

Mini-Gemini-7b Cambrian-8b
The bird is located in the

The bird is located in the The bird is located in the
water, closer to the boat  water, floating near the
than the camera’s boat.
perspective. It is
positioned to the right of
the boat, swimming in the
water.

boat. boat.

Figure 8: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,
LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions in (a) and (b) are counting questions, (c) and (d) are spatial relationship questions.

18



Under review as a conference paper at ICLR 2026

(a) Question: What is the dominant feature in the image?

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The dominant feature in ~ The dominant feature in ~ The dominant feature in ~ The dominant feature in
the image is a tall building, the image is a tall the image is a tall building, the image is a tall building

which is a skyscraper,  skyscraper with a unique, — which is a skyscraper. with a blue and white
located near a body of wavy facade. color scheme.
water.

(b) What is the predominant feature in the image?

Jan . stockphe

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The predominant feature ~ The predominant feature ~ The predominant feature ~ The predominant feature
in the image is a large city in the image is a mountain  in the image is a large  in the image is a city with
with a mountain range in range. hillside with houses and many buildings and
the background. buildings situated on it. houses.

(c) In the diagram shown, which organism consumes small fish as food?

Food Chain

d

P
e~
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= =
=
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L

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
In the diagram, the large In the diagram, the The organism that The organism that
shark consumes small fish mackerel consumes small — consumes small fish as consumes small fish as
as its food source. fish as food. food is the large shark.  food is the mahi mahi. It is

This is indicated by the  depicted as a larger fish
arrow pointing from the — with a streamlined body
small fish to the large and a forked tail,
shark, showing the flow of positioned at the bottom of
energy from the small fish the food chain, indicating
to the shark. its role as a predator in
this marine ecosystem.

(d) What is the man in the suit doing on the soccer field?

~

Input image LLaVA-1.5-7b LLaVA-OV-7b Mini-Gemini-7b Cambrian-8b
The man in the suit is The man in the suit is The man in the suit is The man in the suit is
celebrating and jumping  gesturing with his hands, ~jumping up and down on  standing on the soccer
on the soccer field, likely — possibly communicating  the soccer field, likely  field, possibly watching or
after a successful play or with the players or celebrating a goal or a coaching the game.
goal. directing their movements. victory.

Figure 9: Comparison of the focus region of LVLMs with different model architectures, including LLaVA-1.5-7b,

LLaVA-OV-7b, Mini-Gemini-7b and Cambrian-8b. The tokens in red denote the selected visually relevant
tokens. The questions in (a) and (b) are global understanding questions, (c) and (d) are reasoning questions.
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(a) Question: From which angle is this image taken?

Input image LLaVA-OV-0.5b LLaVA-OV-7b LLaVA-OV-72b
The image is taken from a The image is taken from a The image is taken from a
side angle, showing the  side angle, slightly above side angle, slightly above
snake’s profile. the snake. The snake’s the level of the snake’s
body is visible in profile,  body. This perspective
and its head is turned  allows for a clear view of
towards the camera,  the snake’s profile and the
giving a clear view of its texture of its scales.
eye and the pattern on its
skin.

(b) Question: Is the following statement correct: There are different colors of grapes in the image.

Input image LLaVA-OV-0.5b LLaVA-OV-7b LLaVA-OV-72b
Yes, the image shows a  The statement is correct. No, the grapes in the
variety of grapes in  The image shows grapes in  image are all green.
different colors. two different colors: green
and purple.

(c) Question: What are the words in the image?

5
I
A& oq ¥ %,

Input image LLaVA-OV-0.5b LLaVA-OV-7b LLaVA-OV-72b
The words in the image ~ The words in the image Happy Easter!
are "Happy Easter!" are "Happy Easter!"

(d) Question: Are the butterfly’s feet visible?

S|
Input image LLaVA-OV-0.5b LLaVA-OV-7b LLaVA-OV-72b
Yes, the butterfly’s feet are Yes, the butterfly’s feet are Yes, the butterfly’s feet are
visible. visible in the image. visible. They are perched

on a leaf and can be seen
clinging to it.

Figure 10: Comparison of the responses and focus region of LLaVA-OV with different LLM scales. The tokens
in red denote the selected crucial tokens. The responses of the models with different scales often have different

expressions, but the corresponding focus regions are often similar.
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(a) Question: Can you see the dorsal fin of the animal?

Input image Cambrian-3b Cambrian-8b Cambrian-13b
Yes, the dorsal fin is visible Yes, the dorsal fin is visible No, the dorsal fin is not
on the shark, which is a  on the top of the animal’s visible in the image. The

distinctive feature used for back, which is a perspective is such that the

identification and helps in ~ characteristic feature of  top of the shark’s body is

maintaining balance in the sharks. not shown, focusing
water. instead on the side profile.

(b) Question: How many spots are on the animal in the image?

Input image Cambrian-3b Cambrian-8b Cambrian-13b
There are three spots on  There are three spots on  There are three spots on
the animal in the image.  the animal in the image.  the animal in the image.

(c) Question: What are the words in the image?

;
¢ Y G
qorty Suat,,

Input image Cambrian-3b Cambrian-8b Cambrian-13b
The words in the image ~ The words in the image Happy Easter!
are "Happy Easter!" are "Happy Easter.”

(d) Question: Can you see letter "J" in the image?
R—

Input image Cambrian-3b Cambrian-8b Cambrian-13b
Yes, the letter "J’ is clearly Yes, the letter "J" is clearly Yes, the letter "J" is clearly
visible on the keyboard, visible in the image,  visible on the keyboard. It
located in the second row located on the keyboard. is on the top row, second
from the top and the third from the left. The "J" key
column from the left. is white with black

lettering, which is a
standard color scheme for
keys on many keyboards.
The key is in focus and
there are no obstructions.

Figure 11: Comparison of the responses and focus region of Cambrian with different LLM scales. The tokens in

red denote the selected crucial tokens. Cambrian often tend to attend to the whole image for more comprehensive
visual understanding.
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(a) Question: How would you describe the background of the image?

Input image LLaVA-1.5-7b Mini-Gemini-7b Mini-Gemini-7b-HD
The background of the The background of the The background of the
image features a city image features a city image features a city

skyline, with a large skyline with buildings, a  skyline with tall buildings,
building and a bridge bridge, and a highway.  a bridge, and a highway.
visible in the distance.  The city appears to be in a The city appears to be in a
state of disrepair, with a  state of disrepair, with the

sense of abandonment and buildings and
destruction. infrastructure showing
signs of damage and
decay.

(b) Question: What are the words in the image?

Input image LLaVA-1.5-7b Mini-Gemini-7b Mini-Gemini-7b-HD
The words in the image ~ The words in the image  The words in the image
are "Happy Easter." are "Happy Easter. are "Happy Easter."

(c) Question: Is it a slice of cake or a whole cake in the picture?

Input image LLaVA-1.5-7b Mini-Gemini-7b Mini-Gemini-7b-HD
The image shows a whole The image shows a whole The image shows a whole
pumpkin pie sitting on a pumpkin pie, not a slice of pumpkin pie, not a slice of

table. cake. cake.

(d) Considering the relative positions of the sports ball and the person in the image provided, where is the sports ball located with respect to
the person?

Input image LLaVA-1.5-7b Mini-Gemini-7b Mini-Gemini-7b-HD
The sports ball is located The sports ball is located The sports ball is located
above the person’s head, above the person’s head, above the person’s head
as the person is reaching  slightly to the left side of and slightly to the left side
up to hit it with a tennis  the person’s body. The of the frame. It is

racket. person is reaching positioned in front of the
upwards with their tennis  person, who is reaching
racket, indicating that they upwards to hit it with their
are In the process or tennis racket.
hitting the ball.

Figure 12: Comparison of the focus region of LVLMs with different vision architectures but using the same

LLM. LLaVA-1.5-7b, Mini-Gemini-7b and Mini-Gemini-7b-HD all use Vicuna-1.5-7b as the LLM backbone.
The tokens in red denote the selected crucial tokens. HD denotes the high-resolution vision encoder.

22



	Introduction
	Related Work
	Method
	Preliminaries
	Visually Relevant Token Selection
	Adaptation to LVLMs

	Experiment
	Experiment Settings
	Statistical Analysis
	Comparison of Visualization Methods
	Ablation Study
	Focus region analysis

	Conclusion
	Appendix
	Ablation Studies
	Comparison with Human Attention
	Computation cost
	Comparison of different model structures
	Comparison of models with different LLM scales
	Comparison of models using the same LLM
	Limitations
	Code and reproduction
	LLM usage


