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ABSTRACT

Unified multimodal learning requires attention mechanisms that are both efficient
and expressive. Softmax attention provides strong modeling capacity but suffers
from quadratic complexity, while linear attention achieves near-linear efficiency
at the cost of weaker expressivity. We identify two major expressivity challenges
in efficient unified multimodal models: (i) modality imbalance, where dominant
signals suppress weaker modalities during fusion, and (ii) loss of global context,
as efficient variants tend to over-smooth long sequences. We propose Gated Hy-
brid Attention (GHA), a multimodal-specialized operator that augments linear
attention with (i) a selective gating mechanism to balance modality contributions
and stabilize training, and (ii) agent-token softmax aggregation to restore adaptive
global context while preserving near-linear complexity. To demonstrate general-
ity, we validate GHA in two representative paradigms: autoregressive-only(AR-
only) and autoregressive+diffusion(AR+Diffusion). In both settings, GHA consis-
tently improves multimodal alignment, long-context retention, and efficiency over
comparable Transformer and efficient attention baselines. These cross-paradigm
results highlight that GHA functions as a plug-and-play building block, offer-
ing a lightweight and extensible approach that is orthogonal to scaling trends and
modality complexity.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) Vaswani et al. (2017); Brown et al. (2020);
Chowdhery et al. (2022); OpenAI et al. (2024) have spurred interest in extending their capabilities
beyond text, leading to the emergence of Multimodal Large Language Models (MLLMs) Caffagni
et al. (2024); Wang et al. (2024a); Zhang et al. (2024). Early efforts such as Flamingo Alayrac
et al. (2022), GIT Wang et al. (2022a), and OFA Wang et al. (2022b) demonstrated the feasibility of
joint vision–language modeling but were often specialized for narrow tasks, motivating the devel-
opment of more unified architectures. Recent unified systems including Show-o Xie et al. (2024a),
JanusFlow Ma et al. (2025), Janus-Pro Chen et al. (2025) and VILA-U Wu et al. (2025) extend
Transformer-based pipelines to support both multimodal understanding and generation. However,
these models inherit the quadratic complexity of self-attention, which poses scalability bottlenecks
for high-resolution inputs and long multimodal sequences.

An alternative line of work replaces Transformers with state-space architectures such as Mamba,
exemplified by OmniMamba Zou et al. (2025). While these approaches achieve linear efficiency in
both computation and memory, their strictly sequential modeling and limited cross-layer interactions
constrain the ability to capture complex long-range dependencies, resulting in weaker expressivity
compared to Transformer counterparts.

In contrast, our work addresses the complementary challenge of balancing efficiency and expres-
sivity through architectural design. We introduce Gated Hybrid Attention (GHA), a lightweight
and theoretically grounded drop-in substitute for standard Transformer attention, tailored for uni-
fied multimodal models. Unlike approaches that rely on large-scale data scaling or specialized
backbones, GHA directly enhances the attention mechanism itself, extending linear attention with
two key components: (i) a gating mechanism that stabilizes optimization and alleviates modality
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imbalance, and (ii) a softmax-based agent-token bottleneck that reintroduces global context while
maintaining near-linear complexity. This architectural advance complements large-scale scaling and
complex unified backbones, offering a practical direction toward building multimodal systems that
are both efficient and expressive.

Our contributions can be summarized as follows:

• Gated Hybrid Attention. We introduce GHA, which extends linear attention with a key–
value gating module and a softmax-based agent-token bottleneck. This design significantly
enhances expressivity, long-context reasoning, and cross-modal integration, while preserv-
ing near-linear computational complexity.

• Hardware-efficient Triton Kernel. To ensure the theoretical efficiency of GHA translates
into practice, we provide a hardware-optimized implementation based on FlashAttention-
style chunking and a custom Triton kernel.

• Empirical Evaluation. We evaluate GHA on both AR-only and AR+Diffusion unified
multimodal pipelines. Results show consistent gains in multimodal alignment, long-context
retention, and generation quality compared to Transformer and efficient attention baselines.
These cross-paradigm results highlight that GHA functions as a plug-and-play building
block, complementary to large-scale scaling and specialized backbones.

2 RELATED WORK

2.1 UNIFIED MULTIMODAL MODELS

Early frameworks such as Flamingo, GIT, and OFA demonstrated the feasibility of coupling vision
and language but were limited to narrow task formats. Subsequent research has sought fully unified
architectures that support both multimodal understanding and generation within a single backbone.
As summarized in Show-o Xie et al. (2024a), existing systems fall into two paradigms: AR-only,
where all tasks are cast as next-token prediction (e.g., Emu3 Wang et al. (2024c), VILA-U Wu et al.
(2025)); and AR+Diffusion, where an AR backbone is augmented with a discrete diffusion module
for higher-fidelity generation (e.g., Show-o Xie et al. (2024a), JanusFlow Ma et al. (2025), Janus-
Pro Chen et al. (2025)). Concurrent works such as Show-o2 Xie et al. (2025) and BAGEL Deng
et al. (2025) push performance further by scaling data and adopting increasingly sophisticated multi-
modal backbones (e.g., decoupled visual encoders, 3D causal latent spaces, mixture-of-transformer-
experts). While these systems substantially improve multimodal generation quality, they also reveal
persistent issues of cross-modal imbalance, where dominant modalities (e.g., text) suppress weaker
ones during fusion. Moreover, most progress has come from scaling data, model size, and backbone
complexity, leaving the core attention operator largely unchanged.

2.2 EFFICIENT SEQUENCE MODELING

To mitigate the quadratic cost of attention, linear variants (e.g., Linear Transformer Katharopou-
los et al. (2020), Performer Choromanski et al. (2020), Reformer Kitaev et al. (2020)) approximate
softmax kernels or restrict interactions, reducing complexity to linear time and memory. In paral-
lel, state-space models such as Mamba Gu & Dao (2024) and Mamba-2 Dao & Gu (2024) achieve
similar efficiency through recurrent parameterizations, while hybrid designs like Jamba Datta et al.
(2024) combine state-space recurrence with sparse attention. While these architectures excel in ef-
ficiency, they often struggle to maintain global context in long sequences and thus sacrifice expres-
sivity. In particular, approximations in linear attention can lead to over-smoothing, while strictly re-
current models limit cross-token interactions across layers. As a result, efficient sequence modeling
provides strong scalability but remains insufficient for tasks that require rich long-range dependen-
cies.

2.3 EXPRESSIVITY ENHANCEMENTS

Several works aim to strengthen attention capacity. Gated designs such as GLA Yang et al. (2024)
and GTrXL Parisotto et al. (2019) improve stability and selectivity by modulating key–value or
residual pathways. Another family of approaches strengthens expressivity through agent tokens,
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(a) Softmax Attention (b) Linear Attention (c) Gated Hybrid Attention

Figure 1: Difference between softmax attention (O(N2d)), linear attention (O(Nd2)), and GHA (O(N nd)).

where a small set of latent units mediate communication between input tokens. Representative ex-
amples include Set Transformer Lee et al. (2019) with inducing points, Perceiver and Perceiver
IO Jaegle et al. (2021; 2022) with latent bottleneck arrays, and Agent Attention Wang et al. (2024b)
with explicitly defined agent tokens. These agents compress token interactions into a compact la-
tent space and then redistribute information back to the sequence, typically using content-dependent
weighting such as softmax aggregation. While effective, such designs have been studied mainly
in unimodal contexts and remain underexplored in unified multimodal systems. Overall, unified
multimodal models have advanced primarily through scaling data and backbone complexity, with
some architectural innovations targeting specialized multimodal components. In parallel, efficient
sequence modeling has been explored mostly in unimodal contexts and remains rarely applied to
unified multimodal systems. As a result, the attention operator at the core of unified models is still
underexplored, facing persistent challenges of cross-modal imbalance (dominant modalities sup-
pressing weaker ones), loss of global context in long sequences, and quadratic computational com-
plexity that limits scalability. To address these challenges, we propose GHA, which extends linear
attention with gating and agent-token–based aggregation. This balances efficiency and expressiv-
ity, yielding improvements across both AR-only and AR+Diffusion paradigms. This architectural
direction is complementary to scaling- and backbone-oriented advances and points toward future
integration into more complex unified frameworks.

3 PRELIMINARY

Softmax Attention. Given queries Q, keys K, and values V, standard attention computes

O = Softmax

(
QK⊤
√
d

)
V, (1)

which provides strong expressivity but incurs O(N2d) complexity for sequence length N and hidden
dimension d.

Linear Attention. To alleviate this bottleneck, Linear Attention Katharopoulos et al. (2020) refor-
mulates the exponential similarity exp(q⊤k) as a kernelized dot-product ϕ(q)⊤ϕ(k), where ϕ(·) is
a positive feature mapping (e.g., ϕ(x) = ELU(x)+1 or randomized Fourier features). This enables
computing attention as

O ≈ ϕ(Q)
(
ϕ(K)⊤V

)
, (2)

which reduces complexity to O(Nd2) and admits an equivalent recurrent form for streaming up-
dates. In practice, however, many implementations simplify ϕ(·) to the identity mapping, which
abandons strict kernel approximation but often yields more stable and competitive performance in
downstream tasks Sun et al. (2023).

Our proposed GHA builds on Linear Attention by (i) incorporating a gating mechanism to dynam-
ically filter memory updates, and (ii) reintroducing content-dependent softmax weighting through
agent tokens, which aggregate and redistribute global context. These additions retain linear-time
efficiency while substantially improving expressivity and stability in long-sequence modeling.
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4 GATED HYBRID ATTENTION

As shown in Figure 1, we propose a three-stage hybrid architecture, termed GHA. This model aug-
ments linear attention through two key components: a selective gating mechanism applied to the
key-value pathway and a softmax-based aggregation over agent tokens. The proposed design effec-
tively addresses the two primary challenges in unified multimodal modeling: efficiency, attained by
maintaining linear computational complexity, and expressivity, enhanced by the introduced agent-
token aggregation and gating mechanism.

4.1 PARALLEL FORMULATION

(1) Agent-token based Softmax Aggregation. To avoid the quadratic query–key interactions, GHA
introduces a small set of n ≪ N agent tokens A ∈ Rn×d, which serve as an information bottleneck
that aggregates signals from all tokens before redistributing them. All tokens send their query and
key representations to these agents via softmax attention:

K′ = Softmax(AK⊤) ∈ Rn×N , Q′ = Softmax(QA⊤) ∈ RN×n. (3)

Compared to standard softmax attention, our design preserves content-dependent weighting while
reducing the complexity from O(N2) to O(Nn). Compared to plain linear attention, it reintro-
duces softmax aggregation in a compressed latent space, thereby restoring adaptive global context
modeling.

(2) Linear Accumulation. Following the practical form of linear attention, we adopt the identity
mapping ϕ(x) = x, which is widely used for its stability. During training, the attention output can
be computed in parallel as

O = Q′ (K′V), (4)

here (K′V) ∈ Rn×d and the computation costs O(Nnd). Compared to softmax attention, this
accumulation is more efficient; in GHA we incorporate gating and agent-token based softmax ag-
gregation to mitigate over-smoothing and stabilize long-sequence modeling.

(3) Selective Gating. To further stabilize training and suppress over-smoothing, GHA applies gating
directly on the aggregated key–value pathway. Formally, we compute

O = Q′ (G⊙ (K′V)
)
, (5)

where G ∈ (0, 1)n×d is a learnable, data-dependent gating matrix applied to the compressed
key–value representation, and ⊙ denotes element-wise multiplication. To make this data-dependent
nature explicit and avoid interpreting G as a static parameter matrix, we write it as G = f(x), where
f(x) is an input-conditioned projection that produces the dynamic gating weights. This design keeps
the parallel complexity at O(Nnd), while enabling selective control over memory updates. By fil-
tering noisy or redundant updates, gating improves long-sequence stability and prevents modality
dominance, a common challenge in unified multimodal training, thus yielding more fine-grained and
robust cross-modal alignment.

Together, these designs yield an overall complexity of O(Nnd) in theory, substantially lower than
standard softmax attention (O(N2d)) while significantly enhancing the representational power of
plain linear attention.

4.2 RECURRENT FORMULATION

For autoregressive decoding, GHA admits a recurrent formulation that achieves true linear-time
complexity during inference as shown in Figure 2. At each time step t, the compressed key–value
state St ∈ Rn×d is updated as

St = gt ⊙ St−1 + k′
tv

⊤
t , ot = q′

tSt, (6)

where gt ∈ (0, 1)n is a token-wise gating vector (broadcast along the d dimension), k′
t,q

′
t ∈ Rn are

the agent-projected key and query (with q′t and k′t denoting the t-th row of Q′ and the t-th column
of K ′, respectively), and vt ∈ Rd is the value.
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(a) Linear attention (recurrent inference). (b) GHA (recurrent inference).

Figure 2: Comparison of (a) linear attention (recurrent inference) and (b) GHA (recurrent inference).

Here k′
tv

⊤
t ∈ Rn×d matches the dimension of St. Since each update depends only on St−1 and

the current token (k′
t,vt), this recurrent inference form scales linearly with sequence length as

O(Nnd).

During training, causal masking prohibits direct use of the recurrent update. As with other linear
attention mechanisms Katharopoulos et al. (2020); Yang et al. (2024); Ma et al. (2021), the masked
parallel form requires handling prefix-restricted interactions, which breaks the associativity trick in
linear accumulation and leads to quadratic O(N2d) complexity.

4.3 HARDWARE-EFFICIENT IMPLEMENTATION

Inspired by FlashAttention Dao et al. (2022) and FlashLinearAttention Yang et al. (2023), we design
a GPU-friendly chunkwise execution strategy implemented in Triton to bridge the gap between
theoretical efficiency and practical training.

Let the sequence of length N be partitioned into L = N/C contiguous chunks of size C. Under
causal masking, we treat inter-chunk and intra-chunk dependencies differently.

Notation. We denote by t ∈ {1, . . . , N} the token index along the input sequence of length N , and
by i ∈ {0, . . . , L−1} the chunk index when the sequence is partitioned into L = N/C contiguous
chunks of size C. Accordingly, St refers to the recurrent state at token t in the inference (sequential)
formulation, while S

(i)
start and S

(i)
end denote the carried states across chunks in the chunkwise (parallel

training) formulation.

Inter-chunk dependencies (no mask). Across chunks, all tokens in chunk i+1 can fully attend
to preceding chunks {0, . . . , i} without causal masking. We maintain a carried key–value state
S(i) ∈ Rn×d updated as

S(i+1) = Γ(i+1) ⊙ S(i) + ∆(i+1), O
(i+1)
inter = Q′[i+1] S(i+1), (7)

where Γ(i+1) ∈ (0, 1)n×d encodes the cumulative decay across chunk i+1, and

∆(i+1) =
∑

t∈chunk(i+1)

k′
tv

⊤
t ∈ Rn×d.

This component is fully parallelizable across chunks, with total cost O(Nnd).

Intra-chunk dependencies (causal mask). Within each chunk of size C, local causality is en-
forced by applying a lower-triangular mask M ∈ {0, 1}C×C to restrict interactions to valid prefixes:

K′ = Softmax(AK⊤), Q′ = Softmax(QA⊤). (8)

Ointra =
(
Q′K′⊤ ⊙M

)
V. (9)

Naively, applying the causal mask incurs O(C2d) cost per chunk, as each token depends on all its
predecessors.
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Figure 3: Architecture of OmniGHA (AR-only). The system processes three types of inputs: (i) visual fea-
tures from the vision understanding encoder, (ii) visual tokens from the vision generation encoder, and (iii)
text embeddings from the text encoder. All modalities are fed into a shared Gated Hybrid Attention (GHA)
Transformer decoder, which serves as the core of the architecture. Two modality-specific output heads are em-
ployed: a text head for understanding tasks and an image head for generation tasks, respectively. Task-specific
LoRA adapters are applied within the decoder to enable parameter-efficient, modality-specific adaptation while
keeping the decoder weights largely shared across tasks.

Chunkwise combination. The final outputs combine both contributions:

O =

L−1∑
i=0

(
O

(i)
inter + O

(i)
intra

)
. (10)

Most FLOPs lie in the inter-chunk part (unmasked matmuls over the small agent dimension n ≪
N ), while the intra-chunk part is confined to local C×C blocks. This decomposition keeps the
dominant work parallelizable and yields training that closely approaches the theoretical O(Nnd)
scaling despite causal masking. The persistent state buffers scale as O(nd) per layer, with O(Cnd)
temporary tiles during chunked training.

4.4 OMNIGHA: UNIFIED MULTIMODAL ARCHITECTURE

While GHA is a general attention mechanism, we demonstrate its effectiveness by instantiating it
within a simplified unified multimodal pipeline, which we call OmniGHA. As shown in Figure 3,
we illustrate OmniGHA in its basic AR-only instantiation for clarity. Frozen text and vision en-
coders provide embeddings, a shared GHA decoder performs multimodal fusion, and lightweight
LoRA adapters and task-specific heads produce outputs. This design concentrates most parameters
and compute in the shared backbone, highlighting the plug-and-play nature of GHA. A detailed
breakdown of modules and the progressive training schedule is provided in Appendix A.1 and Ap-
pendix A.2, and we also describe an AR+Diffusion variant in Appendix A.3, where the shared de-
coder is coupled with a latent predictor and a diffusion-style generation head (e.g., flow matching).
This confirms that GHA extends naturally to pipelines beyond AR-only.

To isolate the architectural contribution of GHA, we first evaluate it in the most basic AR-only set-
ting, where frozen encoders feed embeddings into a single shared decoder and lightweight heads
handle downstream tasks. This controlled setup deliberately excludes diffusion modules or so-
phisticated backbones, ensuring that observed gains can be attributed directly to GHA. We then
extend OmniGHA to the AR+Diffusion paradigm by replacing the image head with a latent pre-
dictor and diffusion head, validating that GHA integrates seamlessly into more complex generation
pipelines. The diffusion pathway is kept entirely unchanged to ensure a fair comparison. Across both
paradigms, GHA delivers consistent improvements in multimodal alignment, long-context retention,
and generation quality over strong Transformer baselines. These results demonstrate that GHA is
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Type Model LLM Params Res. POPE↑ MME-P↑ VQAv2test↑ GQA↑ MMMU↑

Und. Only

LLaVA-Phi Zhu et al. (2024) Phi-2-2.7B 336 85.0 1335.1 71.4 - -
LLaVA Liu et al. (2024c) Vicuna-7B 224 76.3 809.6 - - -
Emu3-Chat Wang et al. (2024c) 8B from scratch 512 85.2 - 75.1 60.3 31.6
LLaVA-v1.5 Liu et al. (2024b) Vicuna-13B 448 86.3 1500.1 81.8 64.7 -
InstructBLIP Dai et al. (2023) Vicuna-13B 224 78.9 1212.8 - 49.5 -
MobileVLM Chu et al. (2023) MobileLLaMA-1.4B 336 84.5 1196.2 - 56.1 -
MobileVLM-V2 Chu et al. (2024) MobileLLaMA-1.4B 336 84.3 1302.8 - 59.3 -
LLaVA-v1.5-Phi-1.5 Xie et al. (2024b) Phi-1.5-1.3B 336 84.1 1128.0 75.3 56.5 30.7

Unified

LWM Liu et al. (2024a) LLaMA2-7B 256 75.2 - 55.8 44.8 -
Chameleon Team (2024) 7B from scratch 512 - - - - 22.4
LaVIT Jin et al. 7B from scratch 256 - - 66.0 46.8 -
Emu3 Wang et al. (2024c) 8B from scratch 512 85.2 1243.8 75.1 60.3 31.6
Janus Wu et al. (2024) DeepSeek-LLM-1.3B 384 87.0 1338.0 77.3 59.1 30.5
JanusFlow Ma et al. (2024) DeepSeek-LLM-1.3B 384 88.0 1333.1 79.8 60.3 29.3
Show-o Xie et al. (2024b) Phi-1.5-1.3B 512 80.0 1097.2 69.4 58.0 26.7
OmniMamba Zou et al. (2025) Mamba-2-1.3B 384 86.3 1290.6 77.7 60.8 30.6
OmniGHA (AR) 1.3B from scratch 384 88.7 1342.5 80.6 62.4 32.8
OmniGHA (AR+Diffusion) 1.3B from scratch 384 89.6 1354.9 81.3 62.1 33.6

Table 1: Performance comparison on multimodal understanding benchmarks. “Und. only”
models are trained for understanding only; “Unified” models support both understanding and gen-
eration.

effective not only in controlled AR-only pipelines but also transferable to AR+Diffusion settings,
providing a lightweight building block orthogonal to scaling trends and backbone complexity.

5 EXPERIMENTS

5.1 DATA AND TRAINING SETUP

We train a 1.3B-parameter model from a scratch attention mechanism. Images are 384×384 for
understanding and 256×256 for generation via a VQ-VAE tokenizer. We use BF16 AdamW and
lightweight rank-8 LoRA on input projectors. Unified training follows a three-phase curriculum:
(1) representation warm-up on understanding, (2) long-context adaptation on generation, and (3)
joint alignment. We deliberately avoid sophisticated visual stacks to isolate the effect of replacing
attention with GHA. Full datasets and hyperparameters are in Appendix A.4.

Recent concurrent works such as Omni-Qwen Xu et al. (2025), BAGEL, and Show-o2 advance
unified multimodal learning primarily through larger-scale datasets and increasingly sophisticated
backbones (e.g., causal 3D latent spaces, mixture-of-experts, or refined training strategies). Our
work instead focuses on an orthogonal dimension: enhancing the attention operator itself. To clearly
isolate this effect, we deliberately maintain a controlled evaluation setting rather than comparing
against scaling- or backbone-heavy systems.

5.2 EVALUATION RESULTS

Multimodal Understanding. We follow Show-o, JanusFlow, and OmniMamba, and evaluate on
standard multimodal understanding benchmarks, including POPE Li et al. (2023), MME Fu et al.
(2024), VQAv2 Goyal et al. (2017), GQA Hudson & Manning (2019), and MMMU Yue et al. (2024).
As shown in Table 1, OmniGHA consistently improves over models of similar scale (∼1.3B),
achieving 88.7 on POPE, 1342.5 on MME, 80.6 on VQAv2, 62.4 on GQA, and 32.8 on MMMU.
It surpasses understanding-only systems such as LLaVA-v1.5-Phi-1.5 (84.1/1128.0/75.3/56.5/30.7)
and MobileVLM-V2 (84.3/1302.8/–/59.3/–), while also outperforming unified baselines like Show-o
(80.0/1097.2/69.4/58.0/26.7) and JanusFlow (88.0/1333.1/79.8/60.3/29.3), despite JanusFlow being
trained on over 65M image–text pairs. Interestingly, the AR+Diffusion variant achieves slightly
higher understanding scores, which we attribute to the additional conditioning projector acting as a
form of representation regularization during joint training.

Visual Generation. We evaluate on MS-COCO Lin et al. (2014) and compare with both
generation-only diffusion systems and unified multimodal models (Table 2). Large-scale diffusion
models (e.g., DALL·E 2 Ramesh et al. (2022), Imagen Saharia et al. (2022)) progressively reduce
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FID to the 7–10 range, with recent refinements such as U-ViT Bao et al. (2023) reaching 5.95.
Among unified models, early approaches (CoDI, SEED-X, LWM) lag far behind, while Show-o
narrows the gap (9.24). OmniMamba achieves 5.36 when trained on 35M pairs. Our OmniGHA
further improves to 5.12, surpassing OmniMamba at the same scale. While the AR+Diffusion vari-
ant incurs additional cost, it still surpasses Show-o and JanusFlow in FID, demonstrating that GHA
can transfer effectively to diffusion pipelines while retaining high generation quality.

Please note that our paper does not claim SOTA over all understanding- or generation-only models.
The contribution lies in the GHA module—an attention operator that provides a more stable and
efficient architecture under the unified multimodal setting. For fairness, we use our own Transformer
baseline trained from scratch under the same data, compute, and training pipeline as OmniGHA.
Additional details are provided in Appendix A.5.

Inference Time (s)

Model 4K 8K 16K 32K 64K 128K

Show-o Xie et al. (2024b) 153 218 289 OOM OOM OOM
JanusFlow Ma et al. (2024) 91 125 153 182 223 268
OmniMamba Zou et al. (2025) 16 43 85 127 153 187
OmniGHA (AR) 12 38 75 110 132 156
OmniGHA (AR+Diffusion) 13 36 79 113 128 151

Table 3: Inference efficiency on multi-
modal understanding. OmniGHA (AR-
only) achieves the best scalability across
long contexts, consistently outperforming both
Transformer- and Mamba-based baselines. The
AR+Diffusion variant likewise surpasses all
baseline models across comparable sequence
lengths, underscoring its versatility across
paradigms. OOM: Out-of-Memory

Model Speed (Image/s) Time (s)

Show-o Xie et al. (2024b) 0.81 19.66
JanusFlow Ma et al. (2024) 1.02 15.64
OmniMamba Zou et al. (2025) 5.68 2.81
OmniGHA (AR) 5.26 2.97
OmniGHA (AR+Diffusion) 1.95 17.2

Table 4: Visual generation efficiency. Om-
niGHA (AR-only) approaches OmniMamba
while being 5× faster than Show-o and Janus-
Flow. The AR+Diffusion variant is slower, re-
flecting the inherent overhead of diffusion, but
demonstrates that GHA remains compatible and
effective when integrated into heavier genera-
tive pipelines.

5.3 EFFICIENCY RESULTS

Type Model Params Images FID-30K↓

Gen. Only

DALL·E Ramesh et al. (2021) 12B 250M 27.5
GLIDE Nichol et al. (2021) 5B 250M 12.24
DALL·E 2 Ramesh et al. (2022) 6.5B 650M 10.39
SDv1.5 Rombach et al. (2022) 0.9B 2000M 9.62
PixArt Chen et al. (2023) 0.6B 25M 7.32
Imagen Saharia et al. (2022) 7B 960M 7.27
Parti Yu et al. (2022) 20B 4.8B 7.23
Re-Imagen Chen et al. (2022) 2.5B 50M 6.88
U-ViT Bao et al. (2023) 45M 83K(coco) 5.95

Unified

CoDI Tang et al. (2024) - 400M 22.26
SEED-X Ge et al. (2024) 17B - 14.99
LWM Liu et al. (2024a) 7B - 12.68
DreamLLM Dong et al. (2023) 7B - 8.76
Show-o Xie et al. (2024b) 1.3B 35M 9.24
OmniMamba Zou et al. (2025) 1.3B 83K(coco) 5.50
OmniMamba 1.3B 35M 5.36
OmniGHA (AR) 1.3B 35M 5.12
OmniGHA (AR+Diffusion) 1.3B 35M 4.66

Table 2: Performance on MS-COCO.

We compare the inference efficiency of Om-
niGHA with prior Transformer- and Mamba-
based unified models on both multimodal un-
derstanding and visual generation, using a sin-
gle NVIDIA A100 GPU in FP16.

For understanding (Table 3), OmniGHA (AR-
only) achieves the lowest latency across se-
quence lengths up to 128k. At 32k and
128k tokens, it is 1.15×–1.2× faster than
OmniMamba, and significantly outperforms
Show-o (12.8×) and JanusFlow (2.3×). The
AR+Diffusion variant also outperforms all
baseline systems across comparable lengths,
demonstrating that GHA preserves scalabil-
ity and efficiency even when integrated with
diffusion-style modules. Overall, these results
confirm that both OmniGHA variants are com-
petitive solutions for long-context multimodal understanding.

For generation (Table 4), OmniGHA (AR-only) delivers 5.26 images/s, 5.2× faster than Show-
o and 4.9× faster than JanusFlow, while remaining close to OmniMamba (5.68 images/s). The
AR+Diffusion variant reaches 1.95 images/s—slower due to the diffusion head but still outperform-
ing Show-o and JanusFlow—confirming that the additional cost stems from the generation module
rather than the GHA backbone, and that GHA transfers effectively to diffusion pipelines without
sacrificing its efficiency advantage in the shared core.
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Overall, these results show that GHA not only improves efficiency in AR-only pipelines but also
transfers robustly to AR+Diffusion settings, offering a favorable trade-off between speed, accuracy,
and extensibility across unified modeling paradigms.

Ablation POPE↑ MME↑ GQA↑ FID-30K↓
Linear 71.8 893 45.2 23.7
Linear + Gate 80.7 1029 52.6 14.7
Linear + Agent-Softmax 80.9 1048 53.2 10.5
GHA 82.6 1135 55.9 9.2

Table 5: Attention ablation in AR-only OmniGHA. We ablate the proposed GHA by starting from
a linear attention baseline and incrementally adding its two components: a gating mechanism and an
agent-token softmax bottleneck. Both additions individually improve multimodal alignment (POPE,
MME, GQA) and image fidelity (FID-30K), while combining them in GHA yields the largest gains.
All experiments are conducted in the AR-only setting to isolate the effect of the attention operator.

5.4 ABLATION STUDIES

We conduct ablations to isolate the contribution of the proposed GHA attention module, and pro-
vide additional results for LoRA configurations, staged pretraining, and agent-token number in Ap-
pendix A.6. All ablations are performed in the AR-only setting, as it provides a controlled envi-
ronment to attribute gains directly to GHA without confounding factors from diffusion modules or
complex backbones. For these ablations, we use a lightweight 0.4B model with a reduced agent-
token count (n = 9) and a lower-cost training setup (shorter schedule and lower image resolution),
allowing efficient experimentation while preserving the relative behavior of different attention vari-
ants.

Table 5 shows that while the linear attention baseline provides efficiency, it underperforms on multi-
modal reasoning and generation fidelity. Adding gating alleviates modality imbalance and stabilizes
training, while agent-token softmax aggregation restores adaptive global context in long sequences.
The full GHA module combines both components, consistently outperforming all partial variants,
which confirms that the gains come from the synergy of gating and agent-token aggregation.

To further examine the role of the gating mechanism, we evaluate GHA under intentionally
modality-skewed training regimes, where batches contain predominantly text-heavy or image-heavy
samples while keeping the agent-token bottleneck fixed. Table 6 summarizes the results. Enabling
the gate provides three consistent benefits: (i) it improves performance in both text-skewed and
image-skewed settings; (ii) it reduces the performance gap between the two regimes; and (iii) it
substantially lowers sensitivity to which modality dominates the data. These findings provide direct
evidence that gating mitigates modality imbalance rather than merely improving overall accuracy.

Interestingly, the image-heavy regime even slightly outperforms the baseline one in Table 5 on
certain metrics. This phenomenon is also observed in recent studies on modality imbalance, where
increasing visual supervision might strengthen cross-modal alignment without degrading overall
balance Park et al. (2025). The key point there is that greater exposure to visual signals can reduce
the modality gap and enhance multimodal reasoning, rather than harming the model’s ability to
integrate modalities.

Our focus here is on efficient attention mechanisms under the unified model, but we view the sys-
tematic study of modality data distribution shifts as an important and emerging direction for future
work.

Ablation POPE↑ MME↑ GQA↑ FID-30K↓
GHA w/ gate (more text) 80.5 1059 53.5 10.8
GHA w/ gate (more image) 82.9 1156 56.8 10.3
GHA w/o gate (more text) 78.7 1003 51.7 11.4
GHA w/o gate (more image) 81.3 1094 54.4 10.9

Table 6: Ablation under modality-imbalanced training. Gating consistently improves robustness
and reduces sensitivity to modality skew.
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6 CONCLUSION

We introduced GHA, a hybrid operator that augments linear attention with gated recurrence and
agent-token–based softmax aggregation, achieving consistent gains over strong unified baselines
such as Show-o and JanusFlow while matching the efficiency of OmniMamba. Our study deliber-
ately focused on a controlled setting with moderate scale and simplified AR-only / AR+Diffusion
pipelines, ensuring improvements can be attributed directly to the attention mechanism itself. A key
limitation is that we have not yet tested GHA within larger-scale unified systems such as BAGEL or
Omni-Qwen, which couple massive datasets with more sophisticated paradigms (e.g., mixture-of-
experts backbones). We view these as orthogonal and complementary directions, and future work
will explore integrating GHA into such advanced frameworks to further assess its scalability and
generality. The plug-and-play nature of GHA makes it especially suitable for such integration, of-
fering a lightweight yet expressive operator for the next generation of unified multimodal models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All models were trained using
publicly available datasets (MS-COCO, LAION, and GQA) under clearly specified preprocessing
steps described in Section 5. We provide detailed hyperparameters, training schedules, and ablation
settings in the Appendix. Hardware details, including GPU type, memory footprint, and batch sizes,
are explicitly reported in Section 6.2. Random seeds were fixed across all experiments to reduce
variance.

For the review phase, we provide an anonymous repository containing the core code for replication
purpose: https://anonymous.4open.science/r/OmniGHA-ICLR2026-63B2

Upon acceptance, we will release the full codebase, pretrained models, and scripts to reproduce all
evaluation results, including ablation studies.
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A APPENDIX

A.1 OMNIGHA MODULES

The modules are shown in Table 7.

Table 7: OmniGHA architecture components and parameter sharing strategy.

Component Role Sharing Trainable
Text Encoder (SigLIP) Encode prompts Shared Frozen
Vision Encoder (DINOv2) Visual understanding Task-specific Frozen
Image Tokenizer (LlamaGen) Visual generation Task-specific Frozen
GHA Decoder (stacked) Multimodal fusion Shared Trainable
Output Heads (linear) Token/logit mapping Task-specific Trainable
LoRA Adapters Task adaptation Task-specific Trainable

A.2 TRAINING STRATEGY

Phase 1: Representation Warm-up (Understanding). We begin by training the shared GHA
decoder together with the text head and a task-specific LoRA branch on multimodal understanding
tasks. These objectives provide dense token-level supervision, which encourages the gating mecha-
nism to learn stable memory retention and prevents early degeneration.

Phase 2: Long-context Adaptation (Generation). Next, we activate the generation-specific
LoRA branch and the image head while continuing to update the shared GHA decoder. This phase
adapts the gated recurrence to handle long-sequence visual token generation, which exhibits higher
variance and requires stable accumulation dynamics.

Phase 3: Joint Alignment (Unified Fine-tuning). Finally, we jointly optimize both LoRA
branches and modality-specific heads with the shared GHA backbone. Encoders remain frozen.
This stage aligns understanding and generation in the shared decoder space, consolidating cross-
modal reasoning and ensuring that the gating mechanism generalizes across tasks.

Our design is tailored to the gated–agent structure of GHA. Empirically, we find that direct joint
training leads to unstable loss and saturated gates, whereas the proposed progressive schedule pro-
vides denser early gradients, stabilizes gating dynamics in long-context generation, and consolidates
cross-modal reasoning during fine-tuning. This curriculum not only improves downstream accuracy
but also allows us to freeze heavy encoders and concentrate compute on the shared GHA decoder,
yielding a more efficient training pipeline.

A.3 OMNIGHA VARIANTS: AR+DIFFUSION

To demonstrate extensibility beyond the AR-only setting, we also instantiate OmniGHA in an
AR+Diffusion variant. In this variant, the shared GHA decoder produces unified multimodal fu-
sion features that are projected via a lightweight latent predictor to form conditioning signals. These
conditioning features guide a diffusion-style generation head based on flow matching, which per-
forms efficient velocity field prediction to progressively sample high-fidelity images. The final out-
put image is reconstructed through a pretrained VAE decoder that decodes latent representations into
pixels. This design inherits the core principles of the Show-o approach, integrating autoregressive
multimodal fusion with a diffusion-based generative mechanism, while demonstrating the flexibility
of GHA in supporting diverse unified multimodal pipelines.

A.4 TRAINING DETAILS AND DATASETS

We constructed our corpus from publicly available multimodal understanding and visual generation
datasets and trained the model from scratch without relying on a pretrained backbone. The architec-
ture consists of 48 transformer layers, using a lightweight agent-token configuration of n = 49.
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For multimodal understanding, DINOv2 and SigLIP encoders are employed (images resized to
384 × 384), and a VQVAE tokenizer (LlamaGen) is used for visual generation (images downsam-
pled to 256 × 256). LoRA modules (rank 8, adding only 0.65% parameters) were applied to the
input projectors of each block. Training was conducted on 64 NVIDIA A100 GPUs in BF16 preci-
sion using AdamW (β1 = 0.9, β2 = 0.95), cosine annealing with warm-up, weight decay = 0, and
gradient clipping = 1.0.

Our training followed a progressive three-phase curriculum. In Phase 1 (Representation Warm-up),
we trained only on multimodal understanding data, including 118K COCO images and 558K sam-
ples from the LLaVA-1.5 pretraining set, with batch size 32, learning rate 1×10−3, 5K steps, and 100
warm-up steps. In Phase 2 (Long-context Adaptation), we switched to text-to-image generation us-
ing 35M image–text pairs from CC12M, SA1B, and LAION-aesthetics-12M (excluding MS-COCO
2014), with batch size 90, learning rate 8 × 10−4, 100K steps, and 1K warm-up steps. Finally,
in Phase 3 (Joint Alignment), we fine-tuned jointly on multimodal understanding (665K LLaVA-
1.5 conversations, 220K LVIS-Instruct-4V with GPT-4V instructions, and 400K LRV-Instruct for
hallucination mitigation) and text-to-image data, using batch size 48 for generation and 3 for under-
standing, learning rate 1× 10−4, 150K steps, and no warm-up.

This curriculum provides dense supervision early on, stabilizes gate dynamics during long-context
generation, and consolidates cross-modal reasoning during unified fine-tuning while keeping heavy
encoders frozen.

A.5 ADDITIONAL EVALUATION DETAILS

To isolate the architectural contribution of GHA, we train a pure Transformer baseline that mirrors
OmniGHA in all aspects of the pipeline. The baseline matches OmniGHA in model size (1.3B),
component configuration (Table 7), training corpus, preprocessing, and the full three-phase curricu-
lum. The only difference is that the decoder uses standard multi-head softmax attention instead of
GHA.

Table 8 summarizes the understanding and generation results. OmniGHA improves over the Trans-
former baseline across all metrics (+5.1 POPE, +208 MME-P, +7.3 VQAv2, +1.3 GQA) and reduces
FID-30K from 6.15 to 5.12.

Model Params Res. POPE↑ MME-P↑ VQAv2↑ GQA↑ FID-30K↓
Standard Transformer 1.3B 384 83.6 1134.7 73.3 61.1 6.15
OmniGHA 1.3B 384 88.7 1342.5 80.6 62.4 5.12

Table 8: Controlled comparison between standard Transformer and OmniGHA. Both models
are trained from scratch under identical data, compute, curriculum, and pipeline setups.

Beyond accuracy, GHA delivers substantial efficiency gains. Table 9 reports inference time across
long-context settings. OmniGHA achieves 1.5–7× lower latency for multimodal understanding and
4× higher throughput for image generation.

Model 4K 8K 16K 32K 64K 128K Avg. Img/s Latency (s)

Standard Transformer 87 104 128 167 204 249 156 1.29 15.12
OmniGHA 12 38 75 110 132 156 87 5.26 2.97

Table 9: Inference efficiency comparison under identical hardware and decoding settings.

These results confirm that the performance and efficiency gains of OmniGHA arise directly from the
attention operator design rather than differences in model scale, data exposure, or training pipeline.
Our Transformer baseline is implemented and tuned under exactly the same pipeline as OmniGHA,
and both models are trained from scratch under matched compute and corpus. The empirical im-
provements therefore reflect architectural behavior rather than confounding factors.

Importantly, our observations are consistent with findings in other hybrid-attention studies. Recent
works such as Qwen-Next Qwen.ai (2025) and Kimi Linear Team et al. (2025) (though in different
domains) have shown that hybrid attention mechanisms can outperform pure Transformers in certain
tasks or regimes, demonstrating that hybrid designs can be competitive and compute-efficient archi-
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tectural choices. This contextualizes why, under our unified multimodal setting, GHA can deliver
stronger results than the pure-Transformer baseline when budgets are matched.

While full softmax attention is undeniably expressive, unified multimodal decoders face an inherent
challenge: modality imbalance. Visual tokens are dense and high-dimensional, whereas text tokens
are sparse and low-entropy. Prior multimodal systems such as Flamingo and Show-o introduce ad-
ditional projections, gating modules, or fusion strategies to stabilize cross-modal interactions under
pure Transformers, underscoring this difficulty.

As discussed in Subsection 5.4, GHA targets this issue with two dedicated mechanisms: (1) key–
value gating, which balances modality contributions by dynamically normalizing visual vs. textual
keys/values; and (2) agent-token softmax aggregation, which stabilizes long-context interactions
while preserving the global expressiveness and compensating for strengths associated with pure
Transformers. Together, these components form a more stable and compute-efficient architecture
for the fixed-budget unified multimodal training regime used in this work, explaining the observed
gains over the controlled Transformer baseline and aligning with broader empirical trends in hybrid-
attention architectures.

A.6 ADDITIONAL ABLATION STUDIES

Impact of Different Unified Model Architecture. Table 10 reports the results of different LoRA
configurations. Although our backbone is designed to be shared across all tasks, we observe that
adding lightweight task-specific components can still bring consistent benefits. This is because the
backbone must generalize simultaneously to both dense understanding objectives and sparse gener-
ative supervision, which inevitably introduces optimization conflicts. Task-specific LoRA modules
act as adapters that specialize the shared decoder to each modality without compromising parameter
efficiency.

Removing LoRA modules significantly hurts both multimodal understanding and generation per-
formance (POPE: 80.2, FID: 19.5). Introducing LoRA only for the understanding branch improves
understanding metrics (82.1/1069/54.8) but only moderately reduces FID (14.3). Conversely, using
LoRA only for the generation branch improves generation (FID: 13.9) while leaving understanding
weaker (81.7/1045/54.6). Applying both understanding and generation LoRA leads to consistent
gains across all benchmarks (82.6/1135/55.9/9.2), and further adding an output-specific LoRA yields
the best performance (82.9/1149/56.3/8.8). These results confirm that task-specific LoRA modules
help the model efficiently specialize for each modality while maintaining cross-task synergy.

Impact of Pretraining Phases. Table 11 presents an ablation study of the three-phase pretraining
pipeline (Phase 1: representation warm-up, Phase 2: long-context adaptation, Phase 3: unified
alignment). Using all three phases yields strong performance (82.6/1135/55.9/9.2), while skipping
Phases 1 and 2 and training only with a unified objective leads to clear drops in both understanding
and generation (80.9/1046/53.2/12.2).

These observations are consistent with prior unified multimodal systems, where multi-stage training
is a standard practice. Pipelines such as Show-o Xie et al. (2024a), JanusFlow Ma et al. (2025),
and OmniMamba Zou et al. (2025) all adopt staged curricula, as jointly optimizing understanding
and generation with a single decoder is challenging under a single-stage recipe. The curriculum
provides benefits to GHA: the warm-up phase supplies dense representation supervision, the long-
context phase stabilizes the gate dynamics, and the final alignment phase consolidates cross-modal
reasoning.

Impact of Agent-Token Number. We further examine the sensitivity of GHA to the number of
agent tokens (n). Table 12 summarizes results for n ∈ {4, 9, 16, 25}. Performance improves sub-
stantially when increasing n from 4 to 9, after which the model enters a stable regime with only
marginal gains for n ∈ [9, 25]. This shows that GHA does not rely on a large number of agent
tokens—small n already captures most of the benefit—and that the improvements arise from the
mechanism itself rather than from a large hidden constant.

To complement accuracy-based analysis, we also measure inference-time scaling at a 64K sequence
length. Table 13 shows that runtime grows sublinearly with n, confirming that the cost is softened
in practice due to our Triton kernel fusion and persistent KV buffer design.
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Understanding Generation

Ablation POPE↑ MME↑ GQA↑ FID-30K↓
No LoRA 80.2 1031 53.3 19.5
Only Understanding LoRA 82.1 1069 54.8 14.3
Only Generation LoRA 81.7 1045 54.6 13.9
Understanding & Generation LoRA 82.6 1135 55.9 9.2
Understanding & Generation LoRA + Output LoRA 82.9 1149 56.3 8.8

Table 10: Ablation studies on unified model architecture design.

Understanding Generation

Ablation POPE↑ MME↑ GQA↑ FID-30K↓
Stage 1+2+3 82.6 1135 55.9 9.2
Only Stage 3 80.9 1046 53.2 12.2

Table 11: Ablation studies on Pretraining Phases. Phase 1: Understanding Pretraining, Phase 2:
Generation Pretraining, Phase 3: Unified Alignment.

n (agent tokens) POPE↑ MME↑ GQA↑ FID-30K↓
25 83.6 1160 58.7 8.2
16 82.7 1143 56.8 8.8
9 82.6 1135 55.9 9.2
4 78.4 1011 50.6 12.5

Table 12: Ablation on the number of agent tokens (n).

n (agent tokens) Inference Time @ 64K (s)

25 93
16 78
9 43
4 32

Table 13: Inference-time impact of agent-token number.

A.7 LLM USAGE

This work is entirely original; ChatGPT was used solely for language polishing.

19


	Introduction
	Related Work
	Unified Multimodal Models
	Efficient Sequence Modeling
	Expressivity Enhancements

	Preliminary
	Gated Hybrid Attention
	Parallel Formulation
	Recurrent Formulation
	Hardware-efficient Implementation
	OmniGHA: Unified Multimodal Architecture

	Experiments
	Data and Training Setup
	Evaluation Results
	Efficiency Results
	Ablation Studies

	Conclusion
	Appendix
	OmniGHA Modules
	Training Strategy
	OmniGHA Variants: AR+Diffusion
	Training Details and Datasets
	Additional Evaluation Details
	Additional Ablation Studies
	LLM USAGE


