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ABSTRACT

Humans can imagine and manipulate visual images mentally, a capability known
as spatial visualization. While many multi-modal benchmarks assess reasoning
on visible visual information, the ability to infer unseen relationships through
spatial visualization remains insufficiently evaluated as a spatial skill. This re-
liance on publicly sourced problems from IQ tests or math competitions risks data
contamination and compromises assessment reliability. To this end, we introduce
SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visual-
ization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically
generated problems, a scalable framework that allows for expansion to ensure fair
and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large
Language Models (MLLMs) reveals wide performance variations, demonstrates
the benchmark’s strong discriminative power, and uncovers counter-intuitive find-
ings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on
open-source models. Through statistical and qualitative analysis of error types,
SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in
spatial visualization tasks, thereby addressing a significant lacuna in the field.
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Figure 1: Overview of SpatialViz-Bench. (a) presents a representative task instance. (b) unfolds the
reasoning behind (a): perceiving visible cues to infer unseen relationships via iterative visualization
and memorization. The table highlights a systematic gap: unlike perception, spatial visualization
remains a largely unassessed blind spot in prior benchmarks (indicated by lighter colors). (c) displays
zero-shot accuracy revealing significant gaps against human performance.
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Figure 2: Overview of Tasks in SpatialViz-Bench. SpatialViz-Bench evaluates 4 spatial sub-abilities,
mental rotation, mental folding, visual penetration, and mental animation, via 3 tasks each (12 tasks
total). Each task has 2–3 difficulty levels of 40–50 cases, yielding 1,180 question–answer pairs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong capabilities in complex reasoning, and
the integration of Vision Transformers (ViTs) has given them “eyes,” extending these abilities into
the multimodal domain. While many tasks focus on visible information, real-world challenges
in fields like architectural design and medical-image–assisted surgery often demand the ability
to mentally construct and manipulate unseen structures, a capability in which existing MLLMs
still struggle. To bridge this gap, spatial visualization must be abstracted and assessed through
targeted evaluations that isolate it from confounding factors, like a well-designed physics exam tests
fundamental principles. However, current evaluations rely heavily on web-sourced problems, risking
data leakage and inconsistent formulations, underscoring the need for a procedurally generated,
standardized benchmark to ensure fair and reliable assessment.

This cognitive faculty for mental manipulation is known as spatial visualization, which was first
identified by Thurstone in his work on primary mental abilities (Thurstone, 1938). Successfully
performing spatial visualization tasks relies on two other fundamental spatial abilities: Spatial
perception (Thurstone, 1950), which aims to perceive external spatial information and relationships,
and spatial memorization (Della Sala et al., 1999), which requires temporarily storing transformation
information mentally without accessing physical objects.

Despite their importance as dedicated spatial-reasoning challenges, spatial visualization tasks are
often buried under broader categories like mathematical or logical reasoning, appearing as multimodal
puzzles or 3D geometry problems. This categorization obscures the evaluation of spatial visualization
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as a distinct capability and focuses on "solving" a problem rather than driving research toward core
spatial abilities. Moreover, most examples are drawn from publicly available sources, online IQ tests,
administrative exams, and math contests, which risks overlap between training and evaluation data
and undermines reliability. The scarcity of items per subskill also magnifies random error, while
heterogeneous formats make it hard to distinguish true reasoning failures from misinterpretation.
Consequently, even with potential pretraining exposure, performance remains poor. State-of-the-art
systems score just 27.64 on 3D Geometry in MM-IQ (Cai et al., 2025) and 26.00 on Descriptive
Geometry in MathVision (Wang et al., 2024).

The modern paradigm of pretraining on vast, scraped internet data fundamentally challenges evalu-
ation validity (Wu et al., 2025), a problem exacerbated by proprietary datasets that make auditing
for contamination impossible. This fundamental challenge calls for a new generation of benchmarks
with dynamically updatable test banks to ensure persistent evaluation integrity (Ni et al., 2025).

To address these shortcomings, we introduce SpatialViz-Bench, a novel benchmark designed to
formally evaluate the spatial visualization capabilities of MLLMs, comprising a framework of 4
key sub-abilities(mental rotation, mental folding, visual penetration, and mental animation) from
which 12 targeted tasks are designed for comprehensive assessment. Inspired by benchmarks
like CLEVR (Johnson et al., 2017), a diagnostic benchmark for spatial perception, which uses
Blender (Blender Online Community, 2016) for data generation, we developed a pipeline that
integrates Python with FreeCAD (FreeCAD Team, 2025) for the programmatic generation of novel
test cases, enabling scalable task expansion while effectively preventing data contamination by
dynamically updating the test bank through randomized generation. We employ standardized question
templates to minimize errors arising from varied instructions. Furthermore, programmatic generation
allows us to control task difficulty precisely and to create distractors with explanations systematically.

Models with strong spatial visualization skills can serve as an efficient internal world model,
providing a foundational capability for various downstream applications. This allows a model to run
fast, lightweight internal “what-if” scenarios (e.g., "what happens if I rotate this object?", “if this gear
turns clockwise, which way will the connected gear move?”) to predict the outcome of actions. This
is far more efficient than the current alternative of invoking large, diffusion-based video generation
models to explicitly render a future state.

The main contributions of our work can be listed as follows:
• We introduce SpatialViz-Bench, the first benchmark to formally establish a comprehensive and

challenging evaluation framework for spatial visualization, a core yet long-overlooked cognitive
ability. It is grounded in cognitive science and assesses 4 key sub-abilities through 12 distinct
tasks, resulting in a total of 1,180 examples across parameter-controlled difficulty levels.

• We establish a scalable and trustworthy programmatic generation methodology for 11 of our tasks.
This approach not only enables continuous expansion of tasks but also sets a new standard for fair
evaluation by preventing data contamination through dynamic updates to the test bank.

• We systematically evaluate 27 MLLMs, with top scores from Gemini-2.5-pro (44.66%) and o1
(41.36%). These results demonstrate the benchmark’s challenge and high discriminative power,
revealing a significant capability gap to human performance.

• We conduct a diagnostic analysis revealing that model failures stem primarily from fundamental
Perceptual and Spatial Transformation deficits, rather than from high-level reasoning, which offers
a clear direction for future improvements.

2 RELATED WORKS

Current Landscape in Spatial Reasoning Benchmarks The evaluation of spatial reasoning in
MLLMs has largely concentrated on abilities tied to directly observable information. Benchmarks
for spatial perception, the ability to identify and interpret spatial relationships from visual input,
are the most established. Existing benchmarks like What’sUp (Kamath et al., 2023), Blink (Fu
et al., 2024), and SpatialRGPT-bench (Cheng et al., 2024) assess how models understand object-
or camera-centric relationships, relative distances, sizes, and positions. Progress has also been
made in evaluating spatial memorization, with video-based benchmarks like VCBench (Li et al.,
2024) and VSI-bench (Yang et al., 2024b) challenging models to track objects in dynamic scenes.
These efforts have built a foundation for assessing a type of spatial reasoning that relies on explicit
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Algorithm Pool

Question: The left image shows the original cube stack 
made of equal-sized small cubes. Which of the options 
on the right cannot be obtained by rotating the original 
cube stack? Please answer from options A, B, C, or D.
Choices:  
      A. A   B. B
      C. C   D. None of above
Answer: C
Explanation:
A: Option A is incorrect because the cube stack can be 
obtained by rotating the original stack around the x-axis 
by 270 degrees. 
B: Option B is incorrect because the cube stack can be 
obtained by rotating the original stack around the y-axis 
by 90 degrees.
C: Option C is correct because it was obtained by 
removing one small cube from the original stack.

Input

Task Name

Task 

Parameters

Question 

Template

Reference Image

Positive Samples

Negative Samples

Question: Which of the 

options on the right cannot 

be obtained by rotating the 

original cube stack? 

Rotate!!

Remove!!

Output Data

Input Image

Input Text

Ground Truth 
Answer

Original A B C 

Explanation

Figure 3: The programmatic generation pipeline of a data instance. We constructed the dataset
using an programmatic generation system that integrates Python with FreeCAD, enabling precise
control of difficulty, systematic generation of distractor options, and programmatic recording of
explanations for incorrect choices.

visual information and applies a model’s world knowledge to interpret what is perceived. However,
they largely neglect the advanced capability of spatial visualization, the ability to infer implicit
visual-spatial information through transformation of structures derived from visible inputs, leaving a
significant gap in the current evaluation landscape.

Evaluation of Spatial Visualization Evaluating spatial visualization presents challenges regarding
data contamination, obscured categorization, and narrow task coverage. A primary concern is contam-
ination from public sources (Xu et al., 2025b), a risk programmatic generation seeks to mitigate, as
seen in the LEGO-Puzzles benchmark (Tang et al., 2025). Furthermore, spatial visualization is often
subject to obscured categorization, subsumed under broader domains like mathematical or logical
reasoning in general benchmarks (e.g., MM-IQ (Cai et al., 2025), MathVision (Wang et al., 2024)),
which diverts focus from it as a core ability. Concurrently, specialized datasets exhibit narrow task
coverage, focusing on single sub-skills like mental rotation (SPARE3D (Han et al., 2020), CLEVR-
MRT (Beckham et al., 2023)) or specific tasks like paper folding (SRBench (Stogiannidis et al.,
2025)). Yin et al. (2025) also assess mental modeling, utilizing distinct organizational frameworks,
such as relative spatial perspectives.

3 SPATIALVIZ-BENCH

3.1 SPATIAL VISUALIZATION

Spatial visualization is a core component of human cognitive systems and a critical capability for
deployment in downstream applications. Research into this ability began with Thurstone (Thurstone,
1938), who defined it as performing mental operations on visual images and identified it as one of the
key spatial factors: spatial perception, spatial visualization, and mental rotation (Thurstone, 1950).

Building on this foundation, we establish a cognitive framework that decomposes spatial visualization
tasks into two phases: observing visible information and discerning implicit information. The
former requires basic spatial perception, while the latter demands an alternation between spatial
visualization (mentally manipulating images to find implicit information) and spatial memorization
(temporarily storing visuospatial information) (Della Sala et al., 1999).

Our benchmark’s design is guided by 4 core sub-abilities: 1) mental rotation: Mentally representing
and rotating objects while maintaining their features; 2) mental folding: Mentally folding 2D patterns
into 3D objects or vice versa (Glass et al., 2013); 3) visual penetration: Imagining the internal
structure of an object from its external features (Titus & Horsman, 2009); 4) mental animation:
Mentally visualizing the motion of components within a system (Sims & Hegarty, 1997).

3.2 OVERVIEW OF SPATIALVIZ-BENCH

Stemming from an availability-driven collection, current web-sourced benchmarks containing spatial
visualization tasks lack standardization and a cognitive theory basis, resulting in inconsistent tasks
and incomplete coverage. We counter this with a systematic, ability-centric methodology: we use a
hierarchical framework based on cognitive principles to guide new task design and employ a unified
input format with standardized templates to reduce confounds and enable fine-grained error analysis.
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Table 1: A Compact Summary of Spatial Reasoning Tasks.

Category Task Name Core Objective Negative Samples Difficulty Scaling

Mental
Rotation

2D Rotation Identify correct 2D rotation Mirroring;
internal pattern rotation Non-centrally symmetric patterns

3D Rotation Identify correct 3D rotation View mirroring
cube removal Larger assemblies

Three-View
Projection Select left view from projections

Wrong view substitution;
view flipping;
line deletion

Real engineering parts
(DeepCAD (Wu et al., 2021))

Mental
Folding

Paper Folding Predict unfolded hole pattern Hole mirroring, addition,
deletion, or relocation

More folds;
larger grid;
more holes

Cube Unfolding Select correct 2D net from view Swapping face colors;
rotating internal patterns Asymmetric/dot patterns on faces

Cube Reconstruction Select 3D view from net;
Find opposite face Mirroring the correct 3D view Follows Cube Unfolding

Visual
Penetration

Cross-Section Identify cross-section of solid Altered geometric proportions 3-solid composites;
oblique slicing

Cube Counting Infer total cube count from views Options from min/max math bounds 2 to 3 views;
larger assemblies

Cube Assembly Find complementary part of split stack Add/remove cubes from correct part Larger stacks;
3-part splits

Mental
Animation

Arrow Moving Predict final state
or movement sequence Incorrect endpoint from same start Multiple arrows;

interaction rules

Block Moving Predict final state with gravity Incorrect final states Higher complexity;
longer sequences

Mechanical System Understand motion propagation Incorrect motion outcomes More system modules

Based on our cognitive framework, we propose SpatialViz-Bench to comprehensively evaluate the
spatial visualization capabilities of MLLMs. It is organized around 4 core sub-abilities—mental
rotation, mental folding, visual penetration, and mental animation—with 3 assessment tasks designed
for each, totaling 12 tasks. Each task includes 2 to 3 difficulty levels, with each level containing 40 or
50 test cases, comprising 1,180 question-answer pairs in total, mostly with image-based options to
focus on visual reasoning. Further details on the dataset characteristics are provided in Appendix C.

3.3 CONSTRUCTION OF SPATIALVIZ-BENCH

SpatialViz-Bench is constructed through a combination of programmatic generation and manual design.
For 11 of the tasks, we used a programmatic system integrating Python with FreeCAD (FreeCAD
Team, 2025) (see Figure 3). By explicitly utilizing cognitive load parameters rather than heuristics,
such as aligning rotational complexity (global object vs. internal pattern rotation) with mental
transformation steps (Shepard & Metzler, 1971), our programmatic framework ensures precise
difficulty control, while employing controlled randomness to enhance diversity and generate distractor
options with explanations for deep diagnostics. Notably, the Three-View Projection task (Level 1)
uses fixed DeepCAD (Wu et al., 2021) models, but we programmatically generate novel distractors
(e.g., random line deletion, view flipping) to ensure novelty. Conversely, the Mechanical System task
(1/12) was manually designed, as programmatic, physically-consistent generation was technically
difficult. Using representative public simulations as a reference, experts designed all questions from
scratch. These visual-based questions probe dynamic motion propagation (e.g., rotational dynamics
from a single image), testing visual simulation rather than caption recall or theoretical derivation.

This combined methodology, leveraging both programmatic generation and the vast pool of public
simulations for expert-driven question design, supports a dynamically updated test bank that proac-
tively mitigates data contamination. A task summary is presented in Table 1, with detailed generation
processes, algorithmic pseudocode, and illustrative examples deferred to Appendix B.1, B.4 and D.

4 EVALUATION

4.1 EVALUATION SETUP

Models We conducted comprehensive experiments on a diverse range of MLLMs, including 8
closed-source and 19 open-source models. For closed-source MLLMs, we evaluated models from
5 major providers, including OpenAI series (GPT-4o (Hurst et al., 2024), o1 (Jaech et al., 2024)),
Gemini series (Gemini-2.5-flash, Gemini-2.5-pro (Deepmind, 2025)), Claude series (Claude-3.5-
sonnet (Anthropic, 2024), Claude-3.7-sonnet (Anthropic, 2025)), Qwen-VL-max (Bai et al., 2023),

5
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Table 2: Comparison of open-source model performances. Tasks: 2D Rotation (2DR), 3D Rotation
(3DR), Three-View Projection (3VP), Paper Folding (PF), Cube Unfolding (CU), Cube Reconstruction
(CR), Cross-Section (CS), Cube Counting (CC), Cube Assembly (CA), Arrow Moving (AM), Block
Moving (BM), Mechanical System (MS). The first and second highest accuracy of MLLMs are
marked in red and blue, with open-source and closed-source models marked separately.

Model
Overall Mental Rotation Mental Folding Visual Penetration Mental Animation

w/o CoT w/ CoT 2DR 3DR 3VP Avg PF CU CR Avg CS CC CA Avg AM BM MS Avg

Human - 82.46 90.00 79.16 87.50 85.56 93.75 75.00 72.92 80.56 72.92 70.83 82.50 75.42 90.00 87.50 87.50 88.33

Random - 25.08 23.75 27.50 31.00 27.69 19.17 20.00 25.83 21.67 30.00 25.00 30.00 28.12 28.75 16.25 25.00 23.33

Qwen2.5-72B-Instruct(Text-only) - 25.86 15.00 35.00 15.00 21.67 23.33 16.67 26.67 22.22 20.00 33.33 45.00 31.25 25.00 30.00 30.00 28.33

Open Source MLLMs
3B

SAIL-VL-1.5-2B 29.32 24.15 22.50 22.50 22.00 22.31 20.00 27.50 20.00 22.50 24.17 26.67 32.50 27.19 21.25 25.00 27.50 24.58

InternVL3-2B - 26.19 16.25 33.75 31.00 27.31 22.50 25.83 25.00 24.44 20.00 30.83 30.00 26.56 18.75 32.50 30.00 27.08

Deepseek-VL2-tiny(3B) 29.58 21.36 17.50 22.50 27.00 22.69 21.67 20.83 19.17 20.56 20.83 22.50 18.75 20.94 18.75 21.25 25.00 21.67

Qwen2.5-VL-3B-Instruct 30.17 26.10 20.00 18.75 21.00 20.00 25.00 25.83 21.67 24.17 25.83 23.33 30.00 25.94 35.00 30.00 42.50 35.83

7B

Qwen2.5-VL-7B-Instruct 30.76 27.97 25.00 16.25 29.00 23.85 34.17 21.67 30.00 28.61 16.67 36.67 28.75 27.19 22.50 23.75 51.25 32.50

Qwen2.5-Omni-7B 31.44 27.29 22.50 20.00 29.00 24.23 25.00 27.50 20.00 24.17 20.83 33.33 27.50 27.19 31.25 30.00 45.00 35.42

SAIL-VL-1.6-8B 29.15 25.00 18.75 21.25 25.00 21.92 28.33 25.00 18.33 23.89 21.67 19.17 23.75 21.25 25.00 35.00 45.00 35.00

InternVL3-8B 30.25 30.08 20.00 38.75 28.00 28.85 28.33 23.33 25.00 25.56 15.83 40.83 38.75 30.94 30.00 30.00 51.25 37.08

16B

Kimi-VL-A3B-Instruct(16B) 32.37 23.90 16.25 30.00 36.00 28.08 25.83 20.00 26.67 24.17 21.67 5.00 28.75 17.19 15.00 31.25 37.50 27.92

Kimi-VL-A3B-thinking(16B) - 28.14 13.75 20.00 25.00 20.00 23.33 24.17 26.67 24.72 25.00 36.67 25.00 29.38 30.00 43.75 47.50 40.42

Deepseek-VL2-small(16B) 25.17 25.17 31.25 16.25 26.00 24.62 22.50 25.00 26.67 24.72 9.17 35.00 35.00 25.31 26.25 23.75 28.75 26.25

32B

Deepseek-VL2(27B) 30.08 28.31 25.00 33.75 30.00 29.62 31.67 25.00 22.50 26.39 18.33 39.17 28.75 28.75 26.25 30.00 31.25 29.17

Qwen2.5-VL-32B-Instruct 33.90 32.12 31.25 35.00 38.00 35.00 21.67 25.00 27.50 24.72 25.83 36.67 43.75 34.38 28.75 27.50 55.00 37.08

InternVL3-38B 29.75 30.34 22.50 33.75 29.00 28.46 20.83 29.17 30.83 26.94 21.67 32.50 41.25 30.63 25.00 30.00 56.25 37.08

72B

Qwen2.5-VL-72B-Instruct 35.00 33.31 28.75 31.25 28.00 29.23 22.50 20.00 30.00 24.17 30.00 41.67 48.75 39.06 27.50 40.00 63.75 43.75

QvQ-72B-preview - 28.14 21.25 30.00 31.00 27.69 16.67 19.17 27.50 21.11 30.00 22.50 32.50 27.81 25.00 50.00 43.75 39.58

InternVL3-78B 32.29 29.75 25.00 25.00 34.00 28.46 19.17 25.00 22.50 22.22 20.83 40.00 48.75 35.00 23.75 41.25 41.25 35.42

108B

Llama-4-Maverick-17B-128E-Instruct - 31.78 20.00 40.00 40.00 33.85 16.67 29.17 29.17 25.00 19.17 35.00 47.50 32.19 35.00 40.00 42.50 39.17

LLama-4-Scout-17B-16E-Instruct - 34.24 32.50 35.00 43.00 37.31 16.67 32.50 36.67 28.61 17.50 37.50 53.75 34.06 28.75 40.00 50.00 39.58

Closed Source MLLMs
GPT-4o 30.76 31.10 32.50 27.50 33.00 31.15 29.17 15.83 30.00 25.00 19.17 40.83 40.00 32.50 22.50 32.50 60.00 38.33

o1 - 41.36 62.50 28.75 49.00 46.92 28.33 34.17 26.67 29.72 37.50 40.83 33.75 37.81 67.50 52.50 52.50 57.50

Claude-3.5-sonnet 26.86 32.54 31.25 25.00 45.00 34.62 20.83 22.50 31.67 25.00 22.50 35.83 46.25 33.44 37.50 31.25 52.50 40.42

Claude-3.7-sonnet - 33.90 32.50 36.25 44.00 38.08 18.33 26.67 29.17 24.72 24.17 30.83 43.75 31.56 66.25 28.75 43.75 46.25

Gemini-2.5-flash - 36.86 42.50 30.00 35.00 35.77 26.67 30.00 40.83 32.50 30.00 38.33 28.75 32.81 67.50 33.75 48.75 50.00

Gemini-2.5-pro - 44.66 52.50 32.50 47.00 44.23 43.33 31.67 30.00 35.00 33.33 55.00 36.25 42.19 95.00 35.00 58.75 62.92

Doubao-1-5-vision-pro 37.54 33.31 7.50 35.00 45.00 30.38 31.67 23.33 29.17 28.06 30.00 55.83 30.00 39.69 22.50 37.50 47.50 35.83

Qwen-VL-max 36.10 32.03 23.75 26.25 33.00 28.08 24.17 17.50 31.67 24.44 26.67 47.50 42.50 38.44 26.25 36.25 55.00 39.17

and Doubao-1.5-vision-pro (ByteDance, 2025). For open-source MLLMs, we assessed Qwen2.5-VL
series (Bai et al., 2025), QvQ (Qwen Team, 2024), Qwen-Omni (Xu et al., 2025a), InternVL-3
series (Zhu et al., 2025), Deepseek-VL2 series (Wu et al., 2024), SAIL-VL series (Dong et al., 2025),
Kimi-VL-A3B series (Team et al., 2025) and LLama-4 series (Meta AI, 2025). For text-only LLM,
we used Qwen2.5-72B-Instruct (Yang et al., 2024a).

Setting For a rigorous evaluation, all experiments were performed in a zero-shot setting (Hao et al.,
2025; Wang et al., 2024), comparing model performance under two prompting schemes: (1) CoT,
where prompts were designed to encourage models to output their reasoning process before the
final answer, and (2) Direct Answering (non-CoT), where prompts solicited the answer directly (see
Appendix E.2). This methodology enabled us to not only assess the accuracy of responses but also
gain deeper insights into the models’ underlying reasoning mechanisms across our benchmark tasks.

Metric Design To evaluate models handling multimodal inputs and generating textual outputs, with
most options presented as images, we formatted all tasks as Multiple-Choice Answer (MCA) with
one correct answer. Option and reference images were integrated into a unified visual input. For
questions where answers could be expressed as simple text, we also provided a text-based answer
format (detailed in Appendix E.4). Model performance was assessed using accuracy, based on the
match between predicted and ground-truth answers. This standardized approach ensures consistent
evaluation across tasks and enables fair comparison of multimodal understanding across models. A
comparative analysis of performance on both formats is provided in Appendix F.2.

Human Baseline Our human baseline was established with 8 graduate students from mechanical
engineering and computer science, selected for their strong spatial reasoning backgrounds. Each
participant solved a 72-problem subset under strict conditions designed to be analogous to MLLM

6
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Figure 4: Statistical Analysis of Model Performance, Difficulty Sensitivity, and Task Discrim-
inability. (a) presents the overall model performance with 95% Wilson confidence intervals. (b)
shows the distribution of model sensitivity to difficulty gradients. (c) provides a task-centered analysis
of difficulty sensitivity, revealing how difficulty levels differentiate model capabilities across tasks.

evaluation: no external aids (e.g., scratch paper) were allowed, but time was unlimited. This protocol
isolates intrinsic spatial visualization abilities for a fair comparison.

4.2 EVALUATION RESULTS

This section first establishes the performance gaps between different models and then, through a CoT
ablation study, investigates the impact of explicit reasoning to identify the core abilities required for
advanced spatial reasoning.

4.2.1 MAIN RESULTS

Tasks in SpatialViz-Bench are Vision-Dependent and Reasoning-Intensive As the textual input
alone is insufficient, visual input is essential for problem-solving, making the benchmark highly
vision-dependent. We empirically validated this claim by evaluating a powerful text-only LLM
(Qwen2.5-72B-Instruct). As detailed in Table 2, the text-only model achieved a total accuracy of
25.86%, which is negligibly different from the random-chance baseline (25.08%), quantitatively
proving that the visual modality is indispensable. Most options are image-based, requiring precise
visual analysis rather than simple matching, thereby increasing reasoning complexity. For both
humans and MLLMs, these tasks demand multi-step spatial transformations and inferences that
mirror complex CoT processes.

Performance Gaps Reveal a Statistically Validated Hierarchy of MLLMs All evaluated models
performed well below the human baseline (82.46%), underscoring the benchmark’s difficulty. Our
analysis, now supported by 95% Wilson confidence intervals (CIs) (as shown in ??), confirms
this performance hierarchy is statistically robust. The top performer, Gemini-2.5-pro (44.66%, CI:
[41.85%, 47.51%]), demonstrates capabilities irrefutably above the random baseline (25.08%, CI:
[22.69%, 27.64%]), as their CIs do not overlap. More importantly, this analysis provides solid
statistical backing for the critical capability gap between proprietary and open-source models. The
CI for Gemini-2.5-pro shows no overlap with that of the top open-source model, LLaMA-4-Scout
(34.24%, CI: [31.58%, 36.99%]), confirming this ∼10% performance delta is significant. Conversely,
the CIs help group statistically similar models into "performance tiers"; for example, the CIs for
LLaMA-4-Scout and Qwen2.5-VL-72B-Instruct (35.00%, CI: [30.67%, 36.04%]) highly overlap,
making their performance statistically indistinguishable. This statistically validated discriminative
power highlights significant room for improvement.

Core 3D Visualization Tasks Reveal Common Model Failures Models with higher overall accuracy
generally perform well across individual tasks. Most models show near-random accuracy on core 3D
tasks like 3D Rotation, Cube Unfolding & Reconstruction, indicating common and severe perceptual
and visualization limitations in 3D space. Both proprietary models perform well on the Arrow Moving
task, with Gemini-2.5-pro even surpassing human performance, while most of open-source models
perform at near-random levels. This suggests that, despite its relatively low visual complexity, the task
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Table 3: Statistical significance analysis of CoT prompting impact (p < 0.05).

Model Source CoT Impact Significant (p < 0.05) p-value
Kimi-VL-A3B-Instruct Open Negative Yes 0.0192
Deepseek-VL2-tiny Open Negative Yes 0.0463
Internvl2.5-78B Open Negative Yes 0.0368
Qwen2.5-Omni-7B Open Negative Yes 0.0216
Sail-VL-1.6-8B Open Negative Yes 0.0479

Claude-3.5-sonnet Closed Positive Yes 0.0007

Table 4: Robustness analysis of CoT performance. (a) Performance remains stable across different
CoT prompt templates. (b) The significant performance gap between CoT and non-CoT persists
across extraction rules, ruling out parsing failures as the cause of performance drops.

(a) Sensitivity to Prompt Variations (Accuracy %)
Model CoT A CoT B ∆

Qwen2.5-VL-72B 33.31 31.19 -2.12
GPT-4o 31.10 30.81 -0.29
Claude-3.5-sonnet 32.54 28.31 -4.23

(b) Sensitivity to Extraction Rules (Acc. Drop%)
Model Rule A ↓ Rule B ↓ ∆

SAIL-VL-1.5-2B -8.22 -7.29 +0.93
Deepseek-VL2-3B -5.18 -5.01 +0.17
Kimi-VL-16B -8.47 -9.66 -1.19

requires advanced reasoning—such as understanding object-centered motion—which open-source
models still lack. In most cases, model performance matched our expected difficulty levels, though
some discrepancies with human perception offer valuable insights for refining task design and guiding
future research. Additional evaluation results and task-specific analysis are provided in Appendix F.1.

Difficulty Collapse Only Visible in Top-Tier Models We first validated our intended difficulty
gradient (DG) against human performance and hypothesized models would show similar scaling.
However, data reveals a widespread "performance floor" at L0; 10 models showed ≤1 significant
DG, while the top-performing Gemini-2.5-pro was most sensitive (7 DGs) (Figure 4.b). From a task-
centric perspective (Figure 4.c), three tasks induced a significant DG in 11 or more models. Notably,
the stark DG contrast between CubeReconstruction (12 models) and its symmetric counterpart
CubeUnfolding (1 model) suggests models better reason about symmetry from unfolded views.
Conversely, BlockMoving (0 DGs) proved challenging at both levels, rendering any drop statistically
invisible. Critically, on 3DRotation, the only two models exhibiting a DG were the top-two performers
(Gemini-2.5-pro, o1). This confirms our core claim: only top-tier models achieved non-random L0
accuracy, and thus were the only ones capable of showing a statistically significant collapse at L1.

4.2.2 COT PROMPTING ABLATION STUDY

For the non-CoT evaluation, we excluded models designed for extended reasoning (e.g., o1, Gemini-
2.5 series) or those unable to adhere to the format (e.g., InternVL3-2B), proceeding only with models
that could reliably provide a single-letter answer (detailed in Appendix E.2).

Our ablation study on Chain-of-Thought (CoT) prompting confirms a "CoT paradox," a phenomenon
also noted by EMMA (Hao et al., 2025): CoT benefits high-performing closed-source MLLMs but
often paradoxically degrades their open-source counterparts. We provide new statistical validation for
this. As shown in Table 3, the impact is significantly positive for claude-3.5-sonnet but significantly
negative for several leading open-source models.

Crucially, our analysis pinpoints where this degradation occurs. The performance loss for these
open-source models is not uniform but is highly concentrated in "pure-visual" spatial tasks (e.g.,
3ViewProjection, 3DRotation). This strongly supports our hypothesis: for these models, the mandate
to generate explanatory text (CoT) interferes with their native visual-spatial judgment, acting as
a cognitive distraction rather than an aid. In contrast, top-tier closed-source models demonstrate
superior resistance to this interference, likely due to specialized RL-based reasoning training, allowing
them to leverage CoT effectively.

4.2.3 ROBUSTNESS TO PROMPTING AND EXTRACTION STRATEGIES

To rule out the possibility that the observed CoT degradation is an artifact of specific prompt
engineering or parsing failures, we conducted a sensitivity analysis in Table 4. First, we tested models
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Mental Animation-Mechanical System-Level 0

Thinking Process:
 1. Define the system and motion:
 We have an epicyclic gear train. The orange gear (Sun) 
is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the 
orange gear and rotates clockwise (ω_y < 0). The green gear 
(Planet 2) meshes with the yellow gear, and is identical to it 
(N_g = N_y). The yellow and green gears are carried by an 
implicit arm that revolves around the center of the orange 
gear. We need to find the absolute rotation (spin) and 
revolution (orbit) of the green gear relative to the fixed 
orange gear.
 2. Determine the arm's revolution (ω_arm): 
 The relationship between the sun, planet, and arm is 
given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm) 
= -N_o / N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm) 
= -N_o / N_y. 
 ……
Final Answer: C 
→ Can’t intuitively thinking without theoretical derivation

Question: In the coaxial system shown, the orange gear is 
fixed, and the yellow and green gears are identical in shape. 
If the yellow gear rotates clockwise, what is the motion of 
the green gear relative to the orange gear? 

Choices:  
 A. Clockwise rotation, 
      clockwise revolution  
 B. Clockwise rotation, 
              counterclockwise revolution
 C. No rotation, 
              clockwise revolution     
 D. No rotation, 
              counterclockwise revolution

Mental Folding-Cube Reconstruction-Level 

Thinking Process:
 1. Identify the faces and their opposite pairs:
 Label the faces in the net based on the number of 
dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5 
(where 1 is below 3, and 5 is below 6)
 Determine opposite faces by folding mentally or 
noting faces separated by one other face in a straight line 
(or around corners):
 The face with 4 dots is opposite the face with 1 dot.
 The face with 3 dots is opposite the face with 6 dots.
 The face with 2 dots is opposite the face with 5 dots.
 2. Evaluate the options based on opposite faces:
 A cube view can only show faces that are adjacent to 
each other. Opposite faces can never be seen together.
 Option A: Shows faces with 4 dots, 3 dots, and 1 dot. 
Since 4 and 1 are opposite faces, this view is impossible
 ……

Question: The left image shows the net (unfolded pattern) 
of a cube, with six faces having different patterns. The net 
is folded upward to form a cube. From an axonometric 
(3D) viewing angle of the cube, which combination of 
adjacent patterns is possible to see? 
Choices:  A. A    B. B    C. C    D. D

a b c d

Final Answer: C  
→ Wrong pattern detection
→  Wrong inference of the structure of cube nets and the 
symmetrical relationships between faces after folding

Visual Penetration-Cube Assembly-Level 0

Question: The top left image shows the 
original complete cube stack made of 
equal-sized cubes. It can be formed by 
combining the small cube stack on the 
right(part 1) with one of the options below. 
Which option completes the original cube 
stack? 

Thinking Process:
  ……
 3. Determine the Missing Part (Complete Stack - 
Part 1):
 Subtract the cubes in Part 1 from the Complete Stack 
for each column position: Back-Left Column: 2 (Complete) - 
2 (Part 1) = 0 cubes. Back-Right Column: 2 (Complete) - 0 
(Part 1) = 2 cubes (column 2 high). Middle-Left Column: 2 
(Complete) - 1 (Part 1) = 1 cube (must be the top cube). 
Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       
Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       
Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube 
(must be the bottom cube).  
 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4 
cubes.       
 Structure of Missing Part: A column of 2 cubes in the 
back-right position, a single cube in the middle-left top 
position, and a single cube in the front-right bottom position. 
 ……

Choices:  
 A. A    B. B    C. C    
 D. All three other options are incorrect

Final Answer: C  
→ Incorrect calculation method

Mental Animation-Block Moving-Level 1

Thinking Process:
 1.  Analyze States: 
 Identify block positions (R, G, DB, P, C) in Initial and 
Final states using a consistent coordinate system (e.g., R at 
0,0,0). Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0), 
C(1,1,1). 
 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1). 
 The change is G swaps with DB.
 ……

Question: … During the transformation process, blocks can 
move one unit in any direction (forward, backward, left, right, 
up, down). If the target position is empty, the block can move 
there directly; if the target position already has a block, they 
swap places. Blocks cannot float in the air. If a block is 
moved away from a position, any block above it will fall 
down until reaching a supporting surface. The xyz axes are 
shown in the diagram, and each block's position can be 
precisely identified using coordinates (x1,y1,z1). Which of 
the following transformation sequences can change the cube 
stack from the initial state to the final state shown in the 
diagram? 

Choices:  
 A. (1, 1, 1) x- -- (0, 0, 0) x+
 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-
 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+
 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Final Answer: D  
→ Missing 1 block and the positions of blocks are wrong

a b c ed

Figure 5: Comparison of error type distributions, with chart (a) showing the overall breakdown
and charts (b-e) detailing results for specific MLLMs: (b) Gemini-2.5, (c) o1, (d) Qwen2.5-VL-72B
and (e) Qwen2.5-VL-7B. Errors are classified into six categories: Perceptual, Spatial Transformation,
Methodological, Instruction Following, Spatial Memorization, and Calculation & Reasoning.

with an alternative CoT prompt template (detailed in Appendix E.2). As shown in Table 4(a), the
performance trends remained consistent, with Qwen2.5-VL-72B still underperforming compared to
its non-CoT baseline (35.00%). Second, we compared two distinct answer extraction rules (truncated
letter matching as Rule A vs. full-format regex matching as Rule B, detailed in Appendix E.4).
Table 4(b) reveals that the discrepancy between rules is negligible (< 1.2%), confirming that the
negative impact of CoT (ranging from -5% to -9%) is a genuine reasoning failure, not a parsing error.

4.3 ERROR ANALYSIS

This section first presents a statistical error analysis across several representative models to identify
common failure modes, followed by a detailed case study of Gemini-2.5-pro to illustrate its specific
reasoning processes.

4.3.1 STATISTICAL ERROR ANALYSIS

This evaluation was conducted primarily through manual review (2 human annotators), utilizing
Gemini-2.5-pro as an assistive tool based on 6 manually defined error categories, including perceptual,
spatial transformation, spatial memorization, instruction following, methodological, and calculation
& reasoning error (detailed in Appendix E.6.2). To account for diversity in developers, model
sizes, and open/closed-source paradigms, we selected 4 models for deeper analysis: Gemini-2.5-
pro and o1 (the top-performing closed-source models), Qwen2.5-VL-72B (a leading open-source
model), and its smaller counterpart, Qwen2.5-VL-7B. To ensure the reliability of our error taxonomy,
two annotators independently annotated a subset of 100 errors. We calculated the Cohen’s Kappa
coefficient (κ = 0.85), indicating strong inter-annotator agreement. Disagreements were resolved
through discussion with a third expert.

Perceptual and Spatial Transformation Errors Dominate Failures The dominance of Perceptual
and Spatial Transformation errors, which collectively account for nearly 60% of all failures, quantita-
tively supports our central hypothesis that the primary MLLM bottleneck stems from fundamental
failures in visual perception and transformation, not from high-level reasoning deficits. In contrast,
the low frequency of Calculation & Reasoning and Instruction Following errors confirms the bench-
mark’s effective isolation of spatial deficits. Methodological errors, the third-largest category at over
23%, indicate that models often adopt suboptimal problem-solving strategies. This highlights a clear
direction for future improvements: enhancing spatial visualization capabilities by augmenting the
training data with more correct solutions.

Model Scaling Fails to Resolve Core Spatial Deficits A model’s absolute error count correlates with
its performance rank: Gemini-2.5-pro had the fewest errors (204), followed by o1 (236), Qwen2.5-
VL-72B (272), and Qwen2.5-VL-7B (328). Although top models show similar error profiles, Gemini-
2.5-pro’s lower rate of Methodological errors partly explains its superior performance. The limits of
model scaling become evident when comparing Qwen2.5-VL-7B and Qwen2.5-VL-72B. Despite a
tenfold parameter increase, their core error patterns remained strikingly similar, with Perceptual and
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Mental Animation-Mechanical System-Level 0

Thinking Process:
 1. Define the system and motion:
 We have an epicyclic gear train. The orange gear (Sun) 
is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the 
orange gear and rotates clockwise (ω_y < 0). The green gear 
(Planet 2) meshes with the yellow gear, and is identical to it 
(N_g = N_y). The yellow and green gears are carried by an 
implicit arm that revolves around the center of the orange 
gear. We need to find the absolute rotation (spin) and 
revolution (orbit) of the green gear relative to the fixed 
orange gear.
 2. Determine the arm's revolution (ω_arm): 
 The relationship between the sun, planet, and arm is 
given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm) 
= -N_o / N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm) 
= -N_o / N_y. 
 ……
Final Answer: C 
→ Can’t intuitively thinking without theoretical derivation

Question: In the coaxial system shown, the orange gear is 
fixed, and the yellow and green gears are identical in shape. 
If the yellow gear rotates clockwise, what is the motion of 
the green gear relative to the orange gear? 

Choices:  
 A. Clockwise rotation, 
      clockwise revolution  
 B. Clockwise rotation, 
              counterclockwise revolution
 C. No rotation, 
              clockwise revolution     
 D. No rotation, 
              counterclockwise revolution

Mental Folding-Cube Reconstruction-Level 

Thinking Process:
 1. Identify the faces and their opposite pairs:
 Label the faces in the net based on the number of 
dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5 
(where 1 is below 3, and 5 is below 6)
 Determine opposite faces by folding mentally or 
noting faces separated by one other face in a straight line 
(or around corners):
 The face with 4 dots is opposite the face with 1 dot.
 The face with 3 dots is opposite the face with 6 dots.
 The face with 2 dots is opposite the face with 5 dots.
 2. Evaluate the options based on opposite faces:
 A cube view can only show faces that are adjacent to 
each other. Opposite faces can never be seen together.
 Option A: Shows faces with 4 dots, 3 dots, and 1 dot. 
Since 4 and 1 are opposite faces, this view is impossible
 ……

Question: The left image shows the net (unfolded pattern) 
of a cube, with six faces having different patterns. The net 
is folded upward to form a cube. From an axonometric 
(3D) viewing angle of the cube, which combination of 
adjacent patterns is possible to see? 
Choices:  A. A    B. B    C. C    D. D

a b c d

Final Answer: C  
→ Wrong pattern detection
→  Wrong inference of the structure of cube nets and the 
symmetrical relationships between faces after folding

Visual Penetration-Cube Assembly-Level 0

Question: The top left image shows the 
original complete cube stack made of 
equal-sized cubes. It can be formed by 
combining the small cube stack on the 
right(part 1) with one of the options below. 
Which option completes the original cube 
stack? 

Thinking Process:
  ……
 3. Determine the Missing Part (Complete Stack - 
Part 1):
 Subtract the cubes in Part 1 from the Complete Stack 
for each column position: Back-Left Column: 2 (Complete) - 
2 (Part 1) = 0 cubes. Back-Right Column: 2 (Complete) - 0 
(Part 1) = 2 cubes (column 2 high). Middle-Left Column: 2 
(Complete) - 1 (Part 1) = 1 cube (must be the top cube). 
Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       
Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       
Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube 
(must be the bottom cube).  
 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4 
cubes.       
 Structure of Missing Part: A column of 2 cubes in the 
back-right position, a single cube in the middle-left top 
position, and a single cube in the front-right bottom position. 
 ……

Choices:  
 A. A    B. B    C. C    
 D. All three other options are incorrect

Final Answer: C  
→ Incorrect calculation method

Mental Animation-Block Moving-Level 1

Thinking Process:
 1.  Analyze States: 
 Identify block positions (R, G, DB, P, C) in Initial and 
Final states using a consistent coordinate system (e.g., R at 
0,0,0). Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0), 
C(1,1,1). 
 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1). 
 The change is G swaps with DB.
 ……

Question: … During the transformation process, blocks can 
move one unit in any direction (forward, backward, left, right, 
up, down). If the target position is empty, the block can move 
there directly; if the target position already has a block, they 
swap places. Blocks cannot float in the air. If a block is 
moved away from a position, any block above it will fall 
down until reaching a supporting surface. The xyz axes are 
shown in the diagram, and each block's position can be 
precisely identified using coordinates (x1,y1,z1). Which of 
the following transformation sequences can change the cube 
stack from the initial state to the final state shown in the 
diagram? 

Choices:  
 A. (1, 1, 1) x- -- (0, 0, 0) x+
 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-
 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+
 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Final Answer: D  
→ Missing 1 block and the positions of blocks are wrong

a b c ed

Figure 6: Case study of Gemini-2.5-pro’s reasoning in different tasks.

Transformation errors still dominant. While the 72B model nearly eliminated Spatial Memorization
and Calculation errors, it made only limited gains on these most critical error types. This reveals a
crucial insight: scaling alone does not resolve fundamental spatial reasoning deficits. True progress
will likely require innovations in training paradigms, such as (DeepSeek-AI et al., 2025), rather than
merely increasing model size.

4.3.2 ANALYSIS OF TEST CASES

To complement the statistical analysis, we conducted a qualitative case study of Gemini-2.5-pro’s
reasoning processes. The model exhibited strong reasoning, following logically coherent and complete
processes, validating the effectiveness of our evaluation results. This analysis reveals a significant
gap between its abstract reasoning capabilities and its visuospatial processing abilities, reinforcing
that the primary bottleneck is not high-level logic but fundamental perception and visualization.

Deficiencies Found in Both Perception and Visualization A qualitative case study of Gemini-
2.5-pro’s reasoning reveals errors occur at two distinct stages: perceiving visible information and
reasoning about unseen spatial relationships. In processing visible information, the model exhibited
deficiencies in 2D tasks like color recognition and complex pattern identification (Figure 6.a). These
perceptual failures were more pronounced in 3D space, where it struggled to accurately identify
the quantity, position, and spatial relationships of stacked cubes (Figure 6.b). This difficulty is
quantified by a stark performance drop, with accuracy plummeting from 95% on the 2D Arrow
Moving task to just 35% on analogous 3D tasks. The model’s primary struggles, however, emerged
when reasoning about unseen information. It consistently failed tasks requiring mental manipulation,
such as accurately inferring the structure of cube nets or the symmetrical relationships between faces
after folding.

Pre-training Biases Drive Non-Simulative Problem Solving The case study also uncovered strong
pre-training biases that shape the model’s problem-solving approach. For Mechanical System tasks,
which were designed to be solvable via pure spatial visualization, Gemini-2.5-pro often defaulted to
applying theoretical physics formulas instead of mentally simulating the motion (Figure 6.c). This
behavior diverges sharply from human strategies and reveals a critical misalignment between the
model’s problem-solving approach and genuine spatial intelligence, suggesting its internal world
model is more analytical than simulative. These qualitative examples directly illustrate the types of
Methodological failures identified in our statistical analysis, forming a cohesive picture of current
MLLM limitations.

5 CONCLUSION

We introduce SpatialViz-Bench, a cognitive-science–inspired for testing spatial visualization in
MLLMs, designed for continuous task expansion while ensuring fair evaluation by preventing data
contamination via a dynamic test bank. It comprises 12 tasks (1,180 problems) across 4 core sub-
abilities: mental rotation, mental folding, visual penetration, and mental animation. Its results show
strong discriminative power, revealing the primary limitation in models is visuospatial acquisition
over logical reasoning, guiding targeted optimizations in spatial skills.
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6 ETHICS STATEMENT

Data Licensing The SpatialViz-Bench benchmark is released under the MIT license to promote
academic and non-commercial research. Its licensing fully complies with all third-party assets used in
its creation, which include materials governed by the LGPL (e.g., FreeCAD), MIT (e.g., DeepCAD),
CC0 1.0 Universal Public Domain Dedication (e.g., assets from public websites), and default licenses
from websites that are known to support non-commercial fair use (e.g., assets from various video
websites). For SpatialViz-Bench, we abide by Fair Use §107: “the fair use of a copyrighted work,
including such use by · · · scholarship, or research, is not an infringement of copyright”, where fair use
is determined by “the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes” and “the effect of the use upon the potential market
for or value of the copyrighted work.”

Labor Practices All manual data processing and annotation adhered to fair labor practices. Data
review for the Mechanical System task was performed by non-author members of our research group,
who were compensated for their work via research stipends. All other manual processes, including
initial task creation, data verification, and model error analysis, were conducted by the author team as
part of their standard research responsibilities.

7 REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we have made all necessary materials available.
The supplementary materials include the complete source code used for data generation (11 of 12
tasks) and model evaluation. Due to submission size constraints, we have provided a "mini" version
of our benchmark data, which is sufficient to verify our experimental setup and replicate the core
results. Furthermore, to facilitate a clear understanding of our methodology, Appendix B.4 provides
detailed pseudocode for each key algorithm.
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A DETAILED RELATED WORKS

A.1 CURRENT LANDSCAPE IN SPATIAL REASONING BENCHMARKS

Spatial reasoning is foundational to embodied intelligence, supporting critical tasks like navigation,
interaction, and scene understanding. The evaluation of this ability in MLLMs has historically
focused on two primary areas: spatial perception and spatial memorization, both of which rely on
interpreting directly observable, explicit visual information.

Spatial Perception, the ability to interpret spatial relationships from static visual input, is the most
established area. Early benchmarks targeted perceptual-level understanding, such as monocular
depth estimation and object localization. With the rise of MLLMs, this has shifted to visual question
answering formats. For instance, datasets like VSR (Liu et al., 2023) and What’sUp (Kamath et al.,
2023) benchmark models’ comprehension of object-centric spatial relationships. Others, including
SpatialVLM (Chen et al., 2024), Spatial-MM (Shiri et al., 2024), and MMRel (Nie et al., 2024),
further expand this evaluation to include relative distances, camera-object perspectives, and object
size comparisons. More advanced benchmarks like Blink (Fu et al., 2024), with its Multi-view
Reasoning task, and SpatialRGPT-bench (Cheng et al., 2024), which incorporates world knowledge
and multi-hop reasoning, have pushed the boundaries but remain centered on interpreting what is
explicitly perceived.

Spatial Memorization, the ability to track objects and their relationships in dynamic scenes, has been
increasingly addressed by video-based benchmarks. VCBench (Li et al., 2024) evaluates this through
tasks like Flash Grid and 3D Navigator, which test a model’s capacity to retain 2D spatial positions
and predict trajectories in 3D space. Similarly, VSI-bench (Yang et al., 2024b) focuses on skills
essential for navigation, such as egocentric-to-allocentric transformation and perspective-shifting.

While these efforts have built a strong foundation, they predominantly assess reasoning based on
explicit visual cues. They largely neglect the more advanced capability of spatial visualization—the
mental manipulation of shapes and inference of implicit spatial information—leaving a significant
gap in the current evaluation landscape.

A.2 THE INADEQUATE EVALUATION OF SPATIAL VISUALIZATION

Despite its importance, the evaluation of spatial visualization is fraught with challenges, including
obscured categorization in general benchmarks, high risk of data contamination, and a lack of
diagnostic depth.

Obscured Categorization Spatial visualization is often not recognized as a distinct spatial skill.
Instead, it is frequently subsumed under broader domains like mathematical or logical reasoning
within general-purpose MLLM benchmarks. Examples are widespread: it appears as the 3D-Geometry
category in MM-IQ (Cai et al., 2025) and MARVEL (Jiang et al., 2024), the 3D Spatial Simulation
category in EMMA (Hao et al., 2025), 3D Shapes in LogicVista (Xiao et al., 2024), IQ-Test in
Blink (Fu et al., 2024), and Descriptive/Transformation Geometry in Math-Vision (Wang et al.,
2024). While VisualPuzzles (Song et al., 2025) correctly situates it under spatial reasoning, this is
an exception. This common miscategorization diverts focus from developing and evaluating spatial
visualization as a core ability, treating it merely as a type of puzzle.

Risk of Data Contamination The difficulty of designing novel spatial visualization tasks means that
existing benchmarks often source questions from public materials like IQ tests, administrative exams,
and math contests. This practice creates a high risk of data contamination, as these materials are
likely part of the massive web-scraped datasets used for pretraining MLLMs. For example, work by
Xu et al. (2025b) collects data entirely from online psychological tests. Consequently, a model’s high
performance on such benchmarks may not reflect true reasoning capabilities but rather memorization
from the training data, compromising evaluation validity.

Non-Diagnostic Evaluation Current evaluations are often caught between two non-diagnostic ex-
tremes. On one hand, the heterogeneous, mixed-format questions in general benchmarks make it
difficult to isolate and diagnose errors in spatial visualization specifically. On the other hand, special-
ized datasets are often too narrowly focused on a single sub-skill. For example, SPARE3D (Han et al.,
2020) and CLEVR-MRT (Beckham et al., 2023) concentrate on mental rotation, while SRBench (Sto-
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giannidis et al., 2025) uses only paper folding tasks to assess the entire ability. This narrow scope
fails to provide a comprehensive assessment of a model’s overall spatial visualization proficiency.

In contrast to these prior works, our benchmark is designed to be systematic and diagnostic. It
is structured around 4 core sub-skills of spatial visualization identified in cognitive psychology,
with curated tasks targeting each ability. By employing procedural generation for most tasks, our
benchmark ensures greater reliability, reduces the risk of training-set overlap, and enables scalable
data creation for both evaluation and future training. Furthermore, by summarizing the essential
phases of spatial visualization, our framework allows for a more granular analysis to identify the root
causes of reasoning errors.

B DATA CURATION DETAILS

B.1 TASK CONSTRUCTION

1. Mental Rotation

2D Rotation Task. A colored grid pattern with a red corner marker is rotated by 90◦/180◦/270◦
to generate positive samples. Negative samples involve horizontal/vertical mirroring. We further
replace symmetric color fills with non-centrally symmetric patterns. Negatives include mirror flips
and internal rotations of pattern components, increasing spatial reasoning difficulty. As shown
in Algorithm 1.

3D Rotation Task. A connected cube stack is rotated along x/y/z axis to form positives. Negatives
are created by removing one cube or mirroring the isometric view, ensuring no simple rotation
can reproduce them. Spatial complexity is increased by enlarging assembly dimensions, requiring
enhanced 3D rotational reasoning. As shown in Algorithm 2 and Algorithm 3.

Three-View Projection Task. This task has two categories. Firstly, given isometric, front, and
top views of a connected cube stack with marked reference cubes, the task is to select the correct
left view. Negatives involve altering reference cube positions or substituting the right view. We
further introduce real engineering parts from the DeepCAD dataset (Wu et al., 2021), rendered into
standard projections via FreeCAD. Negatives are crafted through random internal lines deletion, view
flipping/rotation, or transformations on unseen views. As shown in Algorithm 4 and Algorithm 5.

2. Mental Folding

Paper Folding Task. A Python-based pipeline generates m× n grid patterns undergoing sequential
folds (vertical/horizontal/diagonal), followed by hole-punching and unfolding. The task requires
identifying the correct unfolded hole distribution. Negative samples are generated by mirroring,
deleting, adding, or relocating holes to violate fold-induced symmetry. Task difficulty increases with
more folds, larger grids, and denser hole placements. As shown in Algorithm 6 and Algorithm 7.

Cube Unfolding Task. Given a cube with six uniquely colored faces and a view from a corner
(three visible faces), the task is to select the correct 2D net (11 possibilities as shown in Figure 7).
Positives can be crafted either by using different cube nets of the same cube or by fixing the mapping
of visible faces while randomly shuffling the remaining faces. Negatives are crafted by swapping
visible face colors or flipping visible-opposite face pairs. We further replace solid colors with
non-centrally symmetric patterns. View angles prioritize faces with asymmetric patterns. Internal
rotations of pattern components are introduced to further increase the reasoning difficulty. To push
the difficulty even further, all six faces feature random colored-dot patterns on a 3×3 grid. As shown
in Algorithm 8, Algorithm 9 and Algorithm 10.

Cube Reconstruction Task. Cubes have six uniquely colored faces. Two task variants exist: (1)
select the correct vertex view of a cube when given its net pattern, with negative samples created by
mirroring the correct view; (2) identify the color of a face opposite to a given colored face. Difficulty
progression follows the cube unfolding tasks. As shown in Algorithm 8 and Algorithm 11.

3. Visual Penetration

Cross-Section Task. Nine basic geometric solids (e.g., triangular/rectangular/circular prisms/pyra-
mids/frustums) are combined in pairs with conical shapes on top. Cross-sections are generated by
slicing the composite shapes using planes parallel to the XY/YZ/XZ planes. Negative samples are
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Figure 7: The eleven unfolded patterns of a cube with their corresponding numbered names. Assuming
the square in row 1, position 0 represents the bottom face, and position 1 represents the right face, the
corresponding arrangement of the remaining faces can be determined, facilitating the rotation of the
cube.

constructed by adjusting the relative geometric proportions within the composite. Task complexity
is increased by introducing composites with three solids, which often produce disconnected cross-
sections that demand enhanced visual reasoning. Additional complexity is introduced by generating
oblique cross-sections at 45◦/135◦. As shown in Algorithm 12.

Cube Counting Task. The task requires inferring the total cube count of a connected cube stack based
on two orthogonal projection views. The minimum and maximum counts are mathematically derived
to guide the construction of answer options. Constraints increase to three orthogonal projection
views, reducing the number of possible solutions while increasing view integration complexity. Task
difficulty further increases by expanding the spatial dimensions of the cubic assemblies. As shown
in Algorithm 2 and Algorithm 13.

Cube Assembly Task. A pyramid-like cube stack is split into two connected parts. Tasks require
identifying the complementary piece that fits the reference part. Negative samples are generated by
modifying the correct piece through the addition or removal of cubic units. The difficulty is further
increased by enlarging the spatial dimensions and dividing the structure into three parts instead of
two. As shown in Algorithm 14 and Algorithm 15.

4. Mental Animation

Arrow Moving Task. For the easy version, an arrow with random initial position and orientation in a
3×3 grid operates by ego-centric rules: movement occurs in 4 directions (forward/backward/left/right),
with "forward" always indicating the arrow’s current orientation. The arrow reorients to the movement
direction after each movement. Valid operation sequences are algorithmically generated; negative
samples share the same initial state but yield incorrect endpoints. For the hard version, multiple
colored arrows are introduced with extended rules: empty positions allow direct entry; occupied
positions trigger object exchanges while maintaining Level 0 movement principles. Tasks include
predicting final states from sequences, or inferring correct sequences from state pairs. As shown
in Algorithm 16, Algorithm 17, Algorithm 18 and Algorithm 19.

Block Moving Task. Colored cube stack combines directional movement with gravity simulation.
Cubes move along six directions with unsupported cubes falling until reaching support and swapping
positions as same as Arrow Moving Task. Increased spatial complexity and longer sequences elevate
reasoning difficulty. As shown in Algorithm 20 and Algorithm 21.

Mechanical System Task. We use open-source mechanical system simulations, classifying com-
plexity by module quantity and designing appropriate questions. These tasks assess advanced mental
animation abilities, particularly to understand how the motion of one component affects others.

B.2 PROGRAMMATIC DATA GENERATION PIPELINE

FreeCAD, an open-source Computer-Aided Design (CAD) software, provides deep integration with
Python programming language, enabling parametric model construction through programming. We
leveraged the synergy between FreeCAD and Python to successfully automate the generation of
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9 spatial visualization tasks: 2DRotation, 3DRotation, 3ViewProjection, CubeFolding, CubeRe-
construction, CrossSection, CubeCounting, CubeAssembly, and BlockMoving. Additionally, two
tasks—PaperFolding and ArrowMoving—were implemented solely using Python. For the Mechani-
calSystem task, due to its complexity and specific requirements, we employed precise manual design
methods. To supplement the task overview presented in Section 3.3, the following sections provide
detailed pseudocode for each programmatically generated task, offering more systematic and in-depth
technical insights.

Mental Rotation Tasks. Algorithm 1 presents the pseudocode for the 2D Rotation Task. For the 3D
Rotation Task, Three-View Projection Task, Cube Counting Task, and Block Moving Task, we need
to construct connected cube stacks, with the core functions detailed in Algorithm 2. Algorithm 3
demonstrates the complete implementation process of the 3D Rotation Task. The method for
generating three-view projections of marked cube stacks is elaborated in Algorithm 4. Algorithm 5
describes the process of importing models from the DeepCAD dataset and generating their three-view
projections.

Mental Folding Tasks. Algorithm 6 implements a Paper class for simulating the dynamic processes
of paper folding, holes punching, and unfolding. Based on this simulation framework, Algorithm 7
constructs the data for the Paper Folding Task. Algorithm 8 presents the core functions for trans-
forming 11 standard cube nets (as shown in Figure 7) into three-dimensional cubes. Utilizing these
transformation functions, while Algorithm 9 demonstrates how different unfolding patterns can
produce the same cube.Algorithm 10 and Algorithm 11 provide the complete pseudocode implemen-
tations for the Cube Unfolding Task and Cube Reconstruction Task, respectively.

Visual Penetration Tasks. Algorithm 12 details the implementation pseudocode for the Cross-
Section Task. Algorithm 13 comprehensively presents the data generation procedure as well as the
mathematical calculation process to guide the construction of answer options in the Cube Counting
Task. Algorithm 14 contains the core functions for decomposing a complete cube stack into multiple
connected parts. Building upon these functions, Algorithm 15 provides the complete construction
pseudocode for the Cube Assembly Task.

Mental Animation Tasks. Algorithm 16 implements an ArrowPath class for simulating the move-
ment process of an arrow centered on itself. Algorithm 17 implements an ArrowMap class that inherits
from the ArrowPath class, designed to simulate movement and exchange operations in multi-arrow
environments. Based on the ArrowPath class, Algorithm 18 details the data construction process
for the single-arrow version of the Arrow Moving Task. Correspondingly, using the ArrowMap
class, Algorithm 19 elucidates the data construction process for the multi-arrow version of the Arrow
Moving Task. Algorithm 20 implements a Block class for simulating the movement and exchange
processes of blocks that follow gravitational rules. Building upon this Block class, Algorithm 21
presents the complete pseudocode implementation of the Block Moving Task.

B.3 MANUL DESIGN FOR MECHANICAL SYSTEM TASK

To ensure the objectivity and quality of the Mechanical System task, we first collected simulation
materials from open-source platforms. The question-answer pairs were designed by members
of the author team, who strictly followed a standardized template based on the observable and
deterministic animations (e.g., "If component A rotates clockwise, how does component B move?").
This structured process was designed to minimize subjectivity and focus the evaluation specifically
on a model’s ability to infer causal dynamics from visual input. To verify the accuracy of these
question-answer pairs, we recruited two graduate student annotators from our research group, who
received compensation for their contributions. They first performed independent reviews of each
sample and then discussed their findings to resolve any discrepancies and reach a final consensus.
This rigorous process ultimately produced 80 validated data samples.
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B.4 PSEUDOCODE

Algorithm 1 2D Rotation Task

1: Input: Color(Pattern) set C, grid size (H,W ), unit length s, marker length s′, task mode m
2: Initialize binary matrix M ∈ {0, 1}H×W with random values
3: Initialize empty lists positive_samples, negative_samples
4: function DRAWGRIDWITHMARKER(M, C, H, W, s, s′, record = list())
5: for i← 0 to H−1 do
6: for j ← 0 to W−1 do
7: pos← (j · s, (H − 1− i) · s, 0)
8: square←FreeCAD.makePlane(s, s, (pos, 0◦))
9: if M [i][j] = 1 then

10: if record is empty then:
11: Randomly select c ∈ C and assign c to square at pos
12: Append c to record
13: else
14: Assign rotate(Pop(record, 0), 90◦) to square at pos
15: end if
16: end if
17: end for
18: end for
19: Randomly select corner ∈ {“top_left”, “top_right”, “bottom_left”, “bottom_right”}
20: posmarker ← get_marker_pos(H, W, s, s′, corner)
21: FreeCAD.makePlane(s′, s′, (posmarker, 0

◦)) with red color
22: img ← FreeCAD.saveImage()
23: return img, record
24: end function
25: ref_img, record← DrawGridWithMarker(M,C,H,W, s, s′)
26: if m = “pattern” then
27: transform_image, record← DrawGridWithMarker(M,C,H,W, s, s′, record)
28: Append transform_img to negative_samples
29: end if
30: for angle ∈ {90◦, 180◦, 270◦} do
31: img ← rotate(ref_img, angle)
32: Append img to positive_samples
33: end for
34: for flip_dir ∈ {“horizontal”, “vertical”} do
35: img ← flip(ref_img, flip_dir)
36: Append img to negative_samples
37: end for
38: samples← (positive_samples, negative_samples)
39: Shuffle samples to assign [A,B,C,D] and record answer_id
40: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 2 Fucntions for Creating Cubes with None-isolated Regions

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: function CREATECUBE(x, y, z)
4: cube←FreeCAD.makebox(s, s, s, (x, y, z)) and append cube to cubes
5: placement[z][y][x]← 1
6: end function
7: function CREATECUBES(X, Y, Z)
8: for z ← 0 to Z−1 do
9: for y ← 0 to Y−1 do

10: for x← 0 to X−1 do
11: if z = 0 or placement_space[z−1][y][x] = 1 then
12: With 50% probability CreateCube(x, y, z)
13: end if
14: end for
15: end for
16: end for
17: end function
18: function CONNECTISOLATEDCUBES(X, Y )
19: cubesxy ← {(x, y) | placement[0][y][x] = 1}
20: Initialize empty set visited, empty list regions
21: directions← [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)]
22: for all (x, y) ∈ cubesxy do
23: if (x, y) /∈ visited then
24: Initialize empty list region, empty queue queue
25: Add (x, y) to visited, add (x, y) to queue
26: while queue is not empty do
27: (cx, cy)← popLeft(queue)
28: Append (cx, cy) to region
29: for all (dx, dy) ∈ directions do
30: (nx, ny)← (cx+ dx, cy + dy)
31: if 0 ≤ nx < X and 0 ≤ ny < Y and (nx, ny) /∈ visited

and placement[0][ny][nx] = 1 then
32: Add (nx, ny) to visited, add (nx, ny) to queue
33: end if
34: end for
35: end while
36: Append region to regions
37: end if
38: end for
39: if |regions| > 1 then
40: for i← 0 to |regions| − 2 do
41: Find (x1, y1), (x2, y2) with min L1 distance between regions[i] and regions[i+ 1]
42: x← x1, y ← y1
43: while (x ̸= x2) or (y ̸= y2) do
44: if x ̸= x2 and y ̸= y2 then
45: x← x± 1, y ← y ± 1
46: else if x ̸= x2 then
47: x← x± 1
48: else if y ̸= y2 then
49: y ← y ± 1
50: end if
51: if placement_space[0][y][x] = 0 then
52: CreateCube(placement, x, y, 0)
53: end if
54: end while
55: end for
56: end if
57: end function

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 3 3D Rotation Task

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists positive_samples, negative_samples
4: Update placement, cubes with CreateCubes(X, Y, Z)
5: Update placement, cubes with ConnectIsolatedCubes(X, Y )
6: ref_img ← FreeCAD.saveImage(cubes)

7: for i← 1 to 4 do
8: Randomly select axis ∈ {x, y, z} and angle ∈ {90◦, 180◦, 270◦}
9: rotated_cubes← rotate(cubes, axis, angle)

10: rotated_img ← FreeCAD.saveImage(rotated_cubes)
11: Append rotated_img to positive_samples
12: end for
13: cubes′ ←Randomly remove a cube from cubes and rotate the left cubes as above
14: rotated_removed_img ← FreeCAD.saveImage(cubes′)
15: Append rotated_removed_img to negative_samples

16: for flip_dir ∈ {“horizontal”, “vertical”} do
17: Randomly choose sample from positive_samples
18: img ← flip(sample, flip_dir)
19: Append img to negative_samples
20: end for
21: samples← (positive_samples, negative_samples)
22: Shuffle samples to assign [A,B,C,D] and record answer_id
23: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 4 Three-View Projection Task with Marked Cube Stack

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists positive_samples, negative_samples
4: Update placement, cubes with CreateCubes(X, Y, Z)
5: Update placement, cubes with ConnectIsolatedCubes(X, Y )

6: function COLORVISIBLEFACES(X, Y, Z, colored_num)
7: cubes← Find cubes that can be seen from front or top or left view
8: Randomly color min(colored_num, |cubes|) cubes in red
9: end function

10: function SAVEVIEWS(cubes)
11: Initialize empty list views
12: for all view ∈ {“Isometric”, “Top”, “Front”, “Left”} do
13: img ←FreeCAD.saveView(view) and append img to views
14: end for
15: return views
16: end function
17: Update cubes with ColorVisibleFaces(X,Y, Z, colored_num)
18: views← SaveViews(cubes)
19: Select left_view from views to positive_samples
20: Select right_view from views to negative_samples

21: Cleaer all colors and update cubus with ColorVisibleFaces(X,Y, Z, colored_num) as
above

22: new_views← SaveViews(cubes)
23: Select left_view and right_view from new_views to negative_samples

24: samples← (positive_samples, negative_samples)
25: Shuffle samples to assign [A,B,C,D] and record answer_id
26: ref_img ← (isometric_view, top_view, front_view)
27: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 5 Three-View Projection Task with Models from DeepCAD Datasets

1: Input: step file path pth
2: Initialize empty lists positive_samples, negative_samples
3: shape←Open(pth)
4: views← SaveViews(shape)
5: function CREATEINCORRECTVIEW(view, mode)
6: if mode = 0 then
7: img′ ←Extract all internal lines and randomly delete 1 line
8: else if mode = 1 then
9: img′ ←rotate(view, 90◦)

10: else if mode = 2 then
11: img′ ← flip(view, “horizontal” or “vertical’)
12: end if
13: return img’
14: end function
15: ref_view ←Choose view from views with max area
16: (questioned_view, other_view)← Randomly assign views except for ref_view
17: Append questioned_view to positive_samples
18: for mode← 0 to 2 do
19: incorrect_view ←CreateIncorrectView(questioned_view or other_view, mode)
20: Append incorrect_view to negative_samples
21: end for
22: samples← (positive_samples, negative_samples)
23: Shuffle samples to assign [A,B,C,D] and record answer_id
24: ref_img ← (isometric_view, top_view, front_view)
25: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 6 Simulation for Paper Folding, Punching and Unfolding

1: Class Paper
2: Attributes:
3: grid, complete_grid: 2D arrays representing current and complete paper states
4: original_rows, original_cols: initial dimensions
5: current_rows, current_cols: current dimensions after folding
6: folds: list of fold operations
7: function FOLD(direction, line or diagonal_points)
8: if direction is horizontal then
9: Calculate folded area

10: Update complete_grid by marking folded area as -1
11: Create new grid with updated dimensions
12: else if direction is vertical then
13: Similar to horizontal but for columns
14: else if direction is diagonal then
15: Calculate diagonal line equation
16: Mark appropriate triangular area as -1
17: end if
18: Record fold operation in folds
19: end function
20: function PUNCH(points)
21: for each (x, y) in points do
22: Set grid[x][y]← 1
23: Set corresponding complete_grid position to 1
24: end for
25: Record punch operation in folds
26: end function
27: function UNFOLD
28: for each fold in reverse folds do
29: if fold is horizontal then
30: Mirror grid about fold line
31: else if fold is vertical then
32: Mirror grid about fold line
33: else if fold is diagonal then
34: Mirror grid about diagonal line
35: end if
36: Update current dimensions of paper
37: end for
38: Clear folds list
39: end function
40: function CREATEINCORRECTVIEW(mode)
41: Create incorrect variant by:
42: if mode = “row” then
43: Either remove a row of holes, add extra row, or swap rows
44: else if mode = “col” then
45: Either remove a column of holes, add extra column, or swap columns
46: else
47: Combine row and column errors
48: end if
49: Update paper with above changes
50: end function
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Algorithm 7 Paper Folding Task

1: Input: Dimensions of paper (rows, cols), number of folds steps, number of holes punches
2: Initialize paper with dimensions rows× cols
3: Initialize empty lists ref_imgs, positive_samples, negative_samples
4: for step← 1 to steps do
5: if step = steps then
6: direction← “diagonal”
7: else
8: direction← Randomly select direction ∈ [“horizontal”,“vertical”]
9: end if

10: if direction = “horizontal” then
11: line← randomInt(1, paper.current_rows− 1)
12: paper.Fold(direction, line)
13: else if direction = “vertical” then
14: line← randomInt(1, paper.current_cols− 1)
15: paper.Fold(direction, line)
16: else if direction = “diagonal” then
17: diagonal_points← Randomly select one set of 45-degree line endpoints
18: paper.Fold(direction, diagonal_points)
19: end if
20: img ←draw_paper(paper) and append img to ref_imgs
21: end for
22: points← Randomly select punches zero positions
23: paper.Punch(points)
24: img ←draw_paper(paper) and append img to ref_imgs

25: paper.Unfold()
26: img ←draw_paper(paper) and append img to positive_samples

27: Initialize paper′ with same dimensions as paper
28: paper′.grid← paper.grid to copy the state of unfolded paper
29: Determine the incorrect view mode
30: for i←1 to 3 do
31: Update paper′ with paper′.CreateIncorrectView(mode)
32: img ←draw_paper(paper′) and append img to negative_samples
33: end for
34: samples← (positive_samples, negative_samples)
35: Shuffle samples to assign [A,B,C,D] and record answer_id
36: data← create_data(ref_imgs, samples, question, answer_id)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 8 Functions for Reconstruting Cube from 11 Kinds of Cube Nets

1: Input: cube size s
2: Define rotation operators:
3: Rx(θ): Rotation about X-axis by θ degrees
4: Ry(θ): Rotation about Y-axis by θ degrees
5: Rz(θ): Rotation about Z-axis by θ degrees
6: function NET2CUBE(plane_name, map, view, rot)
7: Initialize placement dictionary planes
8: planes[“Top”]← ((s/2, s/2, s), Ry(180

◦))
9: planes[“Bottom”]← ((s/2, s/2, 0), Rx(0)

10: planes[“Right”]← ((s, s/2, s/2), Ry(−90◦))
11: planes[“Left”]← ((0, s/2, s/2), Ry(90

◦) ◦Rz(90
◦))

12: planes[“Back”]← ((s/2, s, s/2), Rx(90
◦))

13: if plane_name is “2-2-2” then
14: planes[“Top”]← (s/2, s/2, s), Rx(180

◦) ◦Rz(−90◦)
15: else if plane_name is “1-4-1” then
16: planes[“Left”]← (0, s/2, s/2), Ry(90

◦)◦
17: end if
18: if plane_name ∈ [“1-4-1-0”, “2-3-1-0”] then
19: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦))
20: else if plane_name ∈ [“1-4-1-1”, “1-4-1-4”, “2-3-1-1”, “2-2-2”] then
21: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(−90◦))
22: else if plane_name ∈ [“1-4-1-2”, “1-4-1-5”, “2-3-1-2”, “3-3”] then
23: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(180

◦))
24: else if plane_name is “1-4-1-3” then
25: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(90

◦))
26: end if
27: if plane_name ∈ [“1-4-1-4”, “1-4-1-5”] then
28: planes[“Back”]← ((s/2, s, s/2), Rx(90

◦) ◦Rz(90
◦))

29: end if
30: Form a cube by:
31: for all face_name ∈ planes do
32: placement← planes[face_name]
33: square←FreeCAD.makePlane(s, s, placement)
34: c← map[face_name]
35: if rot is true then
36: Assign rotate(c, 90◦) to square at placement
37: else
38: Assign c to square at placement
39: end if
40: end for
41: img ← FreeCAD.saveView(view)
42: return img
43: end function
44: function DRAWNET(net, map, s, rot)
45: for face_name ∈ net do
46: i, j ← net[face_name]
47: pos← (j · s, (H − 1− i) · s, 0)
48: square←FreeCAD.makePlane(s, s, (pos, 0◦))
49: c← map[face_name]
50: if rot is true then
51: Assign rotate(c, 90◦) to square at pos
52: else
53: Assign c to square at pos
54: end if
55: end for
56: img ← FreeCAD.saveImage()
57: return img
58: end function

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 9 Functions for Unfolding Cube to 11 kinds of Cube Nets

1: Using the same parameter definitions as those in Algorithm 8
2: function DRAWNETWIPIVOT(plane_name, net,map, s, rot)
3: pivot_plane_name← “1-4-1-0”
4: Initialize rotation dictionary planes
5: if plane_name ∈ [“1-4-1-1”, “1-4-1-4”, “2-3-1-1”, “2-2-2”] then
6: planes[“Front”]← Rz(90

◦))
7: else if plane_name ∈ [“1-4-1-2”, “1-4-1-5”, “2-3-1-2”, “3-3”] then
8: planes[“Front”]← Rz(−180◦))
9: else if plane_name is “1-4-1-3” then

10: planes[“Front”]← Rz(−90◦))
11: end if
12: if plane_name ∈ [“1-4-1-4”, “1-4-1-5”] then
13: planes[“Back”]← Rz(−90◦))
14: end if
15: if plane_name ∈ [“2-3-1-0”, “2-3-1-1”, “2-3-1-2”, “3-3”, “2-2-2”] then
16: planes[“Left”]← Rz(−90◦))
17: end if
18: if plane_name is “2-2-2” then
19: planes[“Top”]← Rz(−90◦))
20: end if
21: Create a net which can form the same cube with pivot plane:
22: for face_name ∈ net do
23: i, j ← net[face_name]
24: pos← (j · s, (H − 1− i) · s, 0)
25: square←FreeCAD.makePlane(s, s, (pos, 0◦))
26: if rot is true then
27: Assign rotate(c, 90◦) to square at pos
28: else
29: Assign c to square at pos
30: end if
31: if plane_name ̸= “1-4-1-0” then
32: if face_name ∈ planes then
33: rotation← planes[face_name]
34: square.P lacement.Rotation← rotation
35: end if
36: end if
37: end for
38: img ← FreeCAD.saveImage()
39: end function
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Algorithm 10 Cube Unfolding Task

1: Input: Color(Pattern) set C, unit length s, task mode m
2: Initialize 11 cube nets

nets : {face_name : (i, j)|face_name ∈ {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”}}
3: Initialize empty lists positive_samples, negative_samples
4: map : {face_name : c|c ∈ C} ←Randomly shuffle set C and assign it to six faces
5: Randomly select a view ∈8 corner views of a cube
6: pivot_net_name← “1-4-1-0”
7: ref_img ←Net2Cube(pivot_net_name,map, view, rot = false)
8: for i← 1 to 2 do
9: plane_name, net← Randomly select net from nets

10: img ←DrawNetWiPivot(plane_name, net,map, s, rot = false)
11: Append img to positive_samples
12: if m = “pattern” then
13: img′ ←DrawNetWiPivot(plane_name, net,map, s, rot = true)
14: Append img′ to negative_samples
15: end if
16: end for
17: map′ ←Fix the mapping of face_name ∈ view, and random shuffle the others
18: for i← 1 to 2 do
19: plane_name, net← Randomly select net from nets
20: img ←DrawNetWiPivot(plane_name, net,map, s, rot = false)
21: Append img to positive_samples
22: end for
23: map′ ←Swap the colors(patterns) of a randomly selected face ∈ view with its opposite face
24: plane_name, net← Randomly select net from nets
25: img ←DrawNetWiPivot(plane_name, net,map′, s, rot = false)
26: Append img to negative_samples

27: samples← (positive_samples, negative_samples)
28: Shuffle samples to assign [A,B,C,D] and record answer_id
29: data← create_data(ref_img, samples, question, answer_id)

Algorithm 11 Cube Reconstruction Task

1: Input: Color(Pattern) set C, unit length s, task mode m
2: Initialize 11 cube nets

nets : {face_name : (i, j)|face_name ∈ {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”}}
3: Initialize empty lists positive_samples, negative_samples
4: map : {face_name : c|c ∈ C} ←Randomly shuffle set C and assign it to six faces
5: net ∈ {0, 1}3×5 ← Randomly select net from nets
6: ref_img ←DrawNet(net,map, s, rot = false) and append img to positive_samples
7: for i← 1 to 3 do
8: view ← Randomly select a view from 8 corner views of a cube
9: img ←Net2Cube(net,map, view, rot = false)

10: Append img to positive_samples
11: end for
12: for flip_dir ∈ {“horizontal”, “vertical”} do
13: Randomly choose sample from positive_samples
14: img ← flip(sample, flip_dir)
15: Append img to negative_samples
16: end for
17: samples← (positive_samples, negative_samples)
18: Shuffle samples to assign [A,B,C,D] and record answer_id
19: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 12 Cross-Section Task

1: Input: Number of objects num, number of sections per mode k, whether rotate the slicing plane
rot

2: Initialize candidate objects list objects, empty list selected_objects
3: Initialize empty lists positive_samples, negative_samples
4: function GETSECTIONS(compound, k, plane)
5: Initialize empty list imgs
6: Determine coordmin and coordmax from bounding box
7: step← (coordmax − coordmin)/(k + 1)
8: for i← 1 to k do
9: offset← coordmin + i× step

10: normal_vector ← unit vector normal to plane
11: section← FreeCAD.slice(compound, normal_vector, offset)
12: Rotate section for better visualization
13: img ← FreeCAD.savaImage(section) and append img to imgs
14: end for
15: return imgs
16: end function
17: function GETROTATEDSECTIONS(compound, axis, center)
18: axis_vector ← Corresponding unit vector of axis
19: plane← Parallel to axis
20: for angle ∈ {45◦, 135◦} do
21: axix_vector′ ← rotate(axis_vector, angle, plane)
22: offset← axix_vector · center
23: section← FreeCAD.slice(compound, axis_vector, offset)
24: Rotate section for better visualization
25: img ← FreeCAD.savaImage(section) and append img to imgs
26: end for
27: return imgs
28: end function
29: selected_objects←Randomly select num objects from objects
30: Randomly assign sizes to objects in selected_objects
31: compound← Create objects in FreeCAD and compound objects
32: center ←Obtain the center of compound object
33: for plane ∈ {“XY”,“XZ”, “YZ”} do
34: imgs← GetSections(compound, k, plane)
35: Append imgs to positive_samples
36: end for
37: if rot is true then
38: for axis ∈ {“x”, “y”, “z”} do
39: for angle ∈ {45◦, 135◦} do
40: imgs← GetRotatedSections(compound, axis, center)
41: Append imgs to positive_samples
42: end for
43: end for
44: end if
45: compound′ ←Randomly alter the relative ratios of objects in compound
46: imgs← Use any of the above approaches to obtain cross-sections of compound′

47:
48: Append imgs to negative_samples

49: samples← (positive_samples, negative_samples)
50: Shuffle samples to assign [A,B,C,D] and record answer_id
51: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 13 Cube Counting Task

1: Input: Spatial size (X,Y, Z), cube size s, number of constraint views num
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty list samples
4: function DETECTGRID(view, row_numcol_num)
5: contours←Find contours in view
6: Initialize grid matrix of size row_num× col_num
7: for contour ∈ contours do
8: (x, y, w, h)← Bounding rectangle of contour
9: row ← y/h, col← x/w

10: if row and col within bounds then
11: grid[row][col]← 1
12: end if
13: end for
14: return grid
15: end function
16: function GETCUBEANSWER(front, top, left, num)
17: sum_front_col← Column sums of front
18: sum_top_col← Column sums of top
19: max_2view ← sum_front_col · sum_top_col
20: min_2view ← sum(sum_top_col − 1 + sum_front_col)
21: if num = 2 then
22: return (max_2view,min_2view)
23: end if
24: sum_left_col← Column sums of left
25: Initialize answer matrix with the same dimension as top ∈ {0}H×W

26: for row ← 0 to H − 1 do
27: for col← 0 to W − 1 do
28: if top[row][col] = 1 then
29: ans[row][col]← min(sum_front_col[col], sum_left_col[row])
30: end if
31: end for
32: end for
33: max_3view ← sum(ans)
34: sum_top_row ← Row sums of top
35: min_3view ← max(sum(sum_top_row − 1 + sum_left_col),min_2view)
36: return (max_3view,min_3view)
37: end function
38: Update placement, cubes with CreateCubes(X, Y, Z)
39: Update placement, cubes with ConnectIsolatedCubes(X, Y )
40: (front_view, top_view, left_view)← SaveViews(cubes)
41: front_mat, top_mat, left_mat←

DetectGrid(front_view), DetectGrid(top_view), DetectGrid(left_view)
42: if num = 2 then
43: ref_img ← (top_view, front_view)
44: (max_view,min_view)← GetCubeAnswer(front_mat, top_mat, left_mat, 2)
45: else if num = 3 then
46: ref_img ← (top_view, front_view, leftview)
47: (max_view,min_view)← GetCubeAnswer(front_mat, top_mat, left_mat, 3)
48: end if
49: samples←Generate correct and incorrect nums based on the min_view to max_view range
50: Shuffle samples to assign [A,B,C,D] and record answer_id
51: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 14 Functions for Splitting Cube Stack into Several Connected Parts

1: function GETNEIGHBORS(cube_pos, cubes)
2: (x, y, z)← cube_pos
3: Initialize empty list neighbours
4: for dx ∈ {−1, 0, 1} do
5: for dy ∈ {−1, 0, 1} do
6: for dz ∈ {−1, 0, 1} do
7: if |dx|+ |dy|+ |dz| = 1 then ▷ 6-connected neighborhood
8: neighbor_pos← (x+ dx, y + dy, z + dz)
9: if neighbor_pos ∈ cubes then

10: Append neighbor_pos to neighbours
11: end if
12: end if
13: end for
14: end for
15: end for
16: return neighbors
17: end function
18: function REGIONGROWING(cubes, max_cubes)
19: Initialize empty set part, empty list queue
20: start_pos← Randomly select a position from cubes and append start_pos to queue
21: while queue not empty and |part| < max_cubes do
22: current_pos← pop(queue, 0)
23: if current_pos /∈ part then
24: Add current_pos to part
25: neighbors← GetNeighbors(current_pos, cubes)
26: Extend [n ∈ neighbors | n /∈ part] to queue
27: end if
28: end while
29: return part
30: end function
31: function ISCONTINUOUS(part)
32: Initialize empty set part, empty list queue
33: start_pos← part[0] and append start_pos to queue
34: while queue not empty do
35: current_pos← pop(queue, 0)
36: if current_pos /∈ visited then
37: Add current_pos to visited
38: neighbors← GetNeighbors(current_pos, part)
39: Extend [n ∈ neighbors | n ∈ part and n /∈ visited] to queue
40: end if
41: end while
42: return Whether |visited| = |part|
43: end function
44: function SPLITCUBES(cubes, max_cubes, num_parts)
45: part1← RegionGrowing(cubes,max_cubes)
46: if IsContinuous(part1) then
47: remaining ← Remove part1 from cubes
48: end if
49: if IsContinuous(remaining) then
50: if num_parts = 2 then
51: return sort([part1, remaining]) by size
52: else if num_parts = 3 then
53: Similarly find part2 from remaining cubes as above
54: part3← Remove part2 from remaining
55: return sort([part1, part2, part3]) by size
56: end if
57: end if
58: end function
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Algorithm 15 Cube Assembly Task

1: Input: Spatial size (X,Y, Z), cube size s, number of splitting parts k
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists ref_imgs, positive_samples, negative_samples
4: function CREATECUBESPYRAMID(X, Y, Z)
5: Initialize num = 1
6: for y ← 0 to Y − 1 do
7: num = randomInt(num, min(y + 2, X))
8: for x← 0 to num− 1 do
9: CreateCube(x, y, 0)

10: end for
11: end for
12: for z ← 1 to Z − 2 do
13: Initialize num = 0
14: for y ← 0 to Y − 1 do
15: num = randomInt(num, max(num,sum(placement[z − 1][y])))
16: for x← 0 to num− 1 do
17: CreateCube(x, y, z)
18: end for
19: end for
20: end for
21: for y ← 0 to Y − 1 do
22: for x← 0 to X − 1 do
23: With 50% probability CreateCube(x, y, Z − 1)
24: end for
25: end for
26: end function
27: Update placement, cubes with CreateCubesPyramid(X, Y, Z)
28: cubes_img ← FreeCAD.saveImage(cubes) and append cubes_img to ref_imgs
29: parts← SplitCubes(cubes,max_cubes, num_parts)
30: for part ∈ parts[: −1] do
31: part_img ← FreeCAD.saveImage(part) and append part_img to ref_imgs
32: end for
33: part_img ← FreeCAD.saveImage(parts[−1]) and append part_img to

positive_samples
34: for i← 1 to 2 do
35: part′ ←Randomly remove 1 cube from part[-1]
36: part′_img ← FreeCAD.saveImage(part′) and append part_img to

negative_samples
37: end for
38: samples← (positive_samples, negative_samples)
39: Shuffle samples to assign [A,B,C,D] and record answer_id
40: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 16 Simulation for Arrow Moving

1: Class ArrowPath
2: Attributes:
3: W,H, k: Map width, height, and step count
4: max_step← min(x, y)
5: directions← {(0,1),(1,0),(0,-1),(-1,0)} ▷ up, right, down, left
6: path: Initialize with empty list to record relative moving direction and steps
7: states: Initialize with empty list to record pos and orientation during transformation
8: function INITIALIZESTATE
9: Reset path, states

10: orient_id← randomInt(0, 3)
11: pos ∈ {(x, y)} ← Randomly select a position in the map
12: Append (orient_id, pos) to states
13: end function
14: function GETRELATIVEDIRECTION(orient_id)
15: forward← directions[orient_id]
16: backward← (−forward[0],−forward[1])
17: left← directions[(orient_id− 1) mod 4]
18: right← directions[(orient_id+ 1) mod 4]
19: return {“forward”:forward, “backward”:backward, “left”:left, “right”:right}
20: end function
21: function UPDATEORIENTID(rel_dir, orient_id)
22: if rel_dir is “backward” then
23: orient_id← (orient_id+ 2) mod 4
24: else if rel_dir is “left” then
25: orient_id← (orient_id− 1) mod 4
26: else if rel_dir is “right” then
27: orient_id← (orient_id+ 1) mod 4
28: end if
29: return orient_id
30: end function
31: function MOVE(state, rel_dir, steps)
32: pos, orient_id← state
33: move_dir ← GetRelativeDirection(orient_id)[rel_dir]
34: new_pos← [pos[0] +move_dir[0]× steps, pos[1] +move_dir[1]× steps]
35: if new_pos is invalid then
36: return false
37: end if
38: Append (rel_dir, steps) to path
39: Append (UpdateOrientId(rel_dir, orient_id), new_pos) to states
40: return true
41: end function
42: function GENERATEPATH(k, end_state=None)
43: for i← 1 to k do
44: repeat
45: Randomly select rel_dir ∈ {“forward”, “backward”, “left”, “right”}
46: steps← randomInt(1,max_step)
47: valid_flag ← Move(states[−1], rel_dir, steps)
48: if end_state is not None and i = k then
49: valid_flag ← valid_flag & state[−1] ̸= end_state
50: end if
51: until valid_flag is true
52: end for
53: end function
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Algorithm 17 Simulation for Arrows Moving

1: Class ArrowMap(Inherit from Class ArrowPath)
2: Attributes:
3: colors: Color set
4: path: Initialize with empty list to record arrow position, relative moving direction and steps
5: states: Initialize with empty list to record map during transformation
6: function INITIALIZESTATE
7: Initialize empty matrix state
8: for y ←1 to H do
9: for x← 1 to W do

10: With 50% probability:
11: Randomly select color ∈ colors
12: Randomly get orient_id← randomInt(0, 3)
13: state[pos]← Record color and orient_id at pos(x, y)
14: end for
15: end for
16: Append state to states
17: end function
18: function MOVE(state, arrow_pos, rel_dir, steps)
19: curr_pos← arrow_pos
20: curr_orient_id, curr_color ← state[x][y]
21: move_dir ← GetRelativeDirection(curr_orient_id)[rel_dir]
22: new_pos← [pos[0] +move_dir[0]× steps, pos[1] +move_dir[1]× steps]
23: if new_pos is invalid then
24: return false
25: end if
26: new_orient_id← UpdateOrientId(rel_dir, orient_id)
27: if new_pos = curr_pos and new_orient_id = curr_orient_id then
28: return false
29: end if
30: Append arrow_pos, rel_dir, steps to path
31: if state[new_pos] is None then
32: state[curr_pos]← None
33: else
34: target_color, target_orient_id← state[new_pos]
35: target_move_dir ← −move_dir
36: target_rel_directions← GetRelativeDirection(target_orient_id)
37: taget_rel_dir ← Find {key ∈ target_rel_directions | value = target_move_dir}
38: new_target_orient_id← UpdateOrientId(taget_rel_dir, target_orient_id)
39: state[curr_pos]← target_color and new_target_orient_id
40: end if
41: state[new_pos]← curr_color and curr_orient_id
42: return true
43: end function
44: function GENERATEPATH(k, end_state=None)
45: for i← 1 to k do
46: repeat
47: Randomly select arrow_pos ∈ {pos | state[pos] is not None}
48: Randomly select rel_dir ∈ {“forward”, “backward”, “left”, “right”}
49: steps← randomInt(1,max_step)
50: valid_flag ← Move(state, arrow_pos, rel_dir, steps)
51: if end_state is not None and i = k then
52: valid_flag ← valid_flag & state[−1] ̸= end_state
53: end if
54: until valid_flag is true
55: end for
56: end function
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Algorithm 18 Arrow Moving Task in Easy Version

1: Input: Dimension of map (W,H), step count k
2: Initialize empty lists positive_samples, negative_samples
3: Initialize arrow_path with dimension W ×H
4: Initialize state with arrow_path.InitializeState() and record as initial_state
5: Update path, states with arrow_path.GeneratePath(k)
6: Append path to positive_samples
7: ref_img ← draw_map(states[0], states[−1])
8: Record end_state← states[−1]
9: From the same initial_state

10: for i← 1 to 3 do
11: Update path′ with arrow_path.GeneratePath(k, end_state)
12: Append path′ to negative_samples
13: end for
14: samples← (positive_samples, negative_samples)
15: Shuffle samples to assign [A,B,C,D] and record answer_id
16: data← create_data(ref_img, samples, question, answer_id)

Algorithm 19 Arrow Moving Task in Hard Version

1: Input: Dimension of map (W,H), step count k, task mode m
2: Initialize empty lists positive_samples, negative_samples
3: Initialize arrow_map with dimension W ×H
4: Initialize state with arrow_map.InitializeState() and record as initial_state
5: Update path, states with arrow_map.GeneratePath(k)
6: Append path to positive_samples
7: if m = “state” then
8: ref_img ← draw_map(states[0])
9: Append states[−1] to positive_samples

10: else if m = “path” then
11: ref_img ← draw_map(states[0], state[−1])
12: Append path to positive_samples
13: end if
14: Record end_state← states[−1]
15: From the same initial_state
16: for i← 1 to 3 do
17: Update path′, states′ with arrow_map.GeneratePath(k, end_state)
18: if m = “state” then
19: Append states′[−1] to negative_samples
20: else if m = “path” then
21: Append path′ to negative_samples
22: end if
23: end for
24: samples← (positive_samples, negative_samples)
25: Shuffle samples to assign [A,B,C,D] and record answer_id
26: data← create_data(ref_img, samples, question, answer_id)
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Algorithm 20 Simulation for Block Moving

1: Class Block
2: Attributes:
3: X,Y, Z, k: Spatial size and step count
4: directions: 6 directions
5: colors: Color set
6: cubes_info: Initialize with empty list to record positions and colors of cube objects
7: transformation: Initialize with empty list to record transformations
8: function INITIALIZESTATE
9: Update cubes with CreateCubes(X,Y, Z)

10: Assign randomly selected colors to cubes and record their colors and positions in cubes_info
11: end function
12: function HASSUPPORT(x, y, z)
13: if z = 0 or there is cube at (x, y, z − 1) then
14: return true
15: end if
16: return flase
17: end function
18: function DROPCUBES
19: Sort cubes_info by z of pos in ascending order
20: for cube ∈ cubes_info do
21: (x, y, z)← Acquire position of cube from cubes_info
22: while HasSupport(x, y, z) is flase do
23: Change the position of cube to (x, y, z − 1) and update z ← z − 1
24: end while
25: end for
26: end function
27: function CHECKMOVE(from_pos, to_pos)
28: if (to_pos is invalid) or (HasSupport(to_pos) is false) or (there is no cube at from_pos)

or (there is no cube at to_pos and to_pos is on top of from_pos) then
29: return false
30: end if
31: return true
32: end function
33: function MOVECUBE(from_pos, to_pos)
34: if there is no cube at to_pos then
35: Update cubes_info with changing the position of cube at from_pos to to_pos
36: else
37: Update cubes_info with swapping the cube at from_pos and to_pos
38: end if
39: DropCubes()
40: Append (from_pos, to_pos− from_pos) to transformation
41: end function
42: function GENERATETRANSFORMATION(k)
43: for i← 1 to k do
44: Initialize empty list possible_moves
45: for all cube ∈ cubes_info do
46: for all direction ∈ directions do
47: to_pos← The position of cube from_pos+ direction
48: if CheckMove(from_pos, to_pos) is true then
49: Append (from_pos, direction, to_pos) to possible_moves
50: end if
51: end for
52: end for
53: Randomly select (from_pos, direction, to_pos) ∈ possible_moves
54: MoveCube(from_pos, to_pos)
55: end for
56: end function
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Algorithm 21 Block Moving Task

1: Input: Spatial size (X, Y, Z), step count k
2: Initialize empty lists ref_imgs, positive_samples, negative_samples
3: Initialize block with size (X,Y, Z)
4: Initialize with block.InitializeState() and record as initial_cubes_info
5: img ← FreeCAD.saveImage(initial_cubes) and append img to ref_imgs

6: Update transformation, cubes_info with block.GenerateTransformation(k)
7: Append transformation to positive_samples
8: Record final_cubes_info after transformation
9: img ← FreeCAD.saveImage(final_cubes) and append img to ref_imgs

10: From the same initial_cubes_info
11: for i← 1 to 3 do
12: repeat
13: Update transformation′, cubes_info′ with block.GenerateTransformation(k)
14: until cubes_info ̸= final_cubes_info
15: Append transformation to negative_samples
16: end for
17: samples← (positive_samples, negative_samples)
18: Shuffle samples to assign [A,B,C,D] and record answer_id
19: data← create_data(ref_imgs, samples, question, answer_id)

C DATASET CHARACTERISTIC

Option Modality & Format A significant majority of questions (818) feature image-based options
to emphasize visual reasoning. The choice formats are intentionally varied, including standard
A/B/C/D choices (508 questions), options with A/B/C/‘All three other options are incorrect’ (310
questions), and unique text (242 questions) or numeric (120 questions) answers to prevent models
from overfitting to a single question style. For the numeric answers, we additionally provide direct
numerical responses, and in F.2 we present a comparative analysis of model performance across
different question format.

Answer Distribution The answer distribution is well-balanced across options A (26.5%), B (27.5%),
and C (28.5%). The lower frequency of option D (17.5%) is a deliberate design choice to enhance the
rigor of the evaluation. For many complex tasks, option D serves the distinct role of "All three other
options are incorrect". This asymmetrical design is critical for two reasons. First, it acknowledges
the difficulty of generating multiple high-quality distractors for complex 3D tasks, ensuring all visual
options remain challenging. Second, it compels models to move beyond simple heuristics like "pick
the most similar". Instead, this approach demands eliminative reasoning, requiring the model to rule
out every other option to prove a genuine understanding of the spatial rules being tested.
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D DATA EXAMPLES

We present exemplars of varying difficulty levels for all tasks, with each sample containing an image,
question, options, answer, and explanation.

Mental Rotation 2DRotation: Figure 8, 3DRotation: Figure 9, 3ViewProjection: Figure 10;

Mental Folding PaperFolding: Figure 11, CubeUnfolding: Figure 12, CubeReconstruction: Fig-
ure 13;

Visual Penetration CrossSection: Figure 14, CubeCounting: Figure 15, CubeAssembly: Figure 16;

Mental Animation ArrowMoving: Figure 17, BlockMoving: Figure 18, MechanicalSystem: Fig-
ure 19.

2D Rotation Task-Level 0

Question: The left image shows a colored grid with a red 
square marking one corner. Which grid can be obtained by 
rotating the left grid only, without flipping or other changes? 
Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: A
Explanation:
 A: Option A is correct because it was obtained by 
rotating the original image 270 degrees.
 B: Option B is incorrect because it was obtained by 
rotating the original image 90 degrees and then flipping it 
horizontally.
 C: Option C is incorrect because it was obtained by 
rotating the original image 180 degrees and then flipping it 
vertically.

2D Rotation Task-Level 1

Question: The left image shows a colored grid with a red 
square marking one corner. Which grid can be obtained by 
rotating the left grid only, without flipping or other changes? 
Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: B
Explanation:
 A: Option A is incorrect because it was obtained by 
rotating the original image 270 degrees and then flipping it 
horizontally. 
 B: Option B is correct because it was obtained by 
rotating the original image 180 degrees.
 C: Option C is incorrect because it was obtained by 
rotating the asymmetric patterns in the image.

Figure 8: 2D Rotation Task.

3D Rotation Task-Level 1

Question: The left image shows the original cube stack 
made of equal-sized small cubes. Which of the options on 
the right cannot be obtained by rotating the original cube 
stack? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. All three other options are incorrect

Answer: A
Explanation:

A: Option A is correct because the cube stack can be 
obtained by rotating the original stack around the x-axis by 
270 degrees. 

B: Option B is incorrect because it is a vertically 
mirrored version of the original cube stack.

C: Option C is incorrect because it was obtained by 
removing one small cube from the original stack.

3D Rotation Task-Level 0

Question: The left image shows the original cube stack 
made of equal-sized small cubes. Which of the options on 
the right cannot be obtained by rotating the original cube 
stack? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. All three other options are incorrect

Answer: C
Explanation:

A: Option A is incorrect because the cube stack can be 
obtained by rotating the original stack around the x-axis by 
270 degrees. 

B: Option B is incorrect because the cube stack can be 
obtained by rotating the original stack around the y-axis by 
90 degrees.

C: Option C is correct because it was obtained by 
removing one small cube from the original stack.

Figure 9: 3D Rotation Task.
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Three-View Projection Task-Level 0 Cubes

Question: The cube stack is made of equal-sized small 
cubes, mostly gray with a few red ones. The top row shows 
its isometric view, front view, and top view from left to right. 
Which image in the bottom row is the left view of the cube 
stack? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: D
Explanation:

A: Option A is incorrect because the image shows the 
right view of the cube stack instead of the left view. 

B: Option B is incorrect because the shape matches the 
right view instead of the left view, and the red cubes are not 
in the correct position.

C: Option C is incorrect because the red cubes are not 
in the correct position in the view.

Three-View Projection Task-Level 1 CAD Model

Question: The top row shows the isometric view (left) and 
the top view (right) of a 3D model. Which image in the 
bottom row is the left view of the model? Please answer 
from options A, B, C, or D.

Choices:  
A. A
B. B
C. C
D. All three other options are incorrect

Answer: C
Explanation:

A: Option A is incorrect because the internal outlines 
are missing.

B: Option B is incorrect because the internal outlines 
are missing.

Figure 10: Three-view Projection Task.

Paper Folding Task-Level 0 Paper Folding Task-Level 1 Paper Folding Task-Level 2

Question: The original paper is a 3×3 grid paper. 
The images in the top row show the results of 2 
consecutive folding operations on the grid paper. 
Folding operations include folding along 
horizontal, vertical, or 45-degree direction. The 
rightmost image in the top row shows the result 
after punching holes in the folded paper. Which 
image represents the appearance of the paper 
after unfolding the punched paper? Black solid 
circles represent grid cells with holes. Please 
answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A: Option A is incorrect because extra holes 
appear in column 3. 
 B: Option B is incorrect because holes in 
column 1 are missing.
 D: Option D is incorrect because holes that 
should appear in column 1 appear in column 3.

Question: The original paper is a 4×4 grid paper. 
The images in the top row show the results of 2 
consecutive folding operations on the grid paper. 
Folding operations include folding along 
horizontal, vertical, or 45-degree direction. The 
rightmost image in the top row shows the result 
after punching holes in the folded paper. Which 
image represents the appearance of the paper 
after unfolding the punched paper? Black solid 
circles represent grid cells with holes. Please 
answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: A
Explanation:
 B: Option B is incorrect because extra holes 
appear in row 1.
 C: Option C is incorrect because holes in 
row 4 are missing.
 D: Option D is incorrect because holes that 
should appear in row 4 appear in row 1.

Question: The original paper is a 5×5 grid paper. 
The images in the top row show the results of 3 
consecutive folding operations on the grid paper. 
Folding operations include folding along 
horizontal, vertical, or 45-degree direction. The 
rightmost image in the top row shows the result 
after punching holes in the folded paper. Which 
image represents the appearance of the paper 
after unfolding the punched paper? Black solid 
circles represent grid cells with holes. Please 
answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A: Option A is incorrect because holes in 
row 4 are missing.
 B: Option B is incorrect because holes that 
should appear in row 4 appear in row 5.
 D: Option D is incorrect because extra holes 
appear in row 5.

Figure 11: Paper Folding Task.
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Cube Unfolding Task-Level 0 Cube Unfolding Task-Level 1 Cube Unfolding Task-Level 2

Question: The left image shows a colored cube 
from a particular viewing angle. The options are 
nets (unfolded patterns) of the cube, which are 
folded upward to form the cube. Which net, 
when folded, cannot form the cube shown in the 
left image? Please answer from options A, B, C, 
or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A/D/B: Option A/D/B is incorrect because 
this net could be a valid net for the given cube, 
as the positions of red, pink, and blue match the 
shown cube. 
 C: Option C is correct because this net 
cannot be a valid net for the given cube, as the 
positions of yellow and pink are reversed.

Question: The left image shows a cube with 
different patterns on its six faces from a 
particular viewing angle. The options are nets 
(unfolded patterns) of the cube, which are folded 
upward to form the cube. Which net, when 
folded, can form the cube shown in the left 
image? Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: D
Explanation:
 A: Option A is incorrect because the squares 
with asymmetric patterns have been rotated.
 B: Option B is incorrect because the squares 
with asymmetric patterns have been rotated.
 C: Option C is incorrect because two faces 
have swapped positions.
 D: Option D is correct because the relative 
positions of three faces match the cube shown in 
the left image.

Question: The left image shows a cube with 
different patterns on its six faces from a 
particular viewing angle. The options are nets 
(unfolded patterns) of the cube, which are folded 
upward to form the cube. Which net, when 
folded, cannot form the cube shown in the left 
image? Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. D
Answer: B
Explanation:
 A/C/D: Option A/C/D is incorrect because 
the relative positions of three faces match the 
cube shown in the left image.
 B: Option B is correct because two faces 
have swapped positions, so it cannot form the 
cube shown in the left image.

Figure 12: Cube Unfolding Task.

Cube Reconstruction Task-Level 0 Cube Reconstruction Task-Level 1 Cube Reconstruction Task-Level 2

Question: As shown, this is the net (unfolded 
pattern) of a cube, with six faces colored in 
different colors. The net is folded upward to form 
a cube. Which color face is opposite to the green 
face? Please answer from options A, B, C, or D.

Choices:  
A. yellow
B. pink
C. All three other options are incorrect
D. red

Answer: B
Explanation:

A/B/C/D: Assuming the bottom face is the 
first cell in the second row of the net, then after 
folding, the front face is red, the back face is 
green, the left face is blue, the right face is cyan, 
the top face is yellow, the bottom face is pink.

Question: The left image shows the net 
(unfolded pattern) of a cube, with six faces 
having different patterns. The net is folded 
upward to form a cube. From an axonometric 
(3D) viewing angle of the cube, which 
combination of adjacent patterns is possible to 
see? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: C
Explanation:

Assuming the bottom face is the first cell in 
the second row of the net, and the right face is 
the cell to its right. 

A: Option A is incorrect because it is a 
vertically mirrored version of the back-top-right 
view.

B: Option B is incorrect because it includes 
rotated non-symmetric faces.

C: Option C is correct because it shows the 
front-bottom-right view.

D: Option D is incorrect because it is a 
horizontally mirrored version of the back-top-
left view.

Question: The left image shows the net 
(unfolded pattern) of a cube, with six faces 
having different patterns. The net is folded 
upward to form a cube. From an axonometric 
(3D) viewing angle of the cube, which 
combination of adjacent patterns is possible to 
see? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: A
Explanation:

Assuming the bottom face is the first cell in 
the second row of the net, and the right face is 
the cell to its right.

A: Option A is correct because it shows the 
back-top-right view.

B: Option B is incorrect because it includes 
rotated non-symmetric faces.

C: Option C is incorrect because it is a 
horizontally mirrored version of the front-
bottom-right view.

D: Option D is incorrect because it includes 
rotated non-symmetric faces.

Figure 13: Cube Reconstruction Task.
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Cross-Section Task-Level 0 Cross-Section Task-Level 1 Cross-Section Task-Level 2

Question: The top row shows the combined shape 
viewed from two different angles. The shape 
consists of a cone on top of a square frustum. 
Which of the following images cannot be a cross-
section of the shape? Please answer from options 
A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: C
Explanation:

A: Option A is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XY plane.

B: Option B is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XZ plane.

C: Option C is correct because the 
corresponding cross-section does not match the 
shape shown in the reference image.

D: Option D is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XY plane.

Question: The top row shows the combined shape 
viewed from two different angles. The shape 
consists of a triangular frustum, a cylinder, and a 
circular frustum from top to bottom. Which of the 
following images cannot be a cross-section of the 
shape? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: B
Explanation:

A: Option A is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XZ plane.

B: Option B is correct because the 
corresponding cross-section does not match the 
shape shown in the reference image.

C: Option C is incorrect because it is the 
cross-section made by a plane perpendicular to the 
XZ plane and rotated 45 degrees around the y-axis.

D: Option D is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XY plane.

Question: The top row shows the combined shape 
viewed from two different angles. The shape 
consists of a square pyramid, a cone, and a 
cylinder from top to bottom. Which of the 
following images cannot be a cross-section of the 
shape? Please answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: C
Explanation:

A: Option A is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XZ plane.

B: Option B is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XY plane.

C: Option C is correct because the 
corresponding cross-section does not match the 
shape shown in the reference image.

D: Option D is incorrect because it is the 
cross-section of the shape made by a plane parallel 
to the XZ plane.

Figure 14: Cross-sectionn Task.

Cube Counting Task-Level 0

Question: Given two views, what is the 
minimum number of cubes required to satisfy 
the constraints shown in the images? Please 
answer from options A, B, C, or D.
Choices:  
 A. 5
 B. All three other options are incorrect
 C. 7 
 D. 8
Answer: C
Explanation:
 A/B/C/D: Given two views, at least 7 
cubes and at most 9 cubes are required to 
satisfy the constraints.

Cube Counting Task-Level 1

Question: Given three views, what is the 
maximum number of cubes required to satisfy 
the constraints shown in the images? Please 
answer from options A, B, C, or D.
Choices:  
 A. 8
 B. 11
 C. 10
 D. 9
Answer: D
Explanation:
  A/B/C/D : Given three views, at least 9 
cubes and at most 9 cubes are required to 
satisfy the constraints.

Cube Counting Task-Level 2

Question: Given three views, how many 
cubes could be needed to satisfy the 
constraints shown in the images? Please 
answer from options A, B, C, or D.
Choices:  
 A. All three other options are incorrect
 B. 7
 C. 16
 D. 11
Answer: D
Explanation:
  A/B/C/D : Given three views, at least 11 
cubes and at most 12 cubes are required to 
satisfy the constraints

Figure 15: Cube Counting Task.
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Cube Assembly Task-Level 0

Question: The top left image shows the original complete 
cube stack made of equal-sized cubes. It can be formed by 
combining the small cube stack on the right(part 1) with one 
of the options below. Which option completes the original 
cube stack? Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: C
Explanation:
 A/B: Option A/B is incorrect because one cube is 
missing, resulting in an incorrect cube stack shape. 

Cube Assembly Task-Level 1

Question: The top left image shows the original complete 
cube stack made of equal-sized cubes. It can be formed by 
combining the two small cube stacks on the right with one 
of the options below. Which option completes the original 
cube stack? Please answer from options A, B, C, or D.
Choices:  
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: A
Explanation:
 B/C: Option B/C is incorrect because one cube is 
missing, resulting in an incorrect cube stack shape.

Figure 16: Cube Assembly Task.

Arrow Moving Task-Level 0 Arrow Moving Task-Level 1(v1) Arrow Moving Task-Level 1(v2)

Question: In the diagram, the red arrow is the 
initial arrow, and the green arrow is the final 
arrow. The arrow can move in four directions 
(forward, backward, left, right), where 'forward' 
always refers to the current direction the arrow is 
pointing. After each movement, the arrow's 
direction is updated to the direction of movement. 
Which of the following paths can make the arrow 
move from the starting position to the ending 
position? Please answer from options A, B, C, or 
D.

Choices:  
A. (Left, 2 units)--(Left, 1 unit)
B. (Forward, 1 unit)--(Backward, 1 unit)
C. (Forward, 1 unit)--(Backward, 2 units)
D. (Forward, 1 unit)--(Left, 1 unit)

Answer: D
Explanation:

A/B/C: Option A/B/C is incorrect because 
the initial arrow cannot be transformed into the 
final arrow. 

D: Option D is correct because the initial 
arrow can be transformed into the final arrow.

Question: The left image shows the initial state. 
Arrows can move in four directions (forward, 
backward, left, right), where 'forward' always 
refers to the current direction the arrow is 
pointing. After each movement, the arrow's 
direction is updated to the direction of movement. 
If the target position is empty, the arrow can 
move there directly; otherwise, it needs to swap 
with the arrow at the target position, and both 
arrows' movements should satisfy the 
aforementioned requirements. After the 
transformations '((0, 1) Right, 1 unit)--((2, 2) 
Forward, 1 unit)--((1, 2) Left, 2 units)', which 
state from the options can be reached? Please 
answer from options A, B, C, or D.
Choices:  

A. A
B. B
C. C
D. D

Answer: C
Explanation:

C: Option C is correct because the initial 
state can be transformed into the target state.

A/B/D: Option A/B/D is incorrect because 
the initial state cannot be transformed into the 
target state.

Question: The left image shows the initial state, 
and the right image shows the final state. Arrows 
can move in four directions (forward, backward, 
left, right), where ‘forward’ always refers to the 
current direction the arrow is pointing. After each 
movement, the arrow's direction is updated to the 
direction of movement. If the target position is 
empty, the arrow can move there directly; 
otherwise, it needs to swap with the arrow at the 
target position, and both arrows' movements 
should satisfy the aforementioned requirements. 
Which of the following paths can transform the 
grid from the initial state to the final state? 
Please answer from options A, B, C, or D.

Choices:  
A. ((1, 0) Backward, 1 unit)--((1, 2)

Backward, 1 unit)
B. ((1, 1) Left, 1 unit)--((1, 1) Forward, 1

unit)
C. ((1, 1) Right, 1 unit)--((1, 1) Left, 1 unit)
D. ((1, 2) Forward, 1 unit)--((0, 2)

Backward, 1 unit)
Answer: A
Explanation:

A: Option A is correct because the initial 
state can be transformed into the target state. 

 B/C/D : Option B/C/D is incorrect because 
the initial state cannot be transformed into the 
target state.

Figure 17: Arrow Moving Task.
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Blocks Moving Task-Level 0

Question: The top row of images shows different views of 
the initial state of a cube stack, while the bottom row shows 
different views of the final state after transformation. During 
the transformation process, blocks can move one unit in any 
direction (forward, backward, left, right, up, down). If the 
target position is empty, the block can move there directly; 
if the target position already has a block, they swap places. 
Blocks cannot float in the air. If a block is moved away from 
a position, any block above it will fall down until reaching a 
supporting surface. The xyz axes are shown in the diagram, 
and each block's position can be precisely identified using 
coordinates (x,y,z). Which of the following transformation 
sequences can change the cube stack from the initial state to 
the final state shown in the diagram? Please answer from 
options A, B, C, or D.
Choices:  
 A. (1, 0, 0) y+ -- (1, 1, 0) y- -- (2, 1, 0) y+
 B. (1, 0, 0) y+ -- (2, 1, 0) y+ -- (2, 0, 0) y+
 C. (2, 2, 0) x- -- (2, 0, 0) x-
 D. (1, 0, 0) x- -- (2, 0, 0) y+ -- (2, 2, 0) y-
Answer: A
Explanation:
  B/C/D: Option BCD is incorrect because the initial 
state cannot be transformed into the final state.

Blocks Moving Task-Level 1

Question: The top row of images shows different views of 
the initial state of a cube stack, while the bottom row shows 
different views of the final state after transformation. During 
the transformation process, blocks can move one unit in any 
direction (forward, backward, left, right, up, down). If the 
target position is empty, the block can move there directly; 
if the target position already has a block, they swap places. 
Blocks cannot float in the air. If a block is moved away from 
a position, any block above it will fall down until reaching a 
supporting surface. The xyz axes are shown in the diagram, 
and each block's position can be precisely identified using 
coordinates (x,y,z). Which of the following transformation 
sequences can change the cube stack from the initial state to 
the final state shown in the diagram? Please answer from 
options A, B, C, or D.
Choices:  
 A. (1, 0, 0) y+ -- (0, 0, 1) z-
 B. (1, 0, 0) x+ -- (1, 0, 0) y+
 C. (2, 0, 0) x- -- (1, 0, 0) y+ -- (2, 0, 0) x-
 D. (0, 0, 0) x+ -- (0, 1, 0) y- -- (0, 0, 1) y+
Answer: C
Explanation:
  A/B/D : Option A/B/D is incorrect because the initial 
state cannot be transformed into the final state. 

Figure 18: Block Moving Task.

Mechanical System Task-Level 0

Question: When the red shaft connected to the green rod 
rotates clockwise, what is the motion of the centrally fixed 
blue gear? Please choose from options A, B, C, or D.

Choices:  
 A. Rotates clockwise
 B. Rotates counterclockwise
 C. Does not rotat
 D. Translates to the right
Answer: A
Explanation:
  A/B/C/D: The green rod drives the blue gear to rotate 
only in the clockwise direction.

Mechanical System Task-Level 1

Question: In the image, the green gear is fixed on a 
concentric shaft, while the yellow and pink gears are fixed 
on their own shafts. If the green gear rotates clockwise in 
the given view, what are the resulting motions of the yellow 
and pink gears? Please choose from options A, B, C, or D.
Choices:  
 A. Rotates clockwise, rotates clockwise
 B. Rotates clockwise, rotates counterclockwise
 C. Rotates counterclockwise, rotates counterclockwise
 D. Rotates counterclockwise, rotates clockwise
Answer: D
Explanation:
  A/B/C/D : The yellow gear directly meshes with the 
green gear and thus rotates in the opposite direction, while 
the pink gear is driven through two meshing steps and 
rotates in the same direction as the green gear. 

Figure 19: Mechanical System Task.
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E EVALUATION DETAILS

E.1 MODELS

For the DeepseekVL2 series, InternVL2.5 series, InternVL3 series and SAIL-VL series, we deployed
these models on H100 servers and used the officially provided code to load the pre-trained models for
inference. For all other models, we employed API calls through OpenAI’s client service for inference.
All closed-source models accessed via API in this study were used with specific, identifiable versions
to ensure consistency and reproducibility. Specifically, we used the following model versions:

• gpt-4o-2024-08-06 for GPT-4o
• o1-2024-12-17 for o1
• claude-3-5-sonnet-20240620 for Claude-3.5-Sonnet
• claude-3-7-sonnet-20250219 for Claude-3.7-Sonnet
• Gemini-2.5-flash-preview-04-17 for Gemini-2.5-flash
• Gemini-2.5-pro-preview-03-25 for Gemini-2.5-pro
• Doubao-1-5-vision-pro-32k-250115 for Doubao-1-5-vision-pro
• qwen-vl-max-0408 for Qwen-VL-max

E.2 PROMPTS FOR RESPONSE GENERATION

We use the prompt template as follows:

1) Original CoT Prompt A from DeepSeek-R1(DeepSeek-AI et al., 2025): "You should first
provide a reasoning process, then provide a single option (A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer>
tags, respectively, i.e., <think>reasoning process</think>, <answer>answer</answer>.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

2) Variant CoT Prompt B from EMMA(Hao et al., 2025): "Answer with the option’s letter from the
given choices and put the letter in one ’\boxed’. Please solve the problem step by step.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

3) Non-CoT Prompt: "Answer with a single option letter (A, B, C, or D), enclosed within the
<answer></answer> tag. For example: <answer>A</answer>. Ensure that your output contains only
the final answer, without any intermediate reasoning or additional content.\nQuestion: <question
here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D here>\n"

E.3 ZERO-SHOT SETTING

Our decision to focus exclusively on the zero-shot evaluation setting is grounded in both method-
ological precedent and practical considerations. This approach aligns with the standards set by many
recent, high-impact benchmark papers, such as Math-Vision (Wang et al., 2024), MM-IQ (Cai et al.,
2025), and EMMA (Hao et al., 2025), all of which centered their evaluations on the zero-shot setting
to assess novel reasoning capabilities. While we considered few-shot prompting, we concluded its
utility is limited in our context of complex spatial reasoning. For these intricate visualization tasks,
providing examples with only the final answer offers minimal effective guidance. On the other hand,
creating effective chain-of-thought examples that include complete, multi-step reasoning would be
prohibitively expensive for comprehensive benchmarking.

E.4 METHODS FOR ANSWER EXTRACTION

To ensure robust evaluation and minimize parsing errors, we employ a hierarchical, two-stage
rule-based approach for answer extraction.

Stage 1: Coarse Extraction with Boundary Enforcement.
Adopting the strategy from MME-CoT (Jiang et al., 2025), we first attempt to locate the answer
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segment by scanning for a comprehensive set of standard identifiers, including XML-style tags
(e.g., <answer></answer>) and natural language markers (e.g., "<answer>", "Answer:", "Final
answer", "final answer", "Final Answer", "the answer is", "The answer is", "correct answer", "Correct
answer", "Correct Answer", and "correct path"). The text following these markers is isolated and
truncated at the first subsequent period delimiter. Critically, to prevent false positives where common
words starting with option letters (e.g., “All”, “Backward”) are mistakenly identified as answers, we
enforce strict word boundary constraints. We utilize the regular expression \b([A-D])\b to accept
only standalone option letters.

Stage 2: Prioritized Fine-Grained Matching.
In instances where the coarse extraction fails to yield a valid option, we trigger a secondary, high-
precision extraction routine. This process iterates through a prioritized list of compiled regular
expression patterns designed to handle specific formatting variations (e.g., tagged encapsulated
outputs, boxed answers) and semantic fallback structures. The patterns are applied in the following
order:

• CoT Prompt A with tags:
r"<answer>\s*(?P<value>.*?)\s*</answer>"

• CoT Prompt B with boxes:
r"\\{1,2}boxed{(?:(?:\\text|rm){)?(?P<value>[A-D])"

• Other common answer formats:
r"<answer>\s*option\s+(?P<value>[A-D])(?=</answer>")
r"(?:final|correct)\s+answer\s*(?:is:)\s*(?:option\s*)?(?P<value>[A-D])\b"
r"option\s+(?P<value>[A-D])\b"
r"choose\s+(?P<value>[A-D])\b"

This dual-layer approach ensures high recall for compliant responses while maintaining precision
against hallucinated or verbose outputs. Even with these rules, 100% parsing success isn’t guaran-
teed, as models can still flexibly produce outputs in non-standard formats. For the purpose of our
comparative analysis, we designate the baseline coarse extraction method (excluding strict boundary
enforcement) as Extract Rule A, and the comprehensive dual-stage strategy described herein as
Extract Rule B.

For multiple-choice questions, a response is considered correct if and only if the extracted result
contains exactly one uppercase option letter (A, B, C, or D) matching the standard answer. For non-
choice questions, we perform direct string matching between the extracted result and the reference
answer. This hybrid rule-based evaluation ensures consistent and fair judgment across both option-
based and open-form tasks.

E.5 HUMAN PERFORMANCE

To establish a robust human baseline analogous to the tested MLLMs, we recruited 8 graduate students
(4 Ph.D., 4 M.S.; aged 22-27) from mechanical engineering and computer science. All participants
possessed strong backgrounds in geometry and physics, confirmed through their academic curriculum,
and reported familiarity with spatial reasoning tasks. This selection criterion was chosen because it
mirrors the specialized knowledge domains inherent in the models’ training data. Participants were
compensated at the standard rate for graduate research assistants.

To ensure data quality and minimize the impact of cognitive fatigue and time constraints, we curated
a representative subset of the benchmark for the evaluation. Specifically, we randomly sampled 6
problems from each of the 12 task categories, resulting in a total of 72 problems per participant.
Before commencing each task type, participants were briefed on the rules and completed several
practice trials for familiarization. The evaluation protocol required participants to solve problems
without the use of external aids (e.g., scratch paper, calculators), and they were allowed unlimited time
per question. This approach was designed to emphasize and assess their intrinsic spatial visualization
and mental manipulation capabilities, creating an evaluation condition comparable to assessing a
model’s internal reasoning processes without external memory aids. The reported human performance
is the mean accuracy across all participants.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

E.6 ERROR ANALYSIS

E.6.1 MODEL SELECTION FOR DIRECT ANSWER (NON-COT) EVALUATION

Our Direct Answer evaluation tests model accuracy without induced reasoning chains. We excluded
specific models based on 2 criteria:

1. Reasoning-Centric Architectures: Models explicitly designed for extended reasoning (e.g., o1,
Gemini-2.5, Kimi-thinking, Llama-4 series) were excluded, as inhibiting CoT contradicts their
core design principles.

2. Instruction Adherence: Models unable to suppress reasoning traces despite strict formatting
prompts (specifically InternVL3-2B) were excluded. This failure reflects a limitation in instruction
following rather than reasoning capability.

Consequently, we retained only models capable of strictly adhering to the single-letter answer format.
This exclusion criteria—based on format compliance rather than performance—ensures the baseline
remains representative and uninflated.

E.6.2 ERROR TYPES

1. Perceptual Error: Failure to perceive fundamental visual properties, such as color, shape, or
pattern structures.

2. Spatial Transformation Error: Failure to deduce correct spatial states after a transformation.
This includes:

(a) Rotation/Flipping: Errors in angle or axis; confusing rotation with flipping.
(b) Folding/Unfolding: Incorrect mapping between 2D nets and 3D cubes; confusing adjacent or

opposite faces.
(c) Spatial Relationships: Misjudging object composition, internal structure, or occlusion.

3. Spatial Memorization Error: Forgetting or misremembering object positions or relationships
across a sequence of operations.

4. Instruction Following Error: Misunderstanding textual instructions, such as task rules (e.g.,
negation) or required output formats.

5. Methodological Error: Adopting a flawed or suboptimal problem-solving strategy, such as using
a rigid or unnecessarily complex reasoning path.

6. Calculation and Reasoning Error: Errors in non-spatial logic or mathematical calculations.

E.6.3 INTER-ANNOTATOR AGREEMENT ANALYSIS

To ensure the reliability and reproducibility of our error taxonomy (detailed in Appendix E.6.2), we
conducted a rigorous inter-annotator agreement study.

Table 5: Inter-Annotator Agreement. Cohen’s κ calculated via binary decomposition for multi-label
error classification.

Category Perc. Trans. Meth. Instr. Memo. Calc. Avg.
Cohen’s κ 0.90 0.81 0.75 0.96 0.89 1.00 0.88

Methodology Since our error analysis involves a multi-label classification task (i.e., a single failure
case may stem from multiple error sources simultaneously), the traditional global Cohen’s κ is not
directly applicable. Instead, we adopted a standard binary decomposition approach for multi-label
agreement. Specifically, we decomposed the multi-label task into 6 independent binary classification
tasks, treating each error category as a "Yes/No" decision.

Calculation We randomly sampled 100 failure cases from the evaluation set. Two authors inde-
pendently annotated these cases based on the defined taxonomy. We then calculated Cohen’s κ
separately for each error category. The results, presented in Table 5, demonstrate high reliability.
The Methodological category showed substantial agreement (κ = 0.75), while all other categories
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achieved almost perfect agreement (κ > 0.81), with Calculation & Reasoning reaching perfect
consensus (κ = 1.00). The macroscopic average Cohen’s κ across all categories is 0.8847, indicating
an almost perfect level of inter-annotator consistency.

F DETAILED RESULTS

In this section, we provide more evaluation results and test cases from Gemini-2.5-pro for each task.

F.1 INTRA-CATEGORY COMPARISONS ACROSS LEVELS

To provide deeper insight into the spatial visualization reasoning capabilities of Multi-modal Large
Language Models (MLLMs), this section presents comprehensive experimental results that comple-
ment the aggregate performance assessment in Section 4.2. This analysis details the accuracy of each
evaluated model across the four core sub-abilities—mental rotation, mental folding, visual penetra-
tion, and mental animation—defined in the SpatialViz-Bench benchmark, with results stratified by
task type and difficulty level. This granular performance breakdown reveals specific strengths and
weaknesses of the models when confronting various spatial reasoning challenges, offering targeted
insights to guide future model improvements.

F.1.1 MENTAL ROTATION

Table 7 documents model performance on 3 sub-tasks within the mental rotation category—2D
Rotation (2DR), 3D Rotation (3DR), and 3-View Projection (3VP)—across different difficulty levels.

In the 2D Rotation (2DR) task, several models demonstrate foundational capabilities at Level 0, with
ol (72.5%) and Gemini-2.5-pro (62.5%) achieving notable results. As difficulty increases to Level 1,
most models show performance decline, though leading models maintain relatively high accuracy (ol:
52.5%, Gemini-2.5-pro: 42.5%).

For 3D Rotation (3DR), performance degradation with increased difficulty is more pronounced. At
Level 0, ol (42.5%) and Gemini-2.5-pro (45.0%) perform adequately, but their accuracies decrease
substantially to 15.0% and 20.0%, respectively, at Level 1. Many open-source models perform at or
below random chance (25%-30%) at this higher difficulty level, highlighting the challenge of mental
rotation in complex 3D space.

Interestingly, the 3-View Projection (3VP) task reveals a different pattern: when transitioning
from Level 0 (cube stacks) to Level 1 (DeepCAD engineering models), some top-tier models like ol
(improving from 40.0% to 58.0%) and Gemini-2.5-pro (increasing from 28.0% to 66.0%) demonstrate
enhanced performance. This suggests certain Level 1 image features may be more amenable to these
models’ processing mechanisms, despite the presumed increase in complexity. Nevertheless, many
other models show decreased performance from Level 0 to Level 1 in this sub-task. Overall, mental
rotation tasks reveal a clear performance gradient across dimensions and geometric complexity while
highlighting significant capability variations among model families.

F.1.2 MENTAL FOLDING

Table 8 documents model performance on 3 sub-tasks within the mental folding category—Paper
Folding (PF), Cube Unfolding (CU), and Cube Reconstruction (CR)—at varying difficulty levels.
These tasks assess models’ capacity for continuous reasoning and dynamic visualization of 3D
information throughout transformation processes.

In the Paper Folding (PF) task, as folding steps and hole-punching complexity increase (Level 0 to
Level 2), most models perform near random chance, indicating significant challenges in tracking
multi-step geometric operations and performing subsequent spatial reasoning.

The more complex Cube Unfolding (CU) and Cube Reconstruction (CR) tasks proved challenging
for all models. These tasks require understanding the correspondence between 2D nets and 3D cubes,
while also assessing the ability to mentally execute folding operations and continuously reason about
transforming 3D structures. Even at Level 0, most models demonstrate low accuracy, often below
random chance. In the CU task, Gemini-2.5-pro scored 37.5% (L0), 27.5% (L1), and 30.0% (L2),
while ol achieved 37.5% (L0), 37.5% (L1), and 27.5% (L2).
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For CR, Gemini-2.5-pro performed at 45.0% (L0), 10.0% (L1), and 35.0% (L2), and ol at 42.5% (L0),
12.5% (L1), and 25.0% (L2), both experiencing significant performance drops at Level 1. However,
the surprising performance improvement at Level 2 contradicts human intuition, as Level 2 patterns are
objectively more complex for humans. Analysis of sample solutions reveals that models approached
these tasks by employing clear textual descriptions to define patterns composed of differently colored
dots, representing their positions in matrix form. Conversely, line patterns proved more challenging for
models to describe, and internal rotations could not be easily represented through matrix transposition
operations, which . This insight provides valuable direction for designing more challenging tests that
effectively evaluate model limitations. The overall results reveal a severe deficiency in reasoning
and visualization capabilities when finer-grained correspondence and transformation tracking are
required. The introduction of asymmetric patterns further challenges models’ ability to maintain
precise visual perception and spatial-topological understanding. These results highlight current
MLLMs’ core weaknesses in handling spatial tasks involving geometric correspondence, topological
transformations, and dynamic 3D reasoning.

F.1.3 VISUAL PENETRATION

Table 9 documents model performance on 3 sub-tasks within the Visual Penetration category—Cross-
Section (CS), Cube Counting (CC), and Cube Assembly (CA)—at varying difficulty levels. This
ability requires models to infer internal object structures from visible external features.

In the Cross-Section (CS) task, which requires models to visualize sectional shapes produced by
cutting composite geometric solids with various planes, Gemini-2.5-pro and ol maintained relatively
stable performance across Levels 0, 1, and 2, while most other models performed near random
chance.

For the Cube Counting (CC) task, increasing constraints from two-view (Level 0) to three-view (Level
1), and subsequently expanding spatial dimensions (Level 2), progressively challenged models’ view
integration and counting inference capabilities. Gemini-2.5-pro’s accuracy declined sharply from
80.0% (L0) to 52.5% (L1) and 32.5% (L2). Interestingly, ol’s performance followed a pattern of
45.0% (L0), 32.5% (L1), and 45.0% (L2), recovering at Level 2 to match its Level 0 score. Most
models struggled to effectively integrate multi-view information in this task.

The Cube Assembly (CA) task, which assesses the ability to identify complementary parts forming a
complete structure, showed increasing difficulty as structures enlarged and constituent parts increased
(Level 0 to Level 1). For example, Gemini-2.5-pro’s accuracy dropped from 45.0% (L0) to 27.5%
(L1), and ol’s from 35.0% (L0) to 32.5% (L1). Collectively, these results reveal current models’
limitations in inferring global internal structures and spatial occupancy from local surface information.

F.1.4 MENTAL ANIMATION

Table 10 documents model performance on 3 sub-tasks within the Mental Animation category—Arrow
Moving (AM), Block Moving (BM), and Mechanical System (MS)—at varying difficulty levels.
These tasks assess understanding of dynamic state changes and causal propagation among system
components.

In the Arrow Moving (AM) task, which requires understanding ego-centric movement rules and
tracking state changes, the transition from simple single-arrow movements (Level 0) to multi-arrow
environments involving swaps (Level 1) increasingly challenges models’ rule comprehension and state
tracking. A notable performance disparity exists between closed-source models (e.g., Gemini-2.5-pro
and ol) and open-source counterparts: the former maintain high accuracy across both difficulty levels
(almost 100% accuracy by Gemini-2.5-pro), while most open-source models perform significantly
worse (near random), particularly in complex multi-arrow Level 1 scenarios. This suggests a capability
gap, potentially stemming from differences in architecture or training data, when precise instruction
following and multi-step dynamic spatial reasoning are required.

The Block Moving (BM) task combines directional movement with gravity simulation, increasing
spatial complexity and operational sequence length, thereby challenging models’ intuitive physics
and 3D dynamic spatial reasoning. Gemini-2.5-pro’s accuracy declined sharply from 95% to 35%,
showing the difficulty in dealing with 3D scene.
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For the Mechanical System (MS) task, which evaluates understanding of motion transmission and
component linkage in complex mechanical systems, questions were designed to minimize reliance
on formal physics formulas while emphasizing comprehension through observation and spatial
imagination. Interestingly, some open-source models performed better than expected based on
their performance in other 3D imagination tasks. This suggests these models may transform such
problems into more formalized reasoning processes similar to physical rule application, rather than
relying solely on intuitive 3D mental simulation. While this strategy may yield relatively good
scores in certain instances, it potentially deviates from the primary goal of assessing pure spatial
visualization capabilities. Overall, mental animation tasks—especially those involving complex
dynamic interactions and implicit physical laws—continue to pose significant challenges for current
MLLMs, with models exhibiting considerable diversity in performance strategies and capabilities.

F.2 PERFORMANCE COMPARISON BETWEEN DIFFERENT QUESTION FORMAT

This benchmark primarily uses MCAs, a deliberate and justified design choice. MCAs are particularly
effective for tasks with complex answers (e.g., 3D Rotation Task) that are difficult to express textually
or match automatically. Moreover, well-crafted distractors can increase task difficulty and test a
model’s fine-grained discrimination.

Our rationale for using the MCA format is threefold:

• MCAs align with human qualitative intuition. Humans often rely on estimation rather than precise
calculation in spatial reasoning. This format assesses a model’s grasp of core transformation logic
("qualitatively correct" reasoning) without penalizing minor deviations.

• Converting some tasks to a direct-answer format is technically challenging. For instance, in 3D
Rotation and Paper Folding, the answers are complex images. Requiring models to generate these
images is a frontier research problem beyond the scope of current multimodal evaluation.

• We quantitatively measured the difficulty gap. When the Cube Counting task was converted
to a fill-in-the-blank format, all models showed a significant performance drop. As shown in
Table 6, GPT-4o’s accuracy dropped by 32.50%, while even the top-performing Gemini-2.5-pro’s
declined by 14.17%. This indicates the direct-answer format is more demanding of a model’s
independent reasoning, even with options like "All three other options are incorrect" to reduce
guessing. Consequently, for a comprehensive assessment, we provide both formats for the Cube
Counting and parts of the Cube Reconstruction tasks. This performance gap demonstrates that
MCA options provide clues or "error-correction" opportunities, helping models select a best-
fit answer. In contrast, the direct-answer format more authentically exposes deficits in precise
reasoning.

Table 6: Performance Drop on Cube Counting: Multiple-Choice vs. Fill-in-the-Blank. The "Perfor-
mance Drop" column quantifies the accuracy degradation when switching from the discriminative
(Multiple-Choice) to the more challenging generative (Fill-in-the-Blank) task format.

Model Multiple-Choice Acc. (%) Fill-in-the-Blank Acc. (%) Avg Performance

L0 L1 L2 L0 L1 L2 Drop (%)

Open Source Models

Qwen2.5-VL-7B-Instruct 32.50 50.00 27.50 15.00 2.50 0.00 -30.83
Qwen2.5-VL-72B-Instruct 32.50 50.00 42.50 25.00 32.50 5.00 -20.83

Closed Source Models

GPT-4o 40.00 45.00 37.50 10.00 12.50 2.50 -32.50
o1 45.00 32.50 45.00 20.51 22.50 10.00 -23.16
Gemini-2.5-pro 80.00 52.50 32.50 55.00 52.50 15.00 -14.17
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Table 7: Comparison of model performances on Mental Rotation tasks. The first and second
highest accuracy of MLLMs are marked in red and blue, with open-source and closed-source models
marked separately.

Model Overall
2DRotation 3DRotation 3ViewProjection

L0 L1 Avg L0 L1 Avg L0 L1 Avg

Human 85.56 92.50 87.50 90.00 83.33 75.00 79.17 91.67 83.33 87.50

Random 27.69 25.00 22.50 23.75 25.00 30.00 27.50 30.00 32.00 31.00

Open Source MLLMs
3B

SAIL-VL-1.5-2B 22.31 20.00 25.00 22.50 17.50 27.50 22.50 20.00 24.00 22.00

InternVL3-2B 27.31 12.50 20.00 16.25 32.50 35.00 33.75 24.00 38.00 31.00

Deepseek-VL2-tiny(3B) 22.69 10.00 25.00 17.50 20.00 25.00 22.50 22.00 32.00 27.00

Qwen2.5-VL-3B-Instruct 20.00 25.00 15.00 20.00 15.00 22.50 18.75 16.00 26.00 21.00

7B

Qwen2.5-VL-7B-Instruct 23.85 25.00 25.00 25.00 20.00 12.50 16.25 14.00 44.00 29.00

Qwen2.5-Omni-7B 24.23 32.50 12.50 22.50 25.00 15.00 20.00 22.00 36.00 29.00

SAIL-VL-1.6-8B 21.92 25.00 12.50 18.75 27.50 15.00 21.25 24.00 26.00 25.00

InternVL3-8B 28.85 22.50 17.50 20.00 35.00 42.50 38.75 18.00 38.00 28.00

16B

Kimi-VL-A3B-Instruct(16B) 28.08 15.00 17.50 16.25 32.50 27.50 30.00 24.00 48.00 36.00

Kimi-VL-A3B-thinking(16B) 20.00 10.00 17.50 13.75 17.50 22.50 20.00 20.00 30.00 25.00

Deepseek-VL2-small(16B) 24.62 40.00 22.50 31.25 10.00 22.50 16.25 22.00 30.00 26.00

32B

Deepseek-VL2(27B) 29.62 20.00 30.00 25.00 35.00 32.50 33.75 20.00 40.00 30.00

Qwen2.5-VL-32B-Instruct 35.00 35.00 27.50 31.25 32.50 37.50 35.00 22.00 54.00 38.00

InternVL3-38B 28.46 25.00 20.00 22.50 32.50 35.00 33.75 22.00 36.00 29.00

72B

Qwen2.5-VL-72B-Instruct 29.23 25.00 32.50 28.75 40.00 22.50 31.25 22.00 34.00 28.00

QvQ-72B-preview 27.69 15.00 27.50 21.25 27.50 32.50 30.00 32.00 30.00 31.00

InternVL3-78B 28.46 20.00 30.00 25.00 25.00 25.00 25.00 20.00 48.00 34.00

108B

Llama-4-Maverick-17B-128E-Instruct 33.85 25.00 15.00 20.00 45.00 35.00 40.00 26.00 54.00 40.00

LLama-4-Scout-17B-16E-Instruct 37.31 32.50 32.50 32.50 32.50 37.50 35.00 28.00 58.00 43.00

Closed Source MLLMs
GPT-4o 31.15 20.00 45.00 32.50 30.00 25.00 27.50 20.00 46.00 33.00

o1 46.92 72.50 52.50 62.50 42.50 15.00 28.75 40.00 58.00 49.00

Claude-3.5-sonnet 34.62 27.50 35.00 31.25 32.50 17.50 25.00 36.00 54.00 45.00

Claude-3.7-sonnet 38.08 40.00 25.00 32.50 40.00 32.50 36.25 34.00 54.00 44.00

Gemini-2.5-flash 35.77 55.00 30.00 42.50 40.00 20.00 30.00 18.00 52.00 35.00

Gemini-2.5-pro 44.23 62.50 42.50 52.50 45.00 20.00 32.50 28.00 66.00 47.00

Doubao-1-5-vision-pro 30.38 7.50 7.50 7.50 42.50 27.50 35.00 28.00 62.00 45.00

Qwen-VL-max 28.08 12.50 35.00 23.75 30.00 22.50 26.25 22.00 44.00 33.00
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Table 8: Comparison of model performances on Mental Folding tasks.

Model Overall
PaperFolding CubeUnfolding CubeReconstruction

L0 L1 L2 Avg L0 L1 L2 Avg L0 L1 L2 Avg

Human 80.56 100.00 93.75 87.50 93.75 87.50 75.00 62.50 75.00 81.25 75.00 62.50 72.92

Random 21.67 17.50 20.00 20.00 19.17 15.00 27.50 17.50 20.00 30.00 25.00 22.50 25.83

Open Source
3B

SAIL-VL-1.5-2B 22.50 12.50 25.00 22.50 20.00 30.00 27.50 25.00 27.50 22.50 20.00 17.50 20.00

InternVL3-2B 24.44 25.00 27.50 15.00 22.50 35.00 12.50 30.00 25.83 35.00 22.50 17.50 25.00

Deepseek-VL2-tiny(3B) 20.56 27.50 17.50 20.00 21.67 20.00 25.00 17.50 20.83 15.00 20.00 22.50 19.17

Qwen2.5-VL-3B-Instruct 24.17 20.00 37.50 17.50 25.00 25.00 25.00 27.50 25.83 25.00 32.50 7.50 21.67

7B

Qwen2.5-VL-7B-Instruct 28.61 35.00 35.00 32.50 34.17 17.50 30.00 17.50 21.67 27.50 30.00 32.50 30.00

Qwen2.5-Omni-7B 24.17 27.50 30.00 17.50 25.00 32.50 37.50 12.50 27.50 17.50 27.50 15.00 20.00

SAIL-VL-1.6-8B 23.89 35.00 17.50 32.50 28.33 25.00 30.00 20.00 25.00 17.50 25.00 12.50 18.33

InternVL3-8B 25.56 25.00 20.00 40.00 28.33 25.00 20.00 25.00 23.33 25.00 27.50 22.50 25.00

16B

Kimi-VL-A3B-Instruct(16B) 24.17 27.50 22.50 27.50 25.83 22.50 15.00 22.50 20.00 15.00 27.50 37.50 26.67

Kimi-VL-A3B-thinking(16B) 24.72 10.00 25.00 35.00 23.33 20.00 20.00 32.50 24.17 35.00 17.50 27.50 26.67

Deepseek-VL2-small(16B) 24.72 25.00 22.50 20.00 22.50 27.50 25.00 22.50 25.00 22.50 25.00 32.50 26.67

32B

Deepseek-VL2(27B) 26.39 22.50 35.00 37.50 31.67 32.50 15.00 27.50 25.00 17.50 30.00 20.00 22.50

Qwen2.5-VL-32B-Instruct 24.72 15.00 37.50 12.50 21.67 17.50 35.00 22.50 25.00 30.00 10.00 42.50 27.50

InternVL3-38B 26.94 22.50 20.00 20.00 20.83 25.00 35.00 27.50 29.17 22.50 32.50 37.50 30.83

72B

Qwen2.5-VL-72B-Instruct 24.17 12.50 27.50 27.50 22.50 15.00 17.50 27.50 20.00 30.00 25.00 35.00 30.00

QvQ-72B-preview 21.11 15.00 12.50 22.50 16.67 22.50 15.00 20.00 19.17 30.00 25.00 27.50 27.50

InternVL3-78B 22.22 15.00 30.00 12.50 19.17 35.00 22.50 17.50 25.00 30.00 20.00 17.50 22.50

108B

Llama-4-Maverick-17B-128E-Instruct 25.00 15.00 17.50 17.50 16.67 30.00 25.00 32.50 29.17 30.00 32.50 25.00 29.17

LLama-4-Scout-17B-16E-Instruct 28.61 15.00 17.50 17.50 16.67 35.00 32.50 30.00 32.50 42.50 32.50 35.00 36.67

Closed Source
GPT-4o 25.00 25.00 35.00 27.50 29.17 25.00 12.50 10.00 15.83 30.00 17.50 42.50 30.00

o1 29.72 27.50 30.00 27.50 28.33 37.50 37.50 27.50 34.17 42.50 12.50 25.00 26.67

Claude-3.5-sonnet 25.00 7.50 35.00 20.00 20.83 25.00 17.50 25.00 22.50 32.50 20.00 42.50 31.67

Claude-3.7-sonnet 24.72 20.00 20.00 15.00 18.33 32.50 25.00 22.50 26.67 32.50 17.50 37.50 29.17

Gemini-2.5-flash 32.50 15.00 37.50 27.50 26.67 32.50 30.00 27.50 30.00 55.00 27.50 40.00 40.83

Gemini-2.5-pro 35.00 57.50 40.00 32.50 43.33 37.50 27.50 30.00 31.67 45.00 10.00 35.00 30.00

Doubao-1-5-vision-pro 28.06 25.00 37.50 32.50 31.67 22.50 22.50 25.00 23.33 45.00 17.50 25.00 29.17

Qwen-VL-max 24.44 27.50 25.00 20.00 24.17 12.50 15.00 25.00 17.50 42.50 22.50 30.00 31.67
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Table 9: Comparison of model performances on Visual Penetration tasks.

Model Overall
CrossSection CubeCounting CubeAssembly

L0 L1 L2 Avg L0 L1 L2 Avg L0 L1 Avg

Human 75.42 75.00 75.00 68.75 72.92 81.25 75.00 56.25 70.83 87.50 75.00 82.50

Random 28.12 32.50 27.50 30.00 30.00 30.00 20.00 25.00 25.00 22.50 37.50 30.00

Open Source
3B

SAIL-VL-1.5-2B 27.19 37.50 20.00 15.00 24.17 40.00 20.00 20.00 26.67 32.50 32.50 32.50

InternVL3-2B 26.56 22.50 22.50 15.00 20.00 22.50 32.50 37.50 30.83 27.50 32.50 30.00

Deepseek-VL2-tiny(3B) 20.94 17.50 25.00 20.00 20.83 25.00 25.00 17.50 22.50 17.50 20.00 18.75

Qwen2.5-VL-3B-Instruct 25.94 25.00 25.00 27.50 25.83 17.50 35.00 17.50 23.33 30.00 30.00 30.00

7B

Qwen2.5-VL-7B-Instruct 27.19 12.50 12.50 25.00 16.67 32.50 50.00 27.50 36.67 35.00 22.50 28.75

Qwen2.5-Omni-7B 27.19 15.00 22.50 25.00 20.83 37.50 27.50 35.00 33.33 25.00 30.00 27.50

SAIL-VL-1.6-8B 21.25 17.50 22.50 25.00 21.67 22.50 17.50 17.50 19.17 30.00 17.50 23.75

InternVL3-8B 30.94 17.50 15.00 15.00 15.83 25.00 45.00 52.50 40.83 45.00 32.50 38.75

16B

Kimi-VL-A3B-Instruct(16B) 17.19 17.50 25.00 22.50 21.67 7.50 2.50 5.00 5.00 27.50 30.00 28.75

Kimi-VL-A3B-thinking(16B) 29.38 27.50 17.50 30.00 25.00 45.00 40.00 25.00 36.67 20.00 30.00 25.00

Deepseek-VL2-small(16B) 25.31 7.50 12.50 7.50 9.17 30.00 32.50 42.50 35.00 30.00 40.00 35.00

32B

Kimi-VL-A3B-Instruct(16B) 17.19 17.50 25.00 22.50 21.67 7.50 2.50 5.00 5.00 27.50 30.00 28.75

Kimi-VL-A3B-thinking(16B) 29.38 27.50 17.50 30.00 25.00 45.00 40.00 25.00 36.67 20.00 30.00 25.00

Deepseek-VL2-small(16B) 25.31 7.50 12.50 7.50 9.17 30.00 32.50 42.50 35.00 30.00 40.00 35.00

72B

Qwen2.5-VL-72B-Instruct 39.06 27.50 40.00 22.50 30.00 32.50 50.00 42.50 41.67 55.00 42.50 48.75

QvQ-72B-preview 27.81 32.50 30.00 27.50 30.00 35.00 25.00 7.50 22.50 40.00 25.00 32.50

InternVL3-78B 35.00 17.50 25.00 20.00 20.83 37.50 52.50 30.00 40.00 42.50 55.00 48.75

108B

Llama-4-Maverick-17B-128E-Instruct 32.19 27.50 15.00 15.00 19.17 27.50 47.50 30.00 35.00 52.50 42.50 47.50

LLama-4-Scout-17B-16E-Instruct 34.06 17.50 17.50 17.50 17.50 35.00 47.50 30.00 37.50 50.00 57.50 53.75

Closed Source
GPT-4o 32.50 25.00 25.00 7.50 19.17 40.00 45.00 37.50 40.83 52.50 27.50 40.00

o1 37.81 40.00 42.50 30.00 37.50 45.00 32.50 45.00 40.83 35.00 32.50 33.75

Claude-3.5-sonnet 33.44 35.00 20.00 12.50 22.50 35.00 45.00 27.50 35.83 47.50 45.00 46.25

Claude-3.7-sonnet 31.56 20.00 35.00 17.50 24.17 30.00 32.50 30.00 30.83 40.00 47.50 43.75

Gemini-2.5-flash 32.81 32.50 35.00 22.50 30.00 52.50 32.50 30.00 38.33 30.00 27.50 28.75

Gemini-2.5-pro 42.19 32.50 35.00 32.50 33.33 80.00 52.50 32.50 55.00 45.00 27.50 36.25

Doubao-1-5-vision-pro 39.69 35.00 30.00 25.00 30.00 62.50 65.00 40.00 55.83 42.50 17.50 30.00

Qwen-VL-max 38.44 32.50 20.00 27.50 26.67 57.50 62.50 22.50 47.50 50.00 35.00 42.50
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Table 10: Comparison of model performances on Mental Animation tasks.

Model Overall
ArrowMoving BlockMoving MechanicalSystem

L0 L1 Avg L0 L1 Avg L0 L1 Avg

Human 88.33 92.50 87.5 90.00 95.83 79.16 87.5 87.50 87.50 87.50

Random 23.33 32.50 25.00 28.75 10.00 22.50 16.25 30.00 20.00 25.00

Open Source
3B

SAIL-VL-1.5-2B 24.58 15.00 27.50 21.25 22.50 27.50 25.00 35.00 20.00 27.50

InternVL3-2B 27.08 22.50 15.00 18.75 37.50 27.50 32.50 25.00 35.00 30.00

Deepseek-VL2-tiny(3B) 21.67 25.00 12.50 18.75 25.00 17.50 21.25 25.00 25.00 25.00

Qwen2.5-VL-3B-Instruct 35.83 35.00 35.00 35.00 32.50 27.50 30.00 57.50 27.50 42.50

7B

Qwen2.5-VL-7B-Instruct 32.50 22.50 22.50 22.50 22.50 25.00 23.75 67.50 35.00 51.25

Qwen2.5-Omni-7B 35.42 27.50 35.00 31.25 32.50 27.50 30.00 67.50 22.50 45.00

SAIL-VL-1.6-8B 35.00 12.50 37.50 25.00 37.50 32.50 35.00 52.50 37.50 45.00

InternVL3-8B 37.08 30.00 30.00 30.00 30.00 30.00 30.00 62.50 40.00 51.25

16B

Kimi-VL-A3B-Instruct(16B) 27.92 17.50 12.50 15.00 27.50 35.00 31.25 57.50 17.50 37.50

Kimi-VL-A3B-thinking(16B) 40.42 22.50 37.50 30.00 35.00 52.50 43.75 62.50 32.50 47.50

Deepseek-VL2-small(16B) 26.25 25.00 27.50 26.25 25.00 22.50 23.75 47.50 10.00 28.75

32B

Deepseek-VL2(27B) 29.17 20.00 32.50 26.25 35.00 25.00 30.00 40.00 22.50 31.25

Qwen2.5-VL-32B-Instruct 37.08 22.50 35.00 28.75 27.50 27.50 27.50 62.50 47.50 55.00

InternVL3-38B 37.08 25.00 25.00 25.00 25.00 35.00 30.00 65.00 47.50 56.25

72B

Qwen2.5-VL-72B-Instruct 43.75 27.50 27.50 27.50 45.00 35.00 40.00 67.50 60.00 63.75

QvQ-72B-preview 39.58 27.50 22.50 25.00 40.00 60.00 50.00 42.50 45.00 43.75

InternVL3-78B 35.42 25.00 22.50 23.75 35.00 47.50 41.25 55.00 27.50 41.25

108B

Llama-4-Maverick-17B-128E-Instruct 39.17 35.00 35.00 35.00 40.00 40.00 40.00 45.00 40.00 42.50

LLama-4-Scout-17B-16E-Instruct 39.58 15.00 42.50 28.75 47.50 32.50 40.00 57.50 42.50 50.00

Closed Source
GPT-4o 38.33 32.50 12.50 22.50 25.00 40.00 32.50 62.50 57.50 60.00

o1 57.50 75.00 60.00 67.50 50.00 55.00 52.50 62.50 42.50 52.50

Claude-3.5-sonnet 40.42 42.50 32.50 37.50 25.00 37.50 31.25 57.50 47.50 52.50

Claude-3.7-sonnet 46.25 72.50 60.00 66.25 25.00 32.50 28.75 55.00 32.50 43.75

Gemini-2.5-flash 50.00 82.50 52.50 67.50 32.50 35.00 33.75 62.50 35.00 48.75

Gemini-2.5-pro 62.92 97.50 92.50 95.00 27.50 42.50 35.00 75.00 42.50 58.75

Doubao-1-5-vision-pro 35.83 22.50 22.50 22.50 32.50 42.50 37.50 57.50 37.50 47.50

Qwen-VL-max 39.17 25.00 27.50 26.25 35.00 37.50 36.25 65.00 45.00 55.00
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F.3 TEST CASES

This section presents test cases from Gemini-2.5-pro across various tasks, helping us identify error
sources and provide direction for model improvement.

Mental Rotation-2D Rotation-Level 1

Thinking Process:

 1. Analyze the Original Grid:

 The grid is 3x3. Note the pattern in each cell and the position of the red square marker in the bottom-left corner.    

 Top row: Blank, Diagonal, Blank       

 Middle row: Circle, X-shape, Diagonal        

 Bottom row: Vertical lines, Blank, Diagonal        

 Red square: Bottom-left.   

 2. Analyze Option A: → Wrong incorrect pattern details

 The grid pattern in A is identical to the Original grid. The red square is also in the bottom-left corner. This corresponds to a 0-

degree (or 360-degree) rotation. While technically a rotation, it doesn't change the orientation.   

 3. Analyze Option B: 

 The red square is in the top-right corner. This position corresponds to a 180-degree rotation from the original bottom-left 

position. Let's check if the pattern matches a 180-degree rotation: Rotating the Original grid 180 degrees means the cell at (row, 

col) moves to (3-row+1, 3-col+1) = (4-row, 4-col), and the content of the cell is also rotated 180 degrees. 

 Original (3,1) [Vertical lines] -> Rotated (1,3) [Vertical lines] (Matches B)       

 Original (3,2) [Blank] -> Rotated (1,2) [Blank] (Matches B)       

 Original (3,3) [Diagonal ] -> Rotated (1,1) [Diagonal ] (Matches B)       

 Original (2,1) [Circle] -> Rotated (2,3) [Circle] (Matches B)       

 Original (2,2) [X-shape] -> Rotated (2,2) [X-shape] (Matches B)       

 Original (2,3) [Diagonal ] -> Rotated (2,1) [Diagonal ] (Matches B)       

 Original (1,1) [Blank] -> Rotated (3,3) [Blank] (Matches B)       

 Original (1,2) [Diagonal ] -> Rotated (3,2) [Diagonal ] (Matches B)       

 Original (1,3) [Blank] -> Rotated (3,1) [Blank] (Matches B)       

 The pattern in B perfectly matches a 180-degree rotation of the Original grid.   

 4. Analyze Option C: 

 The red square is in the top-right corner, also suggesting a 180-degree rotation. However, the pattern does not match the 

expected 180-degree rotation derived above. For example, the top-left cell in C is Blank, but the expected cell is Diagonal . The 

top-right cell in C has Horizontal lines, but the expected cell has Vertical lines. Grid C is not a rotation of the Original.   

 5. Conclusion: 

 Grid A is a 0-degree rotation (identical), and Grid B is a 180-degree rotation. Grid C is not a rotation. The question asks 

which grid can be obtained by rotating. Both 0-degree and 180-degree rotations are rotations. However, usually, such questions 

imply a change in orientation (non-zero rotation). Grid B represents a non-trivial rotation (180 degrees) of the original grid.

Final Answer: B  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a patterned grid with a red square marking one corner. Which grid can be obtained by rotating the 

left grid only? Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    

 C. C    D. All three other options are incorrect

Ground Truth Answer: B

Figure 20: Test case of 2D Rotation Task from Gemini-2.5-pro.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Mental Rotation-3D Rotation-Level 0

Thinking Process: → Confusing description

1. Analyze the Original Shape:

The original shape consists of 5 equal-sized cubes. Visual inspection suggests a central cube connected to four other cubes.

Given the 3D isometric view, it’s reasonable to assume the central cube (which might be hidden) has cubes attached to four of its 

faces. Let's assume the structure is a central cube C with neighbours North (N), South (S), East (E), and Top (T). This structure, {C, 

N, S, E, T}, is inherently 3-dimensional (non-planar). The central cube C has 4 connections (neighbours), and the other 4 cubes (N, 

S, E, T) each have only 1 connection (to C). 

2. Analyze Shape A:

Shape A consists of 5 cubes. It appears non-planar. Let's determine its connectivity (number of neighbours for each cube). By

visual inspection, it seems to have a ‘backbone’ of 3 cubes and two ‘legs’. The central cube of the backbone appears connected to 

3 other cubes. No cube appears connected to 4 others. The connectivity pattern seems to be (1 cube with 3 neighbours, 1 cube with 

2 neighbours, 3 cubes with 1 neighbour). This differs from the Original’s pattern (1 cube with 4 neighbours, 4 cubes with 1 

neighbour). Therefore, A cannot be obtained by rotating the Original.   

3. Analyze Shape B:

Shape B consists of 5 cubes. It appears non-planar. Let's determine its connectivity. It looks like an L-shape base of 3 cubes,

with two cubes stacked vertically on two of the base cubes (one on the corner, one on an end). By visual inspection, the maximum 

number of neighbours any cube has is 2 (the corner cube of the L and the two cubes adjacent to it in the L). The connectivity 

pattern seems to be (3 cubes with 2 neighbours, 2 cubes with 1 neighbour). This differs from the Original's pattern (1x4, 4x1). 

Therefore, B cannot be obtained by rotating the Original.   

4. Analyze Shape C:

Shape C consists of 5 cubes. This shape appears to be planar, meaning all cubes lie in a single layer. It forms a shape known

as the ‘P’ pentomino (a 2x2 square with one cube attached to the side). A planar shape consists of cubes whose centers all lie on 

the same plane.   

5. Compare Shapes with Original:

The Original shape {C, N, S, E, T} is non-planar because the Top cube (T) is in a different layer than the N, S, E cubes.

Shape C is planar. Rotation is a rigid transformation. It cannot change a non-planar object into a planar object.

Since the Original shape is non-planar and Shape C is planar, Shape C cannot be obtained by rotating the Original shape.

While analysis also suggested A and B cannot be obtained by rotating the Original (due to different connectivity patterns), the

difference in planarity between the Original and C is a more fundamental geometric property preserved under rotation. Given that 

usually only one option is correct in such problems, the planarity difference provides the strongest reason.   

6. Conclusion:

Shape C cannot be obtained by rotating the original cube stack because the original stack is non-planar and shape C is planar.

Final Answer: C  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the original cube stack made of equal-sized small cubes. Which of the options on the right cannot 

be obtained by rotating the original cube stack? Please answer from options A, B, C, or D.

Choices:  

A. A    B. B

C. C    D. All three other options are incorrect

Ground Truth Answer: A

Figure 21: Test case of 3D Rotation Task from Gemini-2.5-pro.
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Mental Rotation-3View Projection-Level 0

Thinking Process:

 1. Analyze the Isometric View: 

 The object is composed of stacks of cubes on a 3x3 base grid (viewed from top-down, let's label rows as Front, Middle, Back 

and columns as Left, Middle, Right).       

 Front-Left stack: 3 cubes high (Bottom Red, Middle Grey, Top Red).       

 Front-Middle stack: 3 cubes high (All Grey).       

 Front-Right stack: 1 cube high (Grey).       

 Middle-Left stack: 3 cubes high (All Grey).       

 Middle-Middle stack: 4 cubes high (3 Grey base + 1 Red on top).       

 Middle-Right stack: 1 cube high (Grey).       

 Back-Left stack: 3 cubes high (All Grey, implied by structure).       

 Back-Middle stack: 3 cubes high (All Grey, implied base for MM red cube).       

 Back-Right stack: 1 cube high (All Grey, implied by structure).   

 2. Determine the Left View: 

 The left view shows the object as seen from the left side. The 2D view grid will have columns representing the depth (Back, 

Middle, Front) and rows representing the height (Bottom, Middle, Top). We need to determine the color of the cube face visible at 

each position in this grid. Since the options are 3x3, we consider heights up to 3.       

 3. Looking from the left: 

 We see the leftmost faces of the stacks in each depth layer (Front, Middle, Back).       

 Front layer (Closest depth to the right in the left view): The leftmost stack is the Front-Left stack. It is 3 high (Bottom Red, 

Middle Grey, Top Red). Its left face is visible. So, the rightmost column of the left view is R (Top), G (Middle), R (Bottom).  

Middle layer (Middle depth): The leftmost stack is the Middle-Left stack. It is 3 high (All Grey). Its left face is visible. So, 

the middle column of the left view is G (Top), G (Middle), G (Bottom).       

 Back layer (Furthest depth to the left in the left view): The leftmost stack is the Back-Left stack. It is 3 high (All Grey). Its 

left face is visible. So, the leftmost column of the left view is G (Top), G (Middle), G (Bottom).   

 4. Construct the 3x3 Left View Grid: 

 Row 3 (Top):   Grey (Back), Grey (Middle), Red (Front)       

 Row 2 (Middle): Grey (Back), Grey (Middle), Grey (Front)       

 Row 1 (Bottom): Grey (Back), Grey (Middle), Red (Front)   

 5. Compare with Options:       

 Option A: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, R). This matches the derived left view.       

 Option B: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (R, G, G). Mismatch.       

 Option C: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.       

 Option D: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.   

 Note on discrepancies: The provided Front and Top views in the question appear inconsistent with the Isometric view (e.g., 

the height of the Front-Right stack, the position of the topmost Red cube, the empty space in the Top view). However, the question 

asks for the left view of the cube stack shown in the isometric view. Therefore, we derive the left view from the isometric drawing. 

The derivation based on the isometric view matches Option A.

Final Answer: A  

Prompt：You should first provide a reasoning process, then provide a 

single option(A, B, C or D) as the final answer. The reasoning process 

and the answer are enclosed within <think></think> and 

<answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: The cube stack is made of equal-sized small cubes, mostly 

gray with a few red ones. The top row shows its isometric view, front 

view, and top view from left to right. Which image in the bottom row is 

the left view of the cube stack? Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: A

Figure 22: Test case of Three-View Projection (Level 0) Task from Gemini-2.5-pro.
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Mental Rotation-3View Projection-Level 1

Thinking Process:

 1.  Understand the Task: 

 The goal is to identify the correct front view of the 3D object, given its isometric view and top view.

 2.  Analyze the Isometric View: 

 The isometric view shows a 3D representation of the object. It consists of a main rectangular prism (or block) and a cylinder 

attached to one of the larger faces of the prism. The cylinder extends outwards from this face.

 3.  Analyze the Top View: 

 The top view shows the object as seen from directly above. It appears as a ‘T’ shape. The wider horizontal part of the ‘T’ 

corresponds to the top surface of the rectangular prism. The narrower vertical part of the ‘T’ corresponds to the top view of the 

cylinder. This confirms that the cylinder is centered horizontally on the face it’s attached to. It also shows the relative width of the 

prism and the diameter of the cylinder, as well as the length the cylinder protrudes.

 4.  Determine the Orientation for the Front View: 

 The isometric view typically shows the front, top, and one side (usually right). The top view is given. The front view would 

be looking at the face from which the cylinder protrudes.

 5.  Visualize the Front View: 

 Imagine looking directly at the face of the rectangular prism where the cylinder is attached. You would see the rectangular 

outline of that face. You would also see the end of the cylinder, which is a circle, superimposed onto that rectangular face. 

 From the isometric view, the cylinder appears centered vertically on the face. 

 From the top view, the cylinder is centered horizontally on the face.       

 Therefore, the front view should be a rectangle with a circle located in its center.

 6.  Compare with the Options:       

 Option A: Shows a rectangle with a circle inside, centered horizontally and vertically. This matches the visualization of the 

front view derived from the isometric and top views.       

 Option B: Shows a ‘T’ shape lying on its side. This does not match the front view. It resembles the top view rotated.       

Option C: Shows only a rectangle. This would be the back view of the object, or the front view if the cylinder were absent.

 7.  Conclusion: 

 Option A is the correct representation of the front view of the given 3D object.

Final Answer: A  

Prompt：You should first provide a reasoning process, then provide a 

single option(A, B, C or D) as the final answer. The reasoning process 

and the answer are enclosed within <think></think> and 

<answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: The top row shows the isometric view (left) and the top view 

(right) of a 3D model. Which image in the bottom row is the front view 

of the model? Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. All three other options are incorrect

Ground Truth Answer: A

Figure 23: Test case of Three-View Projection (Level 1) Task from Gemini-2.5-pro.
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Mental Folding-Paper Folding-Level 0

Thinking Process:

 Step 1: Analyze the starting paper.

 The paper is a 3x3 grid. Let's label the cells by (row, column) starting from the top-left as (1,1). 

 (1,1) (1,2) (1,3); (2,1) (2,2) (2,3); (3,1) (3,2) (3,3)

 Step 2: Analyze Operation 1.

 A horizontal fold is made across the middle of the original 3x3 grid. The diagram shows the bottom third (row 3) being 

folded upwards, lying underneath the middle third (row 2). The fold line is between row 2 and row 3.

 The state after Operation 1 is a 3x2 grid shape (rows 1 and 2 are visible).

 - Row 1 contains cells (1,1), (1,2), (1,3) (single layer).

 - Row 2 (visible) contains cells (2,1), (2,2), (2,3) as the top layer, and cells (3,1), (3,2), (3,3) as the bottom layer, folded 

underneath.

 Step 3: Analyze Operation 2.

 Starting from the 3x2 shape after Operation 1. A diagonal fold is made within the right 2x2 section (columns 2 and 3). The 

fold line goes from the bottom-left corner of cell (2,2) to the top-right corner of cell (1,3). The top-right triangular part (involving 

cells (1,2), (1,3), (2,3)) is folded down/left onto the bottom-left triangular part (involving cells (1,2), (2,2), (2,3)).

 The state after Operation 2 is shown. Note the layers:   

 - The leftmost column (original cells (1,1) and (2,1)/(3,1)) is unaffected by this fold. 

 Cell (1,1) is single layer. Cell (2,1) is the top layer, (3,1) is the bottom layer.

 - The right part is now folded.

 Step 4: Analyze Punch Holes.

 A single hole is punched. Its location is in the bottom-left square of the shape shown after Operation 2. This corresponds to 

the cell location (2,1) in the configuration after Operation 1. Since this location (2,1) had two layers of paper from Operation 1 

(original cell (2,1) on top and original cell (3,1) underneath), punching a hole here creates holes through both layers. This area was 

not affected by the fold in Operation 2.

 Step 5: Unfold Operation 2.

 We reverse Operation 2 by unfolding the diagonal fold. Since the punched hole was in the part not involved in this fold ((2,1) 

area), unfolding Operation 2 does not change the location of the holes or create new ones. The paper returns to the state after 

Operation 1 (the 3x2 shape). We have holes through both layers at position (2,1). That means original cell (2,1) has a hole, and 

original cell (3,1) has a hole.

 Step 6: Unfold Operation 1.

 We reverse Operation 1 by unfolding the bottom third (row 3) back down. The fold line was between row 2 and row 3. The 

holes are currently in cell (2,1) and cell (3,1). Unfolding separates these layers. The final unfolded 3x3 paper will have a hole in 

cell (2,1) (middle row, left column) and a hole in cell (3,1) (bottom row, left column).

 Step 7: Compare with options. 

 - Option A shows holes at (2,1) and (3,1). This matches our result.

 - Option B shows holes at (1,1), (2,1), (3,1). Incorrect.

 - Option C shows holes at (1,1) and (3,1). Incorrect.    

 - Option D shows a hole at (3,1). Incorrect.

 Therefore, the correct unfolded pattern is shown in Option A.

Final Answer: A  

Prompt：You should first provide a reasoning process, then provide a single 

option(A, B, C or D) as the final answer. The reasoning process and the answer 

are enclosed within <think></think> and <answer></answer> tags, respectively, 

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The original paper is a 3×3 grid paper. The images in the top row 

show the results of 2 consecutive folding operations on the grid paper. Folding 

operations include folding along horizontal, vertical, or 45-degree direction. 

The rightmost image in the top row shows the result after punching holes in the 

folded paper. Which image represents the appearance of the paper after 

unfolding the punched paper? Black solid circles represent grid cells with holes. 

Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: A

Figure 24: Test case of Paper Folding Task from Gemini-2.5-pro.
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Mental Folding-Cube Unfolding-Level 0

Thinking Process:

 1.  Analyze the Target Cube:

 The image shows a cube with three visible faces meeting at a vertex: Red (Top), Blue (Front), and Green (Right). This means 

Red, Blue, and Green must be adjacent faces in any valid net representation. → Wrong color detection

 2.  Analyze the Nets (A, B, C, D):

 Each net represents an unfolded cube. To determine if a net can form the target cube, we need to check if the required faces 

(Red, Blue, Green) are adjacent and if their spatial relationship matches the target cube when folded. A key property of cube nets 

is identifying opposite faces. Faces are opposite if they are separated by one face in a straight line in the net, or by other standard 

rules depending on the net’s shape.

 3.  Check Net A:

 Identify opposite faces: Trace paths or visualize folding. In Net A, Teal is opposite Blue, Red is opposite Yellow, and Green is 

opposite Purple. → Wrong opposite faces

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. Since none of these are opposite 

pairs in Net A (Red/Yellow, Blue/Teal, Green/Purple), they can be adjacent.

 Visualize folding: It's possible to fold Net A such that Red is Top, Blue is Front, and Green is Right. (For example, place Red 

top, Yellow bottom. Arrange neighbours Teal, Purple, Green around Red. Blue is opposite Teal. One possible fold results in 

Top:Red, Bottom:Yellow, Front:Purple, Right:Green, Back:Blue, Left:Teal. Rotating this gives the target view.) 

 Thus, Net A can form the cube.

 4.  Check Net B: 

 Identify opposite faces: In Net B, Yellow is opposite Red, Teal is opposite Green, and Purple is opposite Blue.

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in 

Net B (Red/Yellow, Blue/Purple, Green/Teal), so they can be adjacent.

 Visualize folding: It's possible to fold Net B to match the target cube. (For example, one fold gives Top:Blue, Bottom:Purple, 

Front:Green, Back:Teal, Left:Yellow, Right:Red. This can be rotated to match the target view: Red-Top, Blue-Front, Green-Right). 

Thus, Net B can form the cube.

 5. Check Net C:

 Identify opposite faces: In Net C, Yellow is opposite Blue, Red is opposite Purple, and Green is opposite Teal.

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in 

Net C (Red/Purple, Blue/Yellow, Green/Teal), so they can be adjacent.

 Visualize folding: It's possible to fold Net C to match the target cube. (For example, one fold gives Top:Teal, Bottom:Green, 

Front:Red, Back:Purple, Left:Yellow, Right:Blue. This configuration can be rotated into the target view Red-Top, Blue-Front, 

Green-Right). 

 Thus, Net C can form the cube.

 6.  Check Net D:

 Identify opposite faces: In Net D, Blue is opposite Red, Purple is opposite Teal, and Green is opposite Yellow.

 Check required adjacencies: The target cube shows Red, Blue, and Green meeting at a vertex, which requires Red and Blue to 

be adjacent. However, in Net D, Red and Blue are opposite faces.

 Conclusion: 

 Opposite faces cannot meet at a vertex or share an edge. Since Net D places Red and Blue opposite each other, it is 

impossible to fold Net D into the cube shown on the left where Red and Blue are adjacent. Thus, Net D cannot form the cube.

 7.  Final Answer:

  Based on the analysis, Nets A, B, and C can form the target cube, while Net D cannot because it places two adjacent faces 

from the target cube (Red and Blue) in opposite positions.

Final Answer: D  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a colored cube from a particular viewing angle. The options are nets (unfolded patterns) of the 

cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube shown in the left image? Please 

answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: C

Figure 25: Test case of Cube Unfolding Task from Gemini-2.5-pro.
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Mental Folding-Cube Unfolding-Level 2

Thinking Process:

Let's analyze the visible faces of the cube:

Top face (T): Pattern of Blue, Purple, Green dots. Specifically, (B B B / P . P / G G G). The bottom-right corner dot is Green 

(G).

Front face (F): Pattern of Purple, Green, Red, Blue dots. Specifically, (P G / G R / G B). The top-right corner dot is Green (G).

Right face (R): Pattern of Green, Purple, Black, Blue, Red dots. Specifically, (G P . / G Bl B / R B R). The top-left corner dot 

is Green (G).

The common vertex where these three faces (T, F, R) meet has a Green dot from each face. So, this vertex is (G, G, G).

Now let's examine each net:

Net A: 

Let's identify the patterns T, F, R in Net A if they exist.

Face 2 of Net A matches T. (B B B / P . P / G G G)

Face 3 of Net A matches F. (P G / G R / G B)

Now, we need to find face R: (G P . / G Bl B / R B R).

Let's list the patterns of the other faces in Net A: 

Face 1: (B G . / M R . / Bl B .) (M=Magenta/Purple). Face 4: (Bl B . / P R . / G P .) Face 5: (P Bl . / B R . / G M .) Face 6: (P 

G . / B M . / B R .) Comparing R with faces 1, 4, 5, 6: None of them match the pattern of R. Since face R is not present in Net A, 

Net A cannot form the cube shown.

Let's verify other nets, assuming this is the primary criterion. If other nets contain T, F, R and can be arranged correctly, then 

A is the answer.

Net B: 

Face 2 is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the 

standard T, F, R configuration. 

Let's check the common vertex: T (face 2): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G. 

So, the common vertex is (G,G,G). This is consistent with the cube. Thus, Net B can form the cube.

Net C:

Face 1 is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the 

standard T, F, R configuration. Let's check the common vertex:

T (face 1): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G. So, the common vertex is (G,G,G). 

This is consistent with the cube. Thus, Net C can form the cube.

Net D:

The topmost face is R. The face below it is T. The face to the left of T is F. So, R, T, F are present. Arrangement when folded: 

R is Top, T is Front, F is Left.

Let's find the common vertex for this configuration: R (Top): bottom-left dot is R (from R B R). T (Front): top-left dot is B 

(from B B B). F (Left): top-right dot is G (from P G). So, the common vertex is (R, B, G). For this to match the (G,G,G) vertex of 

the cube, we would need R=G and B=G, which is false as the colors are distinct. Therefore, Net D cannot form the cube shown 

with this specific corner. 

However, the primary reason for Net A being unable to form the cube is the absence of face R. This is a more fundamental 

issue than corner matching if all faces are present. If a face is missing, it absolutely cannot form the cube.

If we assume that there’s only one incorrect option, and the “missing face” criterion for A is decisive, then A is the answer. 

The issues with D (and potential edge matching issues with B and C) might be secondary or based on misinterpretations of 

“forming the cube”. But missing a face is a definitive failure. Let's reconfirm the “missing face R in Net A” argument. R = (G P . / 

G Bl B / R B R)

Net A, Face 1: (B G / M R / Bl B) - No match (e.g., G at top-left of R, B at top-left of Face 1)

Net A, Face 4: (Bl B / P R / G P) - No match (e.g., G at top-left of R, Bl at top-left of Face 4)

Net A, Face 5: (P Bl / B R / G M) - No match (e.g., G at top-left of R, P at top-left of Face 5)

Net A, Face 6: (P G / B M / B R) - No match (e.g., G at top-left of R, P at top-left of Face 6)

The conclusion that face R is not present in Net A seems correct. Therefore, Net A cannot form the cube. The final answer is 

$\\boxed{A}$.

Final Answer: A

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a cube with different patterns on its six faces from a particular viewing angle. The options are 

nets (unfolded patterns) of the cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube 

shown in the left image? Please answer from options A, B, C, or D.

Choices:  

A. A    B. B    C. C    D. D

Ground Truth Answer: A

Figure 26: Test case of Cube Unfolding Task from Gemini-2.5-pro.
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Mental Folding-Cube Reconstruction-Level 1

Thinking Process:

 1. Identify the faces and their opposite pairs:

 Label the faces in the net based on the number of dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5 (where 1 is below 3, 

and 5 is below 6)  → Wrong pattern detection

 Determine opposite faces by folding mentally or noting faces separated by one other face in a straight line (or around corners):

 The face with 4 dots is opposite the face with 1 dot.

 The face with 3 dots is opposite the face with 6 dots.

 The face with 2 dots is opposite the face with 5 dots.

 2. Evaluate the options based on opposite faces:

 A cube view can only show faces that are adjacent to each other. Opposite faces can never be seen together. 

 Option A: Shows faces with 4 dots, 3 dots, and 1 dot. Since 4 and 1 are opposite faces, this view is impossible.

 Option B: Shows faces with 5 dots, 3 dots, and 2 dots. Since 2 and 5 are opposite faces, this view is impossible. 

 Option D: Shows faces with 3 dots, 6 dots, and 5 dots. Since 3 and 6 are opposite faces, this view is impossible.   

 Option C: Shows faces with 2 dots, 4 dots, and 3 dots. None of these pairs (2-4, 2-3, 4-3) are opposite pairs (Opposites: 2-5, 

4-1, 3-6). Therefore, this combination of adjacent faces is possible. 

 3. Verify Option C with adjacency and orientation (Optional but recommended):

 Consider the face with 2 dots (let's call it F2) as the front face.

 In the net, the face with 4 dots (F4) is attached to the top edge of F2 (relative to the net layout shown). When folded, F4 

becomes the top face.

 In the net, the face with 3 dots (F3) is attached to the left edge of F2. When folded, F3 becomes the left face.

 So, the faces 2, 4, and 3 can indeed meet at the top-front-left vertex.

 Check orientations shown in C:

 Front (2 dots): The dots run diagonally from top-left to bottom-right. This matches the orientation on the net relative to the 

edges connected to F4 and F3.

 Top (4 dots): The dots form a square. This matches the orientation on the net relative to the edge connected to F2.

 Left (3 dots): The dots run vertically. The middle dot is closer to the edge shared with F2 (the front face). This matches the 

orientation on the net relative to the edge connected to F2.

 The adjacencies and orientations in Option C are consistent with the net.

 Conclusion: 

 Options A, B, and D are impossible because they show opposite faces. 

 Option C shows three faces that are adjacent in the net and whose orientations are consistent with folding.

Final Answer: C  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the net (unfolded pattern) of a cube, with six faces having different patterns. The net is folded 

upward to form a cube. From an axonometric (3D) viewing angle of the cube, which combination of adjacent patterns is possible 

to see? Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: A

Figure 27: Test case of Cube Reconstruction Task from Gemini-2.5-pro.
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Visual Penetration-Cross Section-Level 0

Thinking Process:

 1. Analyze the 3D Shape: 

 The object consists of a cone positioned inside a circular depression on the top face of a square frustum. The base of the cone 

is circular and lies on the plane of the top face of the frustum. The frustum has a square base and tapers upwards to a smaller 

square top face. The circular depression (and thus the cone's base) is contained entirely within this top square face.   

 2. Analyze Option A (Circle): 

 A horizontal cross-section plane passing through the cone part (above the frustum's top face) will intersect the cone to form a 

circle. This is a possible cross-section.   

 3. Analyze Option D (Square): 

 A horizontal cross-section plane passing through the frustum part below the level of the cone's base (and below the 

depression) will intersect the frustum to form a square. This is a possible cross-section.   

 4. Analyze Option C (Triangle on Trapezoid): 

 A vertical cross-section plane passing through the central axis of both the cone and the frustum, and parallel to two opposite 

side faces of the square frustum, will intersect the cone to form a triangle and the frustum to form an isosceles trapezoid. The 

triangle will sit atop the trapezoid. This is a possible cross-section.   

 5. Analyze Option B (Curve on Trapezoid): → Correct and detailed analysis

 This shape represents a cross-section formed by a plane cutting through both the cone and the frustum. The curved top part 

represents the intersection with the cone. If the plane is vertical and off-center, this curve is typically a hyperbola segment. If the 

plane is tilted, it could be an ellipse or parabola segment. The trapezoidal bottom part represents the intersection with the frustum. 

A vertical plane cutting the frustum can result in a rectangle (if parallel to a side face) or a trapezoid (if cutting diagonally or at an 

angle relative to the side faces). A tilted plane could also result in a trapezoid. 

 The key feature to examine is the junction between the curved top and the trapezoidal base. This junction line represents the 

intersection of the cutting plane with the plane containing the cone’s base (the top surface of the frustum). The width of the curved 

section at its base corresponds to the length of the chord formed by the cutting plane intersecting the cone’s circular base. The 

width of the top side of the trapezoid corresponds to the length of the line segment formed by the cutting plane intersecting the 

frustum's top square face. Since the cone’s circular base is strictly smaller than and contained within the frustum's top square face 

(as seen in Views 1 and 2), any cutting plane that intersects both the circle and the square will create a chord across the circle that 

is strictly shorter than the segment across the square (unless the plane is merely tangent to the circle). Therefore, the base width of 

the curved (cone) section must be strictly narrower than the top width of the trapezoidal (frustum) section. However, in option B, 

the base width of the curve appears to be equal to the top width of the trapezoid. This configuration is geometrically impossible 

given that the cone’s base circle lies inside the top square face of the frustum. 

 6. Conclusion:  → Incorrect identification of the relative length relationship of options

 Options A, C, and D represent possible cross-sections of the described 3D object. 

 Option B depicts a configuration where the width of the cone section matches the width of the frustum section at the joining 

plane, which contradicts the geometry shown in Views 1 and 2 where the cone base is smaller than the top face of the frustum. 

Therefore, B cannot be a cross-section. 

Final Answer: B  

Prompt：You should first provide a reasoning process, then provide a 

single option(A, B, C or D) as the final answer. The reasoning process 

and the answer are enclosed within <think></think> and 

<answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: The top row shows the combined shape viewed from two 

different angles. The shape consists of a cone on top of a square frustum. 

Which of the following images cannot be a cross-section of the shape? 

Please answer from options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: C

Figure 28: Test case of Cross-Section Task from Gemini-2.5-pro.
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Visual Penetration-Cube Counting-Level 1

Thinking Process: → Incorrect details, but based on the wrong details, the analysis is correct

 1.  Understand the Goal: 

 The objective is to find the minimum number of unit cubes required to build a 3D structure whose orthographic projections 

(Front, Top, Left views) match the given diagrams.

 2.  Analyze the Top View:       

 The Top view shows the layout of the cubes on the base level (or the projection of all cubes onto the base). It occupies a 2x3 

grid area, with the cell in the top-right corner (row 1, column 3) and the bottom-right cell (row 2, column 3) being potentially 

different. 

 The cells occupied are: Top row (back): (1,1), (1,2), (1,3); Bottom row (front): (2,1), (2,2); Cell (2,3) is empty.       

 This means there must be at least one cube stacked at each of the locations (1,1), (1,2), (1,3), (2,1), and (2,2). 

 This establishes a minimum of 5 cubes based on the footprint.

 3.  Analyze the Front View: → Wrong order

 The Front view shows the maximum height of the stacks in each column (left-to-right).       

 Column 1 (left): Height is 3. Corresponds to locations (1,1) and (2,1). So, max(Height(1,1), Height(2,1)) = 3.       

 Column 2 (middle): Height is 3. Corresponds to locations (1,2) and (2,2). So, max(Height(1,2), Height(2,2)) = 3.       

 Column 3 (right): Height is 1. Corresponds to location (1,3) (since (2,3) is empty according to the top view). So, Height(1,3) 

= 1.

 4.  Analyze the Left View:       

 The Left view shows the maximum height of the stacks in each row (front-to-back, viewed from the left).       

 Back Row (left side of the Left view): Height is 3. Corresponds to locations (1,1), (1,2), (1,3). So, max(Height(1,1), 

Height(1,2), Height(1,3)) = 3.       

 Front Row (right side of the Left view): Height is 1. Corresponds to locations (2,1), (2,2). So, max(Height(2,1), Height(2,2)) 

= 1.

 5.  Combine Information and Minimize Cubes:       

 Let H(r, c) denote the height of the stack at row ‘r’ and column ‘c’.       

 From Top view: H(1,1)>=1, H(1,2)>=1, H(1,3)>=1, H(2,1)>=1, H(2,2)>=1.       

 From Front view: Height(1,3) = 1.       

 From Left view: max(H(2,1), H(2,2)) = 1. 

 Since we know H(2,1)>=1 and H(2,2)>=1, this forces H(2,1) = 1 and H(2,2) = 1.       

 Now use the Front view constraints again: 

 max(H(1,1), H(2,1)) = 3.  Since H(2,1) = 1, we must have H(1,1) = 3 to satisfy the maximum height and minimize cubes. 

max(H(1,2), H(2,2)) = 3.  Since H(2,2) = 1, we must have H(1,2) = 3 to satisfy the maximum height and minimize cubes.       

 Check the remaining Left view constraint: max(H(1,1), H(1,2), H(1,3)) = max(3, 3, 1) = 3. 

 This is satisfied by our determined heights.

 6.  Calculate Total Cubes: → The error does not affect the final numerical result

 We have determined the minimum required heights for each stack: H(1,1) = 3, H(1,2) = 3, H(1,3) = 1, H(2,1) = 1, H(2,2) = 1   

 Total number of cubes = H(1,1) + H(1,2) + H(1,3) + H(2,1) + H(2,2)       

 Total cubes = 3 + 3 + 1 + 1 + 1 = 9

 7.  Compare with Options: 

 The calculated minimum number of cubes is 9. This matches option B.

Final Answer: B  

Prompt：You should first provide a reasoning process, then provide a 

single option(A, B, C or D) as the final answer. The reasoning process 

and the answer are enclosed within <think></think> and 

<answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: Given three views, what is the minimum number of cubes 

required to satisfy the constraints shown in the images? Please answer 

from options A, B, C, or D.

Choices:  

 A. All three other options are incorrect    B. 9    C. 11    D. 10

Ground Truth Answer: B

Figure 29: Test case of Cube Counting Task from Gemini-2.5-pro.
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Visual Penetration-Cube Assembly-Level 0

Thinking Process: → Most of the identifications of the number of cube stacks are incorrect

 1. Analyze the Complete Cube Stack:

 Visualize the stack layer by layer or column by column. Let’s use columns from back-left to front-right (like reading order if 

viewed from slightly above).       

 Back-Left Column: 2 cubes high.       

 Back-Right Column: 2 cubes high.       

 Middle-Left Column: 2 cubes high.       

 Middle-Right Column: 1 cube high (only bottom layer).       

 Front-Left Column: 1 cube high (only bottom layer).       

 Front-Right Column: 1 cube high (only bottom layer).       

 Total Cubes = 2 + 2 + 2 + 1 + 1 + 1 = 9 cubes.   

 2. Analyze Part 1:       

 Using the same column description: 

 Back-Left Column: 2 cubes high.       

 Back-Right Column: 0 cubes.       

 Middle-Left Column: 1 cube high (only bottom layer).       

 Middle-Right Column: 1 cube high (only bottom layer).       

 Front-Left Column: 1 cube high (only bottom layer).       

 Front-Right Column: 0 cubes.       

 Total Cubes = 2 + 0 + 1 + 1 + 1 + 0 = 5 cubes.   

 3. Determine the Missing Part (Complete Stack - Part 1): → Incorrect approach to calculation

 Subtract the cubes in Part 1 from the Complete Stack for each column position:       

 Back-Left Column: 2 (Complete) - 2 (Part 1) = 0 cubes.       

 Back-Right Column: 2 (Complete) - 0 (Part 1) = 2 cubes (column 2 high).       

 Middle-Left Column: 2 (Complete) - 1 (Part 1) = 1 cube (must be the top cube).       

 Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       

 Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.       

 Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube (must be the bottom cube).       

 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4 cubes.       

 Structure of Missing Part: A column of 2 cubes in the back-right position, a single cube in the middle-left top position, and a 

single cube in the front-right bottom position.   

 4. Analyze the Options:       

 Option A: Has a column of 2 in the back-left, 1 in middle-left (bottom), 1 in front-left (bottom). Total 4 cubes. Does not 

match the required structure.       

 Option B: Has a column of 2 in back-left, 1 in back-right (bottom), 1 in middle-left (bottom), 1 in middle-right (bottom). 

Total 5 cubes. Incorrect number of cubes and structure.       

 Option C: Has a column of 2 in the back-right position, a single cube that aligns with the middle-left top position, and a 

single cube that aligns with the front-right bottom position. Total 4 cubes. This matches the required structure derived in step 3.   

5. Conclusion: 

 Option C is the missing part that combines with Part 1 to form the Complete Cube Stack.

Final Answer: C  

Prompt：You should first provide a reasoning process, then provide a 

single option(A, B, C or D) as the final answer. The reasoning process 

and the answer are enclosed within <think></think> and 

<answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: The top left image shows the original complete cube stack 

made of equal-sized cubes. It can be formed by combining the small 

cube stack on the right(part 1) with one of the options below. Which 

option completes the original cube stack? Please answer from options A, 

B, C, or D.

Choices:  

 A. A    B. B    C. C    D. All three other options are incorrect

Ground Truth Answer: B

Figure 30: Test case of Cube Assembly Task from Gemini-2.5-pro.
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Mental Animation-Arrow Moving-Level 0

Thinking Process:

 1. Analyze Initial State:  

 The red arrow (start) is located in the top-left quadrant. Its center appears to be at coordinates approximately (0.5, 1.5). 

 The direction of the red arrow is pointing downwards (South).

 2.  Analyze Final State:   

 The green arrow (end) is located in the bottom-right quadrant. Its center appears to be at coordinates approximately (1.5, 0.5). 

The direction of the green arrow is pointing to the right (East).

 3. Define Movement Rules:

 The arrow can move Forward, Backward, Left, or Right relative to its current orientation. After each move, the arrow's 

orientation changes to the direction of the move. Cardinal Directions relative to current orientation: 

 If facing North (Up): Forward=Up, Backward=Down, Left=West, Right=East. 

 If facing South (Down): Forward=Down, Backward=Up, Left=East, Right=West.

 If facing East (Right): Forward=Right, Backward=Left, Left=Up, Right=Down.

 If facing West (Left): Forward=Left, Backward=Right, Left=Down, Right=Up.       → Fully comprehend the rules

 4.  Evaluate Option A: (Left, 2 units) -- (Left, 1 unit)    

 Start: Position (0.5, 1.5), Direction Down. 

 Move 1: Left, 2 units. Relative to Down, Left is East (Right). Move 2 units East.

 -- New Position: (0.5 + 2, 1.5) = (2.5, 1.5). New Direction: East (Right).

 Move 2: Left, 1 unit. Relative to East (Right), Left is North (Up). Move 1 unit North.

 -- New Position: (2.5, 1.5 + 1) = (2.5, 2.5).

 New Direction: North (Up).   

 Result: Position (2.5, 2.5), Direction Up. Does not match the final state.

 5.  Evaluate Option B: (Forward, 1 unit) -- (Backward, 1 unit)

 Start: Position (0.5, 1.5), Direction Down.   

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Backward, 1 unit. Relative to Down, Backward is Up. Move 1 unit Up.

 -- New Position: (0.5, 0.5 + 1) = (0.5, 1.5). New Direction: Up.

 Result: Position (0.5, 1.5), Direction Up. Does not match the final state.

 6.  Evaluate Option C: (Forward, 1 unit) -- (Backward, 2 units)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Backward, 2 units. Relative to Down, Backward is Up. Move 2 units Up.

 -- New Position: (0.5, 0.5 + 2) = (0.5, 2.5). New Direction: Up. 

 Result: Position (0.5, 2.5), Direction Up. Does not match the final state.

 7.  Evaluate Option D: (Forward, 1 unit) -- (Left, 1 unit)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Left, 1 unit. Relative to Down, Left is East (Right). Move 1 unit East.

 -- New Position: (0.5 + 1, 0.5) = (1.5, 0.5). New Direction: East (Right).

 Result: Position (1.5, 0.5), Direction East (Right). Matches the final state (green arrow).

 8.  Conclusion: Option D correctly describes the path from the red arrow to the green arrow.

Final Answer: D  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or 

D) as the final answer. The reasoning process and the answer are enclosed within 

<think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning 

process</think>, <answer>answer</answer>.

Question: In the diagram, the red arrow is the initial arrow, and the green arrow is the final arrow. 

The arrow can move in four directions (forward, backward, left, right), where 'forward' always 

refers to the current direction the arrow is pointing. After each movement, the arrow's direction is 

updated to the direction of movement. Which of the following paths can make the arrow move 

from the starting position to the ending position? Please answer from options A, B, C, or D.

Choices:  

 A. (Left, 2 units)--(Left, 1 unit)

 B. (Forward, 1 unit)--(Backward, 1 unit)

 C. (Forward, 1 unit)--(Backward, 2 units)

 D. (Forward, 1 unit)--(Left, 1 unit)\

Ground Truth Answer: D

Figure 31: Test case of Arrow Moving Task (Level 0) from Gemini-2.5-pro.
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Mental Animation-Arrow Moving-Level 1

Thinking Process:

 1.  Analyze Initial State:

 Grid coordinates range from x=0 to x=2 and y=0 to y=2 (implicitly, based on positions).

 Arrow 1: Red at (0, 0), Orientation: Right (East).

 Arrow 2: Green at (1, 0), Orientation: Down (South).

 Arrow 3: Pink at (2, 0), Orientation: Right (East).

 Arrow 4: Red at (0, 2), Orientation: Up (North).

 2.  Analyze Transformation 1: ((0, 0) Left, 2 units)

 Identify the arrow: The arrow starting at (0, 0) is Arrow 1 (Red, facing Right).

 Determine the movement direction: ‘Left’ relative to the arrow’s orientation (Right). If facing Right, ‘Left’ is Up (North). 

Determine the target position: Move 2 units Up from (0, 0). Target is (0, 0 + 2) = (0, 2).

 Check the target position: Position (0, 2) is occupied by Arrow 4 (Red, facing Up).

 Execute swap: Since the target is occupied, Arrow 1 and Arrow 4 must swap positions.

 Arrow 1 moves from (0, 0) to (0, 2). Movement direction: Up. New orientation for Arrow 1: Up.

 Arrow 4 must move from (0, 2) to (0, 0). Movement direction: Down.

 Check if Arrow 4’s move is valid: Arrow 4 is facing Up. 

 Moving Down is ‘Backward’. This is a valid relative move.

 New orientation for Arrow 4: Down (direction of movement).

 State after Transformation 1: Arrow 4: Red at (0, 0), Orientation: Down. Arrow 2: Green at (1, 0), Orientation: Down. Arrow 

3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

 3.  Analyze Transformation 2: ((1, 0) Right, 1 unit) 

 Identify the arrow: The arrow currently at (1, 0) is Arrow 2 (Green, facing Down).

 Determine the movement direction: ‘Right’ relative to the arrow’s orientation (Down).  If facing Down, ‘Right’ is Left (West).

 Determine the target position: Move 1 unit Left from (1, 0). Target is (1 - 1, 0) = (0, 0).

 Check the target position: Position (0, 0) is occupied by Arrow 4 (Red, facing Down).

 Execute swap: Since the target is occupied, Arrow 2 and Arrow 4 must swap positions.

 Arrow 2 moves from (1, 0) to (0, 0). Movement direction: Left. New orientation for Arrow 2: Left.

 Arrow 4 must move from (0, 0) to (1, 0). Movement direction: Right.

 Check if Arrow 4’s move is valid: Arrow 4 is facing Down. Moving Right is ‘Right’. This is a valid relative move.   

 New orientation for Arrow 4: Right (direction of movement).

 State after Transformation 2 (Final State): Arrow 2: Green at (0, 0), Orientation: Left. Arrow 4: Red at (1, 0), Orientation: 

Right. Arrow 3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

 4.  Compare Final State with Options:

 Option A: Incorrect arrows/positions/orientations.

 Option B: Incorrect arrows/positions/orientations.

 Option C: Green at (0, 0), facing Left. (Match); Red at (1, 0), facing Right. (Match); Pink at (2, 0), facing Right. (Match); 

Red at (0, 2), facing Up. (Match). This matches the derived final state.

 Option D: Incorrect arrows/positions/orientations.

 5. Conclusion: The state reached after the transformations matches Option C. 

Final Answer: C  

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The 

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e., 

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the initial state. Arrows can move in four directions (forward, backward, left, right), where 

'forward' always refers to the current direction the arrow is pointing. After each movement, the arrow's direction is updated to 

the direction of movement. If the target position is empty, the arrow can move there directly; otherwise, it needs to swap with the 

arrow at the target position, and both arrows' movements should satisfy the aforementioned requirements. After the 

transformations '((0, 0) Left, 2 units)--((1, 0) Right, 1 unit)', which state from the options can be reached? Please answer from 

options A, B, C, or D.

Choices:  

 A. A    B. B    C. C    D. D

Ground Truth Answer: C

Figure 32: Test case of Arrow Moving Task (Level 1) from Gemini-2.5-pro.
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Mental Animation-Block Moving-Level 1

Thinking Process:

 1.  Analyze States: 

 Identify block positions (R, G, DB, P, C) in Initial and Final states using a consistent coordinate system (e.g., R at 0,0,0). 

Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1).    → Missing 1 block and the positions of blocks are wrong

 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1). 

 The change is G swaps with DB.

 2.  Analyze Rules:

  Moves are 1 unit. Target empty = move. Target occupied = swap. Gravity applies if support is removed.

 3.  Evaluate Options:

 A: (1,1,1)x- moves C to (0,1,1). (0,0,0)x+ swaps R and G. 

 Result: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(0,1,1). Incorrect state.

 B: (1,1,0)x- swaps P and DB. (1,1,0)x+ moves DB(now at 1,1,0) to (2,1,0), causing C(1,1,1) to fall to (1,1,0). (1,1,1)z- 

attempts to move from empty (1,1,1). Invalid.

 C: (1,1,1)x+ moves C(1,1,1) to (2,1,1), causing C to fall to (2,1,0). (2,1,0)x- swaps C(2,1,0) and P(1,1,0). (1,1,1)x+ attempts 

to move from empty (1,1,1). Invalid.

 D: (0,0,0)x+ swaps R(0,0,0) and G(1,0,0). State: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1). (2,1,0)x- attempts to move 

from empty (2,1,0). Invalid.

 4.  Conclusion: 

 All options appear invalid or incorrect based on the rules. B, C, D reference empty coordinates. A leads to the wrong state.

 5. Reassess: 

 The problem likely contains an error. However, if forced to choose, D's first move is valid. The required transformation 

(swapping G and DB) needs multiple steps. I found a 3-step sequence: (0,1,0)y-, (0,0,0)x+, (0,0,0)y+. Another 3-step sequence 

starting like D: (0,0,0)x+, (0,1,0)x+, (0,0,0)y+. Since Option D has only 2 steps and the second is invalid, it cannot be correct as 

written. But in multiple-choice questions with flaws, sometimes the intended answer has the most ‘reasonable’ start or structure. 

Option D starts with a valid swap. Without clarification, choosing D assumes it’s the intended answer despite the error.

Final Answer: D  

Prompt：You should first provide a reasoning process, then provide a single 

option(A, B, C or D) as the final answer. The reasoning process and the answer 

are enclosed within <think></think> and <answer></answer> tags, respectively, 

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The top row of images shows different views of the initial state of a 

cube stack, while the bottom row shows different views of the final state after 

transformation. During the transformation process, blocks can move one unit in 

any direction (forward, backward, left, right, up, down). If the target position is 

empty, the block can move there directly; if the target position already has a 

block, they swap places. Blocks cannot float in the air. If a block is moved away 

from a position, any block above it will fall down until reaching a supporting 

surface. The xyz axes are shown in the diagram, and each block's position can 

be precisely identified using coordinates (x1,y1,z1). Which of the following 

transformation sequences can change the cube stack from the initial state to the 

final state shown in the diagram? Please answer from options A, B, C, or D.

Choices:  

 A. (1, 1, 1) x- -- (0, 0, 0) x+

 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-

 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+

 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Ground Truth Answer: B

Figure 33: Test case of Block Moving Task from Gemini-2.5-pro.
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Mental Animation-Mechanical System-Level 0

Thinking Process:   Can’t intuitively thinking without theoretical derivation

 1. Define the system and motion:

 We have an epicyclic gear train. The orange gear (Sun) is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the orange 

gear and rotates clockwise (ω_y < 0). The green gear (Planet 2) meshes with the yellow gear, and is identical to it (N_g = N_y). 

The yellow and green gears are carried by an implicit arm that revolves around the center of the orange gear. We need to find the 

absolute rotation (spin) and revolution (orbit) of the green gear relative to the fixed orange gear.

 2. Determine the arm's revolution (ω_arm): 

 The relationship between the sun, planet, and arm is given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm) = -N_o / 

N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm) = -N_o / N_y. Simplifying: ω_y - ω_arm = (-ω_arm)  (-N_o / N_y) = ω_arm  

(N_o / N_y). Rearranging for ω_y: ω_y = ω_arm + ω_arm  (N_o / N_y) = ω_arm  (1 + N_o / N_y). We are given that ω_y is 

clockwise (negative). Since N_o and N_y are positive tooth counts, the term (1 + N_o / N_y) is positive. Therefore, for ω_y to be 

negative, ω_arm must also be negative. This means the arm, carrying the yellow and green gears, revolves clockwise around the 

orange gear.   

 3. Determine the green gear's rotation (ω_g): 

 Now consider the meshing between the yellow and green gears. They are carried by the same arm. The relative motion 

formula applies: (ω_g - ω_arm) / (ω_y - ω_arm) = -N_y / N_g. Since the yellow and green gears are identical, N_y = N_g. The 

ratio -N_y / N_g = -1. So, (ω_g - ω_arm) / (ω_y - ω_arm) = -1. ω_g - ω_arm = -(ω_y - ω_arm) = -ω_y + ω_arm. Rearranging for 

ω_g: ω_g = -ω_y + 2  ω_arm.   

 4. Express ω_g in terms of ω_y and gear ratio: 

 Substitute the expression for ω_arm from step 2 [ω_arm = ω_y / (1 + N_o / N_y)] into the equation for ω_g: ω_g = -ω_y + 2  

[ω_y / (1 + N_o / N_y)].  Factor out ω_y: ω_g = ω_y  [-1 + 2 / (1 + N_o / N_y)]. Combine terms inside the bracket: ω_g = ω_y  [(-

1  (1 + N_o / N_y) + 2) / (1 + N_o / N_y)]. ω_g = ω_y  [(-1 - N_o / N_y + 2) / (1 + N_o / N_y)]. ω_g = ω_y  [(1 - N_o / N_y) / (1 

+ N_o / N_y)]   

 5. Analyze the rotation based on relative sizes:       

 Case 1: If N_o > N_y (Orange gear larger than Yellow, as suggested by the image). Then (1 - N_o / N_y) is negative. Since 

ω_y is negative (clockwise), ω_g = (negative)  (negative / positive) = positive. Green gear rotates counter-clockwise. Motion: 

CCW rotation, CW revolution. (Not an option).       

 Case 2: If N_o < N_y (Orange gear smaller than Yellow). Then (1 - N_o / N_y) is positive. ω_g = (negative)  (positive / 

positive) = negative. Green gear rotates clockwise. Motion: CW rotation, CW revolution. (Option A).       

 Case 3: If N_o = N_y (Orange gear same size as Yellow). Then (1 - N_o / N_y) = 0. ω_g = ω_y  (0 / positive) = 0. Green gear 

has no rotation (absolute rotation is zero). Motion: No rotation, CW revolution. (Option C).   

 6. Select the most plausible answer: 

 Although the image suggests N_o > N_y, this leads to a result not listed in the options. Gear train problems in multiple-choice 

format often rely on specific configurations, sometimes simplifying assumptions (like equal gear sizes if not explicitly stated 

otherwise) that lead to one of the provided answers. Assuming the problem intends for the case where N_o = N_y allows us to 

match option C.   

 7. Final Motion (assuming N_o = N_y):  

 Rotation of green gear (ω_g): 0 (No rotation). Revolution of green gear (ω_arm): Clockwise

Final Answer: C  

Prompt：You should first provide a reasoning process, then provide a single 

option(A, B, C or D) as the final answer. The reasoning process and the answer 

are enclosed within <think></think> and <answer></answer> tags, respectively, 

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: In the coaxial system shown, the orange gear is fixed, and the yellow 

and green gears are identical in shape. If the yellow gear rotates clockwise, 

what is the motion of the green gear relative to the orange gear? Please choose 

from options A, B, C, or D.

Choices:  

 A. Clockwise rotation, clockwise revolution

 B. Clockwise rotation, counterclockwise revolution

 C. No rotation, clockwise revolution

 D. No rotation, counterclockwise revolution

Ground Truth Answer: C

Figure 34: Test case of Mechanical System Task from Gemini-2.5-pro.

G DECLARATION OF LLM USAGE

We utilized a LLM to improve the grammar, clarity, and style of this manuscript. Its role was limited
to language refinement, without involvement in the research ideas, methodology, data analysis, or
conclusions. The LLM was also used to generate LaTeX code for tables from the authors’ data and
instructions, assisting only in formatting. In addition, it performed preliminary classification of error
types in model responses, which were subsequently reviewed and validated by human annotators to
reduce workload rather than replace human judgment.
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