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ABSTRACT

Humans can imagine and manipulate visual images mentally, a capability known
as spatial visualization. While many multi-modal benchmarks assess reasoning
on visible visual information, the ability to infer unseen relationships through
spatial visualization remains insufficiently evaluated as a spatial skill. This re-
liance on publicly sourced problems from IQ tests or math competitions risks data
contamination and compromises assessment reliability. To this end, we introduce
SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visual-
ization with 12 tasks across 4 sub-abilities, comprising /,/80 programmatically
generated problems, a scalable framework that allows for expansion to ensure fair
and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large
Language Models (MLLMs) reveals wide performance variations, demonstrates
the benchmark’s strong discriminative power, and uncovers counter-intuitive find-
ings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on
open-source models. Through statistical and qualitative analysis of error types,
Spatial Viz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in
spatial visualization tasks, thereby addressing a significant lacuna in the field.
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Figure 1: Overview of SpatialViz-Bench. (a) presents a representative task instance. (b) unfolds the
reasoning behind (a): perceiving visible cues to infer unseen relationships via iterative visualization
and memorization. The table highlights a systematic gap: unlike perception, spatial visualization
remains a largely unassessed blind spot in prior benchmarks (indicated by lighter colors). (c) displays
zero-shot accuracy revealing significant gaps against human performance.
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Figure 2: Overview of Tasks in SpatialViz-Bench. SpatialViz-Bench evaluates 4 spatial sub-abilities,
mental rotation, mental folding, visual penetration, and mental animation, via 3 tasks each (12 tasks
total). Each task has 2-3 difficulty levels of 40-50 cases, yielding 1,180 question—answer pairs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong capabilities in complex reasoning, and
the integration of Vision Transformers (ViTs) has given them “eyes,” extending these abilities into
the multimodal domain. While many tasks focus on visible information, real-world challenges
in fields like architectural design and medical-image—assisted surgery often demand the ability
to mentally construct and manipulate unseen structures, a capability in which existing MLLMs
still struggle. To bridge this gap, spatial visualization must be abstracted and assessed through
targeted evaluations that isolate it from confounding factors, like a well-designed physics exam tests
fundamental principles. However, current evaluations rely heavily on web-sourced problems, risking
data leakage and inconsistent formulations, underscoring the need for a procedurally generated,
standardized benchmark to ensure fair and reliable assessment.

This cognitive faculty for mental manipulation is known as spatial visualization, which was first
identified by Thurstone in his work on primary mental abilities [1938). Successfully
performing spatial visualization tasks relies on two other fundamental spatial abilities: Spatial
perception [1950), which aims to perceive external spatial information and relationships,
and spatial memorization (Della Sala et al [1999), which requires temporarily storing transformation
information mentally without accessing physical objects.

Despite their importance as dedicated spatial-reasoning challenges, spatial visualization tasks are
often buried under broader categories like mathematical or logical reasoning, appearing as multimodal
puzzles or 3D geometry problems. This categorization obscures the evaluation of spatial visualization
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as a distinct capability and focuses on "solving" a problem rather than driving research toward core
spatial abilities. Moreover, most examples are drawn from publicly available sources, online IQ tests,
administrative exams, and math contests, which risks overlap between training and evaluation data
and undermines reliability. The scarcity of items per subskill also magnifies random error, while
heterogeneous formats make it hard to distinguish true reasoning failures from misinterpretation.
Consequently, even with potential pretraining exposure, performance remains poor. State-of-the-art
systems score just 27.64 on 3D Geometry in MM-IQ (Cai et al,|2025) and 26.00 on Descriptive
Geometry in MathVision (Wang et al.| [2024)).

The modern paradigm of pretraining on vast, scraped internet data fundamentally challenges evalu-
ation validity (Wu et al., 2025)), a problem exacerbated by proprietary datasets that make auditing
for contamination impossible. This fundamental challenge calls for a new generation of benchmarks
with dynamically updatable test banks to ensure persistent evaluation integrity (N1 et al., 2025).

To address these shortcomings, we introduce SpatialViz-Bench, a novel benchmark designed to
formally evaluate the spatial visualization capabilities of MLLMs, comprising a framework of 4
key sub-abilities(mental rotation, mental folding, visual penetration, and mental animation) from
which 72 targeted tasks are designed for comprehensive assessment. Inspired by benchmarks
like CLEVR (Johnson et al., [2017), a diagnostic benchmark for spatial perception, which uses
Blender (Blender Online Community, 2016) for data generation, we developed a pipeline that
integrates Python with FreeCAD (FreeCAD Team, [2025) for the programmatic generation of novel
test cases, enabling scalable task expansion while effectively preventing data contamination by
dynamically updating the test bank through randomized generation. We employ standardized question
templates to minimize errors arising from varied instructions. Furthermore, programmatic generation
allows us to control task difficulty precisely and to create distractors with explanations systematically.

Models with strong spatial visualization skills can serve as an efficient internal world model,
providing a foundational capability for various downstream applications. This allows a model to run
fast, lightweight internal “what-if” scenarios (e.g., "what happens if I rotate this object?", “if this gear
turns clockwise, which way will the connected gear move?”) to predict the outcome of actions. This
is far more efficient than the current alternative of invoking large, diffusion-based video generation
models to explicitly render a future state.

The main contributions of our work can be listed as follows:

* We introduce SpatialViz-Bench, the first benchmark to formally establish a comprehensive and
challenging evaluation framework for spatial visualization, a core yet long-overlooked cognitive
ability. It is grounded in cognitive science and assesses 4 key sub-abilities through /2 distinct
tasks, resulting in a total of 7,780 examples across parameter-controlled difficulty levels.

* We establish a scalable and trustworthy programmatic generation methodology for /7 of our tasks.
This approach not only enables continuous expansion of tasks but also sets a new standard for fair
evaluation by preventing data contamination through dynamic updates to the test bank.

* We systematically evaluate 27 MLLMs, with top scores from Gemini-2.5-pro (44.66%) and ol
(41.36%). These results demonstrate the benchmark’s challenge and high discriminative power,
revealing a significant capability gap to human performance.

* We conduct a diagnostic analysis revealing that model failures stem primarily from fundamental
Perceptual and Spatial Transformation deficits, rather than from high-level reasoning, which offers
a clear direction for future improvements.

2 RELATED WORKS

Current Landscape in Spatial Reasoning Benchmarks The evaluation of spatial reasoning in
MLLMs has largely concentrated on abilities tied to directly observable information. Benchmarks
for spatial perception, the ability to identify and interpret spatial relationships from visual input,
are the most established. Existing benchmarks like What’sUp (Kamath et al.|, [2023)), Blink (Fu
et al.} 2024), and SpatialRGPT-bench (Cheng et al., 2024) assess how models understand object-
or camera-centric relationships, relative distances, sizes, and positions. Progress has also been
made in evaluating spatial memorization, with video-based benchmarks like VCBench (Li et al.|
2024) and VSI-bench (Yang et al.,|2024b) challenging models to track objects in dynamic scenes.
These efforts have built a foundation for assessing a type of spatial reasoning that relies on explicit
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Figure 3: The programmatic generation pipeline of a data instance. We constructed the dataset
using an programmatic generation system that integrates Python with FreeCAD, enabling precise

control of difficulty, systematic generation of distractor options, and programmatic recording of
explanations for incorrect choices.

visual information and applies a model’s world knowledge to interpret what is perceived. However,
they largely neglect the advanced capability of spatial visualization, the ability to infer implicit
visual-spatial information through transformation of structures derived from visible inputs, leaving a
significant gap in the current evaluation landscape.

Evaluation of Spatial Visualization Evaluating spatial visualization presents challenges regarding
data contamination, obscured categorization, and narrow task coverage. A primary concern is contam-
ination from public sources (Xu et al.l [2025b)), a risk programmatic generation seeks to mitigate, as
seen in the LEGO-Puzzles benchmark (Tang et al., |2025)). Furthermore, spatial visualization is often
subject to obscured categorization, subsumed under broader domains like mathematical or logical
reasoning in general benchmarks (e.g., MM-IQ (Cai et al.,[2025), MathVision (Wang et al., [2024))),
which diverts focus from it as a core ability. Concurrently, specialized datasets exhibit narrow task
coverage, focusing on single sub-skills like mental rotation (SPARE3D (Han et al.,|2020), CLEVR-
MRT (Beckham et al., [2023)) or specific tasks like paper folding (SRBench (Stogiannidis et al.,
2025)). | Yin et al.| (2025)) also assess mental modeling, utilizing distinct organizational frameworks,
such as relative spatial perspectives.

3 SPATIALVIZ-BENCH

3.1 SPATIAL VISUALIZATION

Spatial visualization is a core component of human cognitive systems and a critical capability for
deployment in downstream applications. Research into this ability began with Thurstone (Thurstonel
1938), who defined it as performing mental operations on visual images and identified it as one of the
key spatial factors: spatial perception, spatial visualization, and mental rotation (Thurstone} |1950).

Building on this foundation, we establish a cognitive framework that decomposes spatial visualization
tasks into two phases: observing visible information and discerning implicit information. The
former requires basic spatial perception, while the latter demands an alternation between spatial
visualization (mentally manipulating images to find implicit information) and spatial memorization
(temporarily storing visuospatial information) (Della Sala et al.l [1999).

Our benchmark’s design is guided by 4 core sub-abilities: 1) mental rotation: Mentally representing
and rotating objects while maintaining their features; 2) mental folding: Mentally folding 2D patterns
into 3D objects or vice versa (Glass et al., 2013); 3) visual penetration: Imagining the internal
structure of an object from its external features (Titus & Horsman, 2009); 4) mental animation:
Mentally visualizing the motion of components within a system (Sims & Hegartyl, [1997).

3.2 OVERVIEW OF SPATIALVIZ-BENCH

Stemming from an availability-driven collection, current web-sourced benchmarks containing spatial
visualization tasks lack standardization and a cognitive theory basis, resulting in inconsistent tasks
and incomplete coverage. We counter this with a systematic, ability-centric methodology: we use a
hierarchical framework based on cognitive principles to guide new task design and employ a unified
input format with standardized templates to reduce confounds and enable fine-grained error analysis.
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Table 1: A Compact Summary of Spatial Reasoning Tasks.

Category Task Name Core Objective Negative Samples Difficulty Scaling
2D Rotation Identify correct 2D rotation errormg; . Non-centrally symmetric patterns
internal pattern rotation
Mental . e . View mirroring .
N 3D Rotation Identify correct 3D rotation Larger assemblies
Rotation cube removal
Three-View Select left view from projection i’;’er;)/ngivmi\[:/jubslnunnn; Real engineering parts
Projection clect lell view rom projections ! PpIng; (DeepCAD (Wu et al. |2021})
line deletion
Hole mirroring, addition. More folds;
Paper Folding Predict unfolded hole pattern . 8, acC ? larger grid;
deletion, or relocation
more holes
Mental Swapping face colors;
Folding Cube Unfolding  Select correct 2D net from view pping g Asymmetric/dot patterns on faces
rotating internal patterns
Cube Reconstruction S_elect 3D view from net; Mirroring the correct 3D view Follows Cube Unfolding
Find opposite face °
Cross-Section Identify cross-section of solid Altered geometric proportions 3-S(.)lld composites;
oblique slicing
Visual . . . . 2 to 3 views;
. Cube Counting Infer total cube count from views Options from min/max math bounds .
Penetration larger assemblies
Cube Assembly Find complementary part of split stack Add/remove cubes from correct part I{_“gﬁ:lr:ptﬁim
Arrow Moving Predict final staie Incorrect endpoint from same start Multlplg AITOWS;
or movement sequence interaction rules
N‘[ente}l Block Moving Predict final state with gravity Incorrect final states Higher complexity;
Animation longer sequences

Mechanical System  Understand motion propagation Incorrect motion outcomes More system modules

Based on our cognitive framework, we propose SpatialViz-Bench to comprehensively evaluate the
spatial visualization capabilities of MLLMs. It is organized around 4 core sub-abilities—mental
rotation, mental folding, visual penetration, and mental animation—with 3 assessment tasks designed
for each, totaling /2 tasks. Each task includes 2 to 3 difficulty levels, with each level containing 40 or
50 test cases, comprising 1,180 question-answer pairs in total, mostly with image-based options to
focus on visual reasoning. Further details on the dataset characteristics are provided in Appendix [C]

3.3 CONSTRUCTION OF SPATIALV1Z-BENCH

SpatialViz-Bench is constructed through a combination of programmatic generation and manual design.
For 11 of the tasks, we used a programmatic system integrating Python with FreeCAD (FreeCAD
Team)| [2023)) (see[Figure 3)). By explicitly utilizing cognitive load parameters rather than heuristics,
such as aligning rotational complexity (global object vs. internal pattern rotation) with mental
transformation steps (Shepard & Metzler, |1971)), our programmatic framework ensures precise
difficulty control, while employing controlled randomness to enhance diversity and generate distractor
options with explanations for deep diagnostics. Notably, the Three-View Projection task (Level 1)
uses fixed DeepCAD (Wu et al.}[2021) models, but we programmatically generate novel distractors
(e.g., random line deletion, view flipping) to ensure novelty. Conversely, the Mechanical System task
(1/12) was manually designed, as programmatic, physically-consistent generation was technically
difficult. Using representative public simulations as a reference, experts designed all questions from
scratch. These visual-based questions probe dynamic motion propagation (e.g., rotational dynamics
from a single image), testing visual simulation rather than caption recall or theoretical derivation.

This combined methodology, leveraging both programmatic generation and the vast pool of public
simulations for expert-driven question design, supports a dynamically updated test bank that proac-
tively mitigates data contamination. A task summary is presented in with detailed generation
processes, algorithmic pseudocode, and illustrative examples deferred to Appendix [B.1] [B.4]and

4 EVALUATION

4.1 EVALUATION SETUP

Models We conducted comprehensive experiments on a diverse range of MLLMs, including 8
closed-source and 19 open-source models. For closed-source MLLMs, we evaluated models from
5 major providers, including OpenAl series (GPT-4o0 (Hurst et al.| [2024), ol (Jaech et al., [2024)),
Gemini series (Gemini-2.5-flash, Gemini-2.5-pro (Deepmind, 2025)), Claude series (Claude-3.5-
sonnet (Anthropic, |2024), Claude-3.7-sonnet (Anthropic} 2025))), Qwen-VL-max (Bai et al., |[2023)),
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Table 2: Comparison of open-source model performances. Tasks: 2D Rotation (2DR), 3D Rotation
(3DR), Three-View Projection (3VP), Paper Folding (PF), Cube Unfolding (CU), Cube Reconstruction
(CR), Cross-Section (CS), Cube Counting (CC), Cube Assembly (CA), Arrow Moving (AM), Block
Moving (BM), Mechanical System (MS). The first and second highest accuracy of MLLMs are
marked in red and blue, with open-source and closed-source models marked separately.

Model \ Overall | Mental Rotation | Mental Folding | Visual Penetration | Mental Animation

| WioCoT w/CoT | 2DR 3DR 3VP Avg | PE CU CR Avg | CS CC CA Av | AM BM MS Avg
Human | - 8246 | 90.00 79.16 8750 8556|9375 7500 7292 8056 | 7292 7083 8250 7542 | 90.00 87.50 87.50 8833
Random | 2508 | 2375 2750 3100 27.69 | 1917 2000 2583 2167 | 3000 2500 3000 2812 | 2875 1625 2500 2333

Qwen2.5-72B-Instruct(Text-only) 25.86 ‘15.00 35.00 15.00 21.67‘23.33 16.67 26.67 22.22‘20.00 33.33  45.00 3125‘25.00 30.00 30.00 28.33

Open Source MLLMs
3B
SAIL-VL-1.5-2B 2932 24.15 | 2250 2250 2200 2231 |20.00 27.50 20.00 2250 |24.17 26.67 32.50 27.19 | 21.25 25.00 27.50 24.58
InternVL3-2B - 26.19 1625 3375 31.00 2731|2250 2583 25.00 24.44 2000 3083 30.00 2656 | 18.75 3250 30.00 27.08
Deepseek-VL2-tiny(3B) 29.58 21.36 | 17.50 2250 27.00 22.69 | 21.67 20.83 19.17 20.56 | 20.83 22.50 18.75 20.94 | 18.75 2125 25.00 21.67
Qwen2.5-VL-3B-Instruct 30.17 26.10 | 20.00 1875 21.00 20.00 | 25.00 2583 21.67 24.17 25.83 2333 30.00 2594 | 3500 30.00 4250 35.83
7B
Qwen2.5-VL-7B-Instruct 30.76 2797 | 2500 1625 29.00 23.85 | 34.17 21.67 30.00 2861 | 16.67 36.67 2875 27.19 | 2250 23.75 5125 3250
Qwen2.5-Omni-7B 31.44 2729 | 2250 2000 29.00 2423|2500 27.50 20.00 24.17 | 20.83 33.33 27.50 27.19 | 31.25 30.00 45.00 35.42
SAIL-VL-1.6-8B 29.15 25.00 1875 21.25 2500 2192|2833 2500 1833 23.89|21.67 19.17 2375 2125|2500 3500 4500 3500
InternVL3-8B 30.25 30.08 | 20.00 3875 2800 2885|2833 2333 2500 2556 |15.83 40.83 3875 3094 | 30.00 30.00 5125 37.08
16B
Kimi-VL-A3B-Instruct(16B) 3237 2390 | 1625 30.00 36.00 28.08 | 25.83 20.00 26.67 24.17 | 21.67 500 2875 17.19 | 1500 3125 3750 27.92
Kimi-VL-A3B-thinking(16B) - 28.14 | 1375 2000 2500 20.00 | 23.33 24.17 26.67 2472 | 25.00 36.67 25.00 29.38 | 30.00 ' 43.75 47.50 40.42
Deepseek-VL2-small(16B) 25.17 25.17 3125 1625 2600 24.62 | 2250 2500 26.67 2472 | 9.17 3500 3500 2531|2625 2375 2875 2625
32B
Deepseek-VL2(27B) 30.08 2831 ‘ 25.00 3375 3000 29.62 | 31.67 2500 2250 26.39 ‘ 1833 39.17 2875 2875|2625 30.00 3125 29.17
Qwen2.5-VL-32B-Instruct 33.90 32,12 3125 3500 38.00 3500 | 21.67 2500 27.50 2472 2583 36.67 43.75 3438 | 2875 27.50 55.00 37.08
InternVL3-38B 29.75 30.34 ‘ 22,50 3375 29.00 28.46 | 20.83 ' 29.17 30.83 26.94 ‘ 21.67 3250 41.25 30.63 | 25.00 30.00 5625 37.08
72B
Qwen2.5-VL-72B-Instruct 35.00 3331 | 28.75 31.25 28.00 29.23 | 22.50 20.00 30.00 24.17 30.00 41.67 48.75 39.06 | 27.50 40.00 63.75 43.75
QvQ-72B-preview - 28.14 | 21.25 30.00 31.00 27.69 | 16.67 19.17 27.50 21.11 30.00 22.50 32.50 27.81 | 25.00 50.00 43.75 39.58
InternVL3-78B 32.29 29.75 | 2500 2500 3400 2846 | 19.17 2500 2250 2222 ‘ 20.83 40.00 4875 35.00 | 23.75 4125 4125 3542
108B
Llama-4-Maverick-17B-128E-Instruct 3178 ‘ 20.00 40.00 40.00 3385 | 16.67 29.17 29.17 25.00 | 19.17 35.00 47.50 32.19 | 35.00 40.00 4250 39.17
LLama-4-Scout-17B-16E-Instruct ‘ 3424 3250 3500 4300 3731|1667 3250 36.67 2861 | 17.50 37.50 53.75 34.06 | 28.75 40.00 50.00 39.58
Closed Source MLLMs
GPT-40 30.76 31.10 ‘ 3250 27.50 33.00 31.15|29.17 1583 30.00 25.00 ‘ 19.17  40.83 40.00 32.50 | 22.50 32.50 60.00 38.33
ol - 4136 6250 2875 49.00 46.92 | 2833 34.17 26.67 29.72 37.50 4083 3375 37.81 | 67.50 52.50 52.50 57.50
Claude-3.5-sonnet 26.86 3254 | 3125 2500 4500 34.62 | 20.83 2250 31.67 25.00 | 22.50 35.83 46.25 3344 | 3750 3125 5250 4042
Claude-3.7-sonnet - 3390 | 3250 3625 44.00 38.08 | 1833 26.67 29.17 2472 | 24.17 30.83 4375 31.56 | 66.25 28.75 43.75 46.25
Gemini-2.5-flash - 36.86 | 4250 30.00 35.00 3577 | 26.67 30.00 40.83 3250 | 30.00 3833 28.75 32.81 | 67.50 33.75 4875 50.00
Gemini-2.5-pro - 4466 5250 3250 47.00 44.23 | 4333 31.67 3000 3500 3333 5500 3625 42.19 | 9500 3500 5875 62.92
Doubao-1-5-vision-pro 37.54 3331 7.50 3500 4500 3038 | 31.67 2333 29.17 28.06 | 30.00 55.83 30.00 39.69 | 22.50 ' 37.50 47.50 35.83
Qwen-VL-max 36.10 32,03 | 2375 2625 3300 28.08 |24.17 1750 31.67 24.44 | 26.67 47.50 42.50 3844 | 2625 3625 55.00 39.17

and Doubao-1.5-vision-pro (ByteDance, |2025). For open-source MLLMs, we assessed Qwen2.5-VL
series (Bai et al., 2025), QvQ (Qwen Team) 2024), Qwen-Omni (Xu et al., [2025a)), InternVL-3
series (Zhu et al.,|2025)), Deepseek-VL2 series (Wu et al., [2024)), SAIL-VL series (Dong et al., 2025),
Kimi-VL-A3B series (Team et al.,|2025) and LLama-4 series (Meta Al,[2025)). For text-only LLM,
we used Qwen2.5-72B-Instruct (Yang et al., 2024a).

Setting For a rigorous evaluation, all experiments were performed in a zero-shot setting (Hao et al.|
2025} [Wang et al., [2024), comparing model performance under two prompting schemes: (1) CoT,
where prompts were designed to encourage models to output their reasoning process before the
final answer, and (2) Direct Answering (non-CoT), where prompts solicited the answer directly (see
Appendix [E.2)). This methodology enabled us to not only assess the accuracy of responses but also
gain deeper insights into the models’ underlying reasoning mechanisms across our benchmark tasks.

Metric Design To evaluate models handling multimodal inputs and generating textual outputs, with
most options presented as images, we formatted all tasks as Multiple-Choice Answer (MCA) with
one correct answer. Option and reference images were integrated into a unified visual input. For
questions where answers could be expressed as simple text, we also provided a text-based answer
format (detailed in Appendix [E.4). Model performance was assessed using accuracy, based on the
match between predicted and ground-truth answers. This standardized approach ensures consistent
evaluation across tasks and enables fair comparison of multimodal understanding across models. A
comparative analysis of performance on both formats is provided in Appendix

Human Baseline Our human baseline was established with 8 graduate students from mechanical
engineering and computer science, selected for their strong spatial reasoning backgrounds. Each
participant solved a 72-problem subset under strict conditions designed to be analogous to MLLM
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Figure 4: Statistical Analysis of Model Performance, Difficulty Sensitivity, and Task Discrim-
inability. (a) presents the overall model performance with 95% Wilson confidence intervals. (b)
shows the distribution of model sensitivity to difficulty gradients. (c) provides a task-centered analysis
of difficulty sensitivity, revealing how difficulty levels differentiate model capabilities across tasks.

evaluation: no external aids (e.g., scratch paper) were allowed, but time was unlimited. This protocol
isolates intrinsic spatial visualization abilities for a fair comparison.

4.2 EVALUATION RESULTS

This section first establishes the performance gaps between different models and then, through a CoT
ablation study, investigates the impact of explicit reasoning to identify the core abilities required for
advanced spatial reasoning.

4.2.1 MAIN RESULTS

Tasks in SpatialViz-Bench are Vision-Dependent and Reasoning-Intensive As the textual input
alone is insufficient, visual input is essential for problem-solving, making the benchmark highly
vision-dependent. We empirically validated this claim by evaluating a powerful text-only LLM
(Qwen2.5-72B-Instruct). As detailed in the text-only model achieved a total accuracy of
25.86%, which is negligibly different from the random-chance baseline (25.08%), quantitatively
proving that the visual modality is indispensable. Most options are image-based, requiring precise
visual analysis rather than simple matching, thereby increasing reasoning complexity. For both
humans and MLLMs, these tasks demand multi-step spatial transformations and inferences that
mirror complex CoT processes.

Performance Gaps Reveal a Statistically Validated Hierarchy of MLLL.Ms All evaluated models
performed well below the human baseline (82.46%), underscoring the benchmark’s difficulty. Our
analysis, now supported by 95% Wilson confidence intervals (CIs) (as shown in ??), confirms
this performance hierarchy is statistically robust. The top performer, Gemini-2.5-pro (44.66%, CI:
[41.85%, 47.51%]), demonstrates capabilities irrefutably above the random baseline (25.08%, CI:
[22.69%, 27.64%]), as their ClIs do not overlap. More importantly, this analysis provides solid
statistical backing for the critical capability gap between proprietary and open-source models. The
CI for Gemini-2.5-pro shows no overlap with that of the top open-source model, LLaMA-4-Scout
(34.24%, CI: [31.58%, 36.99%]), confirming this ~10% performance delta is significant. Conversely,
the CIs help group statistically similar models into "performance tiers"; for example, the CIs for
LLaMA-4-Scout and Qwen2.5-VL-72B-Instruct (35.00%, CI: [30.67%, 36.04%]) highly overlap,
making their performance statistically indistinguishable. This statistically validated discriminative
power highlights significant room for improvement.

Core 3D Visualization Tasks Reveal Common Model Failures Models with higher overall accuracy
generally perform well across individual tasks. Most models show near-random accuracy on core 3D
tasks like 3D Rotation, Cube Unfolding & Reconstruction, indicating common and severe perceptual
and visualization limitations in 3D space. Both proprietary models perform well on the Arrow Moving
task, with Gemini-2.5-pro even surpassing human performance, while most of open-source models
perform at near-random levels. This suggests that, despite its relatively low visual complexity, the task



Under review as a conference paper at ICLR 2026

Table 3: Statistical significance analysis of CoT prompting impact (p < 0.05).

Model Source CoT Impact Significant (p < 0.05) p-value
Kimi-VL-A3B-Instruct  Open Negative Yes 0.0192
Deepseek-VL2-tiny Open Negative Yes 0.0463
Internv12.5-78B Open Negative Yes 0.0368
Qwen2.5-Omni-7B Open Negative Yes 0.0216
Sail-VL-1.6-8B Open Negative Yes 0.0479
Claude-3.5-sonnet Closed Positive Yes 0.0007

Table 4: Robustness analysis of CoT performance. (a) Performance remains stable across different
CoT prompt templates. (b) The significant performance gap between CoT and non-CoT persists
across extraction rules, ruling out parsing failures as the cause of performance drops.

(a) Sensitivity to Prompt Variations (Accuracy %) (b) Sensitivity to Extraction Rules (Acc. Drop %)
Model | CoTA CoTB | A Model | RuleA| RuleB| | A

Qwen2.5-VL-72B 33.31 31.19 -2.12 SAIL-VL-1.5-2B -8.22 -7.29 +0.93
GPT-40 31.10 30.81 -0.29 Deepseek-VL2-3B -5.18 -5.01 +0.17
Claude-3.5-sonnet | 32.54 28.31 -4.23 Kimi-VL-16B -8.47 -9.66 -1.19

requires advanced reasoning—such as understanding object-centered motion—which open-source
models still lack. In most cases, model performance matched our expected difficulty levels, though
some discrepancies with human perception offer valuable insights for refining task design and guiding
future research. Additional evaluation results and task-specific analysis are provided in Appendix

Difficulty Collapse Only Visible in Top-Tier Models We first validated our intended difficulty
gradient (DG) against human performance and hypothesized models would show similar scaling.
However, data reveals a widespread "performance floor" at LO; 10 models showed <1 significant
DG, while the top-performing Gemini-2.5-pro was most sensitive (7 DGs) (Figure 4]b). From a task-
centric perspective (Figure 4|c), three tasks induced a significant DG in 11 or more models. Notably,
the stark DG contrast between CubeReconstruction (12 models) and its symmetric counterpart
CubeUnfolding (1 model) suggests models better reason about symmetry from unfolded views.
Conversely, BlockMoving (0 DGs) proved challenging at both levels, rendering any drop statistically
invisible. Critically, on 3DRotation, the only two models exhibiting a DG were the top-two performers
(Gemini-2.5-pro, ol). This confirms our core claim: only top-tier models achieved non-random LO
accuracy, and thus were the only ones capable of showing a statistically significant collapse at L1.

4.2.2 COT PROMPTING ABLATION STUDY

For the non-CoT evaluation, we excluded models designed for extended reasoning (e.g., ol, Gemini-
2.5 series) or those unable to adhere to the format (e.g., InternVL3-2B), proceeding only with models
that could reliably provide a single-letter answer (detailed in Appendix[E.2)).

Our ablation study on Chain-of-Thought (CoT) prompting confirms a "CoT paradox,"” a phenomenon
also noted by EMMA (Hao et al., 2025): CoT benefits high-performing closed-source MLLMs but
often paradoxically degrades their open-source counterparts. We provide new statistical validation for
this. As shown in the impact is significantly positive for claude-3.5-sonnet but significantly
negative for several leading open-source models.

Crucially, our analysis pinpoints where this degradation occurs. The performance loss for these
open-source models is not uniform but is highly concentrated in "pure-visual" spatial tasks (e.g.,
3ViewProjection, 3DRotation). This strongly supports our hypothesis: for these models, the mandate
to generate explanatory text (CoT) interferes with their native visual-spatial judgment, acting as
a cognitive distraction rather than an aid. In contrast, top-tier closed-source models demonstrate
superior resistance to this interference, likely due to specialized RL-based reasoning training, allowing
them to leverage CoT effectively.

4.2.3 ROBUSTNESS TO PROMPTING AND EXTRACTION STRATEGIES

To rule out the possibility that the observed CoT degradation is an artifact of specific prompt
engineering or parsing failures, we conducted a sensitivity analysis in[Table 4] First, we tested models
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Figure 5: Comparison of error type distributions, with chart (a) showing the overall breakdown
and charts (b-e) detailing results for specific MLLMs: (b) Gemini-2.5, (¢) ol, (d) Qwen2.5-VL-72B
and (e) Qwen2.5-VL-7B. Errors are classified into six categories: Perceptual, Spatial Transformation,
Methodological, Instruction Following, Spatial Memorization, and Calculation & Reasoning.

with an alternative CoT prompt template (detailed in Appendix [E.2). As shown in[Table 4{a), the
performance trends remained consistent, with Qwen2.5-VL-72B still underperforming compared to
its non-CoT baseline (35.00%). Second, we compared two distinct answer extraction rules (truncated
letter matching as Rule A vs. full-format regex matching as Rule B, detailed in Appendix [E.4).
[Table 4|b) reveals that the discrepancy between rules is negligible (< 1.2%), confirming that the
negative impact of CoT (ranging from -5% to -9%) is a genuine reasoning failure, not a parsing error.

4.3 ERROR ANALYSIS

This section first presents a statistical error analysis across several representative models to identify
common failure modes, followed by a detailed case study of Gemini-2.5-pro to illustrate its specific
reasoning processes.

4.3.1 STATISTICAL ERROR ANALYSIS

This evaluation was conducted primarily through manual review (2 human annotators), utilizing
Gemini-2.5-pro as an assistive tool based on 6 manually defined error categories, including perceptual,
spatial transformation, spatial memorization, instruction following, methodological, and calculation
& reasoning error (detailed in Appendix [E.6.2). To account for diversity in developers, model
sizes, and open/closed-source paradigms, we selected 4 models for deeper analysis: Gemini-2.5-
pro and ol (the top-performing closed-source models), Qwen2.5-VL-72B (a leading open-source
model), and its smaller counterpart, Qwen2.5-VL-7B. To ensure the reliability of our error taxonomy,
two annotators independently annotated a subset of 100 errors. We calculated the Cohen’s Kappa
coefficient (x = 0.85), indicating strong inter-annotator agreement. Disagreements were resolved
through discussion with a third expert.

Perceptual and Spatial Transformation Errors Dominate Failures The dominance of Perceptual
and Spatial Transformation errors, which collectively account for nearly 60% of all failures, quantita-
tively supports our central hypothesis that the primary MLLM bottleneck stems from fundamental
failures in visual perception and transformation, not from high-level reasoning deficits. In contrast,
the low frequency of Calculation & Reasoning and Instruction Following errors confirms the bench-
mark’s effective isolation of spatial deficits. Methodological errors, the third-largest category at over
23%, indicate that models often adopt suboptimal problem-solving strategies. This highlights a clear
direction for future improvements: enhancing spatial visualization capabilities by augmenting the
training data with more correct solutions.

Model Scaling Fails to Resolve Core Spatial Deficits A model’s absolute error count correlates with
its performance rank: Gemini-2.5-pro had the fewest errors (204), followed by ol (236), Qwen2.5-
VL-72B (272), and Qwen2.5-VL-7B (328). Although top models show similar error profiles, Gemini-
2.5-pro’s lower rate of Methodological errors partly explains its superior performance. The limits of
model scaling become evident when comparing Qwen2.5-VL-7B and Qwen2.5-VL-72B. Despite a
tenfold parameter increase, their core error patterns remained strikingly similar, with Perceptual and
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Figure 6: Case study of Gemini-2.5-pro’s reasoning in different tasks.

Transformation errors still dominant. While the 72B model nearly eliminated Spatial Memorization
and Calculation errors, it made only limited gains on these most critical error types. This reveals a
crucial insight: scaling alone does not resolve fundamental spatial reasoning deficits. True progress
will likely require innovations in training paradigms, such as (DeepSeek-Al et al., [2025), rather than
merely increasing model size.

4.3.2 ANALYSIS OF TEST CASES

To complement the statistical analysis, we conducted a qualitative case study of Gemini-2.5-pro’s
reasoning processes. The model exhibited strong reasoning, following logically coherent and complete
processes, validating the effectiveness of our evaluation results. This analysis reveals a significant
gap between its abstract reasoning capabilities and its visuospatial processing abilities, reinforcing
that the primary bottleneck is not high-level logic but fundamental perception and visualization.

Deficiencies Found in Both Perception and Visualization A qualitative case study of Gemini-
2.5-pro’s reasoning reveals errors occur at two distinct stages: perceiving visible information and
reasoning about unseen spatial relationships. In processing visible information, the model exhibited
deficiencies in 2D tasks like color recognition and complex pattern identification (Figure 6a). These
perceptual failures were more pronounced in 3D space, where it struggled to accurately identify
the quantity, position, and spatial relationships of stacked cubes (Figure 6|b). This difficulty is
quantified by a stark performance drop, with accuracy plummeting from 95% on the 2D Arrow
Moving task to just 35% on analogous 3D tasks. The model’s primary struggles, however, emerged
when reasoning about unseen information. It consistently failed tasks requiring mental manipulation,
such as accurately inferring the structure of cube nets or the symmetrical relationships between faces
after folding.

Pre-training Biases Drive Non-Simulative Problem Solving The case study also uncovered strong
pre-training biases that shape the model’s problem-solving approach. For Mechanical System tasks,
which were designed to be solvable via pure spatial visualization, Gemini-2.5-pro often defaulted to
applying theoretical physics formulas instead of mentally simulating the motion (Figure 6|c). This
behavior diverges sharply from human strategies and reveals a critical misalignment between the
model’s problem-solving approach and genuine spatial intelligence, suggesting its internal world
model is more analytical than simulative. These qualitative examples directly illustrate the types of
Methodological failures identified in our statistical analysis, forming a cohesive picture of current
MLLM limitations.

5 CONCLUSION

We introduce SpatialViz-Bench, a cognitive-science—inspired for testing spatial visualization in
MLLMs, designed for continuous task expansion while ensuring fair evaluation by preventing data
contamination via a dynamic test bank. It comprises /2 tasks (1,180 problems) across 4 core sub-
abilities: mental rotation, mental folding, visual penetration, and mental animation. Its results show
strong discriminative power, revealing the primary limitation in models is visuospatial acquisition
over logical reasoning, guiding targeted optimizations in spatial skills.

10
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6 ETHICS STATEMENT

Data Licensing The SpatialViz-Bench benchmark is released under the MIT license to promote
academic and non-commercial research. Its licensing fully complies with all third-party assets used in
its creation, which include materials governed by the LGPL (e.g., FreeCAD), MIT (e.g., DeepCAD),
CCO0 1.0 Universal Public Domain Dedication (e.g., assets from public websites), and default licenses
from websites that are known to support non-commercial fair use (e.g., assets from various video
websites). For SpatialViz-Bench, we abide by Fair Use §107: “the fair use of a copyrighted work,
including such use by - - - scholarship, or research, is not an infringement of copyright”, where fair use
is determined by “the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes” and “the effect of the use upon the potential market
for or value of the copyrighted work.”

Labor Practices All manual data processing and annotation adhered to fair labor practices. Data
review for the Mechanical System task was performed by non-author members of our research group,
who were compensated for their work via research stipends. All other manual processes, including
initial task creation, data verification, and model error analysis, were conducted by the author team as
part of their standard research responsibilities.

7 REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we have made all necessary materials available.
The supplementary materials include the complete source code used for data generation (11 of 12
tasks) and model evaluation. Due to submission size constraints, we have provided a "mini" version
of our benchmark data, which is sufficient to verify our experimental setup and replicate the core
results. Furthermore, to facilitate a clear understanding of our methodology, Appendix [B.4] provides
detailed pseudocode for each key algorithm.
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A DETAILED RELATED WORKS

A.1 CURRENT LANDSCAPE IN SPATIAL REASONING BENCHMARKS

Spatial reasoning is foundational to embodied intelligence, supporting critical tasks like navigation,
interaction, and scene understanding. The evaluation of this ability in MLLMs has historically
focused on two primary areas: spatial perception and spatial memorization, both of which rely on
interpreting directly observable, explicit visual information.

Spatial Perception, the ability to interpret spatial relationships from static visual input, is the most
established area. Early benchmarks targeted perceptual-level understanding, such as monocular
depth estimation and object localization. With the rise of MLLMs, this has shifted to visual question
answering formats. For instance, datasets like VSR (Liu et al.|[2023) and What’sUp (Kamath et al.,
2023)) benchmark models’ comprehension of object-centric spatial relationships. Others, including
Spatial VLM (Chen et al., [2024), Spatial-MM (Shir1 et al., |2024), and MMRel (Nie et al., [2024),
further expand this evaluation to include relative distances, camera-object perspectives, and object
size comparisons. More advanced benchmarks like Blink (Fu et al., [2024), with its Multi-view
Reasoning task, and SpatialRGPT-bench (Cheng et al.||2024), which incorporates world knowledge
and multi-hop reasoning, have pushed the boundaries but remain centered on interpreting what is
explicitly perceived.

Spatial Memorization, the ability to track objects and their relationships in dynamic scenes, has been
increasingly addressed by video-based benchmarks. VCBench (Li et al., [2024) evaluates this through
tasks like Flash Grid and 3D Navigator, which test a model’s capacity to retain 2D spatial positions
and predict trajectories in 3D space. Similarly, VSI-bench (Yang et al., |2024b) focuses on skills
essential for navigation, such as egocentric-to-allocentric transformation and perspective-shifting.

While these efforts have built a strong foundation, they predominantly assess reasoning based on
explicit visual cues. They largely neglect the more advanced capability of spatial visualization—the
mental manipulation of shapes and inference of implicit spatial information—leaving a significant
gap in the current evaluation landscape.

A.2 THE INADEQUATE EVALUATION OF SPATIAL VISUALIZATION

Despite its importance, the evaluation of spatial visualization is fraught with challenges, including
obscured categorization in general benchmarks, high risk of data contamination, and a lack of
diagnostic depth.

Obscured Categorization Spatial visualization is often not recognized as a distinct spatial skill.
Instead, it is frequently subsumed under broader domains like mathematical or logical reasoning
within general-purpose MLLM benchmarks. Examples are widespread: it appears as the 3D-Geometry
category in MM-IQ (Cai et al.} 2025) and MARVEL (Jiang et al., [2024), the 3D Spatial Simulation
category in EMMA (Hao et al., [2025)), 3D Shapes in LogicVista (Xiao et al., [2024), IQ-Test in
Blink (Fu et al.l 2024), and Descriptive/Transformation Geometry in Math-Vision (Wang et al.,
2024). While VisualPuzzles (Song et al., 2025) correctly situates it under spatial reasoning, this is
an exception. This common miscategorization diverts focus from developing and evaluating spatial
visualization as a core ability, treating it merely as a type of puzzle.

Risk of Data Contamination The difficulty of designing novel spatial visualization tasks means that
existing benchmarks often source questions from public materials like IQ tests, administrative exams,
and math contests. This practice creates a high risk of data contamination, as these materials are
likely part of the massive web-scraped datasets used for pretraining MLLMs. For example, work by
Xu et al|(2025b)) collects data entirely from online psychological tests. Consequently, a model’s high
performance on such benchmarks may not reflect true reasoning capabilities but rather memorization
from the training data, compromising evaluation validity.

Non-Diagnostic Evaluation Current evaluations are often caught between two non-diagnostic ex-
tremes. On one hand, the heterogeneous, mixed-format questions in general benchmarks make it
difficult to isolate and diagnose errors in spatial visualization specifically. On the other hand, special-
ized datasets are often too narrowly focused on a single sub-skill. For example, SPARE3D (Han et al.|
2020) and CLEVR-MRT (Beckham et al.,|2023) concentrate on mental rotation, while SRBench (Sto-
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giannidis et al.|[2025)) uses only paper folding tasks to assess the entire ability. This narrow scope
fails to provide a comprehensive assessment of a model’s overall spatial visualization proficiency.

In contrast to these prior works, our benchmark is designed to be systematic and diagnostic. It
is structured around 4 core sub-skills of spatial visualization identified in cognitive psychology,
with curated tasks targeting each ability. By employing procedural generation for most tasks, our
benchmark ensures greater reliability, reduces the risk of training-set overlap, and enables scalable
data creation for both evaluation and future training. Furthermore, by summarizing the essential
phases of spatial visualization, our framework allows for a more granular analysis to identify the root
causes of reasoning errors.

B DATA CURATION DETAILS

B.1 TASK CONSTRUCTION

1. Mental Rotation

2D Rotation Task. A colored grid pattern with a red corner marker is rotated by 90°/180°/270°
to generate positive samples. Negative samples involve horizontal/vertical mirroring. We further
replace symmetric color fills with non-centrally symmetric patterns. Negatives include mirror flips
and internal rotations of pattern components, increasing spatial reasoning difficulty. As shown

in[ATgorithm ]

3D Rotation Task. A connected cube stack is rotated along x/y/z axis to form positives. Negatives
are created by removing one cube or mirroring the isometric view, ensuring no simple rotation
can reproduce them. Spatial complexity is increased by enlarging assembly dimensions, requiring
enhanced 3D rotational reasoning. As shown in[Algorithm 2|and|Algorithm 3}

Three-View Projection Task. This task has two categories. Firstly, given isometric, front, and
top views of a connected cube stack with marked reference cubes, the task is to select the correct
left view. Negatives involve altering reference cube positions or substituting the right view. We
further introduce real engineering parts from the DeepCAD dataset (Wu et al., 2021), rendered into
standard projections via FreeCAD. Negatives are crafted through random internal lines deletion, view
flipping/rotation, or transformations on unseen views. As shown in[Algorithm 4] and|Algorithm 5|

2. Mental Folding

Paper Folding Task. A Python-based pipeline generates m X n grid patterns undergoing sequential
folds (vertical/horizontal/diagonal), followed by hole-punching and unfolding. The task requires
identifying the correct unfolded hole distribution. Negative samples are generated by mirroring,
deleting, adding, or relocating holes to violate fold-induced symmetry. Task difficulty increases with
more folds, larger grids, and denser hole placements. As shown in[Algorithm 6|and [Algorithm 7]

Cube Unfolding Task. Given a cube with six uniquely colored faces and a view from a corner
(three visible faces), the task is to select the correct 2D net (11 possibilities as shown in [Figure 7).
Positives can be crafted either by using different cube nets of the same cube or by fixing the mapping
of visible faces while randomly shuffling the remaining faces. Negatives are crafted by swapping
visible face colors or flipping visible-opposite face pairs. We further replace solid colors with
non-centrally symmetric patterns. View angles prioritize faces with asymmetric patterns. Internal
rotations of pattern components are introduced to further increase the reasoning difficulty. To push
the difficulty even further, all six faces feature random colored-dot patterns on a 3x3 grid. As shown
in[Algorithm 8] [Algorithm 9|and [Algorithm 10}

Cube Reconstruction Task. Cubes have six uniquely colored faces. Two task variants exist: (1)
select the correct vertex view of a cube when given its net pattern, with negative samples created by
mirroring the correct view; (2) identify the color of a face opposite to a given colored face. Difficulty
progression follows the cube unfolding tasks. As shown in[Algorithm 8 and|Algorithm 11}

3. Visual Penetration

Cross-Section Task. Nine basic geometric solids (e.g., triangular/rectangular/circular prisms/pyra-
mids/frustums) are combined in pairs with conical shapes on top. Cross-sections are generated by
slicing the composite shapes using planes parallel to the XY/YZ/XZ planes. Negative samples are
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1-4-1-5

Bt: Bottom
T: Top
F: Front

Bk: Back
R: Right
L: Left

2-3-1-0 2-3-1-1 2-3-1-2

Figure 7: The eleven unfolded patterns of a cube with their corresponding numbered names. Assuming
the square in row 1, position 0 represents the bottom face, and position 1 represents the right face, the
corresponding arrangement of the remaining faces can be determined, facilitating the rotation of the
cube.

constructed by adjusting the relative geometric proportions within the composite. Task complexity
is increased by introducing composites with three solids, which often produce disconnected cross-
sections that demand enhanced visual reasoning. Additional complexity is introduced by generating

oblique cross-sections at 45°/135°. As shown in[Algorithm 12}

Cube Counting Task. The task requires inferring the total cube count of a connected cube stack based
on two orthogonal projection views. The minimum and maximum counts are mathematically derived
to guide the construction of answer options. Constraints increase to three orthogonal projection
views, reducing the number of possible solutions while increasing view integration complexity. Task
difficulty further increases by expanding the spatial dimensions of the cubic assemblies. As shown
in[Algorithm 2|and |Algorithm 13|

Cube Assembly Task. A pyramid-like cube stack is split into two connected parts. Tasks require
identifying the complementary piece that fits the reference part. Negative samples are generated by
modifying the correct piece through the addition or removal of cubic units. The difficulty is further
increased by enlarging the spatial dimensions and dividing the structure into three parts instead of
two. As shown in|Algorithm 14]and[Algorithm 5]

4. Mental Animation

Arrow Moving Task. For the easy version, an arrow with random initial position and orientation in a
3x3 grid operates by ego-centric rules: movement occurs in 4 directions (forward/backward/left/right),
with "forward" always indicating the arrow’s current orientation. The arrow reorients to the movement
direction after each movement. Valid operation sequences are algorithmically generated; negative
samples share the same initial state but yield incorrect endpoints. For the hard version, multiple
colored arrows are introduced with extended rules: empty positions allow direct entry; occupied
positions trigger object exchanges while maintaining Level 0 movement principles. Tasks include
predicting final states from sequences, or inferring correct sequences from state pairs. As shown
in[Algorithm 16} [Algorithm 17] [Algorithm 18|and[Algorithm 19]

Block Moving Task. Colored cube stack combines directional movement with gravity simulation.
Cubes move along six directions with unsupported cubes falling until reaching support and swapping
positions as same as Arrow Moving Task. Increased spatial complexity and longer sequences elevate
reasoning difficulty. As shown in[Algorithm 20|and [Algorithm 21}

Mechanical System Task. We use open-source mechanical system simulations, classifying com-
plexity by module quantity and designing appropriate questions. These tasks assess advanced mental
animation abilities, particularly to understand how the motion of one component affects others.

B.2 PROGRAMMATIC DATA GENERATION PIPELINE
FreeCAD, an open-source Computer-Aided Design (CAD) software, provides deep integration with

Python programming language, enabling parametric model construction through programming. We
leveraged the synergy between FreeCAD and Python to successfully automate the generation of
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9 spatial visualization tasks: 2DRotation, 3DRotation, 3ViewProjection, CubeFolding, CubeRe-
construction, CrossSection, CubeCounting, CubeAssembly, and BlockMoving. Additionally, two
tasks—PaperFolding and ArrowMoving—were implemented solely using Python. For the Mechani-
calSystem task, due to its complexity and specific requirements, we employed precise manual design
methods. To supplement the task overview presented in Section [3.3] the following sections provide
detailed pseudocode for each programmatically generated task, offering more systematic and in-depth
technical insights.

Mental Rotation Tasks. [Algorithm 1| presents the pseudocode for the 2D Rotation Task. For the 3D
Rotation Task, Three-View Projection Task, Cube Counting Task, and Block Moving Task, we need
to construct connected cube stacks, with the core functions detailed in|[Algorithm 2| [Algorithm 3|
demonstrates the complete implementation process of the 3D Rotation Task. The method for
generating three-view projections of marked cube stacks is elaborated in|Algorithm 4] [Algorithm 5|
describes the process of importing models from the DeepCAD dataset and generating their three-view
projections.

Mental Folding Tasks. implements a Paper class for simulating the dynamic processes
of paper folding, holes punching, and unfolding. Based on this simulation framework,
constructs the data for the Paper Folding Task. presents the core functions for trans-
forming 11 standard cube nets (as shown in into three-dimensional cubes. Utilizing these
transformation functions, while [Algorithm 9| demonstrates how different unfolding patterns can
produce the same cubeAlgorithm 10|and [Algorithm 11|provide the complete pseudocode implemen-
tations for the Cube Unfolding Task and Cube Reconstruction Task, respectively.

Visual Penetration Tasks. details the implementation pseudocode for the Cross-
Section Task. comprehensively presents the data generation procedure as well as the
mathematical calculation process to guide the construction of answer options in the Cube Counting
Task. [Algorithm T4]contains the core functions for decomposing a complete cube stack into multiple

connected parts. Building upon these functions, provides the complete construction
pseudocode for the Cube Assembly Task.

Mental Animation Tasks. implements an ArrowPath class for simulating the move-
ment process of an arrow centered on itself. [Algorithm T7]implements an ArrowMap class that inherits
from the ArrowPath class, designed to simulate movement and exchange operations in multi-arrow
environments. Based on the ArrowPath class, details the data construction process
for the single-arrow version of the Arrow Moving Task. Correspondingly, using the ArrowMap
class, [ATgorithm T9|elucidates the data construction process for the multi-arrow version of the Arrow
Moving Task. [Algorithm 20]implements a Block class for simulating the movement and exchange
processes of blocks that follow gravitational rules. Building upon this Block class,
presents the complete pseudocode implementation of the Block Moving Task.

B.3 MANUL DESIGN FOR MECHANICAL SYSTEM TASK

To ensure the objectivity and quality of the Mechanical System task, we first collected simulation
materials from open-source platforms. The question-answer pairs were designed by members
of the author team, who strictly followed a standardized template based on the observable and
deterministic animations (e.g., "If component A rotates clockwise, how does component B move?").
This structured process was designed to minimize subjectivity and focus the evaluation specifically
on a model’s ability to infer causal dynamics from visual input. To verify the accuracy of these
question-answer pairs, we recruited two graduate student annotators from our research group, who
received compensation for their contributions. They first performed independent reviews of each
sample and then discussed their findings to resolve any discrepancies and reach a final consensus.
This rigorous process ultimately produced 80 validated data samples.
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B.4 PSEUDOCODE

Algorithm 1 2D Rotation Task

1: Input: Color(Pattern) set C, grid size (H, W), unit length s, marker length s’, task mode m
2: Initialize binary matrix M € {0, 1}#*" with random values

3: Initialize empty lists positive_samples, negative_samples

4: function DRAWGRIDWITHMARKER(M, C, H, W, s, s', record = list())

fori < 0to H—1do
for j < 0to W—1do
pos <+ (j-s, (H—1—14)-s, 0)
square <—FreeCAD .makePlane(s, s, (pos,0°))
if M[i][j] = 1 then
if record is empty then:
Randomly select ¢ € C and assign ¢ to square at pos
Append c to record
else
Assign rotate(Pop(record, 0), 90°) to square at pos
end if
end if
end for
end for
Randomly select corner € {“top_left”, “top_right”, “bottom_left”, “bottom_right”}
POSmarker — get_marker_pos(H, W, s, s, corner)
FreeCAD.makePlane(s’, s', (PoSmarker, 0°)) With red color
img < FreeCAD.savelImage()
return img, record

: end function

: ref_img,record < DrawGridWithMarker(M,C, H, W, s,s’)
: if m = “pattern” then

transform_image, record < DrawGridWithMarker(M,C, H,W,s, s’ record)
Append trans form_img to negative_samples

: end if

for angle € {90°,180°,270°} do
img <+ rotate(ref_img, angle)
Append img to positive_samples

: end for
: for flip_dir € {“horizontal”, “vertical”’} do

img < £lip(ref_img, flip_dir)
Append img to negative_samples

: end for

. samples < (positive_samples, negative_samples)

: Shuffle samples to assign [A, B, C, D] and record answer_id

: data + create_data(ref_img, samples, question, answer_id)
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Algorithm 2 Fucntions for Creating Cubes with None-isolated Regions

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement € {0}Z*Y*X empty list cubes
3. function CREATECUBE(x, y, 2)

4: cube +FreeCAD.makebox(s, s, s, (z,y, z)) and append cube to cubes
5: placement|z][y][z] + 1

6: end function

7. function CREATECUBES(X, Y, 2)

8: for z <~ 0to Z—1do

9: for y < 0toY—1do
10: forzx < 0to X—1do
11: if z = 0 or placement_space[z—1][y][z] = 1 then
12: With 50% probability CreateCube(x, y, z)
13: end if
14: end for
15: end for
16: end for

17: end function

18: function CONNECTISOLATEDCUBES(X, Y)

19: cubeszy < {(z,y) | placement[0][y][x] = 1}

20: Initialize empty set visited, empty list regions

21: directions < [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)]
22: for all (z,y) € cubesy, do

23: if (z,y) ¢ visited then

24: Initialize empty list region, empty queue queue

25: Add (z,y) to visited, add (z,y) to queue

26: while queue is not empty do

27: (cz,cy) < popLeft(queue)

28: Append (cz, cy) to region

29: for all (dz, dy) € directions do

30: (nz,ny) < (cx + dzx, cy + dy)

31: if0 <nz< Xand0 <ny <Y and (nz,ny) ¢ visited
and placement[0][ny][nz] = 1 then

32: Add (nz, ny) to visited, add (nx, ny) to queue

33: end if

34: end for

35: end while

36: Append region to regions

37: end if

38: end for

39: if [regions| > 1 then

40: for i < 0 to |regions| — 2 do

41: Find (z1,y1), (z2, y2) with min L, distance between regionsi] and regions|i + 1]

42: T T, Yy< U

43: while (x # x2) or (y # y2) do

44: if © # x5 and y # y» then

45: r+—axExl, y+—yxl

46: else if = # x5 then

47: r—ax=xl

48: else if y =~ 15 then

49: y+—y=xl

50: end if

51: if placement_space[0][y][x] = O then

52: CreateCube(placement, z,y,0)

53: end if

54: end while

55: end for

56: end if

57: end function
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Algorithm 3 3D Rotation Task

Input: Spatial size (X,Y, Z), cube size s

Initialize zero value 3D tensors placement € {0}2*Y*X  empty list cubes
Initialize empty lists positive_samples, negative_samples

Update placement, cubes with CreateCubes(X, Y, Z)

Update placement, cubes with ConnectIsolatedCubes(X, Y)
ref_img < FreeCAD.savelImage(cubes)

fori < 1to4 do
Randomly select axis € {x,y, 2z} and angle € {90°,180°,270°}
rotated_cubes < rotate(cubes, axis, angle)
rotated_img < FreeCAD. saveImage(rotated_cubes)
Append rotated_img to positive_samples

: end for

PR LAY

_ =
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—_
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: cubes’ «Randomly remove a cube from cubes and rotate the left cubes as above
. rotated_removed_img < FreeCAD.savelImage(cubes’)
. Append rotated_removed_img to negative_samples

—
o ®

—_
[*))

. for flip_dir € {“horizontal”, “vertical”} do
Randomly choose sample from positive_samples
img + £lip(sample, flip_dir)

Append img to negative_samples

. end for

N = = =
QY XPA

8]
—_

: samples < (positive_samples, negative_samples)
: Shuffle samples to assign [A, B, C, D] and record answer_id
: data + create_data(ref_img, samples, question, answer_id)

NN
W N
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Algorithm 4 Three-View Projection Task with Marked Cube Stack

Input: Spatial size (X,Y, Z), cube size s

Initialize zero value 3D tensors placement € {0}Z*Y*X empty list cubes
Initialize empty lists positive_samples, negative_samples

Update placement, cubes with CreateCubes(X, Y, Z)

Update placement, cubes with ConnectIsolatedCubes(X, Y)

function COLORVISIBLEFACES(X, Y, Z, colored_num)
cubes < Find cubes that can be seen from front or top or left view
Randomly color min(colored_num, |cubes|) cubes in red

end function

PR DR
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function SAVEVIEWS(cubes)
Initialize empty list views
for all view € {“Isometric”, “Top”, “Front”, “Left”} do
img <FreeCAD. saveView(view) and append img to views
end for
return views
: end function

—_— e
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: Update cubes with ColorVisibleFaces(X,Y, Z, colored_num)
: views < SaveViews (cubes)

: Select le ft_view from views to positive_samples

. Select right_view from views to negative_samples

D =
S ©
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: Cleaer all colors and update cubus with ColorVisibleFaces(X,Y, Z, colored_num) as
above

22: new_views < SaveViews (cubes)

23: Select left_view and right_view from new_views to negative_samples

24: samples < (positive_samples, negative_samples)

25: Shuffle samples to assign [A, B, C, D] and record answer_id

26: ref_img < (isometric_view, top_view, front_view)

27: data < create_data(ref_img, samples, question, answer_id)
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Algorithm 5 Three-View Projection Task with Models from DeepCAD Datasets

1: Input: step file path pth
2: Initialize empty lists positive_samples, negative_samples
3: shape <Open(pth)
4: views < SaveViews (shape)
5: function CREATEINCORRECTVIEW (view, mode)
6: if mode = 0 then
7: imyg’ <Extract all internal lines and randomly delete 1 line
8: else if mode = 1 then
9: img’ +rotate(view, 90°)
10: else if mode = 2 then
11: img’ « f£lip(view, “horizontal” or “vertical’)
12: end if
13: return img’
14: end function
15: ref_view +Choose view from views with max area
16: (questioned_view, other_view) + Randomly assign views except for ref_view
17: Append questioned_view to positive_samples
18: for mode + 0to 2 do
19: incorrect_view +CreateIncorrectView(questioned_view or other_view, mode)
20: Append incorrect_view to negative_samples
21: end for
22: samples < (positive_samples, negative_samples)
23: Shuffle samples to assign [A, B, C, D] and record answer_id
24: ref_img + (isometric_view, top_view, front_view)
25: data < create_data(ref_img, samples, question, answer_id)
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Algorithm 6 Simulation for Paper Folding, Punching and Unfolding

1: Class Paper
2: Attributes:
3:  grid, complete_grid: 2D arrays representing current and complete paper states

4:  original_rows, original_cols: initial dimensions
5:  current_rows, current_cols: current dimensions after folding
6:  folds: list of fold operations
7. function FOLD(direction, line or diagonal_points)
8: if direction is horizontal then
9: Calculate folded area
10: Update complete_grid by marking folded area as -1
11: Create new grid with updated dimensions
12: else if direction is vertical then
13: Similar to horizontal but for columns
14: else if direction is diagonal then
15: Calculate diagonal line equation
16: Mark appropriate triangular area as -1
17: end if

18: Record fold operation in folds
19: end function

20: function PUNCH(points)
21: for each (z,y) in points do

22: Set grid[z][y] < 1

23: Set corresponding complete_grid position to 1
24: end for

25: Record punch operation in folds

26: end function

27: function UNFOLD
28: for each fold in reverse folds do

29: if fold is horizontal then

30: Mirror grid about fold line

31: else if fold is vertical then

32: Mirror grid about fold line

33: else if fold is diagonal then

34: Mirror grid about diagonal line
35: end if

36: Update current dimensions of paper

37: end for
38: Clear folds list
39: end function

40: function CREATEINCORRECTVIEW (mode)

41: Create incorrect variant by:

42: if mode = “row” then

43: Either remove a row of holes, add extra row, or swap rows

44: else if mode = “col” then

45: Either remove a column of holes, add extra column, or swap columns
46: else

47: Combine row and column errors

48: end if

49: Update paper with above changes
50: end function
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Algorithm 7 Paper Folding Task

1: Input: Dimensions of paper (rows, cols), number of folds steps, number of holes punches
2: Initialize paper with dimensions rows X cols
3: Initialize empty lists ref_imgs, positive_samples, negative_samples
4: for step < 1 to steps do
5: if step = steps then
6: direction + “diagonal”
7: else
8: direction < Randomly select direction € [*horizontal”,“vertical”]
9: end if
10: if direction = “horizontal” then
11: line < randomInt(1, paper.current_rows — 1)
12: paper.Fold(direction,line)
13: else if direction = “vertical” then
14: line < randomInt(1, paper.current_cols — 1)
15: paper.Fold(direction,line)
16: else if direction = “diagonal” then
17: diagonal_points <— Randomly select one set of 45-degree line endpoints
18: paper.Fold(direction, diagonal_points)
19: end if
20: img <—draw_paper(paper) and append img to ref_imgs
21: end for
22: points < Randomly select punches zero positions
23: paper.Punch(points)
24: img <draw_paper(paper) and append img to ref_imgs
25: paper.Unfold()
26: img <—draw_paper(paper) and append img to positive_samples

[\
3

. Initialize paper’ with same dimensions as paper

. paper’.grid < paper.grid to copy the state of unfolded paper

: Determine the incorrect view mode

: fori <1to3do

Update paper’ with paper’.CreateIncorrectView(mode)

img <—draw_paper(paper’) and append img to negative_samples
: end for

WL W W NN

Y}
N

: samples < (positive_samples, negative_samples)
: Shuffle samples to assign [A, B, C, D] and record answer_id
: data + create_data(ref_imgs, samples, question, answer_id)

W W
AN W
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Algorithm 8 Functions for Reconstruting Cube from 11 Kinds of Cube Nets

1: Input: cube size s
2: Define rotation operators:
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R, (0): Rotation about X-axis by 6 degrees
R, (0): Rotation about Y-axis by 6 degrees
R, (#): Rotation about Z-axis by 0 degrees

: function NET2CUBE(plane_name, map, view, rot)

Initialize placement dictionary planes
planes[“Top”| < ((s/2,s/2,s), R,(180°))
planes[“Bottom”] < ((s/2,s/2,0), Rx(0)
planes[“Right”] « ((s,s/2,5/2), R,(—90°))
planes[“Left”] < ((0,s/2,5/2), R,(90°) o R,(90°))
planes[“Back”] < ((s/2,s,5/2), R;(90°))
if plane_name is “2-2-2” then
planes[“Top”] < (s/2,s/2,s), R,(180°) o R,(—90°)
else if plane_name is “1-4-1” then
planes[“Left”] < (0,5/2,5/2), R,(90°)o
end if
if plane_name € [“1-4-1-0”, “2-3-1-0”] then
planes[“Front”] «+ ((s/2,0,s/2), R,(—90°))
else if plane_name € [“1-4-1-17, “1-4-1-4”, “2-3-1-17, “2-2-2”] then
planes[“Front”] < ((s/2,0,s/2), Ry;(—90°) o R,(—90°))
else if plane_name € [“1-4-1-27, “1-4-1-57, “2-3-1-2”, “3-3”] then
planes[“Front”] + ((s/2,0,s/2), R,(—90°) o R,(180°))
else if plane_name is “1-4-1-3” then
planes[“Front”] <+ ((s/2,0,s/2), R(—90°) o R.(90°))
end if
if plane_name € [“1-4-1-4”, “1-4-1-5”] then
planes[“Back”] « ((s/2,s,5/2), R:(90°) o R.(90°))
end if

Form a cube by:
for all face_name € planes do
placement <+ planes|face_name]
square +FreeCAD.makePlane(s, s, placement)
¢ < map[face_name]
if rot is true then
Assign rotate(c, 90°) to square at placement
else
Assign c to square at placement
end if
end for
img < FreeCAD.saveView(view)
return img

: end function

. function DRAWNET(net, map, s, rot)
45:
46:
47:
48:
49:
50:
51:
52:
53:
54
55:
56:
57:

for face_name € net do
i, j < net[face_name]
pos+ (j-s, (H—1—1)-s,0)
square <FreeCAD.makePlane(s, s, (pos,0°))
¢ < map|face_name]
if rot is true then
Assign rotate(c, 90°) to square at pos
else
Assign c to square at pos
end if
end for
img < FreeCAD.saveImage()
return img

58: end function
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Algorithm 9 Functions for Unfolding Cube to 11 kinds of Cube Nets

1: Using the same parameter definitions as those in|Algorithm §

2. function DRAWNETWIPIVOT(plane_name, net, map, s, rot)

3:

AN A

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

pivot_plane_name <+ “1-4-1-0”
Initialize rotation dictionary planes
if plane_name € [“1-4-1-17, “1-4-1-47, “2-3-1-17, “2-2-2”] then
planes[“Front”] < R,(90°))
else if plane_name € [“1-4-1-27, “1-4-1-57, “2-3-1-2”, “3-3”] then
planes|[“Front”] + R,(—180°))
else if plane_name is “1-4-1-3” then
planes[“Front”] < R,(—90°))
end if
if plane_name € [“1—4—1—4”, “1—4—1—5”] then
planes[“Back”] < R.(—90°))
end if
if plane_name € [“2-3-1-0", “2-3-1-17, “2-3-1-2”, “3-3”, “2-2-2"] then
planes[“Left”] «+ R.(—90°))
end if
if plane_name is “2-2-2” then
planes[“Top”] + R.(—90°))
end if
Create a net which can form the same cube with pivot plane:
for face_name € net do
i, j < net[face_name]
pos+ (j-s, (H—1—1)-s,0)
square <FreeCAD.makePlane(s, s, (pos,0°))
if rot is true then
Assign rotate(c, 90°) to square at pos
else
Assign c to square at pos
end if
if plane_name # “1-4-1-0” then
if face_name € planes then
rotation < planes|face_name)
square.Placement.Rotation < rotation
end if
end if
end for
img < FreeCAD.saveImage()

39: end function
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Algorithm 10 Cube Unfolding Task

1:
. Initialize 11 cube nets

[\

Input: Color(Pattern) set C, unit length s, task mode m

nets : { face_name : (i,j)| face_name € {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”} }

. Initialize empty lists positive_samples, negative_samples

map : {face_name : c|c € C'} <~Randomly shuffle set C' and assign it to six faces

: Randomly select a view €8 corner views of a cube

pivot_net_name + “1-4-1-0”
ref_img <Net2Cube(pivot_net_name, map, view, rot = false)

: fori < 1to2do

plane_name, net < Randomly select net from nets
img <DrawNetWiPivot(plane_name, net, map, s, rot = false)
Append img to positive_samples
if m = “pattern” then
img’ +DrawNetWiPivot(plane_name,net, map, s, rot = true)
Append img’ to negative_samples
end if

: end for

: map’ +Fix the mapping of face_name € view, and random shuffle the others
s fori<+ 1to2do

plane_name, net < Randomly select net from nets
img <+DrawNetWiPivot(plane_name, net, map, s, rot = false)
Append img to positive_samples

: end for

. map’ <Swap the colors(patterns) of a randomly selected face € view with its opposite face
: plane_name, net < Randomly select net from nets

. img <DrawNetWiPivot (plane_name, net, map’, s, rot = false)

. Append img to negative_samples

: samples < (positive_samples, negative_samples)
: Shuffle samples to assign [A, B, C, D] and record answer_id
: data + create_data(ref_img, samples, question, answer_id)

Algorithm 11 Cube Reconstruction Task

1:
2:

PRIN R

11:
12:
13:
14:
15:
16:

17:
18:
19:

Input: Color(Pattern) set C, unit length s, task mode m
Initialize 11 cube nets
nets : { face_name : (i, j)| face_name € {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”} }
Initialize empty lists positive_samples, negative_samples
map : {face_name : c|c € C'} <—Randomly shuffle set C' and assign it to six faces
net € {0,1}3*5 + Randomly select net from nets
ref_img <DrawNet (net, map, s, rot = false) and append img to positive_samples
fori < 1to3do
vtew <— Randomly select a view from 8 corner views of a cube
img <Net2Cube(net, map, view, rot = false)
Append img to positive_samples
end for
for flip_dir € {“horizontal”, “vertical”} do
Randomly choose sample from positive_samples
img < £lip(sample, flip_dir)
Append img to negative_samples
end for

samples <+ (positive_samples, negative_samples)
Shuffle samples to assign [A, B, C, D] and record answer_id
data < create_data(ref_img, samples, question, answer_id)
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Algorithm 12 Cross-Section Task

1: Imput: Number of objects num, number of sections per mode %, whether rotate the slicing plane
rot

2: Initialize candidate objects list objects, empty list selected_objects

3: Initialize empty lists positive_samples, negative_samples

4: function GETSECTIONS(compound, k, plane)

5: Initialize empty list imgs

6: Determine coord,, i, and coord,,,,. from bounding box

7: step « (coordmas — coordmin)/(k + 1)

8: fori+ 1tokdo

9: of fset < coord,n + 1 X step
10: normal_vector < unit vector normal to plane
11: section < FreeCAD. slice(compound, normal_vector, of fset)
12: Rotate section for better visualization
13: img < FreeCAD.savalmage(section) and append img to imgs
14: end for

15: return imgs

16: end function

17: function GETROTATEDSECTIONS(compound, axis, center)

18: axts_vector <— Corresponding unit vector of azis

19: plane < Parallel to axis

20: for angle € {45°,135°} do

21: aziz_vector’ < rotate(awxis_vector,angle, plane)

22: of fset + axix_vector - center

23: section < FreeCAD. slice(compound, axis_vector, of fset)
24: Rotate section for better visualization

25: img < FreeCAD.savalmage(section) and append img to imgs
26: end for

27: return imgs

28: end function

29: selected_objects <—Randomly select num objects from objects
30: Randomly assign sizes to objects in selected_objects

31: compound <+ Create objects in FreeCAD and compound objects
32: center <—Obtain the center of compound object

33: for plane € {“XY”,“XZ”, “YZ"} do

34: imgs + GetSections(compound, k, plane)
35: Append imgs to positive_samples
36: end for

37: if rot is true then
38: for azis € {“x”, “y”, “z”} do

39: for angle € {45°, 135°} do

40: imgs < GetRotatedSections(compound, axris, center)
41: Append imgs to positive_samples

42: end for

43: end for

44: end if

45: compound’ <Randomly alter the relative ratios of objects in compound

46: imgs < Use any of the above approaches to obtain cross-sections of compound’
47:

48: Append imgs to negative_samples

49: samples + (positive_samples, negative_samples)
50: Shuffle samples to assign [A, B, C, D] and record answer_id
51: data < create_data(ref_img, samples, question, answer_id)
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Algorithm 13 Cube Counting Task

1: Input: Spatial size (X,Y, Z), cube size s, number of constraint views num
2: Initialize zero value 3D tensors placement € {0}2*Y*X empty list cubes
3: Initialize empty list samples

4: function DETECTGRID(view, row_num col_num)

5: contours <Find contours in view
6: Initialize grid matrix of size row_num X col_num
7: for contour € contours do
8: (z,y,w, h) < Bounding rectangle of contour
9: row < y/h, col < x/w

10: if row and col within bounds then

11: grid[row][col] + 1

12: end if

13: end for

14: return grid

15: end function

16: function GETCUBEANSWER( front, top, left, num)

17: sum_front_col < Column sums of front

18: sum_top_col < Column sums of top

19: maz_2view < sum_front_col - sum_top_col

20: min_2view <+ sum(sum_top_col — 1 + sum_front_col)

21: if num = 2 then

22: return (max_2view, min_2view)

23: end if

24: sum_left_col <— Column sums of le ft

25: Initialize answer matrix with the same dimension as top € {0}7*W

26: for row < 0to H — 1do

27: for col < 0to W — 1 do

28: if top[row][col] = 1 then

29: ans[row][col] < min(sum_front_col[col], sum_left_col[row])
30: end if

31: end for

32: end for

33: max_3view < sum(ans)

34: sum_top_row < Row sums of top

35: min_3view < max(sum(sum_top_row — 1 + sum_left_col), min_2view)
36: return (mazx_3view, min_3view)

37: end function

38: Update placement, cubes with CreateCubes(X, Y, Z)
39: Update placement, cubes with ConnectIsolatedCubes(X, Y)
40: (front_view, top_view, left_view) < SaveViews (cubes)
41: front_mat, top_mat, left_mat <
DetectGrid(front_view), DetectGrid(top_view), DetectGrid(left_view)
42: if num = 2 then

43: ref_img < (top_view, front_view)

44: (max_view, min_view) < GetCubeAnswer(front_mat, top_mat, left_mat, 2)
45: else if num = 3 then

46: ref_img < (top_view, front_view, left,iew)

47: (max_view, min_view) < GetCubeAnswer(front_mat, top_mat, left_mat, 3)
48: end if

49: samples <—Generate correct and incorrect nums based on the min_view to maz_view range
50: Shuffle samples to assign [A, B, C, D] and record answer_id
51: data < create_data(ref_img, samples, question, answer_id)
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Algorithm 14 Functions for Splitting Cube Stack into Several Connected Parts

1: function GETNEIGHBORS(cube_pos, cubes)

2 (x,y,2) + cube_pos

3 Initialize empty list neighbours

4: for dz € {—1,0,1} do

5: for dy € {—1,0,1} do

6: for dz € {-1,0,1} do

7 if |dz| + |dy| + |dz| = 1 then > 6-connected neighborhood
8: neighbor_pos < (z + dz,y + dy, z + dz)
9: if neighbor_pos € cubes then
10: Append netghbor_pos to neighbours
11: end if
12: end if
13: end for
14: end for
15: end for
16: return neighbors

17: end function

18: function REGIONGROWING(cubes, max_cubes)

19: Initialize empty set part, empty list queue

20: start_pos <— Randomly select a position from cubes and append start_pos to queue
21: while gueue not empty and |part| < maz_cubes do

22: current_pos < pop(queue, 0)

23: if current_pos ¢ part then

24: Add current_pos to part

25: neighbors < GetNeighbors(current_pos, cubes)
26: Extend [n € neighbors | n ¢ part] to queue

27: end if

28: end while

29: return part

30: end function

31: function ISCONTINUOUS(part)

32: Initialize empty set part, empty list queue

33: start_pos < part|0] and append start_pos to queue

34: while queue not empty do

35: current_pos < pop(queue, 0)

36: if current_pos ¢ visited then

37: Add current_pos to visited

38: neighbors < GetNeighbors(current_pos, part)

39: Extend [n € neighbors | n € part and n ¢ visited] to queue
40: end if

41: end while
42: return Whether |visited| = |part|
43: end function

44: function SPLITCUBES(cubes, max_cubes, num_parts)

45: partl < RegionGrowing(cubes, max_cubes)
46: if IsContinuous(partl) then

47: remaining < Remove partl from cubes

48: end if

49: if IsContinuous(remaining) then

50: if num_parts = 2 then

51: return sort([partl, remaining)) by size
52: else if num_parts = 3 then

53: Similarly find part2 from remaining cubes as above
54: part3 <— Remove part2 from remaining
55: return sort ([partl, part2, part3]) by size
56: end if

57: end if

58: end function
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Algorithm 15 Cube Assembly Task

1: Input: Spatial size (X, Y, Z), cube size s, number of splitting parts &

2: Initialize zero value 3D tensors placement € {0}Z*Y*X empty list cubes
3: Initialize empty lists ref_imgs, positive_samples, negative_samples

4: function CREATECUBESPYRAMID(X, Y, Z)

5: Initialize num =1

6: fory<0toY —1do

7 num = randomInt (num, min(y + 2, X))
8: for x < 0 to num — 1 do

9: CreateCube(z, y, 0)

10: end for

11: end for
12: for <+ 1to Z —2do

13: Initialize num = 0

14: fory<0toY —1do

15: num = randomInt(num, max(num, sum(placement[z — 1][y])))
16: for z < 0 to num — 1 do

17: CreateCube(z, y, 2)

18: end for

19: end for

20: end for

21: fory<0toY —1do

22: forz < O0to X —1do

23: With 50% probability CreateCube(z, y, Z — 1)
24: end for

25: end for

26: end function

27: Update placement, cubes with CreateCubesPyramid(X, Y, Z)

28: cubes_img < FreeCAD.saveImage(cubes) and append cubes_img to ref_imgs

29: parts < SplitCubes(cubes, max_cubes, num_parts)

30: for part € parts[: —1] do

31: part_img < FreeCAD. saveImage(part) and append part_img to ref_imgs

32: end for

33: part_img — FreeCAD.saveImage(parts|—1]) and append part_img to
positive_samples

34: for: <+ 1to2do

35: part’ +Randomly remove 1 cube from part[-1]

36: part’_img — FreeCAD.savelmage(part’) and append part_img to
negative_samples

37: end for

38: samples < (positive_samples, negative_samples)
39: Shuffle samples to assign [A, B, C, D] and record answer_id
40: data < create_data(ref_img, samples, question, answer_id)
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Algorithm 16 Simulation for Arrow Moving

1: Class ArrowPath
2: Attributes:
3: W, H, k: Map width, height, and step count

4:  max_step < min(x,y)
5:  directions < {(0,1),(1,0),(0,-1),(-1,0)} > up, right, down, left
6:  path: Initialize with empty list to record relative moving direction and steps
7:  states: Initialize with empty list to record pos and orientation during transformation
8: function INITIALIZESTATE
9: Reset path, states
10 orient_id < randomInt(0,3)
11: pos € {(x,y)} < Randomly select a position in the map

12: Append (orient_id, pos) to states
13: end function

14: function GETRELATIVEDIRECTION(orient_id)

15: forward «+ directions|orient_id)
16: backward < (— forward|[0], — forward[1])
17: left « directions|(orient_id — 1) mod 4]

18: right < directions|(orient_id + 1) mod 4]
19: return {“forward”:forward, “backward”:backward, “left”:left, “right”:right}
20: end function

21: function UPDATEORIENTID(rel_dir, orient_id)
22: if rel_dir is “backward” then

23: orient_id + (orient_id + 2) mod 4
24: else if rel_dir is “left” then

25: orient_id < (orient_id — 1) mod 4
26: else if rel_dir is “right” then

27: orient_id < (orient_id + 1) mod 4
28: end if

29: return orient_id

30: end function

31: function MOVE(state, rel_dir, steps)

32: pos, orient_id < state

33: move_dir + GetRelativeDirection(orient_id)[rel_dir]

34: new_pos < [pos|0] + move_dir[0] x steps, pos[1] + move_dir[l] x steps]
35: if new_pos is invalid then

36: return false

37: end if

38: Append (rel_dir, steps) to path

39: Append (UpdateOrientId(rel_dir, orient_id), new_pos) to states
40: return true

41: end function

42: function GENERATEPATH(k, end_state=None)
43: fori <+ 1tokdo

44: repeat

45: Randomly select rel_dir € {“forward”, “backward”, “left”, “right”}
46: steps + randomInt (1, max_step)

47 valid_flag < Move(states[—1], rel_dir, steps)

48: if end_state is not None and 7 = k then

49: valid_flag < valid_flag & state[—1] # end_state

50: end if

51: until valid_flag is true

52: end for
53: end function
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Algorithm 17 Simulation for Arrows Moving

1: Class ArrowMap(Inherit from Class ArrowPath)
2: Attributes:

3:  colors: Color set
4:  path: Initialize with empty list to record arrow position, relative moving direction and steps
5:  states: Initialize with empty list to record map during transformation
6: function INITIALIZESTATE
7: Initialize empty matrix state
8: for y <1 to H do
9: for z < 1to W do
10: With 50% probability:
11: Randomly select color € colors
12: Randomly get orient_id <— randomInt(0, 3)
13: state[pos] < Record color and orient_id at pos(z,y)
14: end for
15: end for

16: Append state to states
17: end function

18: function MOVE(state, arrow_pos, rel_dir, steps)

19: CUTT_POS 4— arrow_pos

20: curr_orient_id, curr_color + state[x][y]

21: move_dir + GetRelativeDirection(curr_orient_id)[rel_dir]

22: new_pos < [pos[0] + move_dir[0] x steps, pos[1] + move_dir[l] x steps]
23: if new_pos is invalid then

24: return false

25: end if

26: new_orient_id < UpdateOrientId(rel_dir, orient_id)

27: if new_pos = curr_pos and new_orient_itd = curr_orient_id then

28: return false

29: end if

30: Append arrow_pos, rel_dir, stepsto path

31 if state[new_pos] is None then

32: state[curr_pos] < None

33: else

34: target_color, target_orient_id + state[new_pos]

35: target_move_dir < —move_dir

36: target_rel_directions < GetRelativeDirection(target_orient_id)
37: taget_rel_dir < Find {key € target_rel_directions | value = target_move_dir}
38: new_target_orient_id < UpdateOrientId(taget_rel_dir, target_orient_id)
39: state[curr_pos] < target_color and new_target_orient_id

40: end if

41: state[new_pos| < curr_color and curr_orient_id

42: return true

43: end function

44: function GENERATEPATH(k, end_state=None)
45: for i < 1to kdo

46: repeat

47 Randomly select arrow_pos € {pos | state[pos] is not None}

48: Randomly select rel_dir € {“forward”, “backward”, “left”, “right”}
49: steps <— randomInt (1, max_step)

50: valid_flag < Move(state, arrow_pos,rel_dir, steps)

51: if end_state is not None and 7+ = k then

52: valid_flag < valid_flag & state|—1] # end_state

53: end if

54: until valid_flag is true

55: end for

56: end function
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Algorithm 18 Arrow Moving Task in Easy Version

PRI AR

11:
12:
13:

14:
15:
16:

Input: Dimension of map (W, H), step count k

Initialize empty lists positive_samples, negative_samples

Initialize arrow_path with dimension W x H

Initialize state with arrow_path.InitializeState() and record as initial_state
Update path, states with arrow_path.GeneratePath(k)

Append path to positive_samples

ref_img < draw_map(states|0], states[—1])

Record end_state + states[—1]

From the same initial_state

for; < 1to3 do
Update path’ with arrow_path.GeneratePath(k, end_state)
Append path’ to negative_samples

end for

samples + (positive_samples, negative_samples)
Shuffle samples to assign [A, B, C, D] and record answer_id
data < create_data(ref_img, samples, question, answer_id)

Algorithm 19 Arrow Moving Task in Hard Version
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Input: Dimension of map (W, H), step count k, task mode m
Initialize empty lists positive_samples, negative_samples
Initialize arrow_map with dimension W x H
Initialize state with arrow_map.InitializeState() and record as initial_state
Update path, states with arrow_map.GeneratePath(k)
Append path to positive_samples
if m = “state” then

ref_img < draw_map(states[0])

Append states[—1] to positive_samples
else if m = “path” then

ref_img < draw_map(states|0], state[—1])

Append path to positive_samples

: end if
: Record end_state + states[—1]

. From the same initial_state
: for 7 < 1to3 do

Update path’, states’ with arrow_map.GeneratePath(k, end_state)
if m = “state” then
Append states’[—1] to negative_samples
else if m = “path” then
Append path’ to negative_samples
end if

: end for

: samples < (positive_samples, negative_samples)
: Shuffle samples to assign [A, B, C, D] and record answer_id
: data + create_data(ref_img, samples, question, answer_id)
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Algorithm 20 Simulation for Block Moving

1: Class Block
. Attributes:
. X,Y, Z k: Spatial size and step count

2
3
4:  directions: 6 directions

5:  colors: Color set

6:  cubes_info: Initialize with empty list to record positions and colors of cube objects

7. transformation: Initialize with empty list to record transformations

8: function INITIALIZESTATE

9 Update cubes with CreateCubes(X,Y, Z)

0 Assign randomly selected colors to cubes and record their colors and positions in cubes_in fo
1: end function

12: function HASSUPPORT(x, y, Z2)
13: if z = 0 or there is cube at (x,y, z — 1) then

14: return true
15: end if
16: return flase

17: end function

18: function DROPCUBES

19: Sort cubes_in fo by z of pos in ascending order

20: for cube € cubes_info do

21: (z,vy, z) < Acquire position of cube from cubes_in fo

22: while HasSupport(z,y, z) is flase do

23: Change the position of cube to (z,y,z — 1) and update z < z — 1
24: end while

25: end for

26: end function

27: function CHECKMOVE( from_pos, to_pos)

28: if (to_pos is invalid) or (HasSupport (to_pos) is false) or (there is no cube at from_pos)
or (there is no cube at to_pos and to_pos is on top of from_pos) then

29: return false

30: end if

31: return true

32: end function

33: function MOVECUBE( from_pos, to_pos)

34: if there is no cube at to_pos then

35: Update cubes_in fo with changing the position of cube at from_pos to to_pos
36: else

37: Update cubes_in fo with swapping the cube at from_pos and to_pos

38: end if

39: DropCubes()

40: Append (from_pos, to_pos — from_pos) to transformation

41: end function

42: function GENERATETRANSFORMATION(k)
43: for: < 1tokdo

44 Initialize empty list possible_moves

45: for all cube € cubes_info do

46: for all direction € directions do

47: to_pos <+ The position of cube from_pos + direction

48: if CheckMove(from_pos, to_pos) is true then

49: Append (from_pos, direction, to_pos) to possible_moves
50: end if

51: end for

52: end for

53: Randomly select (from_pos, direction, to_pos) € possible_moves
54: MoveCube(from_pos, to_pos)

55: end for

56: end function
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Algorithm 21 Block Moving Task

Input: Spatial size (X, Y, Z), step count k

Initialize empty lists re f_imgs, positive_samples, negative_samples
Initialize block with size (X,Y, Z)

Initialize with block.InitializeState() and record as initial_cubes_in fo
img < FreeCAD. saveImage(initial_cubes) and append img to ref_imgs

Update trans formation, cubes_info with block.GenerateTransformation(k)
Append trans formation to positive_samples

Record final_cubes_in fo after transformation

img < FreeCAD.savelImage(final_cubes) and append img to ref_imgs

PR DR

._.
A

From the same initial_cubes_info
: fori < 1to3do
repeat
Update trans formation’, cubes_info with block.GenerateTransformation(k)
until cubes_info # final_cubes_info
Append trans formation to negative_samples
: end for

—_— e
SARANE S e

—_
~

: samples < (positive_samples, negative_samples)
: Shuffle samples to assign [A, B, C, D] and record answer_id
: data + create_data(ref_imgs, samples, question, answer_id)

—_
Nelie el

C DATASET CHARACTERISTIC

Option Modality & Format A significant majority of questions (818) feature image-based options
to emphasize visual reasoning. The choice formats are intentionally varied, including standard
A/B/C/D choices (508 questions), options with A/B/C/‘All three other options are incorrect’ (310
questions), and unique text (242 questions) or numeric (120 questions) answers to prevent models
from overfitting to a single question style. For the numeric answers, we additionally provide direct
numerical responses, and in we present a comparative analysis of model performance across
different question format.

Answer Distribution The answer distribution is well-balanced across options A (26.5%), B (27.5%),
and C (28.5%). The lower frequency of option D (17.5%) is a deliberate design choice to enhance the
rigor of the evaluation. For many complex tasks, option D serves the distinct role of "All three other
options are incorrect”. This asymmetrical design is critical for two reasons. First, it acknowledges
the difficulty of generating multiple high-quality distractors for complex 3D tasks, ensuring all visual
options remain challenging. Second, it compels models to move beyond simple heuristics like "pick
the most similar". Instead, this approach demands eliminative reasoning, requiring the model to rule
out every other option to prove a genuine understanding of the spatial rules being tested.
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D DATA EXAMPLES

We present exemplars of varying difficulty levels for all tasks, with each sample containing an image,
question, options, answer, and explanation.

Mental Rotation 2DRotation: 3DRotation: 3ViewProjection:

Mental Folding PaperFolding: CubeUnfolding: CubeReconstruction: [Fig]

Visual Penetration CrossSection: CubeCounting: CubeAssembly:
Mental Animation ArrowMoving: BlockMoving: MechanicalSystem: [Fig]

ure 19
2D Rotation Task-Level 0 2D Rotation Task-Level 1

original A o :
.ﬁ E
Question: The left image shows a colored grid with a red
square marking one corner. Which grid can be obtained by
rotating the left grid only, without flipping or other changes?
Please answer from options A, B, C, or D.

Choices:
A A

c.Cc

D. All three other options are incorrect
Answer: A
Explanation:

A: Option A is correct because it was obtained by
rotating the original image 270 degrees.

B: Option B is incorrect because it was obtained by
rotating the original image 90 degrees and then flipping it
horizontally.

C: Option C is incorrect because it was obtained by
rotating the original image 180 degrees and then flipping it
vertically.

original c

[ [
]

Question: The left image shows a colored grid with a red
square marking one corner. Which grid can be obtained by
rotating the left grid only, without flipping or other changes?
Please answer from options A, B, C, or D.

Choices:

D. All three other options are incorrect
Answer: B
Explanation:

A: Option A is incorrect because it was obtained by
rotating the original image 270 degrees and then flipping it
horizontally.

B: Option B is correct because it was obtained by
rotating the original image 180 degrees.

C: Option C is incorrect because it was obtained by
rotating the asymmetric patterns in the image.

Figure 8: 2D

Level 0

3D Rotation Tasl

Question: The left image shows the original cube stack
made of equal-sized small cubes. Which of the options on
the right cannot be obtained by rotating the original cube
stack? Please answer from options A, B, C, or D.
Choices:

A A

B.B

C.C

D. All three other options are incorrect
Answer: C
Explanation:

A: Option A is incorrect because the cube stack can be
obtained by rotating the original stack around the x-axis by
270 degrees.

B: Option B is incorrect because the cube stack can be
obtained by rotating the original stack around the y-axis by
90 degrees.

C: Option C is correct because it was obtained by
removing one small cube from the original stack.

Rotation Task.

3D Rotation Task-Level 1
Question: The left image shows the original cube stack
made of equal-sized small cubes. Which of the options on
the right cannot be obtained by rotating the original cube
stack? Please answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D. All three other options are incorrect
Answer: A
Explanation:

A: Option A is correct because the cube stack can be
obtained by rotating the original stack around the x-axis by
270 degrees.

B: Option B is incorrect because it is a vertically
mirrored version of the original cube stack.

C: Option C is incorrect because it was obtained by
removing one small cube from the original stack.

Figure 9: 3D

Rotation Task.
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Three-View Projection Task-Level 0 Cubes Three-View Projection Task-Level 1 CAD Model

Isometric

Front Top

e

Question: The cube stack is made of equal-sized small
cubes, mostly gray with a few red ones. The top row shows

its isometric view, front view, and top view from left to right.

Which image in the bottom row is the left view of the cube
stack? Please answer from options A, B, C, or D.
Choices:

Answer: D
Explanation:

A: Option A is incorrect because the image shows the
right view of the cube stack instead of the left view.

B: Option B is incorrect because the shape matches the
right view instead of the left view, and the red cubes are not
in the correct position.

C: Option C is incorrect because the red cubes are not

Isometric

H H‘ H\l |

Question: The top row shows the isometric view (left) and
the top view (right) of a 3D model. Which image in the
bottom row is the left view of the model? Please answer
from options A, B, C, or D.

Choices:
A A

c.C

D. All three other options are incorrect
Answer: C
Explanation:

A: Option A is incorrect because the internal outlines
are missing.

B: Option B is incorrect because the internal outlines
are missing.

in the correct position in the view.

Figure 10: Three-view Projection Task.

Paper Folding Task-Level 0

Paper Folding Task-Level 1

Operation 1 Operation 2 Punch Holes
A B c D
L] L] L] L]

Question: The original paper is a 3x3 grid paper.
The images in the top row show the results of 2
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D.D
Answer: C
Explanation:

A: Option A is incorrect because extra holes
appear in column 3.

B: Option B is incorrect because holes in
column 1 are missing.

D: Option D is incorrect because holes that
should appear in column 1 appear in column 3.

Operation 1 Operation 2 Punch Holes

>
LRI
@
.
L)
o
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LAY
o

Question: The original paper is a 4x4 grid paper.
The images in the top row show the results of 2
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D.D
Answer: A
Explanation:

B: Option B is incorrect because extra holes
appear in row 1.

C: Option C is incorrect because holes in
row 4 are missing.

D: Option D is incorrect because holes that
should appear in row 4 appear in row 1.

O 1 0 2 3 Punch Holes
A B c D
oo oo oo .o
o . oo .o

oo °« oo .
oo . .

Question: The original paper is a 5x5 grid paper.
The images in the top row show the results of 3
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D.D
Answer: C
Explanation:

A: Option A is incorrect because holes in
row 4 are missing.

B: Option B is incorrect because holes that
should appear in row 4 appear in row 5.

D: Option D is incorrect because extra holes
appear in row 5.

Figure 11: Paper Folding Task.
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Cube Unfolding Task-Level 0

Cube Unfolding Task-Level 1

Cube Unfolding Task-Level 2

Question: The left image shows a colored cube
from a particular viewing angle. The options are
nets (unfolded patterns) of the cube, which are
folded upward to form the cube. Which net,
when folded, cannot form the cube shown in the
left image? Please answer from options A, B, C,
orD.

Choices:

A A

B.B

C.C

D.D
Answer: C
Explanation:

A/D/B: Option A/D/B is incorrect because
this net could be a valid net for the given cube,
as the positions of red, pink, and blue match the
shown cube.

C: Option C is correct because this net
cannot be a valid net for the given cube, as the
positions of yellow and pink are reversed.

>j' S |
b Gy,
O P 2y,

Question: The left image shows a cube with
different patterns on its six faces from a
particular viewing angle. The options are nets
(unfolded patterns) of the cube, which are folded
upward to form the cube. Which net, when
folded, can form the cube shown in the left

image? Please answer from options A, B, C, or D.

Choices:

A A

B.B

C.C

D.D
Answer: D
Explanation:

A: Option A is incorrect because the squares
with asymmetric patterns have been rotated.

B: Option B is incorrect because the squares
with asymmetric patterns have been rotated.

C: Option C is incorrect because two faces
have swapped positions.

D: Option D is correct because the relative
positions of three faces match the cube shown in
the left image.

Question: The left image shows a cube with
different patterns on its six faces from a
particular viewing angle. The options are nets
(unfolded patterns) of the cube, which are folded
upward to form the cube. Which net, when
folded, cannot form the cube shown in the left

image? Please answer from options A, B, C, or D.
Choices:

A A

B.B

C.C

D.D
Answer: B
Explanation:

A/C/D: Option A/C/D is incorrect because
the relative positions of three faces match the
cube shown in the left image.

B: Option B is correct because two faces
have swapped positions, so it cannot form the
cube shown in the left image.

Cube Reconstruction Task-Level 0

Question: As shown, this is the net (unfolded
pattern) of a cube, with six faces colored in
different colors. The net is folded upward to form
a cube. Which color face is opposite to the green
face? Please answer from options A, B, C, or D.

Choices:

A. yellow

B. pink

C. All three other options are incorrect

D. red
Answer: B
Explanation:

A/B/C/D: Assuming the bottom face is the
first cell in the second row of the net, then after
folding, the front face is red, the back face is
green, the left face is blue, the right face is cyan,
the top face is yellow, the bottom face is pink.

Figure 12: Cube Unfolding Task.

Cube Reconstruction Task-Level 1

Question: The left image shows the net
(unfolded pattern) of a cube, with six faces
having different patterns. The net is folded
upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which
combination of adjacent patterns is possible to
see? Please answer from options A, B, C, or D.
Choices:

A A

B.B

C.C

D.D
Answer: C
Explanation:

Assuming the bottom face is the first cell in
the second row of the net, and the right face is
the cell to its right.

A: Option A is incorrect because it is a
vertically mirrored version of the back-top-right
view.

B: Option B is incorrect because it includes
rotated non-symmetric faces.

C: Option C is correct because it shows the
front-bottom-right view.

D: Option D is incorrect because it is a
horizontally mirrored version of the back-top-
left view.

Cube Reconstruction Task-Level 2

Question: The left image shows the net
(unfolded pattern) of a cube, with six faces
having different patterns. The net is folded
upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which
combination of adjacent patterns is possible to
see? Please answer from options A, B, C, or D.
Choices:

A A

B.B

Cc.C

D.D
Answer: A
Explanation:

Assuming the bottom face is the first cell in
the second row of the net, and the right face is
the cell to its right.

A: Option A is correct because it shows the
back-top-right view.

B: Option B is incorrect because it includes
rotated non-symmetric faces.

C: Option C is incorrect because it is a
horizontally mirrored version of the front-
bottom-right view.

D: Option D is incorrect because it includes
rotated non-symmetric faces.

Figure 13: Cube Reconstruction Task.
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Cross-Section Task-Level 0

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a cone on top of a square frustum.
Which of the following images cannot be a cross-
section of the shape? Please answer from options
A, B, C,orD.

Choices:

A A

B.B

c.Cc

D.D
Answer: C
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

B: Option B is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

C: Option C is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a triangular frustum, a cylinder, and a
circular frustum from top to bottom. Which of the
following images cannot be a cross-section of the
shape? Please answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D.D
Answer: B
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

B: Option B is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

C: Option C is incorrect because it is the
cross-section made by a plane perpendicular to the
XZ plane and rotated 45 degrees around the y-axis|

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

Cross-Section Task-Level 2

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a square pyramid, a cone, and a
cylinder from top to bottom. Which of the
following images cannot be a cross-section of the
shape? Please answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D.D
Answer: C
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

B: Option B is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

C: Option C is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

Cube Counting Task-Level 0

Figure 14: Cross-sectionn Task.

Cube Counting Task-Level 1

Cube Counting Task-Level 2

Top

.

Question: Given two views, what is the
minimum number of cubes required to satisfy
the constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:

A.5

B. All three other options are incorrect

D.8
Answer: C
Explanation:

A/BIC/D: Given two views, at least 7
cubes and at most 9 cubes are required to
satisfy the constraints.

Question: Given three views, what is the
maximum number of cubes required to satisfy
the constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:

A.8

B.11

C.10

D.9
Answer: D
Explanation:

A/BIC/D : Given three views, at least 9
cubes and at most 9 cubes are required to
satisfy the constraints.

Front Top

H‘ 1

Question: Given three views, how many
cubes could be needed to satisfy the
constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:

A. All three other options are incorrect

B.7

C.16

D.11
Answer: D
Explanation:

A/BICID : Given three views, at least 11
cubes and at most 12 cubes are required to
satisfy the constraints

Figure 15: Cube Counting Task.
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Question: The top left image shows the original complete
cube stack made of equal-sized cubes. It can be formed by
combining the small cube stack on the right(part 1) with one
of the options below. Which option completes the original
cube stack? Please answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D. All three other options are incorrect
Answer: C
Explanation:

A/B: Option A/B is incorrect because one cube is
missing, resulting in an incorrect cube stack shape.

Question: The top left image shows the original complete
cube stack made of equal-sized cubes. It can be formed by
combining the two small cube stacks on the right with one
of the options below. Which option completes the original
cube stack? Please answer from options A, B, C, or D.
Choices:

A A

B.B

c.C

D. All three other options are incorrect
Answer: A
Explanation:

B/C: Option B/C is incorrect because one cube is
missing, resulting in an incorrect cube stack shape.

Cube Assembly Task-Level 0 Cube Assembly Task-Level 1

Figure 16: Cube Assembly Task.

Arrow Moving Task-Level 0

Arrow Moving Task-Level 1(v2)

-

Question: In the diagram, the red arrow is the
initial arrow, and the green arrow is the final
arrow. The arrow can move in four directions
(forward, backward, left, right), where "forward'
always refers to the current direction the arrow is
pointing. After each movement, the arrow's
direction is updated to the direction of movement.
Which of the following paths can make the arrow
move from the starting position to the ending
position? Please answer from options A, B, C, or
D.

Choices:

A. (Left, 2 units)--(Left, 1 unit)

B. (Forward, 1 unit)--(Backward, 1 unit)

C. (Forward, 1 unit)--(Backward, 2 units)

D. (Forward, 1 unit)--(Left, 1 unit)
Answer: D
Explanation:

A/B/C: Option A/B/C is incorrect because
the initial arrow cannot be transformed into the
final arrow.

D: Option D is correct because the initial
arrow can be transformed into the final arrow.

Question: The left image shows the initial state.
Arrows can move in four directions (forward,
backward, left, right), where ‘forward' always
refers to the current direction the arrow is
pointing. After each movement, the arrow's
direction is updated to the direction of movement.
If the target position is empty, the arrow can
move there directly; otherwise, it needs to swap
with the arrow at the target position, and both
arrows' movements should satisfy the
aforementioned requirements. After the
transformations '((0, 1) Right, 1 unit)--((2, 2)

Initial State Final State

- - - -

- -

Question: The left image shows the initial state,
and the right image shows the final state. Arrows
can move in four directions (forward, backward,
left, right), where ‘forward’ always refers to the
current direction the arrow is pointing. After each
movement, the arrow's direction is updated to the
direction of movement. If the target position is
empty, the arrow can move there directly;
otherwise, it needs to swap with the arrow at the
target position, and both arrows' movements
should satisfy the aforementioned requirements.
Which of the following paths can transform the

Forward, 1 unit)--((1, 2) Left, 2 units)', which

grid from the initial state to the final state?

state from the options can be reached? Please
answer from options A, B, C, or D.
Choices:

A A

B.B

Cc.C

D.D
Answer: C
Explanation:

C: Option C is correct because the initial
state can be transformed into the target state.

A/B/D: Option A/B/D is incorrect because
the initial state cannot be transformed into the
target state.

Please answer from options A, B, C, or D.

Choices:

A. ((1, 0) Backward, 1 unit)--((1, 2)
Backward, 1 unit)

B. ((1, 1) Left, 1 unit)--((1, 1) Forward, 1
unit)

C. ((1, 1) Right, 1 unit)--((1, 1) Left, 1 unit)

D. ((1, 2) Forward, 1 unit)--((0, 2)
Backward, 1 unit)
Answer: A
Explanation:

A: Option A is correct because the initial
state can be transformed into the target state.

B/C/D : Option B/C/D is incorrect because
the initial state cannot be transformed into the
target state.

Figure 17: Arrow Moving Task.
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Question: The top row of images shows different views of
the initial state of a cube stack, while the bottom row shows
different views of the final state after transformation. During
the transformation process, blocks can move one unit in any
direction (forward, backward, left, right, up, down). If the
target position is empty, the block can move there directly;
if the target position already has a block, they swap places.
Blocks cannot float in the air. If a block is moved away from
a position, any block above it will fall down until reaching a
supporting surface. The xyz axes are shown in the diagram,
and each block's position can be precisely identified using
coordinates (x,y,z). Which of the following transformation
sequences can change the cube stack from the initial state to
the final state shown in the diagram? Please answer from
options A, B, C, or D.

Choices:
A.(1,0,0)y+--(1,1,0)y--(2,1,0) y+
B.(1,0,0)y+--(2,1,0) y+--(2,0,0) y+
C.(2,2,0)x---(2,0,0)x-

D.(1,0,0) x---(2,0,0) y+-- (2, 2,0) y-

Answer: A

Explanation:

B/C/D: Option BCD is incorrect because the initial
state cannot be transformed into the final state.

State Rotated rate
» @
\*\/ o

Final State Rotated Final State

S -

Question: The top row of images shows different views of
the initial state of a cube stack, while the bottom row shows
different views of the final state after transformation. During
the transformation process, blocks can move one unit in any
direction (forward, backward, left, right, up, down). If the
target position is empty, the block can move there directly;
if the target position already has a block, they swap places.
Blocks cannot float in the air. If a block is moved away from
a position, any block above it will fall down until reaching a
supporting surface. The xyz axes are shown in the diagram,
and each block's position can be precisely identified using
coordinates (x,y,z). Which of the following transformation
sequences can change the cube stack from the initial state to

the final state shown in the diagram? Please answer from
options A, B, C, or D.

Choices:
A.(1,0,0)y+--(0,0,1) z-
B.(1,0,0) x+--(1,0,0) y+
C.(2,0,0)x---(1,0,0)y+--(2,0,0) x-
D. (0,0, 0) x+ - (0, 1, 0) y- -- (0, 0, 1) y+
Answer: C
Explanation:

A/B/D : Option A/B/D is incorrect because the initial
state cannot be transformed into the final state.

Figure 18: Block Moving Task.

ical System Task

|-

Question: When the red shaft connected to the green rod
rotates clockwise, what is the motion of the centrally fixed
blue gear? Please choose from options A, B, C, or D.

Choices:
A. Rotates clockwise
B. Rotates counterclockwise
C. Does not rotat
D. Translates to the right
Answer: A
Explanation:
A/B/C/D: The green rod drives the blue gear to rotate
only in the clockwise direction.

Mechanical System Task-Level 1

Question: In the image, the green gear is fixed on a
concentric shaft, while the yellow and pink gears are fixed
on their own shafts. If the green gear rotates clockwise in
the given view, what are the resulting motions of the yellow
and pink gears? Please choose from options A, B, C, or D.
Choices:

A. Rotates clockwise, rotates clockwise

B. Rotates clockwise, rotates counterclockwise

C. Rotates counterclockwise, rotates counterclockwise

D. Rotates counterclockwise, rotates clockwise
Answer: D
Explanation:

A/BICID : The yellow gear directly meshes with the
green gear and thus rotates in the opposite direction, while
the pink gear is driven through two meshing steps and
rotates in the same direction as the green gear.

Figure 19: Mechanical System Task.
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E EVALUATION DETAILS

E.1 MODELS

For the Deepseek VL2 series, InternVL2.5 series, InternVL3 series and SAIL-VL series, we deployed
these models on H100 servers and used the officially provided code to load the pre-trained models for
inference. For all other models, we employed API calls through OpenAT’s client service for inference.
All closed-source models accessed via API in this study were used with specific, identifiable versions
to ensure consistency and reproducibility. Specifically, we used the following model versions:

* gpt—-40-2024-08-06 for GPT-40

* 01-2024-12-17 for ol

* claude-3-5-sonnet-20240620 for Claude-3.5-Sonnet

* claude-3-7-sonnet-20250219 for Claude-3.7-Sonnet

* Gemini-2.5-flash-preview—-04-17 for Gemini-2.5-flash

* Gemini-2.5-pro-preview-03-25 for Gemini-2.5-pro

* Doubao-1-5-vision-pro-32k-250115 for Doubao-1-5-vision-pro
* gwen-v1l-max-0408 for Qwen-VL-max

E.2 PROMPTS FOR RESPONSE GENERATION

We use the prompt template as follows:

1) Original CoT Prompt A from DeepSeek-R1(DeepSeek-Al et all [2025): "You should first
provide a reasoning process, then provide a single option (A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer>
tags, respectively, i.e., <think>reasoning process</think>, <answer>answer</answer>.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

2) Variant CoT Prompt B from EMMA (Hao et al.| 2025): "Answer with the option’s letter from the
given choices and put the letter in one ’\boxed’. Please solve the problem step by step.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

3) Non-CoT Prompt: "Answer with a single option letter (A, B, C, or D), enclosed within the
<answer></answer> tag. For example: <answer>A</answer>. Ensure that your output contains only
the final answer, without any intermediate reasoning or additional content. \nQuestion: <question
here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D here>\n"

E.3 ZERO-SHOT SETTING

Our decision to focus exclusively on the zero-shot evaluation setting is grounded in both method-
ological precedent and practical considerations. This approach aligns with the standards set by many
recent, high-impact benchmark papers, such as Math-Vision (Wang et al., 2024)), MM-IQ (Cai et al.,
2025)), and EMMA (Hao et al.| 2025), all of which centered their evaluations on the zero-shot setting
to assess novel reasoning capabilities. While we considered few-shot prompting, we concluded its
utility is limited in our context of complex spatial reasoning. For these intricate visualization tasks,
providing examples with only the final answer offers minimal effective guidance. On the other hand,
creating effective chain-of-thought examples that include complete, multi-step reasoning would be
prohibitively expensive for comprehensive benchmarking.

E.4 METHODS FOR ANSWER EXTRACTION

To ensure robust evaluation and minimize parsing errors, we employ a hierarchical, two-stage
rule-based approach for answer extraction.

Stage 1: Coarse Extraction with Boundary Enforcement.
Adopting the strategy from MME-CoT (Jiang et al., [2025)), we first attempt to locate the answer
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segment by scanning for a comprehensive set of standard identifiers, including XML-style tags
(e.g., <answer></answer>) and natural language markers (e.g., "<answer>", "Answer:", "Final
answer", "final answer", "Final Answer", "the answer is", "The answer is", "correct answer", "Correct
answer", "Correct Answer", and "correct path"). The text following these markers is isolated and
truncated at the first subsequent period delimiter. Critically, to prevent false positives where common
words starting with option letters (e.g., “All”, “Backward”) are mistakenly identified as answers, we
enforce strict word boundary constraints. We utilize the regular expression \b ( [A-D]) \b to accept

only standalone option letters.

Stage 2: Prioritized Fine-Grained Matching.

In instances where the coarse extraction fails to yield a valid option, we trigger a secondary, high-
precision extraction routine. This process iterates through a prioritized list of compiled regular
expression patterns designed to handle specific formatting variations (e.g., tagged encapsulated
outputs, boxed answers) and semantic fallback structures. The patterns are applied in the following
order:

¢ CoT Prompt A with tags:
r"<answer>\s* (?P<value>.x*?) \s*</answer>"

¢ CoT Prompt B with boxes:
r"\\{1,2}boxed{ (?: (?:\\text |rm) {) ? (?P<value>[A-D])"

¢ Other common answer formats:
r"<answer>\sxoption\s+ (?P<value>[A-D]) (?=</answer>")
r" (?:final|correct) \s+tanswer\sx* (?:1is:)\s* (?:option\sx)? (?P<value>[A-D])\b"
r"option\s+ (?P<value>[A-D])\b"
r"choose\s+ (?P<value>[A-D]) \b"

This dual-layer approach ensures high recall for compliant responses while maintaining precision
against hallucinated or verbose outputs. Even with these rules, 100% parsing success isn’t guaran-
teed, as models can still flexibly produce outputs in non-standard formats. For the purpose of our
comparative analysis, we designate the baseline coarse extraction method (excluding strict boundary
enforcement) as Extract Rule A, and the comprehensive dual-stage strategy described herein as
Extract Rule B.

For multiple-choice questions, a response is considered correct if and only if the extracted result
contains exactly one uppercase option letter (A, B, C, or D) matching the standard answer. For non-
choice questions, we perform direct string matching between the extracted result and the reference
answer. This hybrid rule-based evaluation ensures consistent and fair judgment across both option-
based and open-form tasks.

E.5 HUMAN PERFORMANCE

To establish a robust human baseline analogous to the tested MLLMs, we recruited 8 graduate students
(4 Ph.D., 4 M.S.; aged 22-27) from mechanical engineering and computer science. All participants
possessed strong backgrounds in geometry and physics, confirmed through their academic curriculum,
and reported familiarity with spatial reasoning tasks. This selection criterion was chosen because it
mirrors the specialized knowledge domains inherent in the models’ training data. Participants were
compensated at the standard rate for graduate research assistants.

To ensure data quality and minimize the impact of cognitive fatigue and time constraints, we curated
a representative subset of the benchmark for the evaluation. Specifically, we randomly sampled 6
problems from each of the 12 task categories, resulting in a total of 72 problems per participant.
Before commencing each task type, participants were briefed on the rules and completed several
practice trials for familiarization. The evaluation protocol required participants to solve problems
without the use of external aids (e.g., scratch paper, calculators), and they were allowed unlimited time
per question. This approach was designed to emphasize and assess their intrinsic spatial visualization
and mental manipulation capabilities, creating an evaluation condition comparable to assessing a
model’s internal reasoning processes without external memory aids. The reported human performance
is the mean accuracy across all participants.
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E.6 ERROR ANALYSIS

E.6.1 MODEL SELECTION FOR DIRECT ANSWER (NON-COT) EVALUATION

Our Direct Answer evaluation tests model accuracy without induced reasoning chains. We excluded
specific models based on 2 criteria:

1. Reasoning-Centric Architectures: Models explicitly designed for extended reasoning (e.g., o1,
Gemini-2.5, Kimi-thinking, Llama-4 series) were excluded, as inhibiting CoT contradicts their
core design principles.

2. Instruction Adherence: Models unable to suppress reasoning traces despite strict formatting
prompts (specifically InternVL3-2B) were excluded. This failure reflects a limitation in instruction
following rather than reasoning capability.

Consequently, we retained only models capable of strictly adhering to the single-letter answer format.
This exclusion criteria—based on format compliance rather than performance—ensures the baseline
remains representative and uninflated.

E.6.2 ERROR TYPES
1. Perceptual Error: Failure to perceive fundamental visual properties, such as color, shape, or
pattern structures.

2. Spatial Transformation Error: Failure to deduce correct spatial states after a transformation.
This includes:

(a) Rotation/Flipping: Errors in angle or axis; confusing rotation with flipping.

(b) Folding/Unfolding: Incorrect mapping between 2D nets and 3D cubes; confusing adjacent or
opposite faces.

(c) Spatial Relationships: Misjudging object composition, internal structure, or occlusion.

3. Spatial Memorization Error: Forgetting or misremembering object positions or relationships
across a sequence of operations.

4. Instruction Following Error: Misunderstanding textual instructions, such as task rules (e.g.,
negation) or required output formats.

5. Methodological Error: Adopting a flawed or suboptimal problem-solving strategy, such as using
arigid or unnecessarily complex reasoning path.

6. Calculation and Reasoning Error: Errors in non-spatial logic or mathematical calculations.
E.6.3 INTER-ANNOTATOR AGREEMENT ANALYSIS

To ensure the reliability and reproducibility of our error taxonomy (detailed in Appendix [E.6.2), we
conducted a rigorous inter-annotator agreement study.

Table 5: Inter-Annotator Agreement. Cohen’s « calculated via binary decomposition for multi-label
error classification.

Category | Perc. Trans. Meth. Instr. Memo. Calc. | Avg.
Cohen’s x ‘ 090 0.81 0.75 0.96 0.89 1.00 ‘ 0.88

Methodology Since our error analysis involves a multi-label classification task (i.e., a single failure
case may stem from multiple error sources simultaneously), the traditional global Cohen’s & is not
directly applicable. Instead, we adopted a standard binary decomposition approach for multi-label
agreement. Specifically, we decomposed the multi-label task into 6 independent binary classification
tasks, treating each error category as a "Yes/No" decision.

Calculation We randomly sampled 100 failure cases from the evaluation set. Two authors inde-
pendently annotated these cases based on the defined taxonomy. We then calculated Cohen’s s
separately for each error category. The results, presented in demonstrate high reliability.
The Methodological category showed substantial agreement (x = 0.75), while all other categories

47



Under review as a conference paper at ICLR 2026

achieved almost perfect agreement (x > 0.81), with Calculation & Reasoning reaching perfect
consensus (x = 1.00). The macroscopic average Cohen’s x across all categories is 0.8847, indicating
an almost perfect level of inter-annotator consistency.

F DETAILED RESULTS

In this section, we provide more evaluation results and test cases from Gemini-2.5-pro for each task.

F.1 INTRA-CATEGORY COMPARISONS ACROSS LEVELS

To provide deeper insight into the spatial visualization reasoning capabilities of Multi-modal Large
Language Models (MLLMs), this section presents comprehensive experimental results that comple-
ment the aggregate performance assessment in Section[d.2] This analysis details the accuracy of each
evaluated model across the four core sub-abilities—mental rotation, mental folding, visual penetra-
tion, and mental animation—defined in the SpatialViz-Bench benchmark, with results stratified by
task type and difficulty level. This granular performance breakdown reveals specific strengths and
weaknesses of the models when confronting various spatial reasoning challenges, offering targeted
insights to guide future model improvements.

F.1.1 MENTAL ROTATION

documents model performance on 3 sub-tasks within the mental rotation category—2D
Rotation (2DR), 3D Rotation (3DR), and 3-View Projection (3VP)—across different difficulty levels.

In the 2D Rotation (2DR) task, several models demonstrate foundational capabilities at Level 0, with
ol (72.5%) and Gemini-2.5-pro (62.5%) achieving notable results. As difficulty increases to Level 1,
most models show performance decline, though leading models maintain relatively high accuracy (ol:
52.5%, Gemini-2.5-pro: 42.5%).

For 3D Rotation (3DR), performance degradation with increased difficulty is more pronounced. At
Level 0, ol (42.5%) and Gemini-2.5-pro (45.0%) perform adequately, but their accuracies decrease
substantially to 15.0% and 20.0%, respectively, at Level 1. Many open-source models perform at or
below random chance (25%-30%) at this higher difficulty level, highlighting the challenge of mental
rotation in complex 3D space.

Interestingly, the 3-View Projection (3VP) task reveals a different pattern: when transitioning
from Level O (cube stacks) to Level 1 (DeepCAD engineering models), some top-tier models like ol
(improving from 40.0% to 58.0%) and Gemini-2.5-pro (increasing from 28.0% to 66.0%) demonstrate
enhanced performance. This suggests certain Level 1 image features may be more amenable to these
models’ processing mechanisms, despite the presumed increase in complexity. Nevertheless, many
other models show decreased performance from Level O to Level 1 in this sub-task. Overall, mental
rotation tasks reveal a clear performance gradient across dimensions and geometric complexity while
highlighting significant capability variations among model families.

F.1.2 MENTAL FOLDING

[Table 8 documents model performance on 3 sub-tasks within the mental folding category—Paper
Folding (PF), Cube Unfolding (CU), and Cube Reconstruction (CR)—at varying difficulty levels.
These tasks assess models’ capacity for continuous reasoning and dynamic visualization of 3D
information throughout transformation processes.

In the Paper Folding (PF) task, as folding steps and hole-punching complexity increase (Level O to
Level 2), most models perform near random chance, indicating significant challenges in tracking
multi-step geometric operations and performing subsequent spatial reasoning.

The more complex Cube Unfolding (CU) and Cube Reconstruction (CR) tasks proved challenging
for all models. These tasks require understanding the correspondence between 2D nets and 3D cubes,
while also assessing the ability to mentally execute folding operations and continuously reason about
transforming 3D structures. Even at Level 0, most models demonstrate low accuracy, often below
random chance. In the CU task, Gemini-2.5-pro scored 37.5% (L0), 27.5% (L.1), and 30.0% (L2),
while ol achieved 37.5% (L0), 37.5% (L1), and 27.5% (L2).
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For CR, Gemini-2.5-pro performed at 45.0% (L0), 10.0% (L1), and 35.0% (L2), and ol at 42.5% (L0),
12.5% (L1), and 25.0% (L.2), both experiencing significant performance drops at Level 1. However,
the surprising performance improvement at Level 2 contradicts human intuition, as Level 2 patterns are
objectively more complex for humans. Analysis of sample solutions reveals that models approached
these tasks by employing clear textual descriptions to define patterns composed of differently colored
dots, representing their positions in matrix form. Conversely, line patterns proved more challenging for
models to describe, and internal rotations could not be easily represented through matrix transposition
operations, which . This insight provides valuable direction for designing more challenging tests that
effectively evaluate model limitations. The overall results reveal a severe deficiency in reasoning
and visualization capabilities when finer-grained correspondence and transformation tracking are
required. The introduction of asymmetric patterns further challenges models’ ability to maintain
precise visual perception and spatial-topological understanding. These results highlight current
MLLMs’ core weaknesses in handling spatial tasks involving geometric correspondence, topological
transformations, and dynamic 3D reasoning.

F.1.3 VISUAL PENETRATION

documents model performance on 3 sub-tasks within the Visual Penetration category—Cross-
Section (CS), Cube Counting (CC), and Cube Assembly (CA)—at varying difficulty levels. This
ability requires models to infer internal object structures from visible external features.

In the Cross-Section (CS) task, which requires models to visualize sectional shapes produced by
cutting composite geometric solids with various planes, Gemini-2.5-pro and ol maintained relatively
stable performance across Levels 0, 1, and 2, while most other models performed near random
chance.

For the Cube Counting (CC) task, increasing constraints from two-view (Level 0) to three-view (Level
1), and subsequently expanding spatial dimensions (Level 2), progressively challenged models’ view
integration and counting inference capabilities. Gemini-2.5-pro’s accuracy declined sharply from
80.0% (LO) to 52.5% (L.1) and 32.5% (L.2). Interestingly, ol’s performance followed a pattern of
45.0% (LO0), 32.5% (L1), and 45.0% (L2), recovering at Level 2 to match its Level O score. Most
models struggled to effectively integrate multi-view information in this task.

The Cube Assembly (CA) task, which assesses the ability to identify complementary parts forming a
complete structure, showed increasing difficulty as structures enlarged and constituent parts increased
(Level O to Level 1). For example, Gemini-2.5-pro’s accuracy dropped from 45.0% (LO) to 27.5%
(L1), and ol’s from 35.0% (LO) to 32.5% (L.1). Collectively, these results reveal current models’
limitations in inferring global internal structures and spatial occupancy from local surface information.

F.1.4 MENTAL ANIMATION

[Table T0|documents model performance on 3 sub-tasks within the Mental Animation category—Arrow
Moving (AM), Block Moving (BM), and Mechanical System (MS)—at varying difficulty levels.
These tasks assess understanding of dynamic state changes and causal propagation among system
components.

In the Arrow Moving (AM) task, which requires understanding ego-centric movement rules and
tracking state changes, the transition from simple single-arrow movements (Level 0) to multi-arrow
environments involving swaps (Level 1) increasingly challenges models’ rule comprehension and state
tracking. A notable performance disparity exists between closed-source models (e.g., Gemini-2.5-pro
and ol) and open-source counterparts: the former maintain high accuracy across both difficulty levels
(almost 100% accuracy by Gemini-2.5-pro), while most open-source models perform significantly
worse (near random), particularly in complex multi-arrow Level 1 scenarios. This suggests a capability
gap, potentially stemming from differences in architecture or training data, when precise instruction
following and multi-step dynamic spatial reasoning are required.

The Block Moving (BM) task combines directional movement with gravity simulation, increasing
spatial complexity and operational sequence length, thereby challenging models’ intuitive physics
and 3D dynamic spatial reasoning. Gemini-2.5-pro’s accuracy declined sharply from 95% to 35%,
showing the difficulty in dealing with 3D scene.
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For the Mechanical System (MS) task, which evaluates understanding of motion transmission and
component linkage in complex mechanical systems, questions were designed to minimize reliance
on formal physics formulas while emphasizing comprehension through observation and spatial
imagination. Interestingly, some open-source models performed better than expected based on
their performance in other 3D imagination tasks. This suggests these models may transform such
problems into more formalized reasoning processes similar to physical rule application, rather than
relying solely on intuitive 3D mental simulation. While this strategy may yield relatively good
scores in certain instances, it potentially deviates from the primary goal of assessing pure spatial
visualization capabilities. Overall, mental animation tasks—especially those involving complex
dynamic interactions and implicit physical laws—continue to pose significant challenges for current
MLLMs, with models exhibiting considerable diversity in performance strategies and capabilities.

F.2 PERFORMANCE COMPARISON BETWEEN DIFFERENT QUESTION FORMAT

This benchmark primarily uses MCAs, a deliberate and justified design choice. MCAs are particularly
effective for tasks with complex answers (e.g., 3D Rotation Task) that are difficult to express textually
or match automatically. Moreover, well-crafted distractors can increase task difficulty and test a
model’s fine-grained discrimination.

Our rationale for using the MCA format is threefold:

¢ MCAs align with human qualitative intuition. Humans often rely on estimation rather than precise
calculation in spatial reasoning. This format assesses a model’s grasp of core transformation logic
("qualitatively correct" reasoning) without penalizing minor deviations.

» Converting some tasks to a direct-answer format is technically challenging. For instance, in 3D
Rotation and Paper Folding, the answers are complex images. Requiring models to generate these
images is a frontier research problem beyond the scope of current multimodal evaluation.

* We quantitatively measured the difficulty gap. When the Cube Counting task was converted
to a fill-in-the-blank format, all models showed a significant performance drop. As shown in
GPT-40’s accuracy dropped by 32.50%, while even the top-performing Gemini-2.5-pro’s
declined by 14.17%. This indicates the direct-answer format is more demanding of a model’s
independent reasoning, even with options like "All three other options are incorrect” to reduce
guessing. Consequently, for a comprehensive assessment, we provide both formats for the Cube
Counting and parts of the Cube Reconstruction tasks. This performance gap demonstrates that
MCA options provide clues or "error-correction" opportunities, helping models select a best-
fit answer. In contrast, the direct-answer format more authentically exposes deficits in precise
reasoning.

Table 6: Performance Drop on Cube Counting: Multiple-Choice vs. Fill-in-the-Blank. The "Perfor-
mance Drop" column quantifies the accuracy degradation when switching from the discriminative
(Multiple-Choice) to the more challenging generative (Fill-in-the-Blank) task format.

‘ Multiple-Choice Acc. (%) ‘ Fill-in-the-Blank Acc. (%) ‘ Avg Performance

Model
| Lo L1 L2 | Lo LI L2 |  Drop(%)
Open Source Models
Qwen2.5-VL-7B-Instruct | 32.50 50.00 27.50 15.00 2.50 0.00 -30.83
Qwen2.5-VL-72B-Instruct | 32.50 50.00 42.50 25.00 32.50 5.00 -20.83
Closed Source Models
GPT-40 40.00 45.00 37.50 10.00 12.50 2.50 -32.50
ol 45.00 32.50 45.00 20.51 22.50 10.00 -23.16
Gemini-2.5-pro 80.00 52.50 32.50 55.00 52.50 15.00 -14.17

50



Under review as a conference paper at ICLR 2026

Table 7: Comparison of model performances on Mental Rotation tasks. The first and second
highest accuracy of MLLMs are marked in red and blue, with open-source and closed-source models
marked separately.

Model Overall ‘ 2DRotation ‘ 3DRotation ‘ 3ViewProjection
| L0 LI Ag | L0 LI Ag | LO LI Aw
Human | 8556 | 9250 87.50 90.00 | 8333 7500 79.17 | 91.67 8333 87.50
Random | 2769 | 2500 2250 2375|2500 30.00 27.50 | 30.00 32.00 31.00
Open Source MLLMs
3B
SAIL-VL-1.5-2B 2231 | 2000 2500 2250 | 1750 27.50 2250 | 20.00 24.00 22.00
InternVL3-2B 2731 | 1250 20.00 1625 | 32.50 35.00 33.75 | 24.00 3800 31.00
Deepseek-VL2-tiny(3B) 2269 | 10.00 2500 17.50 | 2000 25.00 2250 | 22.00 32.00 27.00
Qwen2.5-VL-3B-Instruct 2000 | 25.00 1500 20.00 | 1500 22.50 18.75 | 16.00 26.00 21.00
7B
Qwen2.5-VL-7B-Instruct 2385 | 2500 2500 2500 | 2000 12.50 1625 ] 14.00 44.00 29.00
Qwen2.5-Omni-7B 2423 | 3250 1250 22.50 | 2500 15.00 20.00 | 22.00 36.00 29.00
SAIL-VL-1.6-8B 2192 | 2500 1250 1875 | 2750 15.00 2125 | 2400 26.00 25.00
InternVL3-8B 28.85 | 2250 17.50 20.00 | 3500 4250 38.75 | 18.00 38.00 28.00
16B
Kimi-VL-A3B-Instruct(16B) 2808 | 1500 17.50 1625 | 3250 2750 30.00 | 24.00 48.00 36.00
Kimi-VL-A3B-thinking(16B) 2000 | 10.00 17.50 1375 | 17.50 22.50 20.00 | 20.00 30.00 25.00
Deepseek-VL2-small(16B) 24.62 | 40.00 22.50 | 3125 | 10.00 22.50 1625 | 22.00 30.00 26.00
32B
Deepseek-VL2(27B) 29.62 | 20.00 30.00 25.00 | 35.00 32.50 33.75 ] 2000 40.00 30.00
Qwen2.5-VL-32B-Instruct 3500 | 35.00 27.50 | 31.25 | 32.50 | 37.50 35.00 | 22.00 | 54.00 38.00
InternVL3-38B 2846 | 2500 20.00 22.50 | 32.50 35.00 33.75 | 22.00 36.00 29.00
72B
Qwen2.5-VL-72B-Instruct 2923 [ 2500 32.50 2875 | 40.00 22.50 3125 ] 22.00 34.00 28.00
QvQ-72B-preview 27.69 | 1500 2750 2125 | 2750 3250 30.00 | 32.00 30.00 31.00
InternVL3-78B 2846 | 20.00 | 30.00 25.00 | 25.00 25.00 25.00 | 20.00 48.00 34.00
108B
Llama-4-Maverick-17B-128E-Instruct | 33.85 | 25.00 15.00 20.00 | 45.00 35.00 40.00 | 26.00 | 54.00 40.00
LLama-4-Scout-17B-16E-Instruct 3731 | 3250 3250 32.50 | 3250 (3750 35.00 | 28.00 58.00 43.00
Closed Source MLLMs
GPT-40 3115 | 2000 | 45.00 32.50 | 30.00 25.00 27.50 | 20.00 46.00 33.00
ol 4692 | 7250 52.50 62.50 | 4250 15.00 28.75 | 40.00 58.00 49.00
Claude-3.5-sonnet 34.62 | 2750 3500 3125 | 32.50 17.50 25.00 | 36.00 54.00 45.00
Claude-3.7-sonnet 38.08 | 40.00 25.00 32.50 | 40.00 32.50 3625 | 34.00 54.00 44.00
Gemini-2.5-flash 3577 | 55.00 30.00 42.50 | 40.00 20.00 30.00 | 18.00 52.00 35.00
Gemini-2.5-pro 4423 | 6250 42.50 | 5250 | 45.00 20.00 32.50 | 28.00 66.00 47.00
Doubao-1-5-vision-pro 3038 | 750 750  7.50 | 4250 2750 35.00 | 28.00  62.00 45.00
Qwen-VL-max 28.08 | 1250 3500 2375 | 30.00 2250 2625 | 22.00 44.00 33.00
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Table 8: Comparison of model performances on Mental Folding tasks.

Model Overall ‘ PaperFolding ‘ CubeUnfolding CubeReconstruction
| Lo LI L2 Avg | L0 LI L2 Avg | L0 LI L2 Ay
Human 80.56 ‘ 100.00 93.75 87.50 93.75 ‘ 87.50 75.00 62.50 75.00 ‘ 8125 7500 6250 7292
Random 21.67 ‘ 17.50  20.00 20.00 19.17 ‘ 15.00 27.50 17.50 20.00 ‘ 30.00 25.00 2250 25.83
Open Source
3B
SAIL-VL-1.5-2B 22.50 1250 25.00 22.50 20.00 ‘ 30.00 27.50 25.00 27.50 | 22.50 20.00 17.50 20.00
InternVL3-2B 24.44 25.00 2750 15.00 2250 35.00 1250 30.00 25.83 | 3500 22.50 17.50 25.00
Deepseek-VL2-tiny(3B) 20.56 2750 17.50 20.00 21.67 | 20.00 25.00 17.50 20.83 | 15.00 20.00 22.50 19.17
Qwen2.5-VL-3B-Instruct 24.17 20.00 3750 17.50 25.00 | 25.00 25.00 27.50 25.83 | 25.00 32.50 7.50 21.67
7B
Qwen2.5-VL-7B-Instruct 28.61 3500 35.00 3250 34.17 | 17.50 30.00 17.50 21.67 | 27.50 = 30.00 32.50 30.00
Qwen2.5-Omni-7B 24.17 27.50 30.00 17.50 25.00 32,50 37.50 12.50 27.50 | 17.50 27.50 15.00 20.00
SAIL-VL-1.6-8B 23.89 3500 17.50 32.50 28.33 | 25.00 30.00 20.00 25.00 | 17.50 25.00 12.50 18.33
InternVL3-8B 25.56 25.00 20.00 40.00 28.33 | 25.00 20.00 25.00 23.33 | 25.00 27.50 22.50 25.00
16B
Kimi-VL-A3B-Instruct(16B) 24.17 2750 2250 27.50 25.83 | 22.50 15.00 22.50 20.00 | 15.00 27.50 37.50 26.67
Kimi-VL-A3B-thinking(16B) 24.72 10.00  25.00 35.00 23.33 | 20.00 20.00 32.50 24.17 | 35.00 17.50 27.50 26.67
Deepseek-VL2-small(16B) 24.72 25.00 2250 20.00 2250 | 27.50 25.00 2250 25.00 | 22.50 25.00 32.50 26.67
32B
Deepseek-VL2(27B) 26.39 2250 3500 37.50 31.67 3250 1500 27.50 25.00 | 17.50 30.00 20.00 22.50
Qwen2.5-VL-32B-Instruct 24.72 1500 37.50 12.50 21.67 | 17.50 | 35.00 22.50 25.00 | 30.00 10.00 42.50 27.50
InternVL3-38B 26.94 2250 20.00 20.00 20.83 | 25.00 35.00 27.50 29.17 | 22.50 32.50 37.50 30.83
72B
Qwen2.5-VL-72B-Instruct 24.17 1250  27.50 27.50 22.50 | 15.00 17.50 27.50 20.00 | 30.00 25.00 35.00 30.00
QvQ-72B-preview 21.11 1500 1250 2250 16.67 | 22.50 15.00 20.00 19.17 | 30.00 25.00 27.50 27.50
InternVL3-78B 22.22 1500 30.00 1250 19.17 35.00 2250 17.50 25.00 | 30.00 20.00 17.50 22.50
108B
Llama-4-Maverick-17B-128E-Instruct | 25.00 15.00 17.50 17.50 16.67 ‘ 30.00 25.00 3250 29.17 | 30.00 32.50 25.00 29.17
LLama-4-Scout-17B-16E-Instruct 28.61 1500 17.50 17.50 16.67 35.00 32.50 30.00 32.50 | 42.50 32.50 35.00 36.67
Closed Source
GPT-40 25.00 25.00 35.00 2750 29.17 ‘ 25.00 1250 10.00 15.83 | 30.00 17.50 42.50 30.00
ol 29.72 27.50 30.00 ' 27.50 2833 37.50 37.50 27.50 34.17 | 4250 12.50 25.00 26.67
Claude-3.5-sonnet 25.00 7.50  35.00 20.00 20.83 ‘ 25.00 17.50 25.00 22.50 | 32.50 20.00 42.50 31.67
Claude-3.7-sonnet 24.72 20.00 20.00 15.00 1833 3250 25.00 2250 26.67 | 3250 17.50 37.50 29.17
Gemini-2.5-flash 32.50 15.00  37.50 27.50 26.67 3250 30.00 27.50 30.00 | 55.00 27.50 40.00 40.83
Gemini-2.5-pro 35.00 57.50 40.00 32.50 43.33 37.50 27.50 30.00 31.67 | 45.00 10.00 35.00 30.00
Doubao-1-5-vision-pro 28.06 25.00 37.50 3250 31.67 | 22.50 2250 25.00 23.33 | 45.00 17.50 25.00 29.17
Qwen-VL-max 24.44 27.50 25.00 20.00 24.17 | 1250 15.00 25.00 17.50 | 42.50 22.50 30.00 | 31.67
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Table 9: Comparison of model performances on Visual Penetration tasks.

Model Overall ‘ CrossSection ‘ CubeCounting ‘ CubeAssembly
| Lo LI L2 Ayg | L0 LI L2 Ag | L0 LI Ag
Human | 7542 [ 7500 7500 6875 7292|8125 7500 5625 7083 | 8750 7500 8250
Random | 2812 | 3250 27.50 30.00 30.00 | 30.00 2000 2500 25.00 | 22.50 37.50 30.00
Open Source
3B
SAIL-VL-1.5-2B 27.19 | 3750 2000 15.00 24.17 | 40.00 20.00 20.00 26.67 | 3250 3250 32.50
InternVL3-2B 2656 | 2250 22.50 15.00 20.00 | 22.50 3250 37.50 30.83 | 27.50 3250 30.00
Deepseek-VL2-tiny(3B) 2094 | 1750 25.00 2000 20.83 | 25.00 2500 17.50 22.50 | 17.50 20.00 18.75
Qwen2.5-VL-3B-Instruct 2594 | 2500 25.00 | 27.50 25.83 | 17.50 3500 17.50 23.33 | 30.00 30.00 30.00
7B
Qwen2.5-VL-7B-Instruct 27.19 | 1250 1250 25.00 16.67 | 32.50 | 50.00 27.50 36.67 | 35.00 2250 28.75
Qwen2.5-Omni-7B 27.19 | 1500 2250 25.00 20.83 | 37.50 27.50 3500 3333 | 25.00 30.00 27.50
SAIL-VL-1.6-8B 2125 | 1750 2250 25.00 21.67 | 22.50 17.50 17.50 19.17 | 30.00 17.50 23.75
InternVL3-8B 3094 | 1750 1500 1500 15.83 | 25.00 4500 5250 40.83 | 45.00 3250 38.75
16B
Kimi-VL-A3B-Instruct(16B) 17.19 | 1750 2500 22.50 21.67 | 750 250 500 5.00 | 27.50 30.00 28.75
Kimi-VL-A3B-thinking(16B) 2938 | 2750 17.50 30.00 25.00 | 45.00 40.00 25.00 36.67 | 20.00 30.00 25.00
Deepseck-VL2-small(16B) 2531 | 750 1250 750  9.17 | 30.00 32.50 | 4250 35.00 | 30.00 40.00 35.00
32B
Kimi-VL-A3B-Instruct(16B) 17.19 | 1750 2500 22.50 21.67 | 750 250 500 500 | 27.50 30.00 28.75
Kimi-VL-A3B-thinking(16B) 2938 | 2750 17.50 3000 25.00 | 4500 40.00 25.00 36.67 | 20.00 30.00 25.00
Deepseek-VL2-small(16B) 2531 | 750 1250 750  9.17 | 30.00 32.50 | 42.50 35.00 | 30.00 40.00 35.00
72B
Qwen2.5-VL-72B-Instruct 39.06 | 27.50 40.00 2250 30.00 | 32.50 | 50.00 42.50 41.67 | 55.00 4250 | 48.75
QvQ-72B-preview 2781 [ 3250 3000 2750 30.00 | 35.00 25.00 7.50 22.50 | 40.00 25.00 32.50
InternVL3-78B 3500 | 1750 25.00 20.00 20.83 | 37.50 52.50 30.00 40.00 | 4250 | 55.00 48.75
108B
Llama-4-Maverick-17B-128E-Instruct 32.19 27.50 15.00 15.00 19.17 | 27.50 47.50 30.00 35.00 | 52.50 42.50 47.50
LLama-4-Scout-17B-16E-Instruct 3406 | 1750 1750 17.50 17.50 | 35.00 47.50 30.00 37.50 | 50.00 57.50 53.75
Closed Source
GPT-4o 3250 |25.00 2500 7.50 19.17 | 40.00 4500 37.50 40.83 | 5250 27.50 40.00
ol 37.81 | 40.00 4250 30.00 37.50 | 45.00 32.50 4500 40.83 | 35.00 3250 33.75
Claude-3.5-sonnet 3344 | 3500 2000 1250 2250 | 35.00 4500 27.50 35.83 | 47.50 | 45.00 46.25
Claude-3.7-sonnet 3156 | 2000 | 35.00 17.50 24.17 | 30.00 32.50 30.00 30.83 | 40.00 47.50 43.75
Gemini-2.5-flash 32.81 | 3250 | 35.00 2250 30.00 | 52.50 32.50 30.00 38.33 | 30.00 2750 28.75
Gemini-2.5-pro 4219 | 3250 3500 3250 33.33 | 80.00 52.50 32.50 | 55.00 | 45.00 27.50 36.25
Doubao-1-5-vision-pro 39.69 | 3500 30.00 25.00 30.00 | 62.50 65.00 40.00 55.83 | 4250 17.50 30.00
Qwen-VL-max 3844 | 3250 2000 27.50 26.67 | 57.50  62.50 22.50 47.50 | 50.00 35.00 42.50
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Table 10: Comparison of model performances on Mental Animation tasks.

Model Overall ‘ ArrowMoving ‘ BlockMoving ‘ MechanicalSystem
| L0 LI Avg | L0 LI  Ag | LO LI Ay
Human | 8833 | 9250 875 90.00 | 9583 79.16 7.5 | 87.50 87.50 87.50
Random | 2333 [3250 2500 2875|1000 2250 1625 | 30.00 20.00 25.00
Open Source
3B
SAIL-VL-1.5-2B 2458 | 1500 27.50 2125 ] 2250 27.50 25.00 | 35.00 20.00 27.50
InternVL3-2B 2708 | 2250 1500 1875 | 3750 27.50 32.50 | 25.00 35.00 30.00
Deepseek-VL2-tiny(3B) 2167 | 2500 12.50 1875 | 2500 17.50 21.25 | 25.00 25.00 25.00
Qwen2.5-VL-3B-Instruct 3583 | 3500 35.00 35.00 | 32.50 27.50 30.00 | 57.50 27.50 42.50
7B
Qwen2.5-VL-7B-Instruct 3250 | 22.50 22.50 22.50 | 22.50 25.00 235 | 67.50 35.00 51.25
Qwen2.5-Omni-7B 3542 | 27.50 3500 3125 | 32.50 27.50 30.00 | 67.50 22.50 45.00
SAIL-VL-1.6-8B 3500 | 12.50 | 37.50 25.00 | 37.50 32.50 35.00 | 52.50 37.50 45.00
InternVL3-8B 37.08 | 30.00 30.00 30.00 | 30.00 30.00 30.00 | 6250 40.00 S51.25
16B
Kimi-VL-A3B-Instruct(16B) 27.92 | 1750 12.50 15.00 | 27.50 3500 31.25 | 57.50 17.50 37.50
Kimi-VL-A3B-thinking(16B) 4042 | 22.50 [37.50 | 30.00 | 35.00 | 5250 43.75 | 6250 3250 47.50
Deepseek-VL2-small(16B) 2625 | 2500 27.50 2625 | 25.00 22.50 2375 | 4750 10.00 28.75
32B
Deepseek-VL2(27B) 20.17 ] 2000 32.50 2625 ] 3500 25.00 30.00 | 40.00 2250 31.25
Qwen2.5-VL-32B-Instruct 37.08 | 22.50 35.00 2875 | 27.50 27.50 27.50 | 62.50 | 47.50 55.00
InternVL3-38B 37.08 | 2500 2500 25.00 | 25.00 3500 30.00 | 65.00 47.50 56.25
72B
Qwen2.5-VL-72B-Instruct 4375 | 2750 27.50 27.50 | 45.00 35.00 40.00 | 67.50 60.00 63.75
QVvQ-72B-preview 39.58 | 27.50 22.50 25.00 | 40.00 60.00 50.00 | 4250 45.00 43.75
InternVL3-78B 3542 | 2500 22.50 2375 | 3500 47.50 41.25 | 55.00 27.50 41.25
108B
Llama-4-Maverick-17B-128E-Instruct | 39.17 | 35.00 35.00 35.00 | 40.00 40.00 40.00 | 45.00 40.00 42.50
LLama-4-Scout-17B-16E-Instruct 30.58 | 1500 42.50 28.75 | 47.50 32.50 40.00 | 57.50 42.50 50.00
Closed Source
GPT-4o 3833 | 32.50 12.50 22.50 | 25.00 40.00 32.50 | 62.50 57.50 60.00
ol 5750 | 75.00 | 60.00 67.50 | 50.00 55.00 52.50 | 62.50 4250 52.50
Claude-3.5-sonnet 4042 | 4250 32.50 37.50 | 25.00 37.50 31.25 | 57.50 | 47.50 52.50
Claude-3.7-sonnet 4625 | 72.50 | 60.00  66.25 | 25.00 3250 28.75 | 55.00 3250 43.75
Gemini-2.5-flash 50.00 | 8250 52.50 | 67.50 | 3250 35.00 33.75 | 6250 35.00 48.75
Gemini-2.5-pro 6292 | 97.50 92.50 95.00 | 27.50 | 42.50 | 35.00 | 75.00 42.50 | 58.75
Doubao-1-5-vision-pro 35.83 | 22.50 22.50 22.50 | 32.50 | 42.50 37.50 | 57.50 37.50 47.50
Qwen-VL-max 39.17 | 2500 27.50 2625 | 3500 37.50 36.25 | 65.00 45.00 55.00
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F.3 TEST CASES

This section presents test cases from Gemini-2.5-pro across various tasks, helping us identify error
sources and provide direction for model improvement.

Mental Rotation-2D Rotation-Level 1

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a patterned grid with a red square marking one corner. Which grid can be obtained by rotating the
left grid only? Please answer from options A, B, C, or D.

Choices: Original A 4

B
U TN 7 I _Jos=
C.C D.All three other options are incorrect
Ground Truth Answer: B O O ‘ O

Thinking Process: L ‘ ‘ L ‘ ‘

1. Analyze the Original Grid:

The grid is 3x3. Note the pattern in each cell and the position of the red square marker in the bottom-left corner.

Top row: Blank, Diagonal, Blank

Middle row: Circle, X-shape, Diagonal

Bottom row: Vertical lines, Blank, Diagonal

Red square: Bottom-left.

2. Analyze Option A: - Worong incorrect pattern details

The grid pattern in A is identical to the Original grid. The red square is also in the bottom-left corner. This corresponds to a 0-
degree (or 360-degree) rotation. While technically a rotation, it doesn't change the orientation.

3. Analyze Option B:

The red square is in the top-right corner. This position corresponds to a 180-degree rotation from the original bottom-left
position. Let's check if the pattern matches a 180-degree rotation: Rotating the Original grid 180 degrees means the cell at (row,
col) moves to (3-row+1, 3-col+1) = (4-row, 4-col), and the content of the cell is also rotated 180 degrees.

Original (3,1) [Vertical lines] -> Rotated (1,3) [Vertical lines] (Matches B)

Original (3,2) [Blank] -> Rotated (1,2) [Blank] (Matches B)

Original (3,3) [Diagonal ] -> Rotated (1,1) [Diagonal ] (Matches B)

Original (2,1) [Circle] -> Rotated (2,3) [Circle] (Matches B)

Original (2,2) [X-shape] -> Rotated (2,2) [X-shape] (Matches B)

)
)
)

Original (2,3) [Diagonal ] -> Rotated (2,1) [Diagonal ] (Matches B)

Original (1,1) [Blank] -> Rotated (3,3) [Blank] (Matches B)

Original (1,2) [Diagonal ] -> Rotated (3,2) [Diagonal ] (Matches B)

Original (1,3) [Blank] -> Rotated (3,1) [Blank] (Matches B)

The pattern in B perfectly matches a 180-degree rotation of the Original grid.

4. Analyze Option C:

The red square is in the top-right corner, also suggesting a 180-degree rotation. However, the pattern does not match the
expected 180-degree rotation derived above. For example, the top-left cell in C is Blank, but the expected cell is Diagonal . The
top-right cell in C has Horizontal lines, but the expected cell has Vertical lines. Grid C is not a rotation of the Original.

5. Conclusion:

Grid A'is a 0-degree rotation (identical), and Grid B is a 180-degree rotation. Grid C is not a rotation. The question asks
which grid can be obtained by rotating. Both 0-degree and 180-degree rotations are rotations. However, usually, such questions
imply a change in orientation (non-zero rotation). Grid B represents a non-trivial rotation (180 degrees) of the original grid.
Final Answer: B

Figure 20: Test case of 2D Rotation Task from Gemini-2.5-pro.
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Mental Rotation-3D Rotation-Level 0

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.c.,
<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the original cube stack made of equal-sized small cubes. Which of the options on the right cannot
be obtained by rotating the original cube stack? Please answer from options A, B, C, or D.

Choices: original A

B | -4
A.A B.B
C.C D. All three other options are incorrect
Ground Truth Answer: A

Thinking Process: — Confusing description

1. Analyze the Original Shape:

The original shape consists of 5 equal-sized cubes. Visual inspection suggests a central cube connected to four other cubes.
Given the 3D isometric view, it’s reasonable to assume the central cube (which might be hidden) has cubes attached to four of'its
faces. Let's assume the structure is a central cube C with neighbours North (N), South (S), East (E), and Top (T). This structure, {C,
N, S, E, T}, is inherently 3-dimensional (non-planar). The central cube C has 4 connections (neighbours), and the other 4 cubes (N,
S, E, T) each have only 1 connection (to C).

2. Analyze Shape A:

Shape A consists of 5 cubes. It appears non-planar. Let's determine its connectivity (number of neighbours for each cube). By
visual inspection, it seems to have a ‘backbone’ of 3 cubes and two ‘legs’. The central cube of the backbone appears connected to
3 other cubes. No cube appears connected to 4 others. The connectivity pattern seems to be (1 cube with 3 neighbours, 1 cube with
2 neighbours, 3 cubes with 1 neighbour). This differs from the Original’s pattern (1 cube with 4 neighbours, 4 cubes with 1
neighbour). Therefore, A cannot be obtained by rotating the Original.

3. Analyze Shape B:

Shape B consists of 5 cubes. It appears non-planar. Let's determine its connectivity. It looks like an L-shape base of 3 cubes,
with two cubes stacked vertically on two of the base cubes (one on the corner, one on an end). By visual inspection, the maximum
number of neighbours any cube has is 2 (the corner cube of the L and the two cubes adjacent to it in the L). The connectivity
pattern seems to be (3 cubes with 2 neighbours, 2 cubes with 1 neighbour). This differs from the Original's pattern (1x4, 4x1).
Therefore, B cannot be obtained by rotating the Original.

4. Analyze Shape C:

Shape C consists of 5 cubes. This shape appears to be planar, meaning all cubes lie in a single layer. It forms a shape known
as the ‘P’ pentomino (a 2x2 square with one cube attached to the side). A planar shape consists of cubes whose centers all lie on
the same plane.

5. Compare Shapes with Original:

The Original shape {C, N, S, E, T} is non-planar because the Top cube (T) is in a different layer than the N, S, E cubes.

Shape C is planar. Rotation is a rigid transformation. It cannot change a non-planar object into a planar object.

Since the Original shape is non-planar and Shape C is planar, Shape C cannot be obtained by rotating the Original shape.

While analysis also suggested A and B cannot be obtained by rotating the Original (due to different connectivity patterns), the
difference in planarity between the Original and C is a more fundamental geometric property preserved under rotation. Given that
usually only one option is correct in such problems, the planarity difference provides the strongest reason.

6. Conclusion:

Shape C cannot be obtained by rotating the original cube stack because the original stack is non-planar and shape C is planar.
Final Answer: C

Figure 21: Test case of 3D Rotation Task from Gemini-2.5-pro.
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Mental Rotation-3View Projection-Level 0

Prompt: You should first provide a reasoning process, then provide a Isometric

single option(A, B, C or D) as the final answer. The reasoning process
and the answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning
process</think>, <answer>answer</answer>.
4

.

Question: The cube stack is made of equal-sized small cubes, mostly
gray with a few red ones. The top row shows its isometric view, front
view, and top view from left to right. Which image in the bottom row is

A B C
the left view of the cube stack? Please answer from options A, B, C, or D. I I

Top
)

Choices:
A.A B.B C.C D.D
Ground Truth Answer: A

Thinking Process:

1. Analyze the Isometric View:

The object is composed of stacks of cubes on a 3x3 base grid (viewed from top-down, let's label rows as Front, Middle, Back
and columns as Left, Middle, Right).

Front-Left stack: 3 cubes high (Bottom Red, Middle Grey, Top Red).

Front-Middle stack: 3 cubes high (All Grey).

Front-Right stack: 1 cube high (Grey).

Middle-Left stack: 3 cubes high (All Grey).

Middle-Middle stack: 4 cubes high (3 Grey base + 1 Red on top).

Middle-Right stack: 1 cube high (Grey).

Back-Left stack: 3 cubes high (All Grey, implied by structure).

Back-Middle stack: 3 cubes high (All Grey, implied base for MM red cube).

Back-Right stack: 1 cube high (All Grey, implied by structure).

2. Determine the Left View:

The left view shows the object as seen from the left side. The 2D view grid will have columns representing the depth (Back,
Middle, Front) and rows representing the height (Bottom, Middle, Top). We need to determine the color of the cube face visible at
each position in this grid. Since the options are 3x3, we consider heights up to 3.

3. Looking from the left:

We see the leftmost faces of the stacks in each depth layer (Front, Middle, Back).

Front layer (Closest depth to the right in the left view): The leftmost stack is the Front-Left stack. It is 3 high (Bottom Red,
Middle Grey, Top Red). Its left face is visible. So, the rightmost column of the left view is R (Top), G (Middle), R (Bottom).

Middle layer (Middle depth): The leftmost stack is the Middle-Left stack. It is 3 high (All Grey). Its left face is visible. So,
the middle column of the left view is G (Top), G (Middle), G (Bottom).

Back layer (Furthest depth to the left in the left view): The leftmost stack is the Back-Left stack. It is 3 high (All Grey). Its
left face is visible. So, the leftmost column of the left view is G (Top), G (Middle), G (Bottom).

4. Construct the 3x3 Left View Grid:

Row 3 (Top): Grey (Back), Grey (Middle), Red (Front)

Row 2 (Middle): Grey (Back), Grey (Middle), Grey (Front)

Row 1 (Bottom): Grey (Back), Grey (Middle), Red (Front)

5. Compare with Options:

Option A: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, R). This matches the derived left view.

Option B: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (R, G, G). Mismatch.

Option C: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.

Option D: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.

Note on discrepancies: The provided Front and Top views in the question appear inconsistent with the Isometric view (e.g.,
the height of the Front-Right stack, the position of the topmost Red cube, the empty space in the Top view). However, the question
asks for the left view of the cube stack shown in the isometric view. Therefore, we derive the left view from the isometric drawing.
The derivation based on the isometric view matches Option A.

Final Answer: A

Figure 22: Test case of Three-View Projection (Level 0) Task from Gemini-2.5-pro.
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Mental Rotation-3View Projection-Level 1

Prompt: You should first provide a reasoning process, then provide a Isometric Top
single option(A, B, C or D) as the final answer. The reasoning process
and the answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning
process</think>, <answer>answer</answer>.

Question: The top row shows the isometric view (left) and the top view
(right) of a 3D model. Which image in the bottom row is the front view
of the model? Please answer from options A, B, C, or D.

Choices: A B c
A.A B.B C.C D.Allthree other options are incorrect

Ground Truth Answer: A O

Thinking Process:

1. Understand the Task:

The goal is to identify the correct front view of the 3D object, given its isometric view and top view.

2. Analyze the Isometric View:

The isometric view shows a 3D representation of the object. It consists of a main rectangular prism (or block) and a cylinder
attached to one of the larger faces of the prism. The cylinder extends outwards from this face.

3. Analyze the Top View:

The top view shows the object as seen from directly above. It appears as a ‘T’ shape. The wider horizontal part of the ‘T’
corresponds to the top surface of the rectangular prism. The narrower vertical part of the ‘T’ corresponds to the top view of the
cylinder. This confirms that the cylinder is centered horizontally on the face it’s attached to. It also shows the relative width of the
prism and the diameter of the cylinder, as well as the length the cylinder protrudes.

4. Determine the Orientation for the Front View:

The isometric view typically shows the front, top, and one side (usually right). The top view is given. The front view would
be looking at the face from which the cylinder protrudes.

5. Visualize the Front View:

Imagine looking directly at the face of the rectangular prism where the cylinder is attached. You would see the rectangular
outline of that face. You would also see the end of the cylinder, which is a circle, superimposed onto that rectangular face.

From the isometric view, the cylinder appears centered vertically on the face.

From the top view, the cylinder is centered horizontally on the face.

Therefore, the front view should be a rectangle with a circle located in its center.

6. Compare with the Options:

Option A: Shows a rectangle with a circle inside, centered horizontally and vertically. This matches the visualization of the
front view derived from the isometric and top views.

Option B: Shows a “T” shape lying on its side. This does not match the front view. It resembles the top view rotated.

Option C: Shows only a rectangle. This would be the back view of the object, or the front view if the cylinder were absent.

7. Conclusion:

Option A is the correct representation of the front view of the given 3D object.

Final Answer: A

Figure 23: Test case of Three-View Projection (Level 1) Task from Gemini-2.5-pro.
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Mental Folding-Paper Folding-Level 0

Prompt: You should first provide a reasoning process, then provide a single
option(A, B, C or D) as the final answer. The reasoning process and the answer
are enclosed within <think></think> and <answer></answer> tags, respectively,
i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The original paper is a 3x3 grid paper. The images in the top row
show the results of 2 consecutive folding operations on the grid paper. Folding
operations include folding along horizontal, vertical, or 45-degree direction.

Operation 1 Operation 2 Punch Holes

The rightmost image in the top row shows the result after punching holes in the A B ¢ D
folded paper. Which image represents the appearance of the paper after i i

unfolding the punched paper? Black solid circles represent grid cells with holes. @ L4

Please answer from options A, B, C, or D. ° ° ) )

Choices:
A.A B.B C.C D.D
Ground Truth Answer: A

Thinking Process:

Step 1: Analyze the starting paper.

The paper is a 3x3 grid. Let's label the cells by (row, column) starting from the top-left as (1,1).

(1.1) (1.2) (1,3); (2.1) (2.2) (2.3); 3.1) (3,2) (3.3)

Step 2: Analyze Operation 1.

A horizontal fold is made across the middle of the original 3x3 grid. The diagram shows the bottom third (row 3) being
folded upwards, lying underneath the middle third (row 2). The fold line is between row 2 and row 3.

The state after Operation 1 is a 3x2 grid shape (rows 1 and 2 are visible).

- Row 1 contains cells (1,1), (1,2), (1,3) (single layer).

- Row 2 (visible) contains cells (2,1), (2,2), (2,3) as the top layer, and cells (3,1), (3,2), (3,3) as the bottom layer, folded
underneath.

Step 3: Analyze Operation 2.

Starting from the 3x2 shape after Operation 1. A diagonal fold is made within the right 2x2 section (columns 2 and 3). The
fold line goes from the bottom-left corner of cell (2,2) to the top-right corner of cell (1,3). The top-right triangular part (involving
cells (1,2), (1,3), (2,3)) is folded down/left onto the bottom-left triangular part (involving cells (1,2), (2,2), (2,3)).

The state after Operation 2 is shown. Note the layers:

- The leftmost column (original cells (1,1) and (2,1)/(3,1)) is unaffected by this fold.

Cell (1,1) is single layer. Cell (2,1) is the top layer, (3,1) is the bottom layer.

- The right part is now folded.

Step 4: Analyze Punch Holes.

Asingle hole is punched. Its location is in the bottom-left square of the shape shown after Operation 2. This corresponds to
the cell location (2,1) in the configuration after Operation 1. Since this location (2,1) had two layers of paper from Operation 1
(original cell (2,1) on top and original cell (3,1) underneath), punching a hole here creates holes through both layers. This area was
not affected by the fold in Operation 2.

Step 5: Unfold Operation 2.

We reverse Operation 2 by unfolding the diagonal fold. Since the punched hole was in the part not involved in this fold ((2,1)
area), unfolding Operation 2 does not change the location of the holes or create new ones. The paper returns to the state after
Operation 1 (the 3x2 shape). We have holes through both layers at position (2,1). That means original cell (2,1) has a hole, and
original cell (3,1) has a hole.

Step 6: Unfold Operation 1.

We reverse Operation 1 by unfolding the bottom third (row 3) back down. The fold line was between row 2 and row 3. The
holes are currently in cell (2,1) and cell (3,1). Unfolding separates these layers. The final unfolded 3x3 paper will have a hole in
cell (2,1) (middle row, left column) and a hole in cell (3,1) (bottom row, left column).

Step 7: Compare with options.

- Option A shows holes at (2,1) and (3,1). This matches our result.

- Option B shows holes at (1,1), (2,1), (3,1). Incorrect.

- Option C shows holes at (1,1) and (3,1). Incorrect.

- Option D shows a hole at (3,1). Incorrect.

Therefore, the correct unfolded pattern is shown in Option A.

Final Answer: A

Figure 24: Test case of Paper Folding Task from Gemini-2.5-pro.
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Mental Folding-Cube Unfolding-Level O

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a colored cube from a particular viewing angle. The options are nets (unfolded patterns) of the
cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube shown in the left image? Please
answer from options A, B, C, or D.

Choices: s * ® N °
A.A B.B C.C D.D
Ground Truth Answer: C

Thinking Process:

1. Analyze the Target Cube:

The image shows a cube with three visible faces meeting at a vertex: Red (Top), Blue (Front), and Green (Right). This means
Red, Blue, and Green must be adjacent faces in any valid net representation. - \Wrong color detection

2. Analyze the Nets (A, B, C, D):

Each net represents an unfolded cube. To determine if a net can form the target cube, we need to check if the required faces
(Red, Blue, Green) are adjacent and if their spatial relationship matches the target cube when folded. A key property of cube nets
is identifying opposite faces. Faces are opposite if they are separated by one face in a straight line in the net, or by other standard
rules depending on the net’s shape.

3. Check Net A:

Identify opposite faces: Trace paths or visualize folding. In Net A, Teal is opposite Blue, Red is opposite Yellow, and Green is
opposite Purple. » Wrong opposite faces

Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. Since none of these are opposite
pairs in Net A (Red/Yellow, Blue/Teal, Green/Purple), they can be adjacent.

Visualize folding: It's possible to fold Net A such that Red is Top, Blue is Front, and Green is Right. (For example, place Red
top, Yellow bottom. Arrange neighbours Teal, Purple, Green around Red. Blue is opposite Teal. One possible fold results in
Top:Red, Bottom:Yellow, Front:Purple, Right:Green, Back:Blue, Left: Teal. Rotating this gives the target view.)

Thus, Net A can form the cube.

4. Check Net B:

Identify opposite faces: In Net B, Yellow is opposite Red, Teal is opposite Green, and Purple is opposite Blue.

Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in
Net B (Red/Yellow, Blue/Purple, Green/Teal), so they can be adjacent.

Visualize folding: It's possible to fold Net B to match the target cube. (For example, one fold gives Top:Blue, Bottom:Purple,
Front:Green, Back:Teal, Left:Yellow, Right:Red. This can be rotated to match the target view: Red-Top, Blue-Front, Green-Right).

Thus, Net B can form the cube.

5. Check Net C:

Identify opposite faces: In Net C, Yellow is opposite Blue, Red is opposite Purple, and Green is opposite Teal.

Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in
Net C (Red/Purple, Blue/Yellow, Green/Teal), so they can be adjacent.

Visualize folding: It's possible to fold Net C to match the target cube. (For example, one fold gives Top:Teal, Bottom:Green,
Front:Red, Back:Purple, Left:Yellow, Right:Blue. This configuration can be rotated into the target view Red-Top, Blue-Front,
Green-Right).

Thus, Net C can form the cube.

6. Check Net D:

Identify opposite faces: In Net D, Blue is opposite Red, Purple is opposite Teal, and Green is opposite Yellow.

Check required adjacencies: The target cube shows Red, Blue, and Green meeting at a vertex, which requires Red and Blue to
be adjacent. However, in Net D, Red and Blue are opposite faces.

Conclusion:

Opposite faces cannot meet at a vertex or share an edge. Since Net D places Red and Blue opposite each other, it is
impossible to fold Net D into the cube shown on the left where Red and Blue are adjacent. Thus, Net D cannot form the cube.

7. Final Answer:

Based on the analysis, Nets A, B, and C can form the target cube, while Net D cannot because it places two adjacent faces
from the target cube (Red and Blue) in opposite positions.

Final Answer: D

Figure 25: Test case of Cube Unfolding Task from Gemini-2.5-pro.
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Mental Folding-Cube Unfolding-Level 2

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process</think>, <answer>answer</answer>.
Question: The left image shows a cube with different patterns on its six faces from a particular viewing angle. The options are
nets (unfolded patterns) of the cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube
shown in the left image? Please answer from options A, B, C, or D.
Choices:

A.A B.B C.C D.D
Ground Truth Answer: A

Thinking Process:

Let's analyze the visible faces of the cube:

Top face (T): Pattern of Blue, Purple, Green dots. Specifically, (B BB /P.P/G G G). The bottom-right corner dot is Green
(G).

Front face (F): Pattern of Purple, Green, Red, Blue dots. Specifically, (P G/ G R / G B). The top-right corner dot is Green (G).

Right face (R): Pattern of Green, Purple, Black, Blue, Red dots. Specifically, (G P ./ G Bl B/R B R). The top-left corner dot
is Green (G).

The common vertex where these three faces (T, F, R) meet has a Green dot from each face. So, this vertex is (G, G, G).

Now let's examine each net:

Net A:

Let's identify the patterns T, F, R in Net A if they exist.

Face 2 of Net Amatches T.(BBB/P.P/G G G)

Face 3 of Net Amatches F. (PG/G R/ G B)

Now, we need to find face R: (GP./GBIB/RBR).

Let's list the patterns of the other faces in Net A:

Face 1: (BG./MR./BI B.) (M=Magenta/Purple). Face 4: (BIB./PR./GP.)Face5: (PBlI./BR./G M) Face 6: (P
G./BM./BR.)Comparing R with faces 1, 4, 5, 6: None of them match the pattern of R. Since face R is not present in Net A,
Net A cannot form the cube shown.

Let's verify other nets, assuming this is the primary criterion. If other nets contain T, F, R and can be arranged correctly, then
Ais the answer.

Net B:

Face 2 is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the
standard T, F, R configuration.

Let's check the common vertex: T (face 2): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G.
So, the common vertex is (G,G,G). This is consistent with the cube. Thus, Net B can form the cube.

Net C:

Face 1is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the
standard T, F, R configuration. Let's check the common vertex:

T (face 1): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G. So, the common vertex is (G,G,G).
This is consistent with the cube. Thus, Net C can form the cube.

Net D:

The topmost face is R. The face below it is T. The face to the left of Tis F. So, R, T, F are present. Arrangement when folded:
R is Top, T is Front, F is Left.

Let's find the common vertex for this configuration: R (Top): bottom-left dot is R (from R B R). T (Front): top-left dot is B
(from B B B). F (Left): top-right dot is G (from P G). So, the common vertex is (R, B, G). For this to match the (G,G,G) vertex of
the cube, we would need R=G and B=G, which is false as the colors are distinct. Therefore, Net D cannot form the cube shown
with this specific corner.

However, the primary reason for Net A being unable to form the cube is the absence of face R. This is a more fundamental
issue than corner matching if all faces are present. If a face is missing, it absolutely cannot form the cube.

If we assume that there’s only one incorrect option, and the “missing face” criterion for A is decisive, then A is the answer.
The issues with D (and potential edge matching issues with B and C) might be secondary or based on misinterpretations of
“forming the cube”. But missing a face is a definitive failure. Let's reconfirm the “missing face R in Net A” argument. R=(G P ./
GBIB/RBR)

Net A, Face 1: (B G/ M R/ BI B) - No match (e.g., G at top-left of R, B at top-left of Face 1)

Net A, Face 4: (BI B/P R /G P) - No match (e.g., G at top-left of R, Bl at top-left of Face 4)

Net A, Face 5: (PBI/B R /G M) - No match (e.g., G at top-left of R, P at top-left of Face 5)

Net A, Face 6: (PG /B M /B R) - No match (e.g., G at top-left of R, P at top-left of Face 6)

The conclusion that face R is not present in Net A seems correct. Therefore, Net A cannot form the cube. The final answer is
$\\boxed{A}$.

Final Answer: A

Figure 26: Test case of Cube Unfolding Task from Gemini-2.5-pro.
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Mental Folding-Cube Reconstruction-Level 1

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process</think>, <answer>answer</answer>.
Question: The left image shows the net (unfolded pattern) of a cube, with six faces having different patterns. The net is folded
upward to form a cube. From an axonometric (3D) viewing angle of the cube, which combination of adjacent patterns is possible
to see? Please answer from options A, B, C, or D.
Choices:

A.A B.B C.C D.D e 'd
Ground Truth Answer: A S°" O

Cube Net

Thinking Process:

1. Identify the faces and their opposite pairs:

Label the faces in the net based on the number of dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5 (where 1 is below 3,
and 5 is below 6) — Wrong pattern detection

Determine opposite faces by folding mentally or noting faces separated by one other face in a straight line (or around corners):

The face with 4 dots is opposite the face with 1 dot.

The face with 3 dots is opposite the face with 6 dots.

The face with 2 dots is opposite the face with 5 dots.

2. Evaluate the options based on opposite faces:

A cube view can only show faces that are adjacent to each other. Opposite faces can never be seen together.

Option A: Shows faces with 4 dots, 3 dots, and 1 dot. Since 4 and 1 are opposite faces, this view is impossible.

Option B: Shows faces with 5 dots, 3 dots, and 2 dots. Since 2 and 5 are opposite faces, this view is impossible.

Option D: Shows faces with 3 dots, 6 dots, and 5 dots. Since 3 and 6 are opposite faces, this view is impossible.

Option C: Shows faces with 2 dots, 4 dots, and 3 dots. None of these pairs (2-4, 2-3, 4-3) are opposite pairs (Opposites: 2-5,
4-1, 3-6). Therefore, this combination of adjacent faces is possible.

3. Verify Option C with adjacency and orientation (Optional but recommended):

Consider the face with 2 dots (let's call it F2) as the front face.

In the net, the face with 4 dots (F4) is attached to the top edge of F2 (relative to the net layout shown). When folded, F4
becomes the top face.

In the net, the face with 3 dots (F3) is attached to the left edge of F2. When folded, F3 becomes the left face.

So, the faces 2, 4, and 3 can indeed meet at the top-front-left vertex.

Check orientations shown in C:

Front (2 dots): The dots run diagonally from top-left to bottom-right. This matches the orientation on the net relative to the
edges connected to F4 and F3.

Top (4 dots): The dots form a square. This matches the orientation on the net relative to the edge connected to F2.

Left (3 dots): The dots run vertically. The middle dot is closer to the edge shared with F2 (the front face). This matches the
orientation on the net relative to the edge connected to F2.

The adjacencies and orientations in Option C are consistent with the net.

Conclusion:

Options A, B, and D are impossible because they show opposite faces.

Option C shows three faces that are adjacent in the net and whose orientations are consistent with folding.
Final Answer: C

Figure 27: Test case of Cube Reconstruction Task from Gemini-2.5-pro.
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Visual Penetration-Cross Section-Level 0

Prompt: You should first provide a reasoning process, then provide a
single option(A, B, C or D) as the final answer. The reasoning process
and the answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning
process</think>, <answer>answer</answer>.

Question: The top row shows the combined shape viewed from two
different angles. The shape consists of a cone on top of a square frustum. R
Which of the following images cannot be a cross-section of the shape? P N
Please answer from options A, B, C, or D. " 4 =
Choices: ] )
A.A B.B C.C D.D NS
Ground Truth Answer: C

View 1 View 2

Thinking Process:

1. Analyze the 3D Shape:

The object consists of a cone positioned inside a circular depression on the top face of a square frustum. The base of the cone
is circular and lies on the plane of the top face of the frustum. The frustum has a square base and tapers upwards to a smaller
square top face. The circular depression (and thus the cone's base) is contained entirely within this top square face.

2. Analyze Option A (Circle):

A horizontal cross-section plane passing through the cone part (above the frustum's top face) will intersect the cone to form a
circle. This is a possible cross-section.

3. Analyze Option D (Square):

A horizontal cross-section plane passing through the frustum part below the level of the cone's base (and below the
depression) will intersect the frustum to form a square. This is a possible cross-section.

4. Analyze Option C (Triangle on Trapezoid):

A vertical cross-section plane passing through the central axis of both the cone and the frustum, and parallel to two opposite
side faces of the square frustum, will intersect the cone to form a triangle and the frustum to form an isosceles trapezoid. The
triangle will sit atop the trapezoid. This is a possible cross-section.

5. Analyze Option B (Curve on Trapezoid): — Correct and detailed analysis

This shape represents a cross-section formed by a plane cutting through both the cone and the frustum. The curved top part
represents the intersection with the cone. If the plane is vertical and off-center, this curve is typically a hyperbola segment. If the
plane is tilted, it could be an ellipse or parabola segment. The trapezoidal bottom part represents the intersection with the frustum.
A vertical plane cutting the frustum can result in a rectangle (if parallel to a side face) or a trapezoid (if cutting diagonally or at an
angle relative to the side faces). A tilted plane could also result in a trapezoid.

The key feature to examine is the junction between the curved top and the trapezoidal base. This junction line represents the
intersection of the cutting plane with the plane containing the cone’s base (the top surface of the frustum). The width of the curved
section at its base corresponds to the length of the chord formed by the cutting plane intersecting the cone’s circular base. The
width of the top side of the trapezoid corresponds to the length of the line segment formed by the cutting plane intersecting the
frustum's top square face. Since the cone’s circular base is strictly smaller than and contained within the frustum's top square face
(as seen in Views 1 and 2), any cutting plane that intersects both the circle and the square will create a chord across the circle that
is strictly shorter than the segment across the square (unless the plane is merely tangent to the circle). Therefore, the base width of
the curved (cone) section must be strictly narrower than the top width of the trapezoidal (frustum) section. However, in option B,
the base width of the curve appears to be equal to the top width of the trapezoid. This configuration is geometrically impossible
given that the cone’s base circle lies inside the top square face of the frustum.

6. Conclusion: — Incorrect identification of the relative length relationship of options

Options A, C, and D represent possible cross-sections of the described 3D object.

Option B depicts a configuration where the width of the cone section matches the width of the frustum section at the joining
plane, which contradicts the geometry shown in Views 1 and 2 where the cone base is smaller than the top face of the frustum.

Therefore, B cannot be a cross-section.

Final Answer: B

Figure 28: Test case of Cross-Section Task from Gemini-2.5-pro.
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Visual Penetration-Cube Counting-Level 1

Prompt: You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and Front Top Left

<answer></answer> tags, respectively, i.e., <think>reasoning .

process</think>, <answer>answer</answer>. ‘

Question: Given three views, what is the minimum number of cubes

required to satisfy the constraints shown in the images? Please answer

from options A, B, C, or D.

Choices: ‘
A. All three other options are incorrect B.9 C.11 D.10

Ground Truth Answer: B

Thinking Process: — Incorrect details, but based on the wrong details, the analysis is correct

1. Understand the Goal:

The objective is to find the minimum number of unit cubes required to build a 3D structure whose orthographic projections
(Front, Top, Left views) match the given diagrams.

2. Analyze the Top View:

The Top view shows the layout of the cubes on the base level (or the projection of all cubes onto the base). It occupies a 2x3
grid area, with the cell in the top-right corner (row 1, column 3) and the bottom-right cell (row 2, column 3) being potentially
different.

The cells occupied are: Top row (back): (1,1), (1,2), (1,3); Bottom row (front): (2,1), (2,2); Cell (2,3) is empty.

This means there must be at least one cube stacked at each of the locations (1,1), (1,2), (1,3), (2,1), and (2,2).

This establishes a minimum of 5 cubes based on the footprint.

3. Analyze the Front View: — Wrong order

The Front view shows the maximum height of the stacks in each column (left-to-right).

Column 1 (left): Height is 3. Corresponds to locations (1,1) and (2,1). So, max(Height(1,1), Height(2,1)) = 3.

Column 2 (middle): Height is 3. Corresponds to locations (1,2) and (2,2). So, max(Height(1,2), Height(2,2)) = 3.

Column 3 (right): Height is 1. Corresponds to location (1,3) (since (2,3) is empty according to the top view). So, Height(1,3)

4. Analyze the Left View:

The Left view shows the maximum height of the stacks in each row (front-to-back, viewed from the left).

Back Row (left side of the Left view): Height is 3. Corresponds to locations (1,1), (1,2), (1,3). So, max(Height(1,1),
Height(1,2), Height(1,3)) = 3.

Front Row (right side of the Left view): Height is 1. Corresponds to locations (2,1), (2,2). So, max(Height(2,1), Height(2,2))
=1

5. Combine Information and Minimize Cubes:

Let H(r, ¢) denote the height of the stack at row ‘r’ and column ‘c’.

From Top view: H(1,1)>=1, H(1,2)>=1, H(1,3)>=1, H(2,1)>=1, H(2,2)>=1.

From Front view: Height(1,3) = 1.

From Left view: max(H(2,1), H(2,2)) = 1.

Since we know H(2,1)>=1 and H(2,2)>=1, this forces H(2,1) =1 and H(2,2) = 1.

Now use the Front view constraints again:

max(H(1,1), H(2,1)) = 3. Since H(2,1) = 1, we must have H(1,1) = 3 to satisfy the maximum height and minimize cubes.

max(H(1,2), H(2,2)) = 3. Since H(2,2) = 1, we must have H(1,2) = 3 to satisfy the maximum height and minimize cubes.

Check the remaining Left view constraint: max(H(1,1), H(1,2), H(1,3)) = max(3, 3, 1) = 3.

This is satisfied by our determined heights.

6. Calculate Total Cubes: — The error does not affect the final numerical result

We have determined the minimum required heights for each stack: H(1,1) =3, H(1,2) =3, H(1,3) = 1, H(2,1) =1, H(2,2) = 1

Total number of cubes = H(1,1) + H(1,2) + H(1,3) + H(2,1) + H(2,2)

Total cubes=3+3+1+1+1=9

7. Compare with Options:

The calculated minimum number of cubes is 9. This matches option B.
Final Answer: B

Figure 29: Test case of Cube Counting Task from Gemini-2.5-pro.
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Visual Penetration-Cube Assembly-Level 0

Prompt: You should first provide a reasoning process, then provide a Complete Cube Stack

single option(A, B, C or D) as the final answer. The reasoning process
and the answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>reasoning
process</think>, <answer>answer</answer>.
Question: The top left image shows the original complete cube stack
made of equal-sized cubes. It can be formed by combining the small
cube stack on the right(part 1) with one of the options below. Which 2 H S
option completes the original cube stack? Please answer from options A,
B, C, or D.
Choices:

A.A B.B C.C D.Allthree other options are incorrect
Ground Truth Answer: B
Thinking Process: — Most of the identifications of the number of cube stacks are incorrect

1. Analyze the Complete Cube Stack:

Visualize the stack layer by layer or column by column. Let’s use columns from back-left to front-right (like reading order if
viewed from slightly above).

Back-Left Column: 2 cubes high.

Back-Right Column: 2 cubes high.

Middle-Left Column: 2 cubes high.

Middle-Right Column: 1 cube high (only bottom layer).

Front-Left Column: 1 cube high (only bottom layer).

Front-Right Column: 1 cube high (only bottom layer).

Total Cubes=2+2+2+1+1+1=09cubes.

2. Analyze Part 1:

Using the same column description:

Back-Left Column: 2 cubes high.

Back-Right Column: 0 cubes.

Middle-Left Column: 1 cube high (only bottom layer).

Middle-Right Column: 1 cube high (only bottom layer).

Front-Left Column: 1 cube high (only bottom layer).

Front-Right Column: O cubes.

Total Cubes=2+0+1+1+1+0=5cubes.

3. Determine the Missing Part (Complete Stack - Part 1): — Incorrect approach to calculation

Subtract the cubes in Part 1 from the Complete Stack for each column position:

Back-Left Column: 2 (Complete) - 2 (Part 1) = 0 cubes.

Back-Right Column: 2 (Complete) - 0 (Part 1) = 2 cubes (column 2 high).

Middle-Left Column: 2 (Complete) - 1 (Part 1) = 1 cube (must be the top cube).

Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.

Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.

Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube (must be the bottom cube).

Total Cubes in Missing Part=0+2+1+0+ 0+ 1 =4 cubes.

Structure of Missing Part: A column of 2 cubes in the back-right position, a single cube in the middle-left top position, and a
single cube in the front-right bottom position.

4. Analyze the Options:

Option A: Has a column of 2 in the back-left, 1 in middle-left (bottom), 1 in front-left (bottom). Total 4 cubes. Does not
match the required structure.

Option B: Has a column of 2 in back-left, 1 in back-right (bottom), 1 in middle-left (bottom), 1 in middle-right (bottom).
Total 5 cubes. Incorrect number of cubes and structure.

Option C: Has a column of 2 in the back-right position, a single cube that aligns with the middle-left top position, and a
single cube that aligns with the front-right bottom position. Total 4 cubes. This matches the required structure derived in step 3.

5. Conclusion:

Option C is the missing part that combines with Part 1 to form the Complete Cube Stack.
Final Answer: C

Figure 30: Test case of Cube Assembly Task from Gemini-2.5-pro.
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Mental Animation-Arrow Moving-Level 0

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or
D) as the final answer. The reasoning process and the answer are enclosed within
<think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning
process</think>, <answer>answer</answer>.
Question: In the diagram, the red arrow is the initial arrow, and the green arrow is the final arrow.
The arrow can move in four directions (forward, backward, left, right), where 'forward' always l
refers to the current direction the arrow is pointing. After each movement, the arrow's direction is
updated to the direction of movement. Which of the following paths can make the arrow move —)
from the starting position to the ending position? Please answer from options A, B, C, or D.
Choices:

A. (Left, 2 units)--(Left, 1 unit)

B. (Forward, 1 unit)--(Backward, 1 unit)

C. (Forward, 1 unit)--(Backward, 2 units)

D. (Forward, 1 unit)--(Left, 1 unit)\
Ground Truth Answer: D

Thinking Process:

1. Analyze Initial State:

The red arrow (start) is located in the top-left quadrant. Its center appears to be at coordinates approximately (0.5, 1.5).

The direction of the red arrow is pointing downwards (South).

2. Analyze Final State:

The green arrow (end) is located in the bottom-right quadrant. Its center appears to be at coordinates approximately (1.5, 0.5).

The direction of the green arrow is pointing to the right (East).

3. Define Movement Rules:

The arrow can move Forward, Backward, Left, or Right relative to its current orientation. After each move, the arrow's
orientation changes to the direction of the move. Cardinal Directions relative to current orientation:

If facing North (Up): Forward=Up, Backward=Down, Left=\West, Right=East.

If facing South (Down): Forward=Down, Backward=Up, Left=East, Right=West.

If facing East (Right): Forward=Right, Backward=Left, Left=Up, Right=Down.

If facing West (Left): Forward=Left, Backward=Right, Left=Down, Right=Up. — Fully comprehend the rules

4. Evaluate Option A: (Left, 2 units) -- (Left, 1 unit)

Start: Position (0.5, 1.5), Direction Down.

Move 1: Left, 2 units. Relative to Down, Left is East (Right). Move 2 units East.

-- New Position: (0.5 + 2, 1.5) = (2.5, 1.5). New Direction: East (Right).

Move 2: Left, 1 unit. Relative to East (Right), Left is North (Up). Move 1 unit North.

-- New Position: (2.5, 1.5 + 1) = (2.5, 2.5).

New Direction: North (Up).

Result: Position (2.5, 2.5), Direction Up. Does not match the final state.

5. Evaluate Option B: (Forward, 1 unit) -- (Backward, 1 unit)

Start: Position (0.5, 1.5), Direction Down.

Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

-- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

Move 2: Backward, 1 unit. Relative to Down, Backward is Up. Move 1 unit Up.

-- New Position: (0.5, 0.5 + 1) = (0.5, 1.5). New Direction: Up.

Result: Position (0.5, 1.5), Direction Up. Does not match the final state.

6. Evaluate Option C: (Forward, 1 unit) -- (Backward, 2 units)

Start: Position (0.5, 1.5), Direction Down.

Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

-- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

Move 2: Backward, 2 units. Relative to Down, Backward is Up. Move 2 units Up.

-- New Position: (0.5, 0.5 + 2) = (0.5, 2.5). New Direction: Up.

Result: Position (0.5, 2.5), Direction Up. Does not match the final state.

7. Evaluate Option D: (Forward, 1 unit) -- (Left, 1 unit)

Start: Position (0.5, 1.5), Direction Down.

Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

-- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

Move 2: Left, 1 unit. Relative to Down, Left is East (Right). Move 1 unit East.

-- New Position: (0.5 + 1, 0.5) = (1.5, 0.5). New Direction: East (Right).

Result: Position (1.5, 0.5), Direction East (Right). Matches the final state (green arrow).

8. Conclusion: Option D correctly describes the path from the red arrow to the green arrow.
Final Answer: D

Figure 31: Test case of Arrow Moving Task (Level 0) from Gemini-2.5-pro.
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Mental Animation-Arrow Moving-Level 1

Prompt: You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,
<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the initial state. Arrows can move in four directions (forward, backward, left, right), where
‘forward' always refers to the current direction the arrow is pointing. After each movement, the arrow's direction is updated to
the direction of movement. If the target position is empty, the arrow can move there directly; otherwise, it needs to swap with the
arrow at the target position, and both arrows' movements should satisfy the aforementioned requirements. After the
transformations '((0, 0) Left, 2 units)--((1, 0) Right, 1 unit)', which state from the options can be reached? Please answer from
options A, B, C, or D.

Choices: Initial State _A B . Db

A.A B.B C.C D.D
Ground Truth Answer: C t tt - 1 t 1

- | J - - - = J

Thinking Process:

1. Analyze Initial State:

Grid coordinates range from x=0 to x=2 and y=0 to y=2 (implicitly, based on positions).

Arrow 1: Red at (0, 0), Orientation: Right (East).

Arrow 2: Green at (1, 0), Orientation: Down (South).

Arrow 3: Pink at (2, 0), Orientation: Right (East).

Arrow 4: Red at (0, 2), Orientation: Up (North).

2. Analyze Transformation 1: ((0, 0) Left, 2 units)

Identify the arrow: The arrow starting at (0, 0) is Arrow 1 (Red, facing Right).

Determine the movement direction: ‘Left’ relative to the arrow’s orientation (Right). If facing Right, ‘Left’ is Up (North).

Determine the target position: Move 2 units Up from (0, 0). Target is (0, 0 + 2) = (0, 2).

Check the target position: Position (0, 2) is occupied by Arrow 4 (Red, facing Up).

Execute swap: Since the target is occupied, Arrow 1 and Arrow 4 must swap positions.

Arrow 1 moves from (0, 0) to (0, 2). Movement direction: Up. New orientation for Arrow 1: Up.

Arrow 4 must move from (0, 2) to (0, 0). Movement direction: Down.

Check if Arrow 4’s move is valid: Arrow 4 is facing Up.

Moving Down is ‘Backward’. This is a valid relative move.

New orientation for Arrow 4: Down (direction of movement).

State after Transformation 1: Arrow 4: Red at (0, 0), Orientation: Down. Arrow 2: Green at (1, 0), Orientation: Down. Arrow
3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

3. Analyze Transformation 2: ((1, 0) Right, 1 unit)

Identify the arrow: The arrow currently at (1, 0) is Arrow 2 (Green, facing Down).

Determine the movement direction: ‘Right’ relative to the arrow’s orientation (Down). If facing Down, ‘Right’ is Left (West).

Determine the target position: Move 1 unit Left from (1, 0). Target is (1 - 1, 0) = (0, 0).

Check the target position: Position (0, 0) is occupied by Arrow 4 (Red, facing Down).

Execute swap: Since the target is occupied, Arrow 2 and Arrow 4 must swap positions.

Arrow 2 moves from (1, 0) to (0, 0). Movement direction: Left. New orientation for Arrow 2: Left.

Arrow 4 must move from (0, 0) to (1, 0). Movement direction: Right.

Check if Arrow 4’s move is valid: Arrow 4 is facing Down. Moving Right is ‘Right’. This is a valid relative move.

New orientation for Arrow 4: Right (direction of movement).

State after Transformation 2 (Final State): Arrow 2: Green at (0, 0), Orientation: Left. Arrow 4: Red at (1, 0), Orientation:
Right. Arrow 3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

4. Compare Final State with Options:

Option A: Incorrect arrows/positions/orientations.

Option B: Incorrect arrows/positions/orientations.

Option C: Green at (0, 0), facing Left. (Match); Red at (1, 0), facing Right. (Match); Pink at (2, 0), facing Right. (Match);
Red at (0, 2), facing Up. (Match). This matches the derived final state.

Option D: Incorrect arrows/positions/orientations.

5. Conclusion: The state reached after the transformations matches Option C.
Final Answer: C

Figure 32: Test case of Arrow Moving Task (Level 1) from Gemini-2.5-pro.
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Mental Animation-Block Moving- 1

Initial State Rotated Initial State
/. ]
transformation. During the transformation process, blocks can move one unit in ! i
any direction (forward, backward, left, right, up, down). If the target position is ’
empty, the block can move there directly; if the target position already has a Final State  Rotated Final State
block, they swap places. Blocks cannot float in the air. If a block is moved away
from a position, any block above it will fall down until reaching a supporting
surface. The xyz axes are shown in the diagram, and each block's position can
be precisely identified using coordinates (x1,y1,z1). Which of the following
transformation sequences can change the cube stack from the initial state to the
final state shown in the diagram? Please answer from options A, B, C, or D.
Choices: 5
A.(1,1,1)x--- (0,0, 0) x+
B.(1,1,0)x---(1,1,0) x+--(1,1,1) z-
C.(1,1,1)x+--(2,1,0)x--- (1,1, 1) x+
D. (0, 0, 0) x+ -- (2, 1, 0) x-
Ground Truth Answer: B

Prompt: You should first provide a reasoning process, then provide a single
option(A, B, C or D) as the final answer. The reasoning process and the answer
are enclosed within <think></think> and <answer></answer> tags, respectively,
i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The top row of images shows different views of the initial state of a
cube stack, while the bottom row shows different views of the final state after

’

Thinking Process:

1. Analyze States:

Identify block positions (R, G, DB, P, C) in Initial and Final states using a consistent coordinate system (e.g., R at 0,0,0).

Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1). — Missing 1 block and the positions of blocks are wrong

Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1).

The change is G swaps with DB.

2. Analyze Rules:

Moves are 1 unit. Target empty = move. Target occupied = swap. Gravity applies if support is removed.

3. Evaluate Options:

A: (1,1,1)x- moves C to (0,1,1). (0,0,0)x+ swaps R and G.

Result: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(0,1,1). Incorrect state.

B: (1,1,0)x- swaps P and DB. (1,1,0)x+ moves DB(now at 1,1,0) to (2,1,0), causing C(1,1,1) to fall to (1,1,0). (1,1,1)z-
attempts to move from empty (1,1,1). Invalid.

C: (1,1,1)x+ moves C(1,1,1) to (2,1,1), causing C to fall to (2,1,0). (2,1,0)x- swaps C(2,1,0) and P(1,1,0). (1,1,1)x+ attempts
to move from empty (1,1,1). Invalid.

D: (0,0,0)x+ swaps R(0,0,0) and G(1,0,0). State: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1). (2,1,0)x- attempts to move
from empty (2,1,0). Invalid.

4. Conclusion:

All options appear invalid or incorrect based on the rules. B, C, D reference empty coordinates. A leads to the wrong state.

5. Reassess:

The problem likely contains an error. However, if forced to choose, D's first move is valid. The required transformation
(swapping G and DB) needs multiple steps. | found a 3-step sequence: (0,1,0)y-, (0,0,0)x+, (0,0,0)y+. Another 3-step sequence
starting like D: (0,0,0)x+, (0,1,0)x+, (0,0,0)y+. Since Option D has only 2 steps and the second is invalid, it cannot be correct as
written. But in multiple-choice questions with flaws, sometimes the intended answer has the most ‘reasonable’ start or structure.
Option D starts with a valid swap. Without clarification, choosing D assumes it’s the intended answer despite the error.

Final Answer: D

Figure 33: Test case of Block Moving Task from Gemini-2.5-pro.
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Mental Animation-Mechanical System-Level 0

Prompt: You should first provide a reasoning process, then provide a single
option(A, B, C or D) as the final answer. The reasoning process and the answer
are enclosed within <think></think> and <answer></answer> tags, respectively, ,.N\"" )’
i.e., <think>reasoning process</think>, <answer>answer</answer>.
Question: In the coaxial system shown, the orange gear is fixed, and the yellow
and green gears are identical in shape. If the yellow gear rotates clockwise, , -
what is the motion of the green gear relative to the orange gear? Please choose ¢ il y = aAA A
from options A, B, C, or D. aaad - > e 2
Choices: 5 A=
A. Clockwise rotation, clockwise revolution 2 Ao~ %S
B. Clockwise rotation, counterclockwise revolution ) )
C. No rotation, clockwise revolution
D. No rotation, counterclockwise revolution
Ground Truth Answer: C

(74 ad\d .

W

Yy

Thinking Process: Can’t intuitively thinking without theoretical derivation

1. Define the system and motion:

We have an epicyclic gear train. The orange gear (Sun) is fixed (o_o = 0). The yellow gear (Planet 1) meshes with the orange
gear and rotates clockwise (o_y < 0). The green gear (Planet 2) meshes with the yellow gear, and is identical to it (N_g = N_y).
The yellow and green gears are carried by an implicit arm that revolves around the center of the orange gear. We need to find the
absolute rotation (spin) and revolution (orbit) of the green gear relative to the fixed orange gear.

2. Determine the arm's revolution (@_arm):

The relationship between the sun, planet, and arm is given by the Willis equation: (o_y - ®_arm)/(w_0-®_arm)=-N_o/
N_y. Substituting ® 0=0: (o_y - ®_arm) / (-o_arm) =-N_o / N_y. Simplifying: ®_y - ®_arm = (-o_arm) (-N_o/N_y)=w®_arm
(N_o/N_y). Rearranging foro_y: ® y=w® arm+ o _arm (N_o/N_y)=w_arm (1+ N_o/N_y). We are given that o_y is
clockwise (negative). Since N_o and N_y are positive tooth counts, the term (1 + N_o / N_y) is positive. Therefore, for o _y to be
negative, ®_arm must also be negative. This means the arm, carrying the yellow and green gears, revolves clockwise around the
orange gear.

3. Determine the green gear's rotation (»_g):

Now consider the meshing between the yellow and green gears. They are carried by the same arm. The relative motion
formula applies: (o_g-®_arm)/ (o_y - ®_arm) =-N_y / N_g. Since the yellow and green gears are identical, N_y = N_g. The
ratio-N_y/N_g=-1.S0, (o g-® arm) /(o _y-o arm)=-1.® g-® arm=-(o_y - ®_arm) =-o_y + »_arm. Rearranging for
® g wg=-0y+2 oarm.

4. Express @_g in terms of @_y and gear ratio:

Substitute the expression for o_arm from step 2 [@_arm =_y /(1 + N_o/ N_y)] into the equation foro g: ® g=-0_y+2
[o y/(1+N_o/N_y)]. Factorout® y:o g=w y [-1+2/(1+N_o/N_y)]. Combine terms inside the bracket: ® g=o_y [(-
1 (1+N_o/Ny)+2)/(1+N_o/Ny)] o g=wy [(-1-N_o/N_y+2)/(1+N_o/N_y)]l o g=wy [(1-N_o/N_y)/(1
+N_o/N_y)]

5. Analyze the rotation based on relative sizes:

Case 1: If N_o > N_y (Orange gear larger than Yellow, as suggested by the image). Then (1 - N_o / N_y) is negative. Since
®_Y is negative (clockwise), _g = (negative) (negative / positive) = positive. Green gear rotates counter-clockwise. Motion:
CCW rotation, CW revolution. (Not an option).

Case 2: If N_o < N_y (Orange gear smaller than Yellow). Then (1 - N_o/ N_y) is positive. ®_g = (negative) (positive /
positive) = negative. Green gear rotates clockwise. Motion: CW rotation, CW revolution. (Option A).

Case 3: If N_o = N_y (Orange gear same size as Yellow). Then (1-N_o/N_y)=0.® g=w_y (0/ positive) = 0. Green gear
has no rotation (absolute rotation is zero). Motion: No rotation, CW revolution. (Option C).

6. Select the most plausible answer:

Although the image suggests N_o > N_y, this leads to a result not listed in the options. Gear train problems in multiple-choice
format often rely on specific configurations, sometimes simplifying assumptions (like equal gear sizes if not explicitly stated
otherwise) that lead to one of the provided answers. Assuming the problem intends for the case where N_o = N_y allows us to
match option C.

7. Final Motion (assuming N_o = N_y):

Rotation of green gear (o_g): 0 (No rotation). Revolution of green gear (w_arm): Clockwise
Final Answer: C

Figure 34: Test case of Mechanical System Task from Gemini-2.5-pro.

G DECLARATION OF LLM USAGE

We utilized a LLM to improve the grammar, clarity, and style of this manuscript. Its role was limited
to language refinement, without involvement in the research ideas, methodology, data analysis, or
conclusions. The LLM was also used to generate LaTeX code for tables from the authors’ data and
instructions, assisting only in formatting. In addition, it performed preliminary classification of error
types in model responses, which were subsequently reviewed and validated by human annotators to
reduce workload rather than replace human judgment.
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