
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPATIALVIZ-BENCH: A COGNITIVELY-GROUNDED
BENCHMARK FOR DIAGNOSING SPATIAL VISUALIZA-
TION IN MLLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans can imagine and manipulate visual images mentally, a capability known
as spatial visualization. While many multi-modal benchmarks assess reasoning
on visible visual information, the ability to infer unseen relationships through
spatial visualization remains insufficiently evaluated as a spatial skill. This re-
liance on publicly sourced problems from IQ tests or math competitions risks data
contamination and compromises assessment reliability. To this end, we introduce
SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visual-
ization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically
generated problems, a scalable framework that allows for expansion to ensure fair
and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large
Language Models (MLLMs) reveals wide performance variations, demonstrates
the benchmark’s strong discriminative power, and uncovers counter-intuitive find-
ings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on
open-source models. Through statistical and qualitative analysis of error types,
SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in
spatial visualization tasks, thereby addressing a significant lacuna in the field.

Mental
Rotation

Mental
Folding

Visual
Penetration

Mental
Animation

Spatial
Memorization

Spatial
Visualization

After folding the net into a cube,
what is the relationship between the
orange and purple faces?

They are opposite faces of the cube.

Represent visible visual references in text

Human

Discern implicit information through reasoning

Context memory of MLLM

MLLM

Previously Evaluated

Benchmark Categories Source 2DR
3DR 3V PF CU

CR CS CC CA AM
BM MS

MM-IQ 3D-Geometry Web √ √ √ √ √

MARVEL 3D-Geometry Web √

EMMA
3D Spatial
Simulation,
2D Transformation

Web √ √ √

BLINK IQ-Test Web √

MATH-
Vision

Descriptive
Geometry,
Transformation
Geometry

Web √ √ √ √

LogicVista 3D Shapes,
Mechanical Web √ √ √

VisualPuzzles Spatial Reasoning Web √ √ √ √

Ours Spatial
Visulization Prog √ √ √ √ √ √ √ √ √

MM-IQ 3D-Geometry

MARVEL 3D-Geometry

EMMA 3D Spatial Simulation
2D Transformation

MATH-V Descriptive Geometry
Transformation Geometry

Logic
Vista

Spatial
Mechanical

Visual
Puzzles

Spatial Reasoning

The purple face is to the left of
the green face.
The purple and orange faces
are separated by the green face.
……

Spatial
Perception

IQ-TestBLINK

Human o1Gemini2.5pro

Task Coverage
 High
 Medium
 Low

Previously Unevaluated

Tasks in SpatialViz-Bench（a）

（c）

（b）

Figure 1: Overview of SpatialViz-Bench. (a) presents a representative task instance. (b) unfolds the
reasoning behind (a): perceiving visible cues to infer unseen relationships via iterative visualization
and memorization. The table highlights a systematic gap: unlike perception, spatial visualization
remains a largely unassessed blind spot in prior benchmarks (indicated by lighter colors). (c) displays
zero-shot accuracy revealing significant gaps against human performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

3D Rotation

Mental Rotation
2D Rotation Three-View Projection

Original A B C

Original A B C

Original A B C

Original A B C

Isometric Front Top

A B C D

Isometric Top

A B C

Cube Reconstruction

Mental Folding
Cube Unfolding Paper Folding

Cube A B C D

Cube A B C D

Cube A B C D

Cube Net A B C

Cube Net A B C D

Cube Net A B C D

Operation1 Operation2 Operation3 Punch Hole

A B C D

Cube Counting

Visual Penetration
Cross Section Cube Assembly

View1 View

2

A B C D

Front Top

Front Top Left

Complete Cube Stack Part1

A B C

Complete Cube Stack Part1 Part2

A B C

Mechanical System

Mental Animation

Block Moving Arrow Moving

Initial State Rotated Initial State

Final State Rotated Final State

Initial State Final State

Initial State A B C D

Figure 2: Overview of Tasks in SpatialViz-Bench. SpatialViz-Bench evaluates 4 spatial sub-abilities,
mental rotation, mental folding, visual penetration, and mental animation, via 3 tasks each (12 tasks
total). Each task has 2–3 difficulty levels of 40–50 cases, yielding 1,180 question–answer pairs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong capabilities in complex reasoning, and
the integration of Vision Transformers (ViTs) has given them “eyes,” extending these abilities into
the multimodal domain. While many tasks focus on visible information, real-world challenges
in fields like architectural design and medical-image–assisted surgery often demand the ability
to mentally construct and manipulate unseen structures, a capability in which existing MLLMs
still struggle. To bridge this gap, spatial visualization must be abstracted and assessed through
targeted evaluations that isolate it from confounding factors, like a well-designed physics exam tests
fundamental principles. However, current evaluations rely heavily on web-sourced problems, risking
data leakage and inconsistent formulations, underscoring the need for a procedurally generated,
standardized benchmark to ensure fair and reliable assessment.

This cognitive faculty for mental manipulation is known as spatial visualization, which was first
identified by Thurstone in his work on primary mental abilities (Thurstone, 1938). Successfully
performing spatial visualization tasks relies on two other fundamental spatial abilities: Spatial
perception (Thurstone, 1950), which aims to perceive external spatial information and relationships,
and spatial memorization (Della Sala et al., 1999), which requires temporarily storing transformation
information mentally without accessing physical objects.

Despite their importance as dedicated spatial-reasoning challenges, spatial visualization tasks are
often buried under broader categories like mathematical or logical reasoning, appearing as multimodal
puzzles or 3D geometry problems. This categorization obscures the evaluation of spatial visualization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

as a distinct capability and focuses on "solving" a problem rather than driving research toward core
spatial abilities. Moreover, most examples are drawn from publicly available sources, online IQ tests,
administrative exams, and math contests, which risks overlap between training and evaluation data
and undermines reliability. The scarcity of items per subskill also magnifies random error, while
heterogeneous formats make it hard to distinguish true reasoning failures from misinterpretation.
Consequently, even with potential pretraining exposure, performance remains poor. State-of-the-art
systems score just 27.64 on 3D Geometry in MM-IQ (Cai et al., 2025) and 26.00 on Descriptive
Geometry in MathVision (Wang et al., 2024).

The modern paradigm of pretraining on vast, scraped internet data fundamentally challenges evalu-
ation validity (Wu et al., 2025), a problem exacerbated by proprietary datasets that make auditing
for contamination impossible. This fundamental challenge calls for a new generation of benchmarks
with dynamically updatable test banks to ensure persistent evaluation integrity (Ni et al., 2025).

To address these shortcomings, we introduce SpatialViz-Bench, a novel benchmark designed to
formally evaluate the spatial visualization capabilities of MLLMs, comprising a framework of 4
key sub-abilities(mental rotation, mental folding, visual penetration, and mental animation) from
which 12 targeted tasks are designed for comprehensive assessment. Inspired by benchmarks
like CLEVR (Johnson et al., 2017), a diagnostic benchmark for spatial perception, which uses
Blender (Blender Online Community, 2016) for data generation, we developed a pipeline that
integrates Python with FreeCAD (FreeCAD Team, 2025) for the programmatic generation of novel
test cases, enabling scalable task expansion while effectively preventing data contamination by
dynamically updating the test bank through randomized generation. We employ standardized question
templates to minimize errors arising from varied instructions. Furthermore, programmatic generation
allows us to control task difficulty precisely and to create distractors with explanations systematically.

Models with strong spatial visualization skills can serve as an efficient internal world model,
providing a foundational capability for various downstream applications. This allows a model to run
fast, lightweight internal “what-if” scenarios (e.g., "what happens if I rotate this object?", “if this gear
turns clockwise, which way will the connected gear move?”) to predict the outcome of actions. This
is far more efficient than the current alternative of invoking large, diffusion-based video generation
models to explicitly render a future state.

The main contributions of our work can be listed as follows:
• We introduce SpatialViz-Bench, the first benchmark to formally establish a comprehensive and

challenging evaluation framework for spatial visualization, a core yet long-overlooked cognitive
ability. It is grounded in cognitive science and assesses 4 key sub-abilities through 12 distinct
tasks, resulting in a total of 1,180 examples across parameter-controlled difficulty levels.

• We establish a scalable and trustworthy programmatic generation methodology for 11 of our tasks.
This approach not only enables continuous expansion of tasks but also sets a new standard for fair
evaluation by preventing data contamination through dynamic updates to the test bank.

• We systematically evaluate 27 MLLMs, with top scores from Gemini-2.5-pro (44.66%) and o1
(41.36%). These results demonstrate the benchmark’s challenge and high discriminative power,
revealing a significant capability gap to human performance.

• We conduct a diagnostic analysis revealing that model failures stem primarily from fundamental
Perceptual and Spatial Transformation deficits, rather than from high-level reasoning, which offers
a clear direction for future improvements.

2 RELATED WORKS

Current Landscape in Spatial Reasoning Benchmarks The evaluation of spatial reasoning in
MLLMs has largely concentrated on abilities tied to directly observable information. Benchmarks
for spatial perception, the ability to identify and interpret spatial relationships from visual input,
are the most established. Existing benchmarks like What’sUp (Kamath et al., 2023), Blink (Fu
et al., 2024), and SpatialRGPT-bench (Cheng et al., 2024) assess how models understand object-
or camera-centric relationships, relative distances, sizes, and positions. Progress has also been
made in evaluating spatial memorization, with video-based benchmarks like VCBench (Li et al.,
2024) and VSI-bench (Yang et al., 2024b) challenging models to track objects in dynamic scenes.
These efforts have built a foundation for assessing a type of spatial reasoning that relies on explicit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm Pool

Question: The left image shows the original cube stack
made of equal-sized small cubes. Which of the options
on the right cannot be obtained by rotating the original
cube stack? Please answer from options A, B, C, or D.
Choices:
 A. A B. B
 C. C D. None of above
Answer: C
Explanation:
A: Option A is incorrect because the cube stack can be
obtained by rotating the original stack around the x-axis
by 270 degrees.
B: Option B is incorrect because the cube stack can be
obtained by rotating the original stack around the y-axis
by 90 degrees.
C: Option C is correct because it was obtained by
removing one small cube from the original stack.

Input

Task Name

Task

Parameters

Question

Template

Reference Image

Positive Samples

Negative Samples

Question: Which of the

options on the right cannot

be obtained by rotating the

original cube stack?

Rotate!!

Remove!!

Output Data

Input Image

Input Text

Ground Truth
Answer

Original A B C

Explanation

Figure 3: The programmatic generation pipeline of a data instance. We constructed the dataset
using an programmatic generation system that integrates Python with FreeCAD, enabling precise
control of difficulty, systematic generation of distractor options, and programmatic recording of
explanations for incorrect choices.

visual information and applies a model’s world knowledge to interpret what is perceived. However,
they largely neglect the advanced capability of spatial visualization, the ability to infer implicit
visual-spatial information through transformation of structures derived from visible inputs, leaving a
significant gap in the current evaluation landscape.

Evaluation of Spatial Visualization Evaluating spatial visualization presents challenges regarding
data contamination, obscured categorization, and narrow task coverage. A primary concern is contam-
ination from public sources (Xu et al., 2025b), a risk programmatic generation seeks to mitigate, as
seen in the LEGO-Puzzles benchmark (Tang et al., 2025). Furthermore, spatial visualization is often
subject to obscured categorization, subsumed under broader domains like mathematical or logical
reasoning in general benchmarks (e.g., MM-IQ (Cai et al., 2025), MathVision (Wang et al., 2024)),
which diverts focus from it as a core ability. Concurrently, specialized datasets exhibit narrow task
coverage, focusing on single sub-skills like mental rotation (SPARE3D (Han et al., 2020), CLEVR-
MRT (Beckham et al., 2023)) or specific tasks like paper folding (SRBench (Stogiannidis et al.,
2025)). Yin et al. (2025) also assess mental modeling, utilizing distinct organizational frameworks,
such as relative spatial perspectives.

3 SPATIALVIZ-BENCH

3.1 SPATIAL VISUALIZATION

Spatial visualization is a core component of human cognitive systems and a critical capability for
deployment in downstream applications. Research into this ability began with Thurstone (Thurstone,
1938), who defined it as performing mental operations on visual images and identified it as one of the
key spatial factors: spatial perception, spatial visualization, and mental rotation (Thurstone, 1950).

Building on this foundation, we establish a cognitive framework that decomposes spatial visualization
tasks into two phases: observing visible information and discerning implicit information. The
former requires basic spatial perception, while the latter demands an alternation between spatial
visualization (mentally manipulating images to find implicit information) and spatial memorization
(temporarily storing visuospatial information) (Della Sala et al., 1999).

Our benchmark’s design is guided by 4 core sub-abilities: 1) mental rotation: Mentally representing
and rotating objects while maintaining their features; 2) mental folding: Mentally folding 2D patterns
into 3D objects or vice versa (Glass et al., 2013); 3) visual penetration: Imagining the internal
structure of an object from its external features (Titus & Horsman, 2009); 4) mental animation:
Mentally visualizing the motion of components within a system (Sims & Hegarty, 1997).

3.2 OVERVIEW OF SPATIALVIZ-BENCH

Stemming from an availability-driven collection, current web-sourced benchmarks containing spatial
visualization tasks lack standardization and a cognitive theory basis, resulting in inconsistent tasks
and incomplete coverage. We counter this with a systematic, ability-centric methodology: we use a
hierarchical framework based on cognitive principles to guide new task design and employ a unified
input format with standardized templates to reduce confounds and enable fine-grained error analysis.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: A Compact Summary of Spatial Reasoning Tasks.

Category Task Name Core Objective Negative Samples Difficulty Scaling

Mental
Rotation

2D Rotation Identify correct 2D rotation Mirroring;
internal pattern rotation Non-centrally symmetric patterns

3D Rotation Identify correct 3D rotation View mirroring
cube removal Larger assemblies

Three-View
Projection Select left view from projections

Wrong view substitution;
view flipping;
line deletion

Real engineering parts
(DeepCAD (Wu et al., 2021))

Mental
Folding

Paper Folding Predict unfolded hole pattern Hole mirroring, addition,
deletion, or relocation

More folds;
larger grid;
more holes

Cube Unfolding Select correct 2D net from view Swapping face colors;
rotating internal patterns Asymmetric/dot patterns on faces

Cube Reconstruction Select 3D view from net;
Find opposite face Mirroring the correct 3D view Follows Cube Unfolding

Visual
Penetration

Cross-Section Identify cross-section of solid Altered geometric proportions 3-solid composites;
oblique slicing

Cube Counting Infer total cube count from views Options from min/max math bounds 2 to 3 views;
larger assemblies

Cube Assembly Find complementary part of split stack Add/remove cubes from correct part Larger stacks;
3-part splits

Mental
Animation

Arrow Moving Predict final state
or movement sequence Incorrect endpoint from same start Multiple arrows;

interaction rules

Block Moving Predict final state with gravity Incorrect final states Higher complexity;
longer sequences

Mechanical System Understand motion propagation Incorrect motion outcomes More system modules

Based on our cognitive framework, we propose SpatialViz-Bench to comprehensively evaluate the
spatial visualization capabilities of MLLMs. It is organized around 4 core sub-abilities—mental
rotation, mental folding, visual penetration, and mental animation—with 3 assessment tasks designed
for each, totaling 12 tasks. Each task includes 2 to 3 difficulty levels, with each level containing 40 or
50 test cases, comprising 1,180 question-answer pairs in total, mostly with image-based options to
focus on visual reasoning. Further details on the dataset characteristics are provided in Appendix C.

3.3 CONSTRUCTION OF SPATIALVIZ-BENCH

SpatialViz-Bench is constructed through a combination of programmatic generation and manual design.
For 11 of the tasks, we used a programmatic system integrating Python with FreeCAD (FreeCAD
Team, 2025) (see Figure 3). By explicitly utilizing cognitive load parameters rather than heuristics,
such as aligning rotational complexity (global object vs. internal pattern rotation) with mental
transformation steps (Shepard & Metzler, 1971), our programmatic framework ensures precise
difficulty control, while employing controlled randomness to enhance diversity and generate distractor
options with explanations for deep diagnostics. Notably, the Three-View Projection task (Level 1)
uses fixed DeepCAD (Wu et al., 2021) models, but we programmatically generate novel distractors
(e.g., random line deletion, view flipping) to ensure novelty. Conversely, the Mechanical System task
(1/12) was manually designed, as programmatic, physically-consistent generation was technically
difficult. Using representative public simulations as a reference, experts designed all questions from
scratch. These visual-based questions probe dynamic motion propagation (e.g., rotational dynamics
from a single image), testing visual simulation rather than caption recall or theoretical derivation.

This combined methodology, leveraging both programmatic generation and the vast pool of public
simulations for expert-driven question design, supports a dynamically updated test bank that proac-
tively mitigates data contamination. A task summary is presented in Table 1, with detailed generation
processes, algorithmic pseudocode, and illustrative examples deferred to Appendix B.1, B.4 and D.

4 EVALUATION

4.1 EVALUATION SETUP

Models We conducted comprehensive experiments on a diverse range of MLLMs, including 8
closed-source and 19 open-source models. For closed-source MLLMs, we evaluated models from
5 major providers, including OpenAI series (GPT-4o (Hurst et al., 2024), o1 (Jaech et al., 2024)),
Gemini series (Gemini-2.5-flash, Gemini-2.5-pro (Deepmind, 2025)), Claude series (Claude-3.5-
sonnet (Anthropic, 2024), Claude-3.7-sonnet (Anthropic, 2025)), Qwen-VL-max (Bai et al., 2023),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Comparison of open-source model performances. Tasks: 2D Rotation (2DR), 3D Rotation
(3DR), Three-View Projection (3VP), Paper Folding (PF), Cube Unfolding (CU), Cube Reconstruction
(CR), Cross-Section (CS), Cube Counting (CC), Cube Assembly (CA), Arrow Moving (AM), Block
Moving (BM), Mechanical System (MS). The first and second highest accuracy of MLLMs are
marked in red and blue, with open-source and closed-source models marked separately.

Model
Overall Mental Rotation Mental Folding Visual Penetration Mental Animation

w/o CoT w/ CoT 2DR 3DR 3VP Avg PF CU CR Avg CS CC CA Avg AM BM MS Avg

Human - 82.46 90.00 79.16 87.50 85.56 93.75 75.00 72.92 80.56 72.92 70.83 82.50 75.42 90.00 87.50 87.50 88.33

Random - 25.08 23.75 27.50 31.00 27.69 19.17 20.00 25.83 21.67 30.00 25.00 30.00 28.12 28.75 16.25 25.00 23.33

Qwen2.5-72B-Instruct(Text-only) - 25.86 15.00 35.00 15.00 21.67 23.33 16.67 26.67 22.22 20.00 33.33 45.00 31.25 25.00 30.00 30.00 28.33

Open Source MLLMs
3B

SAIL-VL-1.5-2B 29.32 24.15 22.50 22.50 22.00 22.31 20.00 27.50 20.00 22.50 24.17 26.67 32.50 27.19 21.25 25.00 27.50 24.58

InternVL3-2B - 26.19 16.25 33.75 31.00 27.31 22.50 25.83 25.00 24.44 20.00 30.83 30.00 26.56 18.75 32.50 30.00 27.08

Deepseek-VL2-tiny(3B) 29.58 21.36 17.50 22.50 27.00 22.69 21.67 20.83 19.17 20.56 20.83 22.50 18.75 20.94 18.75 21.25 25.00 21.67

Qwen2.5-VL-3B-Instruct 30.17 26.10 20.00 18.75 21.00 20.00 25.00 25.83 21.67 24.17 25.83 23.33 30.00 25.94 35.00 30.00 42.50 35.83

7B

Qwen2.5-VL-7B-Instruct 30.76 27.97 25.00 16.25 29.00 23.85 34.17 21.67 30.00 28.61 16.67 36.67 28.75 27.19 22.50 23.75 51.25 32.50

Qwen2.5-Omni-7B 31.44 27.29 22.50 20.00 29.00 24.23 25.00 27.50 20.00 24.17 20.83 33.33 27.50 27.19 31.25 30.00 45.00 35.42

SAIL-VL-1.6-8B 29.15 25.00 18.75 21.25 25.00 21.92 28.33 25.00 18.33 23.89 21.67 19.17 23.75 21.25 25.00 35.00 45.00 35.00

InternVL3-8B 30.25 30.08 20.00 38.75 28.00 28.85 28.33 23.33 25.00 25.56 15.83 40.83 38.75 30.94 30.00 30.00 51.25 37.08

16B

Kimi-VL-A3B-Instruct(16B) 32.37 23.90 16.25 30.00 36.00 28.08 25.83 20.00 26.67 24.17 21.67 5.00 28.75 17.19 15.00 31.25 37.50 27.92

Kimi-VL-A3B-thinking(16B) - 28.14 13.75 20.00 25.00 20.00 23.33 24.17 26.67 24.72 25.00 36.67 25.00 29.38 30.00 43.75 47.50 40.42

Deepseek-VL2-small(16B) 25.17 25.17 31.25 16.25 26.00 24.62 22.50 25.00 26.67 24.72 9.17 35.00 35.00 25.31 26.25 23.75 28.75 26.25

32B

Deepseek-VL2(27B) 30.08 28.31 25.00 33.75 30.00 29.62 31.67 25.00 22.50 26.39 18.33 39.17 28.75 28.75 26.25 30.00 31.25 29.17

Qwen2.5-VL-32B-Instruct 33.90 32.12 31.25 35.00 38.00 35.00 21.67 25.00 27.50 24.72 25.83 36.67 43.75 34.38 28.75 27.50 55.00 37.08

InternVL3-38B 29.75 30.34 22.50 33.75 29.00 28.46 20.83 29.17 30.83 26.94 21.67 32.50 41.25 30.63 25.00 30.00 56.25 37.08

72B

Qwen2.5-VL-72B-Instruct 35.00 33.31 28.75 31.25 28.00 29.23 22.50 20.00 30.00 24.17 30.00 41.67 48.75 39.06 27.50 40.00 63.75 43.75

QvQ-72B-preview - 28.14 21.25 30.00 31.00 27.69 16.67 19.17 27.50 21.11 30.00 22.50 32.50 27.81 25.00 50.00 43.75 39.58

InternVL3-78B 32.29 29.75 25.00 25.00 34.00 28.46 19.17 25.00 22.50 22.22 20.83 40.00 48.75 35.00 23.75 41.25 41.25 35.42

108B

Llama-4-Maverick-17B-128E-Instruct - 31.78 20.00 40.00 40.00 33.85 16.67 29.17 29.17 25.00 19.17 35.00 47.50 32.19 35.00 40.00 42.50 39.17

LLama-4-Scout-17B-16E-Instruct - 34.24 32.50 35.00 43.00 37.31 16.67 32.50 36.67 28.61 17.50 37.50 53.75 34.06 28.75 40.00 50.00 39.58

Closed Source MLLMs
GPT-4o 30.76 31.10 32.50 27.50 33.00 31.15 29.17 15.83 30.00 25.00 19.17 40.83 40.00 32.50 22.50 32.50 60.00 38.33

o1 - 41.36 62.50 28.75 49.00 46.92 28.33 34.17 26.67 29.72 37.50 40.83 33.75 37.81 67.50 52.50 52.50 57.50

Claude-3.5-sonnet 26.86 32.54 31.25 25.00 45.00 34.62 20.83 22.50 31.67 25.00 22.50 35.83 46.25 33.44 37.50 31.25 52.50 40.42

Claude-3.7-sonnet - 33.90 32.50 36.25 44.00 38.08 18.33 26.67 29.17 24.72 24.17 30.83 43.75 31.56 66.25 28.75 43.75 46.25

Gemini-2.5-flash - 36.86 42.50 30.00 35.00 35.77 26.67 30.00 40.83 32.50 30.00 38.33 28.75 32.81 67.50 33.75 48.75 50.00

Gemini-2.5-pro - 44.66 52.50 32.50 47.00 44.23 43.33 31.67 30.00 35.00 33.33 55.00 36.25 42.19 95.00 35.00 58.75 62.92

Doubao-1-5-vision-pro 37.54 33.31 7.50 35.00 45.00 30.38 31.67 23.33 29.17 28.06 30.00 55.83 30.00 39.69 22.50 37.50 47.50 35.83

Qwen-VL-max 36.10 32.03 23.75 26.25 33.00 28.08 24.17 17.50 31.67 24.44 26.67 47.50 42.50 38.44 26.25 36.25 55.00 39.17

and Doubao-1.5-vision-pro (ByteDance, 2025). For open-source MLLMs, we assessed Qwen2.5-VL
series (Bai et al., 2025), QvQ (Qwen Team, 2024), Qwen-Omni (Xu et al., 2025a), InternVL-3
series (Zhu et al., 2025), Deepseek-VL2 series (Wu et al., 2024), SAIL-VL series (Dong et al., 2025),
Kimi-VL-A3B series (Team et al., 2025) and LLama-4 series (Meta AI, 2025). For text-only LLM,
we used Qwen2.5-72B-Instruct (Yang et al., 2024a).

Setting For a rigorous evaluation, all experiments were performed in a zero-shot setting (Hao et al.,
2025; Wang et al., 2024), comparing model performance under two prompting schemes: (1) CoT,
where prompts were designed to encourage models to output their reasoning process before the
final answer, and (2) Direct Answering (non-CoT), where prompts solicited the answer directly (see
Appendix E.2). This methodology enabled us to not only assess the accuracy of responses but also
gain deeper insights into the models’ underlying reasoning mechanisms across our benchmark tasks.

Metric Design To evaluate models handling multimodal inputs and generating textual outputs, with
most options presented as images, we formatted all tasks as Multiple-Choice Answer (MCA) with
one correct answer. Option and reference images were integrated into a unified visual input. For
questions where answers could be expressed as simple text, we also provided a text-based answer
format (detailed in Appendix E.4). Model performance was assessed using accuracy, based on the
match between predicted and ground-truth answers. This standardized approach ensures consistent
evaluation across tasks and enables fair comparison of multimodal understanding across models. A
comparative analysis of performance on both formats is provided in Appendix F.2.

Human Baseline Our human baseline was established with 8 graduate students from mechanical
engineering and computer science, selected for their strong spatial reasoning backgrounds. Each
participant solved a 72-problem subset under strict conditions designed to be analogous to MLLM

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20% 25% 30% 35% 40% 45% 50%
Percentage (%)

Deepseek-VL2-tiny(3B)
Kimi-VL-A3B-Instruct(16B)
SAIL-VL-1.5-2B

SAIL-VL-1.6-8B
Random
Deepseek-VL2-small(16B)

Qwen2.5-VL-3B-Instruct
InternVL3-2B

Qwen2.5-Omni-7B
Qwen2.5-VL-7B-Instruct
QvQ-72B-preview
Kimi-VL-A3B-thinking(16B)
Deepseek-VL2(27B)

InternVL3-78B
InternVL3-8B
InternVL3-38B

GPT-4o
Llama-4-Maverick-17B-128E-Instruct
Qwen-VL-max
Qwen2.5-VL-32B-Instruct
Claude-3.5-sonnet

Qwen2.5-VL-72B-Instruct
Doubao-1.5-vision-pro

Claude-3.7-sonnet
Llama-4-Scout-17B-16E-Instruct

Gemini-2.5-flash
o1

Gemini-2.5-pro

(a) Overall Model Performance (95% CI)

95% CI
Mean

0 1 2 3 4 6 7
Count of Significant Changes (Across Difficulty Levels)

0

2

4

6

8

N
um

be
r

of
 M

od
el

s

5 5

8

2

4

2

1

Low Sensitivity
(18 models)

High Sensitivity
(3 models)

(b) Model Sensitivity Distribution

25 30 35 40 45
Cross-Level Average Accuracy (%)

0

2

4

6

8

10

12

14

N
um

be
r

of
 M

od
el

s

CubeReconstruction

CubeCounting

MechanicalSystem

PaperFolding

ArrowMoving2DRotation
CrossSection

CubeUnfolding

CubeAssembly3DRotation

BlockMoving

Universally Difficult Tasks
(Low accuracy, Low sensitivity)

(c) Task Sensitivity vs. Average Accuracy

Figure 4: Statistical Analysis of Model Performance, Difficulty Sensitivity, and Task Discrim-
inability. (a) presents the overall model performance with 95% Wilson confidence intervals. (b)
shows the distribution of model sensitivity to difficulty gradients. (c) provides a task-centered analysis
of difficulty sensitivity, revealing how difficulty levels differentiate model capabilities across tasks.

evaluation: no external aids (e.g., scratch paper) were allowed, but time was unlimited. This protocol
isolates intrinsic spatial visualization abilities for a fair comparison.

4.2 EVALUATION RESULTS

This section first establishes the performance gaps between different models and then, through a CoT
ablation study, investigates the impact of explicit reasoning to identify the core abilities required for
advanced spatial reasoning.

4.2.1 MAIN RESULTS

Tasks in SpatialViz-Bench are Vision-Dependent and Reasoning-Intensive As the textual input
alone is insufficient, visual input is essential for problem-solving, making the benchmark highly
vision-dependent. We empirically validated this claim by evaluating a powerful text-only LLM
(Qwen2.5-72B-Instruct). As detailed in Table 2, the text-only model achieved a total accuracy of
25.86%, which is negligibly different from the random-chance baseline (25.08%), quantitatively
proving that the visual modality is indispensable. Most options are image-based, requiring precise
visual analysis rather than simple matching, thereby increasing reasoning complexity. For both
humans and MLLMs, these tasks demand multi-step spatial transformations and inferences that
mirror complex CoT processes.

Performance Gaps Reveal a Statistically Validated Hierarchy of MLLMs All evaluated models
performed well below the human baseline (82.46%), underscoring the benchmark’s difficulty. Our
analysis, now supported by 95% Wilson confidence intervals (CIs) (as shown in ??), confirms
this performance hierarchy is statistically robust. The top performer, Gemini-2.5-pro (44.66%, CI:
[41.85%, 47.51%]), demonstrates capabilities irrefutably above the random baseline (25.08%, CI:
[22.69%, 27.64%]), as their CIs do not overlap. More importantly, this analysis provides solid
statistical backing for the critical capability gap between proprietary and open-source models. The
CI for Gemini-2.5-pro shows no overlap with that of the top open-source model, LLaMA-4-Scout
(34.24%, CI: [31.58%, 36.99%]), confirming this ∼10% performance delta is significant. Conversely,
the CIs help group statistically similar models into "performance tiers"; for example, the CIs for
LLaMA-4-Scout and Qwen2.5-VL-72B-Instruct (35.00%, CI: [30.67%, 36.04%]) highly overlap,
making their performance statistically indistinguishable. This statistically validated discriminative
power highlights significant room for improvement.

Core 3D Visualization Tasks Reveal Common Model Failures Models with higher overall accuracy
generally perform well across individual tasks. Most models show near-random accuracy on core 3D
tasks like 3D Rotation, Cube Unfolding & Reconstruction, indicating common and severe perceptual
and visualization limitations in 3D space. Both proprietary models perform well on the Arrow Moving
task, with Gemini-2.5-pro even surpassing human performance, while most of open-source models
perform at near-random levels. This suggests that, despite its relatively low visual complexity, the task

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Statistical significance analysis of CoT prompting impact (p < 0.05).

Model Source CoT Impact Significant (p < 0.05) p-value
Kimi-VL-A3B-Instruct Open Negative Yes 0.0192
Deepseek-VL2-tiny Open Negative Yes 0.0463
Internvl2.5-78B Open Negative Yes 0.0368
Qwen2.5-Omni-7B Open Negative Yes 0.0216
Sail-VL-1.6-8B Open Negative Yes 0.0479

Claude-3.5-sonnet Closed Positive Yes 0.0007

Table 4: Robustness analysis of CoT performance. (a) Performance remains stable across different
CoT prompt templates. (b) The significant performance gap between CoT and non-CoT persists
across extraction rules, ruling out parsing failures as the cause of performance drops.

(a) Sensitivity to Prompt Variations (Accuracy %)
Model CoT A CoT B ∆

Qwen2.5-VL-72B 33.31 31.19 -2.12
GPT-4o 31.10 30.81 -0.29
Claude-3.5-sonnet 32.54 28.31 -4.23

(b) Sensitivity to Extraction Rules (Acc. Drop%)
Model Rule A ↓ Rule B ↓ ∆

SAIL-VL-1.5-2B -8.22 -7.29 +0.93
Deepseek-VL2-3B -5.18 -5.01 +0.17
Kimi-VL-16B -8.47 -9.66 -1.19

requires advanced reasoning—such as understanding object-centered motion—which open-source
models still lack. In most cases, model performance matched our expected difficulty levels, though
some discrepancies with human perception offer valuable insights for refining task design and guiding
future research. Additional evaluation results and task-specific analysis are provided in Appendix F.1.

Difficulty Collapse Only Visible in Top-Tier Models We first validated our intended difficulty
gradient (DG) against human performance and hypothesized models would show similar scaling.
However, data reveals a widespread "performance floor" at L0; 10 models showed ≤1 significant
DG, while the top-performing Gemini-2.5-pro was most sensitive (7 DGs) (Figure 4.b). From a task-
centric perspective (Figure 4.c), three tasks induced a significant DG in 11 or more models. Notably,
the stark DG contrast between CubeReconstruction (12 models) and its symmetric counterpart
CubeUnfolding (1 model) suggests models better reason about symmetry from unfolded views.
Conversely, BlockMoving (0 DGs) proved challenging at both levels, rendering any drop statistically
invisible. Critically, on 3DRotation, the only two models exhibiting a DG were the top-two performers
(Gemini-2.5-pro, o1). This confirms our core claim: only top-tier models achieved non-random L0
accuracy, and thus were the only ones capable of showing a statistically significant collapse at L1.

4.2.2 COT PROMPTING ABLATION STUDY

For the non-CoT evaluation, we excluded models designed for extended reasoning (e.g., o1, Gemini-
2.5 series) or those unable to adhere to the format (e.g., InternVL3-2B), proceeding only with models
that could reliably provide a single-letter answer (detailed in Appendix E.2).

Our ablation study on Chain-of-Thought (CoT) prompting confirms a "CoT paradox," a phenomenon
also noted by EMMA (Hao et al., 2025): CoT benefits high-performing closed-source MLLMs but
often paradoxically degrades their open-source counterparts. We provide new statistical validation for
this. As shown in Table 3, the impact is significantly positive for claude-3.5-sonnet but significantly
negative for several leading open-source models.

Crucially, our analysis pinpoints where this degradation occurs. The performance loss for these
open-source models is not uniform but is highly concentrated in "pure-visual" spatial tasks (e.g.,
3ViewProjection, 3DRotation). This strongly supports our hypothesis: for these models, the mandate
to generate explanatory text (CoT) interferes with their native visual-spatial judgment, acting as
a cognitive distraction rather than an aid. In contrast, top-tier closed-source models demonstrate
superior resistance to this interference, likely due to specialized RL-based reasoning training, allowing
them to leverage CoT effectively.

4.2.3 ROBUSTNESS TO PROMPTING AND EXTRACTION STRATEGIES

To rule out the possibility that the observed CoT degradation is an artifact of specific prompt
engineering or parsing failures, we conducted a sensitivity analysis in Table 4. First, we tested models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Mental Animation-Mechanical System-Level 0

Thinking Process:
 1. Define the system and motion:
 We have an epicyclic gear train. The orange gear (Sun)
is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the
orange gear and rotates clockwise (ω_y < 0). The green gear
(Planet 2) meshes with the yellow gear, and is identical to it
(N_g = N_y). The yellow and green gears are carried by an
implicit arm that revolves around the center of the orange
gear. We need to find the absolute rotation (spin) and
revolution (orbit) of the green gear relative to the fixed
orange gear.
 2. Determine the arm's revolution (ω_arm):
 The relationship between the sun, planet, and arm is
given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm)
= -N_o / N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm)
= -N_o / N_y.
 ……
Final Answer: C
→ Can’t intuitively thinking without theoretical derivation

Question: In the coaxial system shown, the orange gear is
fixed, and the yellow and green gears are identical in shape.
If the yellow gear rotates clockwise, what is the motion of
the green gear relative to the orange gear?

Choices:
 A. Clockwise rotation,
 clockwise revolution
 B. Clockwise rotation,
 counterclockwise revolution
 C. No rotation,
 clockwise revolution
 D. No rotation,
 counterclockwise revolution

Mental Folding-Cube Reconstruction-Level

Thinking Process:
 1. Identify the faces and their opposite pairs:
 Label the faces in the net based on the number of
dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5
(where 1 is below 3, and 5 is below 6)
 Determine opposite faces by folding mentally or
noting faces separated by one other face in a straight line
(or around corners):
 The face with 4 dots is opposite the face with 1 dot.
 The face with 3 dots is opposite the face with 6 dots.
 The face with 2 dots is opposite the face with 5 dots.
 2. Evaluate the options based on opposite faces:
 A cube view can only show faces that are adjacent to
each other. Opposite faces can never be seen together.
 Option A: Shows faces with 4 dots, 3 dots, and 1 dot.
Since 4 and 1 are opposite faces, this view is impossible
 ……

Question: The left image shows the net (unfolded pattern)
of a cube, with six faces having different patterns. The net
is folded upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which combination of
adjacent patterns is possible to see?
Choices: A. A B. B C. C D. D

a b c d

Final Answer: C
→ Wrong pattern detection
→ Wrong inference of the structure of cube nets and the
symmetrical relationships between faces after folding

Visual Penetration-Cube Assembly-Level 0

Question: The top left image shows the
original complete cube stack made of
equal-sized cubes. It can be formed by
combining the small cube stack on the
right(part 1) with one of the options below.
Which option completes the original cube
stack?

Thinking Process:
 ……
 3. Determine the Missing Part (Complete Stack -
Part 1):
 Subtract the cubes in Part 1 from the Complete Stack
for each column position: Back-Left Column: 2 (Complete) -
2 (Part 1) = 0 cubes. Back-Right Column: 2 (Complete) - 0
(Part 1) = 2 cubes (column 2 high). Middle-Left Column: 2
(Complete) - 1 (Part 1) = 1 cube (must be the top cube).
Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.
Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.
Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube
(must be the bottom cube).
 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4
cubes.
 Structure of Missing Part: A column of 2 cubes in the
back-right position, a single cube in the middle-left top
position, and a single cube in the front-right bottom position.
 ……

Choices:
 A. A B. B C. C
 D. All three other options are incorrect

Final Answer: C
→ Incorrect calculation method

Mental Animation-Block Moving-Level 1

Thinking Process:
 1. Analyze States:
 Identify block positions (R, G, DB, P, C) in Initial and
Final states using a consistent coordinate system (e.g., R at
0,0,0). Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0),
C(1,1,1).
 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1).
 The change is G swaps with DB.
 ……

Question: … During the transformation process, blocks can
move one unit in any direction (forward, backward, left, right,
up, down). If the target position is empty, the block can move
there directly; if the target position already has a block, they
swap places. Blocks cannot float in the air. If a block is
moved away from a position, any block above it will fall
down until reaching a supporting surface. The xyz axes are
shown in the diagram, and each block's position can be
precisely identified using coordinates (x1,y1,z1). Which of
the following transformation sequences can change the cube
stack from the initial state to the final state shown in the
diagram?

Choices:
 A. (1, 1, 1) x- -- (0, 0, 0) x+
 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-
 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+
 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Final Answer: D
→ Missing 1 block and the positions of blocks are wrong

a b c ed

Figure 5: Comparison of error type distributions, with chart (a) showing the overall breakdown
and charts (b-e) detailing results for specific MLLMs: (b) Gemini-2.5, (c) o1, (d) Qwen2.5-VL-72B
and (e) Qwen2.5-VL-7B. Errors are classified into six categories: Perceptual, Spatial Transformation,
Methodological, Instruction Following, Spatial Memorization, and Calculation & Reasoning.

with an alternative CoT prompt template (detailed in Appendix E.2). As shown in Table 4(a), the
performance trends remained consistent, with Qwen2.5-VL-72B still underperforming compared to
its non-CoT baseline (35.00%). Second, we compared two distinct answer extraction rules (truncated
letter matching as Rule A vs. full-format regex matching as Rule B, detailed in Appendix E.4).
Table 4(b) reveals that the discrepancy between rules is negligible (< 1.2%), confirming that the
negative impact of CoT (ranging from -5% to -9%) is a genuine reasoning failure, not a parsing error.

4.3 ERROR ANALYSIS

This section first presents a statistical error analysis across several representative models to identify
common failure modes, followed by a detailed case study of Gemini-2.5-pro to illustrate its specific
reasoning processes.

4.3.1 STATISTICAL ERROR ANALYSIS

This evaluation was conducted primarily through manual review (2 human annotators), utilizing
Gemini-2.5-pro as an assistive tool based on 6 manually defined error categories, including perceptual,
spatial transformation, spatial memorization, instruction following, methodological, and calculation
& reasoning error (detailed in Appendix E.6.2). To account for diversity in developers, model
sizes, and open/closed-source paradigms, we selected 4 models for deeper analysis: Gemini-2.5-
pro and o1 (the top-performing closed-source models), Qwen2.5-VL-72B (a leading open-source
model), and its smaller counterpart, Qwen2.5-VL-7B. To ensure the reliability of our error taxonomy,
two annotators independently annotated a subset of 100 errors. We calculated the Cohen’s Kappa
coefficient (κ = 0.85), indicating strong inter-annotator agreement. Disagreements were resolved
through discussion with a third expert.

Perceptual and Spatial Transformation Errors Dominate Failures The dominance of Perceptual
and Spatial Transformation errors, which collectively account for nearly 60% of all failures, quantita-
tively supports our central hypothesis that the primary MLLM bottleneck stems from fundamental
failures in visual perception and transformation, not from high-level reasoning deficits. In contrast,
the low frequency of Calculation & Reasoning and Instruction Following errors confirms the bench-
mark’s effective isolation of spatial deficits. Methodological errors, the third-largest category at over
23%, indicate that models often adopt suboptimal problem-solving strategies. This highlights a clear
direction for future improvements: enhancing spatial visualization capabilities by augmenting the
training data with more correct solutions.

Model Scaling Fails to Resolve Core Spatial Deficits A model’s absolute error count correlates with
its performance rank: Gemini-2.5-pro had the fewest errors (204), followed by o1 (236), Qwen2.5-
VL-72B (272), and Qwen2.5-VL-7B (328). Although top models show similar error profiles, Gemini-
2.5-pro’s lower rate of Methodological errors partly explains its superior performance. The limits of
model scaling become evident when comparing Qwen2.5-VL-7B and Qwen2.5-VL-72B. Despite a
tenfold parameter increase, their core error patterns remained strikingly similar, with Perceptual and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Mental Animation-Mechanical System-Level 0

Thinking Process:
 1. Define the system and motion:
 We have an epicyclic gear train. The orange gear (Sun)
is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the
orange gear and rotates clockwise (ω_y < 0). The green gear
(Planet 2) meshes with the yellow gear, and is identical to it
(N_g = N_y). The yellow and green gears are carried by an
implicit arm that revolves around the center of the orange
gear. We need to find the absolute rotation (spin) and
revolution (orbit) of the green gear relative to the fixed
orange gear.
 2. Determine the arm's revolution (ω_arm):
 The relationship between the sun, planet, and arm is
given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm)
= -N_o / N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm)
= -N_o / N_y.
 ……
Final Answer: C
→ Can’t intuitively thinking without theoretical derivation

Question: In the coaxial system shown, the orange gear is
fixed, and the yellow and green gears are identical in shape.
If the yellow gear rotates clockwise, what is the motion of
the green gear relative to the orange gear?

Choices:
 A. Clockwise rotation,
 clockwise revolution
 B. Clockwise rotation,
 counterclockwise revolution
 C. No rotation,
 clockwise revolution
 D. No rotation,
 counterclockwise revolution

Mental Folding-Cube Reconstruction-Level

Thinking Process:
 1. Identify the faces and their opposite pairs:
 Label the faces in the net based on the number of
dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5
(where 1 is below 3, and 5 is below 6)
 Determine opposite faces by folding mentally or
noting faces separated by one other face in a straight line
(or around corners):
 The face with 4 dots is opposite the face with 1 dot.
 The face with 3 dots is opposite the face with 6 dots.
 The face with 2 dots is opposite the face with 5 dots.
 2. Evaluate the options based on opposite faces:
 A cube view can only show faces that are adjacent to
each other. Opposite faces can never be seen together.
 Option A: Shows faces with 4 dots, 3 dots, and 1 dot.
Since 4 and 1 are opposite faces, this view is impossible
 ……

Question: The left image shows the net (unfolded pattern)
of a cube, with six faces having different patterns. The net
is folded upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which combination of
adjacent patterns is possible to see?
Choices: A. A B. B C. C D. D

a b c d

Final Answer: C
→ Wrong pattern detection
→ Wrong inference of the structure of cube nets and the
symmetrical relationships between faces after folding

Visual Penetration-Cube Assembly-Level 0

Question: The top left image shows the
original complete cube stack made of
equal-sized cubes. It can be formed by
combining the small cube stack on the
right(part 1) with one of the options below.
Which option completes the original cube
stack?

Thinking Process:
 ……
 3. Determine the Missing Part (Complete Stack -
Part 1):
 Subtract the cubes in Part 1 from the Complete Stack
for each column position: Back-Left Column: 2 (Complete) -
2 (Part 1) = 0 cubes. Back-Right Column: 2 (Complete) - 0
(Part 1) = 2 cubes (column 2 high). Middle-Left Column: 2
(Complete) - 1 (Part 1) = 1 cube (must be the top cube).
Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.
Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.
Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube
(must be the bottom cube).
 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4
cubes.
 Structure of Missing Part: A column of 2 cubes in the
back-right position, a single cube in the middle-left top
position, and a single cube in the front-right bottom position.
 ……

Choices:
 A. A B. B C. C
 D. All three other options are incorrect

Final Answer: C
→ Incorrect calculation method

Mental Animation-Block Moving-Level 1

Thinking Process:
 1. Analyze States:
 Identify block positions (R, G, DB, P, C) in Initial and
Final states using a consistent coordinate system (e.g., R at
0,0,0). Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0),
C(1,1,1).
 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1).
 The change is G swaps with DB.
 ……

Question: … During the transformation process, blocks can
move one unit in any direction (forward, backward, left, right,
up, down). If the target position is empty, the block can move
there directly; if the target position already has a block, they
swap places. Blocks cannot float in the air. If a block is
moved away from a position, any block above it will fall
down until reaching a supporting surface. The xyz axes are
shown in the diagram, and each block's position can be
precisely identified using coordinates (x1,y1,z1). Which of
the following transformation sequences can change the cube
stack from the initial state to the final state shown in the
diagram?

Choices:
 A. (1, 1, 1) x- -- (0, 0, 0) x+
 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-
 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+
 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Final Answer: D
→ Missing 1 block and the positions of blocks are wrong

a b c ed

Figure 6: Case study of Gemini-2.5-pro’s reasoning in different tasks.

Transformation errors still dominant. While the 72B model nearly eliminated Spatial Memorization
and Calculation errors, it made only limited gains on these most critical error types. This reveals a
crucial insight: scaling alone does not resolve fundamental spatial reasoning deficits. True progress
will likely require innovations in training paradigms, such as (DeepSeek-AI et al., 2025), rather than
merely increasing model size.

4.3.2 ANALYSIS OF TEST CASES

To complement the statistical analysis, we conducted a qualitative case study of Gemini-2.5-pro’s
reasoning processes. The model exhibited strong reasoning, following logically coherent and complete
processes, validating the effectiveness of our evaluation results. This analysis reveals a significant
gap between its abstract reasoning capabilities and its visuospatial processing abilities, reinforcing
that the primary bottleneck is not high-level logic but fundamental perception and visualization.

Deficiencies Found in Both Perception and Visualization A qualitative case study of Gemini-
2.5-pro’s reasoning reveals errors occur at two distinct stages: perceiving visible information and
reasoning about unseen spatial relationships. In processing visible information, the model exhibited
deficiencies in 2D tasks like color recognition and complex pattern identification (Figure 6.a). These
perceptual failures were more pronounced in 3D space, where it struggled to accurately identify
the quantity, position, and spatial relationships of stacked cubes (Figure 6.b). This difficulty is
quantified by a stark performance drop, with accuracy plummeting from 95% on the 2D Arrow
Moving task to just 35% on analogous 3D tasks. The model’s primary struggles, however, emerged
when reasoning about unseen information. It consistently failed tasks requiring mental manipulation,
such as accurately inferring the structure of cube nets or the symmetrical relationships between faces
after folding.

Pre-training Biases Drive Non-Simulative Problem Solving The case study also uncovered strong
pre-training biases that shape the model’s problem-solving approach. For Mechanical System tasks,
which were designed to be solvable via pure spatial visualization, Gemini-2.5-pro often defaulted to
applying theoretical physics formulas instead of mentally simulating the motion (Figure 6.c). This
behavior diverges sharply from human strategies and reveals a critical misalignment between the
model’s problem-solving approach and genuine spatial intelligence, suggesting its internal world
model is more analytical than simulative. These qualitative examples directly illustrate the types of
Methodological failures identified in our statistical analysis, forming a cohesive picture of current
MLLM limitations.

5 CONCLUSION

We introduce SpatialViz-Bench, a cognitive-science–inspired for testing spatial visualization in
MLLMs, designed for continuous task expansion while ensuring fair evaluation by preventing data
contamination via a dynamic test bank. It comprises 12 tasks (1,180 problems) across 4 core sub-
abilities: mental rotation, mental folding, visual penetration, and mental animation. Its results show
strong discriminative power, revealing the primary limitation in models is visuospatial acquisition
over logical reasoning, guiding targeted optimizations in spatial skills.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Data Licensing The SpatialViz-Bench benchmark is released under the MIT license to promote
academic and non-commercial research. Its licensing fully complies with all third-party assets used in
its creation, which include materials governed by the LGPL (e.g., FreeCAD), MIT (e.g., DeepCAD),
CC0 1.0 Universal Public Domain Dedication (e.g., assets from public websites), and default licenses
from websites that are known to support non-commercial fair use (e.g., assets from various video
websites). For SpatialViz-Bench, we abide by Fair Use §107: “the fair use of a copyrighted work,
including such use by · · · scholarship, or research, is not an infringement of copyright”, where fair use
is determined by “the purpose and character of the use, including whether such use is of a commercial
nature or is for nonprofit educational purposes” and “the effect of the use upon the potential market
for or value of the copyrighted work.”

Labor Practices All manual data processing and annotation adhered to fair labor practices. Data
review for the Mechanical System task was performed by non-author members of our research group,
who were compensated for their work via research stipends. All other manual processes, including
initial task creation, data verification, and model error analysis, were conducted by the author team as
part of their standard research responsibilities.

7 REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we have made all necessary materials available.
The supplementary materials include the complete source code used for data generation (11 of 12
tasks) and model evaluation. Due to submission size constraints, we have provided a "mini" version
of our benchmark data, which is sufficient to verify our experimental setup and replicate the core
results. Furthermore, to facilitate a clear understanding of our methodology, Appendix B.4 provides
detailed pseudocode for each key algorithm.

REFERENCES

Anthropic. Claude 3.5 Sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. Claude 3.7 Sonnet, 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Christopher Beckham, Martin Weiss, Florian Golemo, Sina Honari, Derek Nowrouzezahrai, and
Christopher Pal. Visual question answering from another perspective: Clevr mental rotation tests.
Pattern Recognition, 136:109209, 2023.

Blender Online Community. Blender - a 3d modelling and rendering package, 2016.

ByteDance. ByteDance Releases Doubao Large Model 1.5 Pro, Performance Surpassing GPT-4o and
Claude3.5Sonnet, 2025. URL https://www.aibase.com/news/www.aibase.com/
news/14931.

Huanqia Cai, Yijun Yang, and Winston Hu. Mm-iq: Benchmarking human-like abstraction and
reasoning in multimodal models. arXiv preprint arXiv:2502.00698, 2025.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14455–
14465, June 2024.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.aibase.com/news/www.aibase.com/news/14931
https://www.aibase.com/news/www.aibase.com/news/14931

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. In NeurIPS,
2024.

Google Deepmind. Gemini 2.5: Our most intelligent AI model, March
2025. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Sergio Della Sala, Colin Gray, Alan Baddeley, Nadia Allamano, and Lindsey Wilson. Pattern span:
A tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10):1189–1199, 1999.

Hongyuan Dong, Zijian Kang, Weijie Yin, Xiao Liang, Chao Feng, and Jiao Ran. Scalable vision
language model training via high quality data curation. arXiv preprint arXiv:2501.05952, 2025.

FreeCAD Team. FreeCAD: Official source code of freecad, a free and opensource multiplatform
3d parametric modeler. https://github.com/FreeCAD/FreeCAD, 2025. Version 1.0;
Accessed on 2025-08-15.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A Smith,
Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but not
perceive. arXiv preprint arXiv:2404.12390, 2024.

Leila Glass, Frank Krueger, Jeffrey Solomon, Vanessa Raymont, and Jordan Grafman. Mental paper
folding performance following penetrating traumatic brain injury in combat veterans: a lesion
mapping study. Cerebral Cortex, 23(7):1663–1672, 2013.

Wenyu Han, Siyuan Xiang, Chenhui Liu, Ruoyu Wang, and Chen Feng. Spare3d: A dataset for
spatial reasoning on three-view line drawings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14690–14699, 2020.

Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and
Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning
benchmark. arXiv preprint arXiv:2501.05444, 2025.

12

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2501.12948
https://github.com/FreeCAD/FreeCAD

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan
Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal
models for reasoning quality, robustness, and efficiency. arXiv preprint arXiv:2502.09621, 2025.

Yifan Jiang, Jiarui Zhang, Kexuan Sun, Zhivar Sourati, Kian Ahrabian, Kaixin Ma, Filip Ilievski, and
Jay Pujara. Marvel: Multidimensional abstraction and reasoning through visual evaluation and
learning. arXiv preprint arXiv:2404.13591, 2024.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017.

Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s “up” with vision-language models?
investigating their struggle with spatial reasoning. In EMNLP, 2023.

Chenglin Li, Qianglong Chen, Zhi Li, Feng Tao, and Yin Zhang. Vcbench: A controllable benchmark
for symbolic and abstract challenges in video cognition. arXiv preprint arXiv:2411.09105, 2024.

Fangyu Liu, Guy Edward Toh Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of
the Association for Computational Linguistics, 2023.

Meta AI. The Llama 4 herd: The beginning of a new era of natively multimodal AI innovation, 2025.
URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Shiwen Ni, Guhong Chen, Shuaimin Li, Xuanang Chen, Siyi Li, Bingli Wang, Qiyao Wang, Xingjian
Wang, Yifan Zhang, Liyang Fan, Chengming Li, Ruifeng Xu, Le Sun, and Min Yang. A survey on
large language model benchmarks, 2025. URL https://arxiv.org/abs/2508.15361.

Jiahao Nie, Gongjie Zhang, Wenbin An, Yap-Peng Tan, Alex C Kot, and Shijian Lu. Mmrel: A
relation understanding benchmark in the mllm era. arXiv preprint arXiv:2406.09121, 2024.

Qwen Team. Qvq: To see the world with wisdom, December 2024. URL https://qwenlm.
github.io/blog/qvq-72b-preview/.

Roger N Shepard and Jacqueline Metzler. Mental rotation of three-dimensional objects. Science, 171
(3972):701–703, 1971.

Fatemeh Shiri, Xiao-Yu Guo, Mona Far, Xin Yu, Reza Haf, and Yuan-Fang Li. An empirical
analysis on spatial reasoning capabilities of large multimodal models. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pp. 21440–21455, 2024.

Valerie K Sims and Mary Hegarty. Mental animation in the visuospatial sketchpad: Evidence from
dual-task studies. Memory & Cognition, 25:321–332, 1997.

Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuzzles:
Decoupling multimodal reasoning evaluation from domain knowledge, 2025. URL https:
//arxiv.org/abs/2504.10342.

Ilias Stogiannidis, Steven McDonagh, and Sotirios A Tsaftaris. Mind the gap: Benchmarking spatial
reasoning in vision-language models. arXiv preprint arXiv:2503.19707, 2025.

Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhening Xing, Wenran Liu,
Kaifeng Lyu, and Kai Chen. Lego-puzzles: How good are mllms at multi-step spatial reasoning?
arXiv preprint arXiv:2503.19990, 2025.

13

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://arxiv.org/abs/2508.15361
https://qwenlm.github.io/blog/qvq-72b-preview/
https://qwenlm.github.io/blog/qvq-72b-preview/
https://arxiv.org/abs/2504.10342
https://arxiv.org/abs/2504.10342

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint arXiv:2504.07491,
2025.

Louis Leon Thurstone. Primary mental abilities: Psychometric monographs no. 1. In The measurement
of intelligence, pp. 131–136. Springer, 1938.

Louis Leon Thurstone. Some primary abilities in visual thinking. Proceedings of the American
Philosophical Society, 94(6):517–521, 1950.

Sarah Titus and Eric Horsman. Characterizing and improving spatial visualization skills. Journal of
Geoscience Education, 57(4):242–254, 2009.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024. URL https://openreview.net/forum?id=QWTCcxMpPA.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Huijie Lv, Ming Zhang, Yanwei Fu, Qin Liu, Songyang Zhang, and Qi Zhang. Reasoning or
memorization? unreliable results of reinforcement learning due to data contamination, 2025. URL
https://arxiv.org/abs/2507.10532.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6772–6782, October 2021.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
models for advanced multimodal understanding. arXiv preprint arXiv:2412.10302, 2024.

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal llm logical reasoning
benchmark in visual contexts, 2024. URL https://arxiv.org/abs/2407.04973.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, et al. Qwen2. 5-omni technical report. arXiv preprint arXiv:2503.20215, 2025a.

Wenrui Xu, Dalin Lyu, Weihang Wang, Jie Feng, Chen Gao, and Yong Li. Defining and evaluating
visual language models’ basic spatial abilities: A perspective from psychometrics. arXiv preprint
arXiv:2502.11859, 2025b.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024a.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. arXiv preprint
arXiv:2412.14171, 2024b.

Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, Saining Xie, Manling Li, Jiajun
Wu, and Li Fei-Fei. Spatial mental modeling from limited views, 2025. URL https://arxiv.
org/abs/2506.21458.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

14

https://openreview.net/forum?id=QWTCcxMpPA
https://arxiv.org/abs/2507.10532
https://arxiv.org/abs/2407.04973
https://arxiv.org/abs/2506.21458
https://arxiv.org/abs/2506.21458

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Detailed Related Works 16

A.1 Current Landscape in Spatial Reasoning Benchmarks 16

A.2 The Inadequate Evaluation of Spatial Visualization 16

B Data Curation Details 17

B.1 Task Construction . 17

B.2 Programmatic Data Generation Pipeline . 18

B.3 Manul Design for Mechanical System Task . 19

B.4 Pseudocode . 20

C Dataset Characteristic 38

D Data Examples 39

E Evaluation Details 45

E.1 Models . 45

E.2 Prompts for Response Generation . 45

E.3 Zero-shot Setting . 45

E.4 Methods for Answer Extraction . 45

E.5 Human Performance . 46

E.6 Error Analysis . 47

F Detailed Results 48

F.1 Intra-Category Comparisons Across Levels . 48

F.2 Performance Comparison between Different Question Format 50

F.3 Test Cases . 55

G Declaration of LLM Usage 69

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DETAILED RELATED WORKS

A.1 CURRENT LANDSCAPE IN SPATIAL REASONING BENCHMARKS

Spatial reasoning is foundational to embodied intelligence, supporting critical tasks like navigation,
interaction, and scene understanding. The evaluation of this ability in MLLMs has historically
focused on two primary areas: spatial perception and spatial memorization, both of which rely on
interpreting directly observable, explicit visual information.

Spatial Perception, the ability to interpret spatial relationships from static visual input, is the most
established area. Early benchmarks targeted perceptual-level understanding, such as monocular
depth estimation and object localization. With the rise of MLLMs, this has shifted to visual question
answering formats. For instance, datasets like VSR (Liu et al., 2023) and What’sUp (Kamath et al.,
2023) benchmark models’ comprehension of object-centric spatial relationships. Others, including
SpatialVLM (Chen et al., 2024), Spatial-MM (Shiri et al., 2024), and MMRel (Nie et al., 2024),
further expand this evaluation to include relative distances, camera-object perspectives, and object
size comparisons. More advanced benchmarks like Blink (Fu et al., 2024), with its Multi-view
Reasoning task, and SpatialRGPT-bench (Cheng et al., 2024), which incorporates world knowledge
and multi-hop reasoning, have pushed the boundaries but remain centered on interpreting what is
explicitly perceived.

Spatial Memorization, the ability to track objects and their relationships in dynamic scenes, has been
increasingly addressed by video-based benchmarks. VCBench (Li et al., 2024) evaluates this through
tasks like Flash Grid and 3D Navigator, which test a model’s capacity to retain 2D spatial positions
and predict trajectories in 3D space. Similarly, VSI-bench (Yang et al., 2024b) focuses on skills
essential for navigation, such as egocentric-to-allocentric transformation and perspective-shifting.

While these efforts have built a strong foundation, they predominantly assess reasoning based on
explicit visual cues. They largely neglect the more advanced capability of spatial visualization—the
mental manipulation of shapes and inference of implicit spatial information—leaving a significant
gap in the current evaluation landscape.

A.2 THE INADEQUATE EVALUATION OF SPATIAL VISUALIZATION

Despite its importance, the evaluation of spatial visualization is fraught with challenges, including
obscured categorization in general benchmarks, high risk of data contamination, and a lack of
diagnostic depth.

Obscured Categorization Spatial visualization is often not recognized as a distinct spatial skill.
Instead, it is frequently subsumed under broader domains like mathematical or logical reasoning
within general-purpose MLLM benchmarks. Examples are widespread: it appears as the 3D-Geometry
category in MM-IQ (Cai et al., 2025) and MARVEL (Jiang et al., 2024), the 3D Spatial Simulation
category in EMMA (Hao et al., 2025), 3D Shapes in LogicVista (Xiao et al., 2024), IQ-Test in
Blink (Fu et al., 2024), and Descriptive/Transformation Geometry in Math-Vision (Wang et al.,
2024). While VisualPuzzles (Song et al., 2025) correctly situates it under spatial reasoning, this is
an exception. This common miscategorization diverts focus from developing and evaluating spatial
visualization as a core ability, treating it merely as a type of puzzle.

Risk of Data Contamination The difficulty of designing novel spatial visualization tasks means that
existing benchmarks often source questions from public materials like IQ tests, administrative exams,
and math contests. This practice creates a high risk of data contamination, as these materials are
likely part of the massive web-scraped datasets used for pretraining MLLMs. For example, work by
Xu et al. (2025b) collects data entirely from online psychological tests. Consequently, a model’s high
performance on such benchmarks may not reflect true reasoning capabilities but rather memorization
from the training data, compromising evaluation validity.

Non-Diagnostic Evaluation Current evaluations are often caught between two non-diagnostic ex-
tremes. On one hand, the heterogeneous, mixed-format questions in general benchmarks make it
difficult to isolate and diagnose errors in spatial visualization specifically. On the other hand, special-
ized datasets are often too narrowly focused on a single sub-skill. For example, SPARE3D (Han et al.,
2020) and CLEVR-MRT (Beckham et al., 2023) concentrate on mental rotation, while SRBench (Sto-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

giannidis et al., 2025) uses only paper folding tasks to assess the entire ability. This narrow scope
fails to provide a comprehensive assessment of a model’s overall spatial visualization proficiency.

In contrast to these prior works, our benchmark is designed to be systematic and diagnostic. It
is structured around 4 core sub-skills of spatial visualization identified in cognitive psychology,
with curated tasks targeting each ability. By employing procedural generation for most tasks, our
benchmark ensures greater reliability, reduces the risk of training-set overlap, and enables scalable
data creation for both evaluation and future training. Furthermore, by summarizing the essential
phases of spatial visualization, our framework allows for a more granular analysis to identify the root
causes of reasoning errors.

B DATA CURATION DETAILS

B.1 TASK CONSTRUCTION

1. Mental Rotation

2D Rotation Task. A colored grid pattern with a red corner marker is rotated by 90◦/180◦/270◦
to generate positive samples. Negative samples involve horizontal/vertical mirroring. We further
replace symmetric color fills with non-centrally symmetric patterns. Negatives include mirror flips
and internal rotations of pattern components, increasing spatial reasoning difficulty. As shown
in Algorithm 1.

3D Rotation Task. A connected cube stack is rotated along x/y/z axis to form positives. Negatives
are created by removing one cube or mirroring the isometric view, ensuring no simple rotation
can reproduce them. Spatial complexity is increased by enlarging assembly dimensions, requiring
enhanced 3D rotational reasoning. As shown in Algorithm 2 and Algorithm 3.

Three-View Projection Task. This task has two categories. Firstly, given isometric, front, and
top views of a connected cube stack with marked reference cubes, the task is to select the correct
left view. Negatives involve altering reference cube positions or substituting the right view. We
further introduce real engineering parts from the DeepCAD dataset (Wu et al., 2021), rendered into
standard projections via FreeCAD. Negatives are crafted through random internal lines deletion, view
flipping/rotation, or transformations on unseen views. As shown in Algorithm 4 and Algorithm 5.

2. Mental Folding

Paper Folding Task. A Python-based pipeline generates m× n grid patterns undergoing sequential
folds (vertical/horizontal/diagonal), followed by hole-punching and unfolding. The task requires
identifying the correct unfolded hole distribution. Negative samples are generated by mirroring,
deleting, adding, or relocating holes to violate fold-induced symmetry. Task difficulty increases with
more folds, larger grids, and denser hole placements. As shown in Algorithm 6 and Algorithm 7.

Cube Unfolding Task. Given a cube with six uniquely colored faces and a view from a corner
(three visible faces), the task is to select the correct 2D net (11 possibilities as shown in Figure 7).
Positives can be crafted either by using different cube nets of the same cube or by fixing the mapping
of visible faces while randomly shuffling the remaining faces. Negatives are crafted by swapping
visible face colors or flipping visible-opposite face pairs. We further replace solid colors with
non-centrally symmetric patterns. View angles prioritize faces with asymmetric patterns. Internal
rotations of pattern components are introduced to further increase the reasoning difficulty. To push
the difficulty even further, all six faces feature random colored-dot patterns on a 3×3 grid. As shown
in Algorithm 8, Algorithm 9 and Algorithm 10.

Cube Reconstruction Task. Cubes have six uniquely colored faces. Two task variants exist: (1)
select the correct vertex view of a cube when given its net pattern, with negative samples created by
mirroring the correct view; (2) identify the color of a face opposite to a given colored face. Difficulty
progression follows the cube unfolding tasks. As shown in Algorithm 8 and Algorithm 11.

3. Visual Penetration

Cross-Section Task. Nine basic geometric solids (e.g., triangular/rectangular/circular prisms/pyra-
mids/frustums) are combined in pairs with conical shapes on top. Cross-sections are generated by
slicing the composite shapes using planes parallel to the XY/YZ/XZ planes. Negative samples are

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1-4-1-0

2-3-1-0

1-4-1-51-4-1-41-4-1-31-4-1-21-4-1-1

2-3-1-1 2-3-1-2 2-2-2 3-3

Bt

F

Bk

R

T
L

Bt

Bk

R

T
L

F

Bk

Bt
R

T
LF

Bt

Bk

R
T

L

F

Bk
Bt

R
T

L
F

Bt

R

T
L

Bk

F

Bt

Bk
L

R
TF

Bt

Bk

L

R

TF

Bt

Bk

R

T

L

F

Bt

R

Bk

L

F

T

Bt

R

T

Bk

L

F Bt: Bottom

T: Top

F: Front

Bk: Back

R: Right

L: Left

Figure 7: The eleven unfolded patterns of a cube with their corresponding numbered names. Assuming
the square in row 1, position 0 represents the bottom face, and position 1 represents the right face, the
corresponding arrangement of the remaining faces can be determined, facilitating the rotation of the
cube.

constructed by adjusting the relative geometric proportions within the composite. Task complexity
is increased by introducing composites with three solids, which often produce disconnected cross-
sections that demand enhanced visual reasoning. Additional complexity is introduced by generating
oblique cross-sections at 45◦/135◦. As shown in Algorithm 12.

Cube Counting Task. The task requires inferring the total cube count of a connected cube stack based
on two orthogonal projection views. The minimum and maximum counts are mathematically derived
to guide the construction of answer options. Constraints increase to three orthogonal projection
views, reducing the number of possible solutions while increasing view integration complexity. Task
difficulty further increases by expanding the spatial dimensions of the cubic assemblies. As shown
in Algorithm 2 and Algorithm 13.

Cube Assembly Task. A pyramid-like cube stack is split into two connected parts. Tasks require
identifying the complementary piece that fits the reference part. Negative samples are generated by
modifying the correct piece through the addition or removal of cubic units. The difficulty is further
increased by enlarging the spatial dimensions and dividing the structure into three parts instead of
two. As shown in Algorithm 14 and Algorithm 15.

4. Mental Animation

Arrow Moving Task. For the easy version, an arrow with random initial position and orientation in a
3×3 grid operates by ego-centric rules: movement occurs in 4 directions (forward/backward/left/right),
with "forward" always indicating the arrow’s current orientation. The arrow reorients to the movement
direction after each movement. Valid operation sequences are algorithmically generated; negative
samples share the same initial state but yield incorrect endpoints. For the hard version, multiple
colored arrows are introduced with extended rules: empty positions allow direct entry; occupied
positions trigger object exchanges while maintaining Level 0 movement principles. Tasks include
predicting final states from sequences, or inferring correct sequences from state pairs. As shown
in Algorithm 16, Algorithm 17, Algorithm 18 and Algorithm 19.

Block Moving Task. Colored cube stack combines directional movement with gravity simulation.
Cubes move along six directions with unsupported cubes falling until reaching support and swapping
positions as same as Arrow Moving Task. Increased spatial complexity and longer sequences elevate
reasoning difficulty. As shown in Algorithm 20 and Algorithm 21.

Mechanical System Task. We use open-source mechanical system simulations, classifying com-
plexity by module quantity and designing appropriate questions. These tasks assess advanced mental
animation abilities, particularly to understand how the motion of one component affects others.

B.2 PROGRAMMATIC DATA GENERATION PIPELINE

FreeCAD, an open-source Computer-Aided Design (CAD) software, provides deep integration with
Python programming language, enabling parametric model construction through programming. We
leveraged the synergy between FreeCAD and Python to successfully automate the generation of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

9 spatial visualization tasks: 2DRotation, 3DRotation, 3ViewProjection, CubeFolding, CubeRe-
construction, CrossSection, CubeCounting, CubeAssembly, and BlockMoving. Additionally, two
tasks—PaperFolding and ArrowMoving—were implemented solely using Python. For the Mechani-
calSystem task, due to its complexity and specific requirements, we employed precise manual design
methods. To supplement the task overview presented in Section 3.3, the following sections provide
detailed pseudocode for each programmatically generated task, offering more systematic and in-depth
technical insights.

Mental Rotation Tasks. Algorithm 1 presents the pseudocode for the 2D Rotation Task. For the 3D
Rotation Task, Three-View Projection Task, Cube Counting Task, and Block Moving Task, we need
to construct connected cube stacks, with the core functions detailed in Algorithm 2. Algorithm 3
demonstrates the complete implementation process of the 3D Rotation Task. The method for
generating three-view projections of marked cube stacks is elaborated in Algorithm 4. Algorithm 5
describes the process of importing models from the DeepCAD dataset and generating their three-view
projections.

Mental Folding Tasks. Algorithm 6 implements a Paper class for simulating the dynamic processes
of paper folding, holes punching, and unfolding. Based on this simulation framework, Algorithm 7
constructs the data for the Paper Folding Task. Algorithm 8 presents the core functions for trans-
forming 11 standard cube nets (as shown in Figure 7) into three-dimensional cubes. Utilizing these
transformation functions, while Algorithm 9 demonstrates how different unfolding patterns can
produce the same cube.Algorithm 10 and Algorithm 11 provide the complete pseudocode implemen-
tations for the Cube Unfolding Task and Cube Reconstruction Task, respectively.

Visual Penetration Tasks. Algorithm 12 details the implementation pseudocode for the Cross-
Section Task. Algorithm 13 comprehensively presents the data generation procedure as well as the
mathematical calculation process to guide the construction of answer options in the Cube Counting
Task. Algorithm 14 contains the core functions for decomposing a complete cube stack into multiple
connected parts. Building upon these functions, Algorithm 15 provides the complete construction
pseudocode for the Cube Assembly Task.

Mental Animation Tasks. Algorithm 16 implements an ArrowPath class for simulating the move-
ment process of an arrow centered on itself. Algorithm 17 implements an ArrowMap class that inherits
from the ArrowPath class, designed to simulate movement and exchange operations in multi-arrow
environments. Based on the ArrowPath class, Algorithm 18 details the data construction process
for the single-arrow version of the Arrow Moving Task. Correspondingly, using the ArrowMap
class, Algorithm 19 elucidates the data construction process for the multi-arrow version of the Arrow
Moving Task. Algorithm 20 implements a Block class for simulating the movement and exchange
processes of blocks that follow gravitational rules. Building upon this Block class, Algorithm 21
presents the complete pseudocode implementation of the Block Moving Task.

B.3 MANUL DESIGN FOR MECHANICAL SYSTEM TASK

To ensure the objectivity and quality of the Mechanical System task, we first collected simulation
materials from open-source platforms. The question-answer pairs were designed by members
of the author team, who strictly followed a standardized template based on the observable and
deterministic animations (e.g., "If component A rotates clockwise, how does component B move?").
This structured process was designed to minimize subjectivity and focus the evaluation specifically
on a model’s ability to infer causal dynamics from visual input. To verify the accuracy of these
question-answer pairs, we recruited two graduate student annotators from our research group, who
received compensation for their contributions. They first performed independent reviews of each
sample and then discussed their findings to resolve any discrepancies and reach a final consensus.
This rigorous process ultimately produced 80 validated data samples.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 PSEUDOCODE

Algorithm 1 2D Rotation Task

1: Input: Color(Pattern) set C, grid size (H,W), unit length s, marker length s′, task mode m
2: Initialize binary matrix M ∈ {0, 1}H×W with random values
3: Initialize empty lists positive_samples, negative_samples
4: function DRAWGRIDWITHMARKER(M, C, H, W, s, s′, record = list())
5: for i← 0 to H−1 do
6: for j ← 0 to W−1 do
7: pos← (j · s, (H − 1− i) · s, 0)
8: square←FreeCAD.makePlane(s, s, (pos, 0◦))
9: if M [i][j] = 1 then

10: if record is empty then:
11: Randomly select c ∈ C and assign c to square at pos
12: Append c to record
13: else
14: Assign rotate(Pop(record, 0), 90◦) to square at pos
15: end if
16: end if
17: end for
18: end for
19: Randomly select corner ∈ {“top_left”, “top_right”, “bottom_left”, “bottom_right”}
20: posmarker ← get_marker_pos(H, W, s, s′, corner)
21: FreeCAD.makePlane(s′, s′, (posmarker, 0

◦)) with red color
22: img ← FreeCAD.saveImage()
23: return img, record
24: end function
25: ref_img, record← DrawGridWithMarker(M,C,H,W, s, s′)
26: if m = “pattern” then
27: transform_image, record← DrawGridWithMarker(M,C,H,W, s, s′, record)
28: Append transform_img to negative_samples
29: end if
30: for angle ∈ {90◦, 180◦, 270◦} do
31: img ← rotate(ref_img, angle)
32: Append img to positive_samples
33: end for
34: for flip_dir ∈ {“horizontal”, “vertical”} do
35: img ← flip(ref_img, flip_dir)
36: Append img to negative_samples
37: end for
38: samples← (positive_samples, negative_samples)
39: Shuffle samples to assign [A,B,C,D] and record answer_id
40: data← create_data(ref_img, samples, question, answer_id)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2 Fucntions for Creating Cubes with None-isolated Regions

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: function CREATECUBE(x, y, z)
4: cube←FreeCAD.makebox(s, s, s, (x, y, z)) and append cube to cubes
5: placement[z][y][x]← 1
6: end function
7: function CREATECUBES(X, Y, Z)
8: for z ← 0 to Z−1 do
9: for y ← 0 to Y−1 do

10: for x← 0 to X−1 do
11: if z = 0 or placement_space[z−1][y][x] = 1 then
12: With 50% probability CreateCube(x, y, z)
13: end if
14: end for
15: end for
16: end for
17: end function
18: function CONNECTISOLATEDCUBES(X, Y)
19: cubesxy ← {(x, y) | placement[0][y][x] = 1}
20: Initialize empty set visited, empty list regions
21: directions← [(-1,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)]
22: for all (x, y) ∈ cubesxy do
23: if (x, y) /∈ visited then
24: Initialize empty list region, empty queue queue
25: Add (x, y) to visited, add (x, y) to queue
26: while queue is not empty do
27: (cx, cy)← popLeft(queue)
28: Append (cx, cy) to region
29: for all (dx, dy) ∈ directions do
30: (nx, ny)← (cx+ dx, cy + dy)
31: if 0 ≤ nx < X and 0 ≤ ny < Y and (nx, ny) /∈ visited

and placement[0][ny][nx] = 1 then
32: Add (nx, ny) to visited, add (nx, ny) to queue
33: end if
34: end for
35: end while
36: Append region to regions
37: end if
38: end for
39: if |regions| > 1 then
40: for i← 0 to |regions| − 2 do
41: Find (x1, y1), (x2, y2) with min L1 distance between regions[i] and regions[i+ 1]
42: x← x1, y ← y1
43: while (x ̸= x2) or (y ̸= y2) do
44: if x ̸= x2 and y ̸= y2 then
45: x← x± 1, y ← y ± 1
46: else if x ̸= x2 then
47: x← x± 1
48: else if y ̸= y2 then
49: y ← y ± 1
50: end if
51: if placement_space[0][y][x] = 0 then
52: CreateCube(placement, x, y, 0)
53: end if
54: end while
55: end for
56: end if
57: end function

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 3 3D Rotation Task

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists positive_samples, negative_samples
4: Update placement, cubes with CreateCubes(X, Y, Z)
5: Update placement, cubes with ConnectIsolatedCubes(X, Y)
6: ref_img ← FreeCAD.saveImage(cubes)

7: for i← 1 to 4 do
8: Randomly select axis ∈ {x, y, z} and angle ∈ {90◦, 180◦, 270◦}
9: rotated_cubes← rotate(cubes, axis, angle)

10: rotated_img ← FreeCAD.saveImage(rotated_cubes)
11: Append rotated_img to positive_samples
12: end for
13: cubes′ ←Randomly remove a cube from cubes and rotate the left cubes as above
14: rotated_removed_img ← FreeCAD.saveImage(cubes′)
15: Append rotated_removed_img to negative_samples

16: for flip_dir ∈ {“horizontal”, “vertical”} do
17: Randomly choose sample from positive_samples
18: img ← flip(sample, flip_dir)
19: Append img to negative_samples
20: end for
21: samples← (positive_samples, negative_samples)
22: Shuffle samples to assign [A,B,C,D] and record answer_id
23: data← create_data(ref_img, samples, question, answer_id)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 Three-View Projection Task with Marked Cube Stack

1: Input: Spatial size (X,Y, Z), cube size s
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists positive_samples, negative_samples
4: Update placement, cubes with CreateCubes(X, Y, Z)
5: Update placement, cubes with ConnectIsolatedCubes(X, Y)

6: function COLORVISIBLEFACES(X, Y, Z, colored_num)
7: cubes← Find cubes that can be seen from front or top or left view
8: Randomly color min(colored_num, |cubes|) cubes in red
9: end function

10: function SAVEVIEWS(cubes)
11: Initialize empty list views
12: for all view ∈ {“Isometric”, “Top”, “Front”, “Left”} do
13: img ←FreeCAD.saveView(view) and append img to views
14: end for
15: return views
16: end function
17: Update cubes with ColorVisibleFaces(X,Y, Z, colored_num)
18: views← SaveViews(cubes)
19: Select left_view from views to positive_samples
20: Select right_view from views to negative_samples

21: Cleaer all colors and update cubus with ColorVisibleFaces(X,Y, Z, colored_num) as
above

22: new_views← SaveViews(cubes)
23: Select left_view and right_view from new_views to negative_samples

24: samples← (positive_samples, negative_samples)
25: Shuffle samples to assign [A,B,C,D] and record answer_id
26: ref_img ← (isometric_view, top_view, front_view)
27: data← create_data(ref_img, samples, question, answer_id)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 5 Three-View Projection Task with Models from DeepCAD Datasets

1: Input: step file path pth
2: Initialize empty lists positive_samples, negative_samples
3: shape←Open(pth)
4: views← SaveViews(shape)
5: function CREATEINCORRECTVIEW(view, mode)
6: if mode = 0 then
7: img′ ←Extract all internal lines and randomly delete 1 line
8: else if mode = 1 then
9: img′ ←rotate(view, 90◦)

10: else if mode = 2 then
11: img′ ← flip(view, “horizontal” or “vertical’)
12: end if
13: return img’
14: end function
15: ref_view ←Choose view from views with max area
16: (questioned_view, other_view)← Randomly assign views except for ref_view
17: Append questioned_view to positive_samples
18: for mode← 0 to 2 do
19: incorrect_view ←CreateIncorrectView(questioned_view or other_view, mode)
20: Append incorrect_view to negative_samples
21: end for
22: samples← (positive_samples, negative_samples)
23: Shuffle samples to assign [A,B,C,D] and record answer_id
24: ref_img ← (isometric_view, top_view, front_view)
25: data← create_data(ref_img, samples, question, answer_id)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 6 Simulation for Paper Folding, Punching and Unfolding

1: Class Paper
2: Attributes:
3: grid, complete_grid: 2D arrays representing current and complete paper states
4: original_rows, original_cols: initial dimensions
5: current_rows, current_cols: current dimensions after folding
6: folds: list of fold operations
7: function FOLD(direction, line or diagonal_points)
8: if direction is horizontal then
9: Calculate folded area

10: Update complete_grid by marking folded area as -1
11: Create new grid with updated dimensions
12: else if direction is vertical then
13: Similar to horizontal but for columns
14: else if direction is diagonal then
15: Calculate diagonal line equation
16: Mark appropriate triangular area as -1
17: end if
18: Record fold operation in folds
19: end function
20: function PUNCH(points)
21: for each (x, y) in points do
22: Set grid[x][y]← 1
23: Set corresponding complete_grid position to 1
24: end for
25: Record punch operation in folds
26: end function
27: function UNFOLD
28: for each fold in reverse folds do
29: if fold is horizontal then
30: Mirror grid about fold line
31: else if fold is vertical then
32: Mirror grid about fold line
33: else if fold is diagonal then
34: Mirror grid about diagonal line
35: end if
36: Update current dimensions of paper
37: end for
38: Clear folds list
39: end function
40: function CREATEINCORRECTVIEW(mode)
41: Create incorrect variant by:
42: if mode = “row” then
43: Either remove a row of holes, add extra row, or swap rows
44: else if mode = “col” then
45: Either remove a column of holes, add extra column, or swap columns
46: else
47: Combine row and column errors
48: end if
49: Update paper with above changes
50: end function

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algorithm 7 Paper Folding Task

1: Input: Dimensions of paper (rows, cols), number of folds steps, number of holes punches
2: Initialize paper with dimensions rows× cols
3: Initialize empty lists ref_imgs, positive_samples, negative_samples
4: for step← 1 to steps do
5: if step = steps then
6: direction← “diagonal”
7: else
8: direction← Randomly select direction ∈ [“horizontal”,“vertical”]
9: end if

10: if direction = “horizontal” then
11: line← randomInt(1, paper.current_rows− 1)
12: paper.Fold(direction, line)
13: else if direction = “vertical” then
14: line← randomInt(1, paper.current_cols− 1)
15: paper.Fold(direction, line)
16: else if direction = “diagonal” then
17: diagonal_points← Randomly select one set of 45-degree line endpoints
18: paper.Fold(direction, diagonal_points)
19: end if
20: img ←draw_paper(paper) and append img to ref_imgs
21: end for
22: points← Randomly select punches zero positions
23: paper.Punch(points)
24: img ←draw_paper(paper) and append img to ref_imgs

25: paper.Unfold()
26: img ←draw_paper(paper) and append img to positive_samples

27: Initialize paper′ with same dimensions as paper
28: paper′.grid← paper.grid to copy the state of unfolded paper
29: Determine the incorrect view mode
30: for i←1 to 3 do
31: Update paper′ with paper′.CreateIncorrectView(mode)
32: img ←draw_paper(paper′) and append img to negative_samples
33: end for
34: samples← (positive_samples, negative_samples)
35: Shuffle samples to assign [A,B,C,D] and record answer_id
36: data← create_data(ref_imgs, samples, question, answer_id)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Algorithm 8 Functions for Reconstruting Cube from 11 Kinds of Cube Nets

1: Input: cube size s
2: Define rotation operators:
3: Rx(θ): Rotation about X-axis by θ degrees
4: Ry(θ): Rotation about Y-axis by θ degrees
5: Rz(θ): Rotation about Z-axis by θ degrees
6: function NET2CUBE(plane_name, map, view, rot)
7: Initialize placement dictionary planes
8: planes[“Top”]← ((s/2, s/2, s), Ry(180

◦))
9: planes[“Bottom”]← ((s/2, s/2, 0), Rx(0)

10: planes[“Right”]← ((s, s/2, s/2), Ry(−90◦))
11: planes[“Left”]← ((0, s/2, s/2), Ry(90

◦) ◦Rz(90
◦))

12: planes[“Back”]← ((s/2, s, s/2), Rx(90
◦))

13: if plane_name is “2-2-2” then
14: planes[“Top”]← (s/2, s/2, s), Rx(180

◦) ◦Rz(−90◦)
15: else if plane_name is “1-4-1” then
16: planes[“Left”]← (0, s/2, s/2), Ry(90

◦)◦
17: end if
18: if plane_name ∈ [“1-4-1-0”, “2-3-1-0”] then
19: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦))
20: else if plane_name ∈ [“1-4-1-1”, “1-4-1-4”, “2-3-1-1”, “2-2-2”] then
21: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(−90◦))
22: else if plane_name ∈ [“1-4-1-2”, “1-4-1-5”, “2-3-1-2”, “3-3”] then
23: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(180

◦))
24: else if plane_name is “1-4-1-3” then
25: planes[“Front”]← ((s/2, 0, s/2), Rx(−90◦) ◦Rz(90

◦))
26: end if
27: if plane_name ∈ [“1-4-1-4”, “1-4-1-5”] then
28: planes[“Back”]← ((s/2, s, s/2), Rx(90

◦) ◦Rz(90
◦))

29: end if
30: Form a cube by:
31: for all face_name ∈ planes do
32: placement← planes[face_name]
33: square←FreeCAD.makePlane(s, s, placement)
34: c← map[face_name]
35: if rot is true then
36: Assign rotate(c, 90◦) to square at placement
37: else
38: Assign c to square at placement
39: end if
40: end for
41: img ← FreeCAD.saveView(view)
42: return img
43: end function
44: function DRAWNET(net, map, s, rot)
45: for face_name ∈ net do
46: i, j ← net[face_name]
47: pos← (j · s, (H − 1− i) · s, 0)
48: square←FreeCAD.makePlane(s, s, (pos, 0◦))
49: c← map[face_name]
50: if rot is true then
51: Assign rotate(c, 90◦) to square at pos
52: else
53: Assign c to square at pos
54: end if
55: end for
56: img ← FreeCAD.saveImage()
57: return img
58: end function

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm 9 Functions for Unfolding Cube to 11 kinds of Cube Nets

1: Using the same parameter definitions as those in Algorithm 8
2: function DRAWNETWIPIVOT(plane_name, net,map, s, rot)
3: pivot_plane_name← “1-4-1-0”
4: Initialize rotation dictionary planes
5: if plane_name ∈ [“1-4-1-1”, “1-4-1-4”, “2-3-1-1”, “2-2-2”] then
6: planes[“Front”]← Rz(90

◦))
7: else if plane_name ∈ [“1-4-1-2”, “1-4-1-5”, “2-3-1-2”, “3-3”] then
8: planes[“Front”]← Rz(−180◦))
9: else if plane_name is “1-4-1-3” then

10: planes[“Front”]← Rz(−90◦))
11: end if
12: if plane_name ∈ [“1-4-1-4”, “1-4-1-5”] then
13: planes[“Back”]← Rz(−90◦))
14: end if
15: if plane_name ∈ [“2-3-1-0”, “2-3-1-1”, “2-3-1-2”, “3-3”, “2-2-2”] then
16: planes[“Left”]← Rz(−90◦))
17: end if
18: if plane_name is “2-2-2” then
19: planes[“Top”]← Rz(−90◦))
20: end if
21: Create a net which can form the same cube with pivot plane:
22: for face_name ∈ net do
23: i, j ← net[face_name]
24: pos← (j · s, (H − 1− i) · s, 0)
25: square←FreeCAD.makePlane(s, s, (pos, 0◦))
26: if rot is true then
27: Assign rotate(c, 90◦) to square at pos
28: else
29: Assign c to square at pos
30: end if
31: if plane_name ̸= “1-4-1-0” then
32: if face_name ∈ planes then
33: rotation← planes[face_name]
34: square.P lacement.Rotation← rotation
35: end if
36: end if
37: end for
38: img ← FreeCAD.saveImage()
39: end function

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Algorithm 10 Cube Unfolding Task

1: Input: Color(Pattern) set C, unit length s, task mode m
2: Initialize 11 cube nets

nets : {face_name : (i, j)|face_name ∈ {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”}}
3: Initialize empty lists positive_samples, negative_samples
4: map : {face_name : c|c ∈ C} ←Randomly shuffle set C and assign it to six faces
5: Randomly select a view ∈8 corner views of a cube
6: pivot_net_name← “1-4-1-0”
7: ref_img ←Net2Cube(pivot_net_name,map, view, rot = false)
8: for i← 1 to 2 do
9: plane_name, net← Randomly select net from nets

10: img ←DrawNetWiPivot(plane_name, net,map, s, rot = false)
11: Append img to positive_samples
12: if m = “pattern” then
13: img′ ←DrawNetWiPivot(plane_name, net,map, s, rot = true)
14: Append img′ to negative_samples
15: end if
16: end for
17: map′ ←Fix the mapping of face_name ∈ view, and random shuffle the others
18: for i← 1 to 2 do
19: plane_name, net← Randomly select net from nets
20: img ←DrawNetWiPivot(plane_name, net,map, s, rot = false)
21: Append img to positive_samples
22: end for
23: map′ ←Swap the colors(patterns) of a randomly selected face ∈ view with its opposite face
24: plane_name, net← Randomly select net from nets
25: img ←DrawNetWiPivot(plane_name, net,map′, s, rot = false)
26: Append img to negative_samples

27: samples← (positive_samples, negative_samples)
28: Shuffle samples to assign [A,B,C,D] and record answer_id
29: data← create_data(ref_img, samples, question, answer_id)

Algorithm 11 Cube Reconstruction Task

1: Input: Color(Pattern) set C, unit length s, task mode m
2: Initialize 11 cube nets

nets : {face_name : (i, j)|face_name ∈ {“Top”, “Bottom”, “Right”, “Left”, “Back”, “Front”}}
3: Initialize empty lists positive_samples, negative_samples
4: map : {face_name : c|c ∈ C} ←Randomly shuffle set C and assign it to six faces
5: net ∈ {0, 1}3×5 ← Randomly select net from nets
6: ref_img ←DrawNet(net,map, s, rot = false) and append img to positive_samples
7: for i← 1 to 3 do
8: view ← Randomly select a view from 8 corner views of a cube
9: img ←Net2Cube(net,map, view, rot = false)

10: Append img to positive_samples
11: end for
12: for flip_dir ∈ {“horizontal”, “vertical”} do
13: Randomly choose sample from positive_samples
14: img ← flip(sample, flip_dir)
15: Append img to negative_samples
16: end for
17: samples← (positive_samples, negative_samples)
18: Shuffle samples to assign [A,B,C,D] and record answer_id
19: data← create_data(ref_img, samples, question, answer_id)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 12 Cross-Section Task

1: Input: Number of objects num, number of sections per mode k, whether rotate the slicing plane
rot

2: Initialize candidate objects list objects, empty list selected_objects
3: Initialize empty lists positive_samples, negative_samples
4: function GETSECTIONS(compound, k, plane)
5: Initialize empty list imgs
6: Determine coordmin and coordmax from bounding box
7: step← (coordmax − coordmin)/(k + 1)
8: for i← 1 to k do
9: offset← coordmin + i× step

10: normal_vector ← unit vector normal to plane
11: section← FreeCAD.slice(compound, normal_vector, offset)
12: Rotate section for better visualization
13: img ← FreeCAD.savaImage(section) and append img to imgs
14: end for
15: return imgs
16: end function
17: function GETROTATEDSECTIONS(compound, axis, center)
18: axis_vector ← Corresponding unit vector of axis
19: plane← Parallel to axis
20: for angle ∈ {45◦, 135◦} do
21: axix_vector′ ← rotate(axis_vector, angle, plane)
22: offset← axix_vector · center
23: section← FreeCAD.slice(compound, axis_vector, offset)
24: Rotate section for better visualization
25: img ← FreeCAD.savaImage(section) and append img to imgs
26: end for
27: return imgs
28: end function
29: selected_objects←Randomly select num objects from objects
30: Randomly assign sizes to objects in selected_objects
31: compound← Create objects in FreeCAD and compound objects
32: center ←Obtain the center of compound object
33: for plane ∈ {“XY”,“XZ”, “YZ”} do
34: imgs← GetSections(compound, k, plane)
35: Append imgs to positive_samples
36: end for
37: if rot is true then
38: for axis ∈ {“x”, “y”, “z”} do
39: for angle ∈ {45◦, 135◦} do
40: imgs← GetRotatedSections(compound, axis, center)
41: Append imgs to positive_samples
42: end for
43: end for
44: end if
45: compound′ ←Randomly alter the relative ratios of objects in compound
46: imgs← Use any of the above approaches to obtain cross-sections of compound′

47:
48: Append imgs to negative_samples

49: samples← (positive_samples, negative_samples)
50: Shuffle samples to assign [A,B,C,D] and record answer_id
51: data← create_data(ref_img, samples, question, answer_id)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm 13 Cube Counting Task

1: Input: Spatial size (X,Y, Z), cube size s, number of constraint views num
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty list samples
4: function DETECTGRID(view, row_numcol_num)
5: contours←Find contours in view
6: Initialize grid matrix of size row_num× col_num
7: for contour ∈ contours do
8: (x, y, w, h)← Bounding rectangle of contour
9: row ← y/h, col← x/w

10: if row and col within bounds then
11: grid[row][col]← 1
12: end if
13: end for
14: return grid
15: end function
16: function GETCUBEANSWER(front, top, left, num)
17: sum_front_col← Column sums of front
18: sum_top_col← Column sums of top
19: max_2view ← sum_front_col · sum_top_col
20: min_2view ← sum(sum_top_col − 1 + sum_front_col)
21: if num = 2 then
22: return (max_2view,min_2view)
23: end if
24: sum_left_col← Column sums of left
25: Initialize answer matrix with the same dimension as top ∈ {0}H×W

26: for row ← 0 to H − 1 do
27: for col← 0 to W − 1 do
28: if top[row][col] = 1 then
29: ans[row][col]← min(sum_front_col[col], sum_left_col[row])
30: end if
31: end for
32: end for
33: max_3view ← sum(ans)
34: sum_top_row ← Row sums of top
35: min_3view ← max(sum(sum_top_row − 1 + sum_left_col),min_2view)
36: return (max_3view,min_3view)
37: end function
38: Update placement, cubes with CreateCubes(X, Y, Z)
39: Update placement, cubes with ConnectIsolatedCubes(X, Y)
40: (front_view, top_view, left_view)← SaveViews(cubes)
41: front_mat, top_mat, left_mat←

DetectGrid(front_view), DetectGrid(top_view), DetectGrid(left_view)
42: if num = 2 then
43: ref_img ← (top_view, front_view)
44: (max_view,min_view)← GetCubeAnswer(front_mat, top_mat, left_mat, 2)
45: else if num = 3 then
46: ref_img ← (top_view, front_view, leftview)
47: (max_view,min_view)← GetCubeAnswer(front_mat, top_mat, left_mat, 3)
48: end if
49: samples←Generate correct and incorrect nums based on the min_view to max_view range
50: Shuffle samples to assign [A,B,C,D] and record answer_id
51: data← create_data(ref_img, samples, question, answer_id)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 14 Functions for Splitting Cube Stack into Several Connected Parts

1: function GETNEIGHBORS(cube_pos, cubes)
2: (x, y, z)← cube_pos
3: Initialize empty list neighbours
4: for dx ∈ {−1, 0, 1} do
5: for dy ∈ {−1, 0, 1} do
6: for dz ∈ {−1, 0, 1} do
7: if |dx|+ |dy|+ |dz| = 1 then ▷ 6-connected neighborhood
8: neighbor_pos← (x+ dx, y + dy, z + dz)
9: if neighbor_pos ∈ cubes then

10: Append neighbor_pos to neighbours
11: end if
12: end if
13: end for
14: end for
15: end for
16: return neighbors
17: end function
18: function REGIONGROWING(cubes, max_cubes)
19: Initialize empty set part, empty list queue
20: start_pos← Randomly select a position from cubes and append start_pos to queue
21: while queue not empty and |part| < max_cubes do
22: current_pos← pop(queue, 0)
23: if current_pos /∈ part then
24: Add current_pos to part
25: neighbors← GetNeighbors(current_pos, cubes)
26: Extend [n ∈ neighbors | n /∈ part] to queue
27: end if
28: end while
29: return part
30: end function
31: function ISCONTINUOUS(part)
32: Initialize empty set part, empty list queue
33: start_pos← part[0] and append start_pos to queue
34: while queue not empty do
35: current_pos← pop(queue, 0)
36: if current_pos /∈ visited then
37: Add current_pos to visited
38: neighbors← GetNeighbors(current_pos, part)
39: Extend [n ∈ neighbors | n ∈ part and n /∈ visited] to queue
40: end if
41: end while
42: return Whether |visited| = |part|
43: end function
44: function SPLITCUBES(cubes, max_cubes, num_parts)
45: part1← RegionGrowing(cubes,max_cubes)
46: if IsContinuous(part1) then
47: remaining ← Remove part1 from cubes
48: end if
49: if IsContinuous(remaining) then
50: if num_parts = 2 then
51: return sort([part1, remaining]) by size
52: else if num_parts = 3 then
53: Similarly find part2 from remaining cubes as above
54: part3← Remove part2 from remaining
55: return sort([part1, part2, part3]) by size
56: end if
57: end if
58: end function

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 15 Cube Assembly Task

1: Input: Spatial size (X,Y, Z), cube size s, number of splitting parts k
2: Initialize zero value 3D tensors placement ∈ {0}Z×Y×X , empty list cubes
3: Initialize empty lists ref_imgs, positive_samples, negative_samples
4: function CREATECUBESPYRAMID(X, Y, Z)
5: Initialize num = 1
6: for y ← 0 to Y − 1 do
7: num = randomInt(num, min(y + 2, X))
8: for x← 0 to num− 1 do
9: CreateCube(x, y, 0)

10: end for
11: end for
12: for z ← 1 to Z − 2 do
13: Initialize num = 0
14: for y ← 0 to Y − 1 do
15: num = randomInt(num, max(num,sum(placement[z − 1][y])))
16: for x← 0 to num− 1 do
17: CreateCube(x, y, z)
18: end for
19: end for
20: end for
21: for y ← 0 to Y − 1 do
22: for x← 0 to X − 1 do
23: With 50% probability CreateCube(x, y, Z − 1)
24: end for
25: end for
26: end function
27: Update placement, cubes with CreateCubesPyramid(X, Y, Z)
28: cubes_img ← FreeCAD.saveImage(cubes) and append cubes_img to ref_imgs
29: parts← SplitCubes(cubes,max_cubes, num_parts)
30: for part ∈ parts[: −1] do
31: part_img ← FreeCAD.saveImage(part) and append part_img to ref_imgs
32: end for
33: part_img ← FreeCAD.saveImage(parts[−1]) and append part_img to

positive_samples
34: for i← 1 to 2 do
35: part′ ←Randomly remove 1 cube from part[-1]
36: part′_img ← FreeCAD.saveImage(part′) and append part_img to

negative_samples
37: end for
38: samples← (positive_samples, negative_samples)
39: Shuffle samples to assign [A,B,C,D] and record answer_id
40: data← create_data(ref_img, samples, question, answer_id)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 16 Simulation for Arrow Moving

1: Class ArrowPath
2: Attributes:
3: W,H, k: Map width, height, and step count
4: max_step← min(x, y)
5: directions← {(0,1),(1,0),(0,-1),(-1,0)} ▷ up, right, down, left
6: path: Initialize with empty list to record relative moving direction and steps
7: states: Initialize with empty list to record pos and orientation during transformation
8: function INITIALIZESTATE
9: Reset path, states

10: orient_id← randomInt(0, 3)
11: pos ∈ {(x, y)} ← Randomly select a position in the map
12: Append (orient_id, pos) to states
13: end function
14: function GETRELATIVEDIRECTION(orient_id)
15: forward← directions[orient_id]
16: backward← (−forward[0],−forward[1])
17: left← directions[(orient_id− 1) mod 4]
18: right← directions[(orient_id+ 1) mod 4]
19: return {“forward”:forward, “backward”:backward, “left”:left, “right”:right}
20: end function
21: function UPDATEORIENTID(rel_dir, orient_id)
22: if rel_dir is “backward” then
23: orient_id← (orient_id+ 2) mod 4
24: else if rel_dir is “left” then
25: orient_id← (orient_id− 1) mod 4
26: else if rel_dir is “right” then
27: orient_id← (orient_id+ 1) mod 4
28: end if
29: return orient_id
30: end function
31: function MOVE(state, rel_dir, steps)
32: pos, orient_id← state
33: move_dir ← GetRelativeDirection(orient_id)[rel_dir]
34: new_pos← [pos[0] +move_dir[0]× steps, pos[1] +move_dir[1]× steps]
35: if new_pos is invalid then
36: return false
37: end if
38: Append (rel_dir, steps) to path
39: Append (UpdateOrientId(rel_dir, orient_id), new_pos) to states
40: return true
41: end function
42: function GENERATEPATH(k, end_state=None)
43: for i← 1 to k do
44: repeat
45: Randomly select rel_dir ∈ {“forward”, “backward”, “left”, “right”}
46: steps← randomInt(1,max_step)
47: valid_flag ← Move(states[−1], rel_dir, steps)
48: if end_state is not None and i = k then
49: valid_flag ← valid_flag & state[−1] ̸= end_state
50: end if
51: until valid_flag is true
52: end for
53: end function

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 17 Simulation for Arrows Moving

1: Class ArrowMap(Inherit from Class ArrowPath)
2: Attributes:
3: colors: Color set
4: path: Initialize with empty list to record arrow position, relative moving direction and steps
5: states: Initialize with empty list to record map during transformation
6: function INITIALIZESTATE
7: Initialize empty matrix state
8: for y ←1 to H do
9: for x← 1 to W do

10: With 50% probability:
11: Randomly select color ∈ colors
12: Randomly get orient_id← randomInt(0, 3)
13: state[pos]← Record color and orient_id at pos(x, y)
14: end for
15: end for
16: Append state to states
17: end function
18: function MOVE(state, arrow_pos, rel_dir, steps)
19: curr_pos← arrow_pos
20: curr_orient_id, curr_color ← state[x][y]
21: move_dir ← GetRelativeDirection(curr_orient_id)[rel_dir]
22: new_pos← [pos[0] +move_dir[0]× steps, pos[1] +move_dir[1]× steps]
23: if new_pos is invalid then
24: return false
25: end if
26: new_orient_id← UpdateOrientId(rel_dir, orient_id)
27: if new_pos = curr_pos and new_orient_id = curr_orient_id then
28: return false
29: end if
30: Append arrow_pos, rel_dir, steps to path
31: if state[new_pos] is None then
32: state[curr_pos]← None
33: else
34: target_color, target_orient_id← state[new_pos]
35: target_move_dir ← −move_dir
36: target_rel_directions← GetRelativeDirection(target_orient_id)
37: taget_rel_dir ← Find {key ∈ target_rel_directions | value = target_move_dir}
38: new_target_orient_id← UpdateOrientId(taget_rel_dir, target_orient_id)
39: state[curr_pos]← target_color and new_target_orient_id
40: end if
41: state[new_pos]← curr_color and curr_orient_id
42: return true
43: end function
44: function GENERATEPATH(k, end_state=None)
45: for i← 1 to k do
46: repeat
47: Randomly select arrow_pos ∈ {pos | state[pos] is not None}
48: Randomly select rel_dir ∈ {“forward”, “backward”, “left”, “right”}
49: steps← randomInt(1,max_step)
50: valid_flag ← Move(state, arrow_pos, rel_dir, steps)
51: if end_state is not None and i = k then
52: valid_flag ← valid_flag & state[−1] ̸= end_state
53: end if
54: until valid_flag is true
55: end for
56: end function

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Algorithm 18 Arrow Moving Task in Easy Version

1: Input: Dimension of map (W,H), step count k
2: Initialize empty lists positive_samples, negative_samples
3: Initialize arrow_path with dimension W ×H
4: Initialize state with arrow_path.InitializeState() and record as initial_state
5: Update path, states with arrow_path.GeneratePath(k)
6: Append path to positive_samples
7: ref_img ← draw_map(states[0], states[−1])
8: Record end_state← states[−1]
9: From the same initial_state

10: for i← 1 to 3 do
11: Update path′ with arrow_path.GeneratePath(k, end_state)
12: Append path′ to negative_samples
13: end for
14: samples← (positive_samples, negative_samples)
15: Shuffle samples to assign [A,B,C,D] and record answer_id
16: data← create_data(ref_img, samples, question, answer_id)

Algorithm 19 Arrow Moving Task in Hard Version

1: Input: Dimension of map (W,H), step count k, task mode m
2: Initialize empty lists positive_samples, negative_samples
3: Initialize arrow_map with dimension W ×H
4: Initialize state with arrow_map.InitializeState() and record as initial_state
5: Update path, states with arrow_map.GeneratePath(k)
6: Append path to positive_samples
7: if m = “state” then
8: ref_img ← draw_map(states[0])
9: Append states[−1] to positive_samples

10: else if m = “path” then
11: ref_img ← draw_map(states[0], state[−1])
12: Append path to positive_samples
13: end if
14: Record end_state← states[−1]
15: From the same initial_state
16: for i← 1 to 3 do
17: Update path′, states′ with arrow_map.GeneratePath(k, end_state)
18: if m = “state” then
19: Append states′[−1] to negative_samples
20: else if m = “path” then
21: Append path′ to negative_samples
22: end if
23: end for
24: samples← (positive_samples, negative_samples)
25: Shuffle samples to assign [A,B,C,D] and record answer_id
26: data← create_data(ref_img, samples, question, answer_id)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Algorithm 20 Simulation for Block Moving

1: Class Block
2: Attributes:
3: X,Y, Z, k: Spatial size and step count
4: directions: 6 directions
5: colors: Color set
6: cubes_info: Initialize with empty list to record positions and colors of cube objects
7: transformation: Initialize with empty list to record transformations
8: function INITIALIZESTATE
9: Update cubes with CreateCubes(X,Y, Z)

10: Assign randomly selected colors to cubes and record their colors and positions in cubes_info
11: end function
12: function HASSUPPORT(x, y, z)
13: if z = 0 or there is cube at (x, y, z − 1) then
14: return true
15: end if
16: return flase
17: end function
18: function DROPCUBES
19: Sort cubes_info by z of pos in ascending order
20: for cube ∈ cubes_info do
21: (x, y, z)← Acquire position of cube from cubes_info
22: while HasSupport(x, y, z) is flase do
23: Change the position of cube to (x, y, z − 1) and update z ← z − 1
24: end while
25: end for
26: end function
27: function CHECKMOVE(from_pos, to_pos)
28: if (to_pos is invalid) or (HasSupport(to_pos) is false) or (there is no cube at from_pos)

or (there is no cube at to_pos and to_pos is on top of from_pos) then
29: return false
30: end if
31: return true
32: end function
33: function MOVECUBE(from_pos, to_pos)
34: if there is no cube at to_pos then
35: Update cubes_info with changing the position of cube at from_pos to to_pos
36: else
37: Update cubes_info with swapping the cube at from_pos and to_pos
38: end if
39: DropCubes()
40: Append (from_pos, to_pos− from_pos) to transformation
41: end function
42: function GENERATETRANSFORMATION(k)
43: for i← 1 to k do
44: Initialize empty list possible_moves
45: for all cube ∈ cubes_info do
46: for all direction ∈ directions do
47: to_pos← The position of cube from_pos+ direction
48: if CheckMove(from_pos, to_pos) is true then
49: Append (from_pos, direction, to_pos) to possible_moves
50: end if
51: end for
52: end for
53: Randomly select (from_pos, direction, to_pos) ∈ possible_moves
54: MoveCube(from_pos, to_pos)
55: end for
56: end function

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Algorithm 21 Block Moving Task

1: Input: Spatial size (X, Y, Z), step count k
2: Initialize empty lists ref_imgs, positive_samples, negative_samples
3: Initialize block with size (X,Y, Z)
4: Initialize with block.InitializeState() and record as initial_cubes_info
5: img ← FreeCAD.saveImage(initial_cubes) and append img to ref_imgs

6: Update transformation, cubes_info with block.GenerateTransformation(k)
7: Append transformation to positive_samples
8: Record final_cubes_info after transformation
9: img ← FreeCAD.saveImage(final_cubes) and append img to ref_imgs

10: From the same initial_cubes_info
11: for i← 1 to 3 do
12: repeat
13: Update transformation′, cubes_info′ with block.GenerateTransformation(k)
14: until cubes_info ̸= final_cubes_info
15: Append transformation to negative_samples
16: end for
17: samples← (positive_samples, negative_samples)
18: Shuffle samples to assign [A,B,C,D] and record answer_id
19: data← create_data(ref_imgs, samples, question, answer_id)

C DATASET CHARACTERISTIC

Option Modality & Format A significant majority of questions (818) feature image-based options
to emphasize visual reasoning. The choice formats are intentionally varied, including standard
A/B/C/D choices (508 questions), options with A/B/C/‘All three other options are incorrect’ (310
questions), and unique text (242 questions) or numeric (120 questions) answers to prevent models
from overfitting to a single question style. For the numeric answers, we additionally provide direct
numerical responses, and in F.2 we present a comparative analysis of model performance across
different question format.

Answer Distribution The answer distribution is well-balanced across options A (26.5%), B (27.5%),
and C (28.5%). The lower frequency of option D (17.5%) is a deliberate design choice to enhance the
rigor of the evaluation. For many complex tasks, option D serves the distinct role of "All three other
options are incorrect". This asymmetrical design is critical for two reasons. First, it acknowledges
the difficulty of generating multiple high-quality distractors for complex 3D tasks, ensuring all visual
options remain challenging. Second, it compels models to move beyond simple heuristics like "pick
the most similar". Instead, this approach demands eliminative reasoning, requiring the model to rule
out every other option to prove a genuine understanding of the spatial rules being tested.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D DATA EXAMPLES

We present exemplars of varying difficulty levels for all tasks, with each sample containing an image,
question, options, answer, and explanation.

Mental Rotation 2DRotation: Figure 8, 3DRotation: Figure 9, 3ViewProjection: Figure 10;

Mental Folding PaperFolding: Figure 11, CubeUnfolding: Figure 12, CubeReconstruction: Fig-
ure 13;

Visual Penetration CrossSection: Figure 14, CubeCounting: Figure 15, CubeAssembly: Figure 16;

Mental Animation ArrowMoving: Figure 17, BlockMoving: Figure 18, MechanicalSystem: Fig-
ure 19.

2D Rotation Task-Level 0

Question: The left image shows a colored grid with a red
square marking one corner. Which grid can be obtained by
rotating the left grid only, without flipping or other changes?
Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: A
Explanation:
 A: Option A is correct because it was obtained by
rotating the original image 270 degrees.
 B: Option B is incorrect because it was obtained by
rotating the original image 90 degrees and then flipping it
horizontally.
 C: Option C is incorrect because it was obtained by
rotating the original image 180 degrees and then flipping it
vertically.

2D Rotation Task-Level 1

Question: The left image shows a colored grid with a red
square marking one corner. Which grid can be obtained by
rotating the left grid only, without flipping or other changes?
Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: B
Explanation:
 A: Option A is incorrect because it was obtained by
rotating the original image 270 degrees and then flipping it
horizontally.
 B: Option B is correct because it was obtained by
rotating the original image 180 degrees.
 C: Option C is incorrect because it was obtained by
rotating the asymmetric patterns in the image.

Figure 8: 2D Rotation Task.

3D Rotation Task-Level 1

Question: The left image shows the original cube stack
made of equal-sized small cubes. Which of the options on
the right cannot be obtained by rotating the original cube
stack? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. All three other options are incorrect

Answer: A
Explanation:

A: Option A is correct because the cube stack can be
obtained by rotating the original stack around the x-axis by
270 degrees.

B: Option B is incorrect because it is a vertically
mirrored version of the original cube stack.

C: Option C is incorrect because it was obtained by
removing one small cube from the original stack.

3D Rotation Task-Level 0

Question: The left image shows the original cube stack
made of equal-sized small cubes. Which of the options on
the right cannot be obtained by rotating the original cube
stack? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. All three other options are incorrect

Answer: C
Explanation:

A: Option A is incorrect because the cube stack can be
obtained by rotating the original stack around the x-axis by
270 degrees.

B: Option B is incorrect because the cube stack can be
obtained by rotating the original stack around the y-axis by
90 degrees.

C: Option C is correct because it was obtained by
removing one small cube from the original stack.

Figure 9: 3D Rotation Task.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Three-View Projection Task-Level 0 Cubes

Question: The cube stack is made of equal-sized small
cubes, mostly gray with a few red ones. The top row shows
its isometric view, front view, and top view from left to right.
Which image in the bottom row is the left view of the cube
stack? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: D
Explanation:

A: Option A is incorrect because the image shows the
right view of the cube stack instead of the left view.

B: Option B is incorrect because the shape matches the
right view instead of the left view, and the red cubes are not
in the correct position.

C: Option C is incorrect because the red cubes are not
in the correct position in the view.

Three-View Projection Task-Level 1 CAD Model

Question: The top row shows the isometric view (left) and
the top view (right) of a 3D model. Which image in the
bottom row is the left view of the model? Please answer
from options A, B, C, or D.

Choices:
A. A
B. B
C. C
D. All three other options are incorrect

Answer: C
Explanation:

A: Option A is incorrect because the internal outlines
are missing.

B: Option B is incorrect because the internal outlines
are missing.

Figure 10: Three-view Projection Task.

Paper Folding Task-Level 0 Paper Folding Task-Level 1 Paper Folding Task-Level 2

Question: The original paper is a 3×3 grid paper.
The images in the top row show the results of 2
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A: Option A is incorrect because extra holes
appear in column 3.
 B: Option B is incorrect because holes in
column 1 are missing.
 D: Option D is incorrect because holes that
should appear in column 1 appear in column 3.

Question: The original paper is a 4×4 grid paper.
The images in the top row show the results of 2
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: A
Explanation:
 B: Option B is incorrect because extra holes
appear in row 1.
 C: Option C is incorrect because holes in
row 4 are missing.
 D: Option D is incorrect because holes that
should appear in row 4 appear in row 1.

Question: The original paper is a 5×5 grid paper.
The images in the top row show the results of 3
consecutive folding operations on the grid paper.
Folding operations include folding along
horizontal, vertical, or 45-degree direction. The
rightmost image in the top row shows the result
after punching holes in the folded paper. Which
image represents the appearance of the paper
after unfolding the punched paper? Black solid
circles represent grid cells with holes. Please
answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A: Option A is incorrect because holes in
row 4 are missing.
 B: Option B is incorrect because holes that
should appear in row 4 appear in row 5.
 D: Option D is incorrect because extra holes
appear in row 5.

Figure 11: Paper Folding Task.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Cube Unfolding Task-Level 0 Cube Unfolding Task-Level 1 Cube Unfolding Task-Level 2

Question: The left image shows a colored cube
from a particular viewing angle. The options are
nets (unfolded patterns) of the cube, which are
folded upward to form the cube. Which net,
when folded, cannot form the cube shown in the
left image? Please answer from options A, B, C,
or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: C
Explanation:
 A/D/B: Option A/D/B is incorrect because
this net could be a valid net for the given cube,
as the positions of red, pink, and blue match the
shown cube.
 C: Option C is correct because this net
cannot be a valid net for the given cube, as the
positions of yellow and pink are reversed.

Question: The left image shows a cube with
different patterns on its six faces from a
particular viewing angle. The options are nets
(unfolded patterns) of the cube, which are folded
upward to form the cube. Which net, when
folded, can form the cube shown in the left
image? Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: D
Explanation:
 A: Option A is incorrect because the squares
with asymmetric patterns have been rotated.
 B: Option B is incorrect because the squares
with asymmetric patterns have been rotated.
 C: Option C is incorrect because two faces
have swapped positions.
 D: Option D is correct because the relative
positions of three faces match the cube shown in
the left image.

Question: The left image shows a cube with
different patterns on its six faces from a
particular viewing angle. The options are nets
(unfolded patterns) of the cube, which are folded
upward to form the cube. Which net, when
folded, cannot form the cube shown in the left
image? Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. D
Answer: B
Explanation:
 A/C/D: Option A/C/D is incorrect because
the relative positions of three faces match the
cube shown in the left image.
 B: Option B is correct because two faces
have swapped positions, so it cannot form the
cube shown in the left image.

Figure 12: Cube Unfolding Task.

Cube Reconstruction Task-Level 0 Cube Reconstruction Task-Level 1 Cube Reconstruction Task-Level 2

Question: As shown, this is the net (unfolded
pattern) of a cube, with six faces colored in
different colors. The net is folded upward to form
a cube. Which color face is opposite to the green
face? Please answer from options A, B, C, or D.

Choices:
A. yellow
B. pink
C. All three other options are incorrect
D. red

Answer: B
Explanation:

A/B/C/D: Assuming the bottom face is the
first cell in the second row of the net, then after
folding, the front face is red, the back face is
green, the left face is blue, the right face is cyan,
the top face is yellow, the bottom face is pink.

Question: The left image shows the net
(unfolded pattern) of a cube, with six faces
having different patterns. The net is folded
upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which
combination of adjacent patterns is possible to
see? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: C
Explanation:

Assuming the bottom face is the first cell in
the second row of the net, and the right face is
the cell to its right.

A: Option A is incorrect because it is a
vertically mirrored version of the back-top-right
view.

B: Option B is incorrect because it includes
rotated non-symmetric faces.

C: Option C is correct because it shows the
front-bottom-right view.

D: Option D is incorrect because it is a
horizontally mirrored version of the back-top-
left view.

Question: The left image shows the net
(unfolded pattern) of a cube, with six faces
having different patterns. The net is folded
upward to form a cube. From an axonometric
(3D) viewing angle of the cube, which
combination of adjacent patterns is possible to
see? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: A
Explanation:

Assuming the bottom face is the first cell in
the second row of the net, and the right face is
the cell to its right.

A: Option A is correct because it shows the
back-top-right view.

B: Option B is incorrect because it includes
rotated non-symmetric faces.

C: Option C is incorrect because it is a
horizontally mirrored version of the front-
bottom-right view.

D: Option D is incorrect because it includes
rotated non-symmetric faces.

Figure 13: Cube Reconstruction Task.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Cross-Section Task-Level 0 Cross-Section Task-Level 1 Cross-Section Task-Level 2

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a cone on top of a square frustum.
Which of the following images cannot be a cross-
section of the shape? Please answer from options
A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: C
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

B: Option B is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

C: Option C is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a triangular frustum, a cylinder, and a
circular frustum from top to bottom. Which of the
following images cannot be a cross-section of the
shape? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: B
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

B: Option B is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

C: Option C is incorrect because it is the
cross-section made by a plane perpendicular to the
XZ plane and rotated 45 degrees around the y-axis.

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

Question: The top row shows the combined shape
viewed from two different angles. The shape
consists of a square pyramid, a cone, and a
cylinder from top to bottom. Which of the
following images cannot be a cross-section of the
shape? Please answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: C
Explanation:

A: Option A is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

B: Option B is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XY plane.

C: Option C is correct because the
corresponding cross-section does not match the
shape shown in the reference image.

D: Option D is incorrect because it is the
cross-section of the shape made by a plane parallel
to the XZ plane.

Figure 14: Cross-sectionn Task.

Cube Counting Task-Level 0

Question: Given two views, what is the
minimum number of cubes required to satisfy
the constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:
 A. 5
 B. All three other options are incorrect
 C. 7
 D. 8
Answer: C
Explanation:
 A/B/C/D: Given two views, at least 7
cubes and at most 9 cubes are required to
satisfy the constraints.

Cube Counting Task-Level 1

Question: Given three views, what is the
maximum number of cubes required to satisfy
the constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:
 A. 8
 B. 11
 C. 10
 D. 9
Answer: D
Explanation:
 A/B/C/D : Given three views, at least 9
cubes and at most 9 cubes are required to
satisfy the constraints.

Cube Counting Task-Level 2

Question: Given three views, how many
cubes could be needed to satisfy the
constraints shown in the images? Please
answer from options A, B, C, or D.
Choices:
 A. All three other options are incorrect
 B. 7
 C. 16
 D. 11
Answer: D
Explanation:
 A/B/C/D : Given three views, at least 11
cubes and at most 12 cubes are required to
satisfy the constraints

Figure 15: Cube Counting Task.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Cube Assembly Task-Level 0

Question: The top left image shows the original complete
cube stack made of equal-sized cubes. It can be formed by
combining the small cube stack on the right(part 1) with one
of the options below. Which option completes the original
cube stack? Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: C
Explanation:
 A/B: Option A/B is incorrect because one cube is
missing, resulting in an incorrect cube stack shape.

Cube Assembly Task-Level 1

Question: The top left image shows the original complete
cube stack made of equal-sized cubes. It can be formed by
combining the two small cube stacks on the right with one
of the options below. Which option completes the original
cube stack? Please answer from options A, B, C, or D.
Choices:
 A. A
 B. B
 C. C
 D. All three other options are incorrect
Answer: A
Explanation:
 B/C: Option B/C is incorrect because one cube is
missing, resulting in an incorrect cube stack shape.

Figure 16: Cube Assembly Task.

Arrow Moving Task-Level 0 Arrow Moving Task-Level 1(v1) Arrow Moving Task-Level 1(v2)

Question: In the diagram, the red arrow is the
initial arrow, and the green arrow is the final
arrow. The arrow can move in four directions
(forward, backward, left, right), where 'forward'
always refers to the current direction the arrow is
pointing. After each movement, the arrow's
direction is updated to the direction of movement.
Which of the following paths can make the arrow
move from the starting position to the ending
position? Please answer from options A, B, C, or
D.

Choices:
A. (Left, 2 units)--(Left, 1 unit)
B. (Forward, 1 unit)--(Backward, 1 unit)
C. (Forward, 1 unit)--(Backward, 2 units)
D. (Forward, 1 unit)--(Left, 1 unit)

Answer: D
Explanation:

A/B/C: Option A/B/C is incorrect because
the initial arrow cannot be transformed into the
final arrow.

D: Option D is correct because the initial
arrow can be transformed into the final arrow.

Question: The left image shows the initial state.
Arrows can move in four directions (forward,
backward, left, right), where 'forward' always
refers to the current direction the arrow is
pointing. After each movement, the arrow's
direction is updated to the direction of movement.
If the target position is empty, the arrow can
move there directly; otherwise, it needs to swap
with the arrow at the target position, and both
arrows' movements should satisfy the
aforementioned requirements. After the
transformations '((0, 1) Right, 1 unit)--((2, 2)
Forward, 1 unit)--((1, 2) Left, 2 units)', which
state from the options can be reached? Please
answer from options A, B, C, or D.
Choices:

A. A
B. B
C. C
D. D

Answer: C
Explanation:

C: Option C is correct because the initial
state can be transformed into the target state.

A/B/D: Option A/B/D is incorrect because
the initial state cannot be transformed into the
target state.

Question: The left image shows the initial state,
and the right image shows the final state. Arrows
can move in four directions (forward, backward,
left, right), where ‘forward’ always refers to the
current direction the arrow is pointing. After each
movement, the arrow's direction is updated to the
direction of movement. If the target position is
empty, the arrow can move there directly;
otherwise, it needs to swap with the arrow at the
target position, and both arrows' movements
should satisfy the aforementioned requirements.
Which of the following paths can transform the
grid from the initial state to the final state?
Please answer from options A, B, C, or D.

Choices:
A. ((1, 0) Backward, 1 unit)--((1, 2)

Backward, 1 unit)
B. ((1, 1) Left, 1 unit)--((1, 1) Forward, 1

unit)
C. ((1, 1) Right, 1 unit)--((1, 1) Left, 1 unit)
D. ((1, 2) Forward, 1 unit)--((0, 2)

Backward, 1 unit)
Answer: A
Explanation:

A: Option A is correct because the initial
state can be transformed into the target state.

 B/C/D : Option B/C/D is incorrect because
the initial state cannot be transformed into the
target state.

Figure 17: Arrow Moving Task.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Blocks Moving Task-Level 0

Question: The top row of images shows different views of
the initial state of a cube stack, while the bottom row shows
different views of the final state after transformation. During
the transformation process, blocks can move one unit in any
direction (forward, backward, left, right, up, down). If the
target position is empty, the block can move there directly;
if the target position already has a block, they swap places.
Blocks cannot float in the air. If a block is moved away from
a position, any block above it will fall down until reaching a
supporting surface. The xyz axes are shown in the diagram,
and each block's position can be precisely identified using
coordinates (x,y,z). Which of the following transformation
sequences can change the cube stack from the initial state to
the final state shown in the diagram? Please answer from
options A, B, C, or D.
Choices:
 A. (1, 0, 0) y+ -- (1, 1, 0) y- -- (2, 1, 0) y+
 B. (1, 0, 0) y+ -- (2, 1, 0) y+ -- (2, 0, 0) y+
 C. (2, 2, 0) x- -- (2, 0, 0) x-
 D. (1, 0, 0) x- -- (2, 0, 0) y+ -- (2, 2, 0) y-
Answer: A
Explanation:
 B/C/D: Option BCD is incorrect because the initial
state cannot be transformed into the final state.

Blocks Moving Task-Level 1

Question: The top row of images shows different views of
the initial state of a cube stack, while the bottom row shows
different views of the final state after transformation. During
the transformation process, blocks can move one unit in any
direction (forward, backward, left, right, up, down). If the
target position is empty, the block can move there directly;
if the target position already has a block, they swap places.
Blocks cannot float in the air. If a block is moved away from
a position, any block above it will fall down until reaching a
supporting surface. The xyz axes are shown in the diagram,
and each block's position can be precisely identified using
coordinates (x,y,z). Which of the following transformation
sequences can change the cube stack from the initial state to
the final state shown in the diagram? Please answer from
options A, B, C, or D.
Choices:
 A. (1, 0, 0) y+ -- (0, 0, 1) z-
 B. (1, 0, 0) x+ -- (1, 0, 0) y+
 C. (2, 0, 0) x- -- (1, 0, 0) y+ -- (2, 0, 0) x-
 D. (0, 0, 0) x+ -- (0, 1, 0) y- -- (0, 0, 1) y+
Answer: C
Explanation:
 A/B/D : Option A/B/D is incorrect because the initial
state cannot be transformed into the final state.

Figure 18: Block Moving Task.

Mechanical System Task-Level 0

Question: When the red shaft connected to the green rod
rotates clockwise, what is the motion of the centrally fixed
blue gear? Please choose from options A, B, C, or D.

Choices:
 A. Rotates clockwise
 B. Rotates counterclockwise
 C. Does not rotat
 D. Translates to the right
Answer: A
Explanation:
 A/B/C/D: The green rod drives the blue gear to rotate
only in the clockwise direction.

Mechanical System Task-Level 1

Question: In the image, the green gear is fixed on a
concentric shaft, while the yellow and pink gears are fixed
on their own shafts. If the green gear rotates clockwise in
the given view, what are the resulting motions of the yellow
and pink gears? Please choose from options A, B, C, or D.
Choices:
 A. Rotates clockwise, rotates clockwise
 B. Rotates clockwise, rotates counterclockwise
 C. Rotates counterclockwise, rotates counterclockwise
 D. Rotates counterclockwise, rotates clockwise
Answer: D
Explanation:
 A/B/C/D : The yellow gear directly meshes with the
green gear and thus rotates in the opposite direction, while
the pink gear is driven through two meshing steps and
rotates in the same direction as the green gear.

Figure 19: Mechanical System Task.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

E EVALUATION DETAILS

E.1 MODELS

For the DeepseekVL2 series, InternVL2.5 series, InternVL3 series and SAIL-VL series, we deployed
these models on H100 servers and used the officially provided code to load the pre-trained models for
inference. For all other models, we employed API calls through OpenAI’s client service for inference.
All closed-source models accessed via API in this study were used with specific, identifiable versions
to ensure consistency and reproducibility. Specifically, we used the following model versions:

• gpt-4o-2024-08-06 for GPT-4o
• o1-2024-12-17 for o1
• claude-3-5-sonnet-20240620 for Claude-3.5-Sonnet
• claude-3-7-sonnet-20250219 for Claude-3.7-Sonnet
• Gemini-2.5-flash-preview-04-17 for Gemini-2.5-flash
• Gemini-2.5-pro-preview-03-25 for Gemini-2.5-pro
• Doubao-1-5-vision-pro-32k-250115 for Doubao-1-5-vision-pro
• qwen-vl-max-0408 for Qwen-VL-max

E.2 PROMPTS FOR RESPONSE GENERATION

We use the prompt template as follows:

1) Original CoT Prompt A from DeepSeek-R1(DeepSeek-AI et al., 2025): "You should first
provide a reasoning process, then provide a single option (A, B, C or D) as the final answer. The
reasoning process and the answer are enclosed within <think></think> and <answer></answer>
tags, respectively, i.e., <think>reasoning process</think>, <answer>answer</answer>.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

2) Variant CoT Prompt B from EMMA(Hao et al., 2025): "Answer with the option’s letter from the
given choices and put the letter in one ’\boxed’. Please solve the problem step by step.\nQuestion:
<question here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D
here>\n"

3) Non-CoT Prompt: "Answer with a single option letter (A, B, C, or D), enclosed within the
<answer></answer> tag. For example: <answer>A</answer>. Ensure that your output contains only
the final answer, without any intermediate reasoning or additional content.\nQuestion: <question
here>\nA.<option A here>\nB.<option B here>\nC.<option C here>\nD.<option D here>\n"

E.3 ZERO-SHOT SETTING

Our decision to focus exclusively on the zero-shot evaluation setting is grounded in both method-
ological precedent and practical considerations. This approach aligns with the standards set by many
recent, high-impact benchmark papers, such as Math-Vision (Wang et al., 2024), MM-IQ (Cai et al.,
2025), and EMMA (Hao et al., 2025), all of which centered their evaluations on the zero-shot setting
to assess novel reasoning capabilities. While we considered few-shot prompting, we concluded its
utility is limited in our context of complex spatial reasoning. For these intricate visualization tasks,
providing examples with only the final answer offers minimal effective guidance. On the other hand,
creating effective chain-of-thought examples that include complete, multi-step reasoning would be
prohibitively expensive for comprehensive benchmarking.

E.4 METHODS FOR ANSWER EXTRACTION

To ensure robust evaluation and minimize parsing errors, we employ a hierarchical, two-stage
rule-based approach for answer extraction.

Stage 1: Coarse Extraction with Boundary Enforcement.
Adopting the strategy from MME-CoT (Jiang et al., 2025), we first attempt to locate the answer

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

segment by scanning for a comprehensive set of standard identifiers, including XML-style tags
(e.g., <answer></answer>) and natural language markers (e.g., "<answer>", "Answer:", "Final
answer", "final answer", "Final Answer", "the answer is", "The answer is", "correct answer", "Correct
answer", "Correct Answer", and "correct path"). The text following these markers is isolated and
truncated at the first subsequent period delimiter. Critically, to prevent false positives where common
words starting with option letters (e.g., “All”, “Backward”) are mistakenly identified as answers, we
enforce strict word boundary constraints. We utilize the regular expression \b([A-D])\b to accept
only standalone option letters.

Stage 2: Prioritized Fine-Grained Matching.
In instances where the coarse extraction fails to yield a valid option, we trigger a secondary, high-
precision extraction routine. This process iterates through a prioritized list of compiled regular
expression patterns designed to handle specific formatting variations (e.g., tagged encapsulated
outputs, boxed answers) and semantic fallback structures. The patterns are applied in the following
order:

• CoT Prompt A with tags:
r"<answer>\s*(?P<value>.*?)\s*</answer>"

• CoT Prompt B with boxes:
r"\\{1,2}boxed{(?:(?:\\text|rm){)?(?P<value>[A-D])"

• Other common answer formats:
r"<answer>\s*option\s+(?P<value>[A-D])(?=</answer>")
r"(?:final|correct)\s+answer\s*(?:is:)\s*(?:option\s*)?(?P<value>[A-D])\b"
r"option\s+(?P<value>[A-D])\b"
r"choose\s+(?P<value>[A-D])\b"

This dual-layer approach ensures high recall for compliant responses while maintaining precision
against hallucinated or verbose outputs. Even with these rules, 100% parsing success isn’t guaran-
teed, as models can still flexibly produce outputs in non-standard formats. For the purpose of our
comparative analysis, we designate the baseline coarse extraction method (excluding strict boundary
enforcement) as Extract Rule A, and the comprehensive dual-stage strategy described herein as
Extract Rule B.

For multiple-choice questions, a response is considered correct if and only if the extracted result
contains exactly one uppercase option letter (A, B, C, or D) matching the standard answer. For non-
choice questions, we perform direct string matching between the extracted result and the reference
answer. This hybrid rule-based evaluation ensures consistent and fair judgment across both option-
based and open-form tasks.

E.5 HUMAN PERFORMANCE

To establish a robust human baseline analogous to the tested MLLMs, we recruited 8 graduate students
(4 Ph.D., 4 M.S.; aged 22-27) from mechanical engineering and computer science. All participants
possessed strong backgrounds in geometry and physics, confirmed through their academic curriculum,
and reported familiarity with spatial reasoning tasks. This selection criterion was chosen because it
mirrors the specialized knowledge domains inherent in the models’ training data. Participants were
compensated at the standard rate for graduate research assistants.

To ensure data quality and minimize the impact of cognitive fatigue and time constraints, we curated
a representative subset of the benchmark for the evaluation. Specifically, we randomly sampled 6
problems from each of the 12 task categories, resulting in a total of 72 problems per participant.
Before commencing each task type, participants were briefed on the rules and completed several
practice trials for familiarization. The evaluation protocol required participants to solve problems
without the use of external aids (e.g., scratch paper, calculators), and they were allowed unlimited time
per question. This approach was designed to emphasize and assess their intrinsic spatial visualization
and mental manipulation capabilities, creating an evaluation condition comparable to assessing a
model’s internal reasoning processes without external memory aids. The reported human performance
is the mean accuracy across all participants.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

E.6 ERROR ANALYSIS

E.6.1 MODEL SELECTION FOR DIRECT ANSWER (NON-COT) EVALUATION

Our Direct Answer evaluation tests model accuracy without induced reasoning chains. We excluded
specific models based on 2 criteria:

1. Reasoning-Centric Architectures: Models explicitly designed for extended reasoning (e.g., o1,
Gemini-2.5, Kimi-thinking, Llama-4 series) were excluded, as inhibiting CoT contradicts their
core design principles.

2. Instruction Adherence: Models unable to suppress reasoning traces despite strict formatting
prompts (specifically InternVL3-2B) were excluded. This failure reflects a limitation in instruction
following rather than reasoning capability.

Consequently, we retained only models capable of strictly adhering to the single-letter answer format.
This exclusion criteria—based on format compliance rather than performance—ensures the baseline
remains representative and uninflated.

E.6.2 ERROR TYPES

1. Perceptual Error: Failure to perceive fundamental visual properties, such as color, shape, or
pattern structures.

2. Spatial Transformation Error: Failure to deduce correct spatial states after a transformation.
This includes:

(a) Rotation/Flipping: Errors in angle or axis; confusing rotation with flipping.
(b) Folding/Unfolding: Incorrect mapping between 2D nets and 3D cubes; confusing adjacent or

opposite faces.
(c) Spatial Relationships: Misjudging object composition, internal structure, or occlusion.

3. Spatial Memorization Error: Forgetting or misremembering object positions or relationships
across a sequence of operations.

4. Instruction Following Error: Misunderstanding textual instructions, such as task rules (e.g.,
negation) or required output formats.

5. Methodological Error: Adopting a flawed or suboptimal problem-solving strategy, such as using
a rigid or unnecessarily complex reasoning path.

6. Calculation and Reasoning Error: Errors in non-spatial logic or mathematical calculations.

E.6.3 INTER-ANNOTATOR AGREEMENT ANALYSIS

To ensure the reliability and reproducibility of our error taxonomy (detailed in Appendix E.6.2), we
conducted a rigorous inter-annotator agreement study.

Table 5: Inter-Annotator Agreement. Cohen’s κ calculated via binary decomposition for multi-label
error classification.

Category Perc. Trans. Meth. Instr. Memo. Calc. Avg.
Cohen’s κ 0.90 0.81 0.75 0.96 0.89 1.00 0.88

Methodology Since our error analysis involves a multi-label classification task (i.e., a single failure
case may stem from multiple error sources simultaneously), the traditional global Cohen’s κ is not
directly applicable. Instead, we adopted a standard binary decomposition approach for multi-label
agreement. Specifically, we decomposed the multi-label task into 6 independent binary classification
tasks, treating each error category as a "Yes/No" decision.

Calculation We randomly sampled 100 failure cases from the evaluation set. Two authors inde-
pendently annotated these cases based on the defined taxonomy. We then calculated Cohen’s κ
separately for each error category. The results, presented in Table 5, demonstrate high reliability.
The Methodological category showed substantial agreement (κ = 0.75), while all other categories

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

achieved almost perfect agreement (κ > 0.81), with Calculation & Reasoning reaching perfect
consensus (κ = 1.00). The macroscopic average Cohen’s κ across all categories is 0.8847, indicating
an almost perfect level of inter-annotator consistency.

F DETAILED RESULTS

In this section, we provide more evaluation results and test cases from Gemini-2.5-pro for each task.

F.1 INTRA-CATEGORY COMPARISONS ACROSS LEVELS

To provide deeper insight into the spatial visualization reasoning capabilities of Multi-modal Large
Language Models (MLLMs), this section presents comprehensive experimental results that comple-
ment the aggregate performance assessment in Section 4.2. This analysis details the accuracy of each
evaluated model across the four core sub-abilities—mental rotation, mental folding, visual penetra-
tion, and mental animation—defined in the SpatialViz-Bench benchmark, with results stratified by
task type and difficulty level. This granular performance breakdown reveals specific strengths and
weaknesses of the models when confronting various spatial reasoning challenges, offering targeted
insights to guide future model improvements.

F.1.1 MENTAL ROTATION

Table 7 documents model performance on 3 sub-tasks within the mental rotation category—2D
Rotation (2DR), 3D Rotation (3DR), and 3-View Projection (3VP)—across different difficulty levels.

In the 2D Rotation (2DR) task, several models demonstrate foundational capabilities at Level 0, with
ol (72.5%) and Gemini-2.5-pro (62.5%) achieving notable results. As difficulty increases to Level 1,
most models show performance decline, though leading models maintain relatively high accuracy (ol:
52.5%, Gemini-2.5-pro: 42.5%).

For 3D Rotation (3DR), performance degradation with increased difficulty is more pronounced. At
Level 0, ol (42.5%) and Gemini-2.5-pro (45.0%) perform adequately, but their accuracies decrease
substantially to 15.0% and 20.0%, respectively, at Level 1. Many open-source models perform at or
below random chance (25%-30%) at this higher difficulty level, highlighting the challenge of mental
rotation in complex 3D space.

Interestingly, the 3-View Projection (3VP) task reveals a different pattern: when transitioning
from Level 0 (cube stacks) to Level 1 (DeepCAD engineering models), some top-tier models like ol
(improving from 40.0% to 58.0%) and Gemini-2.5-pro (increasing from 28.0% to 66.0%) demonstrate
enhanced performance. This suggests certain Level 1 image features may be more amenable to these
models’ processing mechanisms, despite the presumed increase in complexity. Nevertheless, many
other models show decreased performance from Level 0 to Level 1 in this sub-task. Overall, mental
rotation tasks reveal a clear performance gradient across dimensions and geometric complexity while
highlighting significant capability variations among model families.

F.1.2 MENTAL FOLDING

Table 8 documents model performance on 3 sub-tasks within the mental folding category—Paper
Folding (PF), Cube Unfolding (CU), and Cube Reconstruction (CR)—at varying difficulty levels.
These tasks assess models’ capacity for continuous reasoning and dynamic visualization of 3D
information throughout transformation processes.

In the Paper Folding (PF) task, as folding steps and hole-punching complexity increase (Level 0 to
Level 2), most models perform near random chance, indicating significant challenges in tracking
multi-step geometric operations and performing subsequent spatial reasoning.

The more complex Cube Unfolding (CU) and Cube Reconstruction (CR) tasks proved challenging
for all models. These tasks require understanding the correspondence between 2D nets and 3D cubes,
while also assessing the ability to mentally execute folding operations and continuously reason about
transforming 3D structures. Even at Level 0, most models demonstrate low accuracy, often below
random chance. In the CU task, Gemini-2.5-pro scored 37.5% (L0), 27.5% (L1), and 30.0% (L2),
while ol achieved 37.5% (L0), 37.5% (L1), and 27.5% (L2).

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

For CR, Gemini-2.5-pro performed at 45.0% (L0), 10.0% (L1), and 35.0% (L2), and ol at 42.5% (L0),
12.5% (L1), and 25.0% (L2), both experiencing significant performance drops at Level 1. However,
the surprising performance improvement at Level 2 contradicts human intuition, as Level 2 patterns are
objectively more complex for humans. Analysis of sample solutions reveals that models approached
these tasks by employing clear textual descriptions to define patterns composed of differently colored
dots, representing their positions in matrix form. Conversely, line patterns proved more challenging for
models to describe, and internal rotations could not be easily represented through matrix transposition
operations, which . This insight provides valuable direction for designing more challenging tests that
effectively evaluate model limitations. The overall results reveal a severe deficiency in reasoning
and visualization capabilities when finer-grained correspondence and transformation tracking are
required. The introduction of asymmetric patterns further challenges models’ ability to maintain
precise visual perception and spatial-topological understanding. These results highlight current
MLLMs’ core weaknesses in handling spatial tasks involving geometric correspondence, topological
transformations, and dynamic 3D reasoning.

F.1.3 VISUAL PENETRATION

Table 9 documents model performance on 3 sub-tasks within the Visual Penetration category—Cross-
Section (CS), Cube Counting (CC), and Cube Assembly (CA)—at varying difficulty levels. This
ability requires models to infer internal object structures from visible external features.

In the Cross-Section (CS) task, which requires models to visualize sectional shapes produced by
cutting composite geometric solids with various planes, Gemini-2.5-pro and ol maintained relatively
stable performance across Levels 0, 1, and 2, while most other models performed near random
chance.

For the Cube Counting (CC) task, increasing constraints from two-view (Level 0) to three-view (Level
1), and subsequently expanding spatial dimensions (Level 2), progressively challenged models’ view
integration and counting inference capabilities. Gemini-2.5-pro’s accuracy declined sharply from
80.0% (L0) to 52.5% (L1) and 32.5% (L2). Interestingly, ol’s performance followed a pattern of
45.0% (L0), 32.5% (L1), and 45.0% (L2), recovering at Level 2 to match its Level 0 score. Most
models struggled to effectively integrate multi-view information in this task.

The Cube Assembly (CA) task, which assesses the ability to identify complementary parts forming a
complete structure, showed increasing difficulty as structures enlarged and constituent parts increased
(Level 0 to Level 1). For example, Gemini-2.5-pro’s accuracy dropped from 45.0% (L0) to 27.5%
(L1), and ol’s from 35.0% (L0) to 32.5% (L1). Collectively, these results reveal current models’
limitations in inferring global internal structures and spatial occupancy from local surface information.

F.1.4 MENTAL ANIMATION

Table 10 documents model performance on 3 sub-tasks within the Mental Animation category—Arrow
Moving (AM), Block Moving (BM), and Mechanical System (MS)—at varying difficulty levels.
These tasks assess understanding of dynamic state changes and causal propagation among system
components.

In the Arrow Moving (AM) task, which requires understanding ego-centric movement rules and
tracking state changes, the transition from simple single-arrow movements (Level 0) to multi-arrow
environments involving swaps (Level 1) increasingly challenges models’ rule comprehension and state
tracking. A notable performance disparity exists between closed-source models (e.g., Gemini-2.5-pro
and ol) and open-source counterparts: the former maintain high accuracy across both difficulty levels
(almost 100% accuracy by Gemini-2.5-pro), while most open-source models perform significantly
worse (near random), particularly in complex multi-arrow Level 1 scenarios. This suggests a capability
gap, potentially stemming from differences in architecture or training data, when precise instruction
following and multi-step dynamic spatial reasoning are required.

The Block Moving (BM) task combines directional movement with gravity simulation, increasing
spatial complexity and operational sequence length, thereby challenging models’ intuitive physics
and 3D dynamic spatial reasoning. Gemini-2.5-pro’s accuracy declined sharply from 95% to 35%,
showing the difficulty in dealing with 3D scene.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

For the Mechanical System (MS) task, which evaluates understanding of motion transmission and
component linkage in complex mechanical systems, questions were designed to minimize reliance
on formal physics formulas while emphasizing comprehension through observation and spatial
imagination. Interestingly, some open-source models performed better than expected based on
their performance in other 3D imagination tasks. This suggests these models may transform such
problems into more formalized reasoning processes similar to physical rule application, rather than
relying solely on intuitive 3D mental simulation. While this strategy may yield relatively good
scores in certain instances, it potentially deviates from the primary goal of assessing pure spatial
visualization capabilities. Overall, mental animation tasks—especially those involving complex
dynamic interactions and implicit physical laws—continue to pose significant challenges for current
MLLMs, with models exhibiting considerable diversity in performance strategies and capabilities.

F.2 PERFORMANCE COMPARISON BETWEEN DIFFERENT QUESTION FORMAT

This benchmark primarily uses MCAs, a deliberate and justified design choice. MCAs are particularly
effective for tasks with complex answers (e.g., 3D Rotation Task) that are difficult to express textually
or match automatically. Moreover, well-crafted distractors can increase task difficulty and test a
model’s fine-grained discrimination.

Our rationale for using the MCA format is threefold:

• MCAs align with human qualitative intuition. Humans often rely on estimation rather than precise
calculation in spatial reasoning. This format assesses a model’s grasp of core transformation logic
("qualitatively correct" reasoning) without penalizing minor deviations.

• Converting some tasks to a direct-answer format is technically challenging. For instance, in 3D
Rotation and Paper Folding, the answers are complex images. Requiring models to generate these
images is a frontier research problem beyond the scope of current multimodal evaluation.

• We quantitatively measured the difficulty gap. When the Cube Counting task was converted
to a fill-in-the-blank format, all models showed a significant performance drop. As shown in
Table 6, GPT-4o’s accuracy dropped by 32.50%, while even the top-performing Gemini-2.5-pro’s
declined by 14.17%. This indicates the direct-answer format is more demanding of a model’s
independent reasoning, even with options like "All three other options are incorrect" to reduce
guessing. Consequently, for a comprehensive assessment, we provide both formats for the Cube
Counting and parts of the Cube Reconstruction tasks. This performance gap demonstrates that
MCA options provide clues or "error-correction" opportunities, helping models select a best-
fit answer. In contrast, the direct-answer format more authentically exposes deficits in precise
reasoning.

Table 6: Performance Drop on Cube Counting: Multiple-Choice vs. Fill-in-the-Blank. The "Perfor-
mance Drop" column quantifies the accuracy degradation when switching from the discriminative
(Multiple-Choice) to the more challenging generative (Fill-in-the-Blank) task format.

Model Multiple-Choice Acc. (%) Fill-in-the-Blank Acc. (%) Avg Performance

L0 L1 L2 L0 L1 L2 Drop (%)

Open Source Models

Qwen2.5-VL-7B-Instruct 32.50 50.00 27.50 15.00 2.50 0.00 -30.83
Qwen2.5-VL-72B-Instruct 32.50 50.00 42.50 25.00 32.50 5.00 -20.83

Closed Source Models

GPT-4o 40.00 45.00 37.50 10.00 12.50 2.50 -32.50
o1 45.00 32.50 45.00 20.51 22.50 10.00 -23.16
Gemini-2.5-pro 80.00 52.50 32.50 55.00 52.50 15.00 -14.17

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Table 7: Comparison of model performances on Mental Rotation tasks. The first and second
highest accuracy of MLLMs are marked in red and blue, with open-source and closed-source models
marked separately.

Model Overall
2DRotation 3DRotation 3ViewProjection

L0 L1 Avg L0 L1 Avg L0 L1 Avg

Human 85.56 92.50 87.50 90.00 83.33 75.00 79.17 91.67 83.33 87.50

Random 27.69 25.00 22.50 23.75 25.00 30.00 27.50 30.00 32.00 31.00

Open Source MLLMs
3B

SAIL-VL-1.5-2B 22.31 20.00 25.00 22.50 17.50 27.50 22.50 20.00 24.00 22.00

InternVL3-2B 27.31 12.50 20.00 16.25 32.50 35.00 33.75 24.00 38.00 31.00

Deepseek-VL2-tiny(3B) 22.69 10.00 25.00 17.50 20.00 25.00 22.50 22.00 32.00 27.00

Qwen2.5-VL-3B-Instruct 20.00 25.00 15.00 20.00 15.00 22.50 18.75 16.00 26.00 21.00

7B

Qwen2.5-VL-7B-Instruct 23.85 25.00 25.00 25.00 20.00 12.50 16.25 14.00 44.00 29.00

Qwen2.5-Omni-7B 24.23 32.50 12.50 22.50 25.00 15.00 20.00 22.00 36.00 29.00

SAIL-VL-1.6-8B 21.92 25.00 12.50 18.75 27.50 15.00 21.25 24.00 26.00 25.00

InternVL3-8B 28.85 22.50 17.50 20.00 35.00 42.50 38.75 18.00 38.00 28.00

16B

Kimi-VL-A3B-Instruct(16B) 28.08 15.00 17.50 16.25 32.50 27.50 30.00 24.00 48.00 36.00

Kimi-VL-A3B-thinking(16B) 20.00 10.00 17.50 13.75 17.50 22.50 20.00 20.00 30.00 25.00

Deepseek-VL2-small(16B) 24.62 40.00 22.50 31.25 10.00 22.50 16.25 22.00 30.00 26.00

32B

Deepseek-VL2(27B) 29.62 20.00 30.00 25.00 35.00 32.50 33.75 20.00 40.00 30.00

Qwen2.5-VL-32B-Instruct 35.00 35.00 27.50 31.25 32.50 37.50 35.00 22.00 54.00 38.00

InternVL3-38B 28.46 25.00 20.00 22.50 32.50 35.00 33.75 22.00 36.00 29.00

72B

Qwen2.5-VL-72B-Instruct 29.23 25.00 32.50 28.75 40.00 22.50 31.25 22.00 34.00 28.00

QvQ-72B-preview 27.69 15.00 27.50 21.25 27.50 32.50 30.00 32.00 30.00 31.00

InternVL3-78B 28.46 20.00 30.00 25.00 25.00 25.00 25.00 20.00 48.00 34.00

108B

Llama-4-Maverick-17B-128E-Instruct 33.85 25.00 15.00 20.00 45.00 35.00 40.00 26.00 54.00 40.00

LLama-4-Scout-17B-16E-Instruct 37.31 32.50 32.50 32.50 32.50 37.50 35.00 28.00 58.00 43.00

Closed Source MLLMs
GPT-4o 31.15 20.00 45.00 32.50 30.00 25.00 27.50 20.00 46.00 33.00

o1 46.92 72.50 52.50 62.50 42.50 15.00 28.75 40.00 58.00 49.00

Claude-3.5-sonnet 34.62 27.50 35.00 31.25 32.50 17.50 25.00 36.00 54.00 45.00

Claude-3.7-sonnet 38.08 40.00 25.00 32.50 40.00 32.50 36.25 34.00 54.00 44.00

Gemini-2.5-flash 35.77 55.00 30.00 42.50 40.00 20.00 30.00 18.00 52.00 35.00

Gemini-2.5-pro 44.23 62.50 42.50 52.50 45.00 20.00 32.50 28.00 66.00 47.00

Doubao-1-5-vision-pro 30.38 7.50 7.50 7.50 42.50 27.50 35.00 28.00 62.00 45.00

Qwen-VL-max 28.08 12.50 35.00 23.75 30.00 22.50 26.25 22.00 44.00 33.00

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Table 8: Comparison of model performances on Mental Folding tasks.

Model Overall
PaperFolding CubeUnfolding CubeReconstruction

L0 L1 L2 Avg L0 L1 L2 Avg L0 L1 L2 Avg

Human 80.56 100.00 93.75 87.50 93.75 87.50 75.00 62.50 75.00 81.25 75.00 62.50 72.92

Random 21.67 17.50 20.00 20.00 19.17 15.00 27.50 17.50 20.00 30.00 25.00 22.50 25.83

Open Source
3B

SAIL-VL-1.5-2B 22.50 12.50 25.00 22.50 20.00 30.00 27.50 25.00 27.50 22.50 20.00 17.50 20.00

InternVL3-2B 24.44 25.00 27.50 15.00 22.50 35.00 12.50 30.00 25.83 35.00 22.50 17.50 25.00

Deepseek-VL2-tiny(3B) 20.56 27.50 17.50 20.00 21.67 20.00 25.00 17.50 20.83 15.00 20.00 22.50 19.17

Qwen2.5-VL-3B-Instruct 24.17 20.00 37.50 17.50 25.00 25.00 25.00 27.50 25.83 25.00 32.50 7.50 21.67

7B

Qwen2.5-VL-7B-Instruct 28.61 35.00 35.00 32.50 34.17 17.50 30.00 17.50 21.67 27.50 30.00 32.50 30.00

Qwen2.5-Omni-7B 24.17 27.50 30.00 17.50 25.00 32.50 37.50 12.50 27.50 17.50 27.50 15.00 20.00

SAIL-VL-1.6-8B 23.89 35.00 17.50 32.50 28.33 25.00 30.00 20.00 25.00 17.50 25.00 12.50 18.33

InternVL3-8B 25.56 25.00 20.00 40.00 28.33 25.00 20.00 25.00 23.33 25.00 27.50 22.50 25.00

16B

Kimi-VL-A3B-Instruct(16B) 24.17 27.50 22.50 27.50 25.83 22.50 15.00 22.50 20.00 15.00 27.50 37.50 26.67

Kimi-VL-A3B-thinking(16B) 24.72 10.00 25.00 35.00 23.33 20.00 20.00 32.50 24.17 35.00 17.50 27.50 26.67

Deepseek-VL2-small(16B) 24.72 25.00 22.50 20.00 22.50 27.50 25.00 22.50 25.00 22.50 25.00 32.50 26.67

32B

Deepseek-VL2(27B) 26.39 22.50 35.00 37.50 31.67 32.50 15.00 27.50 25.00 17.50 30.00 20.00 22.50

Qwen2.5-VL-32B-Instruct 24.72 15.00 37.50 12.50 21.67 17.50 35.00 22.50 25.00 30.00 10.00 42.50 27.50

InternVL3-38B 26.94 22.50 20.00 20.00 20.83 25.00 35.00 27.50 29.17 22.50 32.50 37.50 30.83

72B

Qwen2.5-VL-72B-Instruct 24.17 12.50 27.50 27.50 22.50 15.00 17.50 27.50 20.00 30.00 25.00 35.00 30.00

QvQ-72B-preview 21.11 15.00 12.50 22.50 16.67 22.50 15.00 20.00 19.17 30.00 25.00 27.50 27.50

InternVL3-78B 22.22 15.00 30.00 12.50 19.17 35.00 22.50 17.50 25.00 30.00 20.00 17.50 22.50

108B

Llama-4-Maverick-17B-128E-Instruct 25.00 15.00 17.50 17.50 16.67 30.00 25.00 32.50 29.17 30.00 32.50 25.00 29.17

LLama-4-Scout-17B-16E-Instruct 28.61 15.00 17.50 17.50 16.67 35.00 32.50 30.00 32.50 42.50 32.50 35.00 36.67

Closed Source
GPT-4o 25.00 25.00 35.00 27.50 29.17 25.00 12.50 10.00 15.83 30.00 17.50 42.50 30.00

o1 29.72 27.50 30.00 27.50 28.33 37.50 37.50 27.50 34.17 42.50 12.50 25.00 26.67

Claude-3.5-sonnet 25.00 7.50 35.00 20.00 20.83 25.00 17.50 25.00 22.50 32.50 20.00 42.50 31.67

Claude-3.7-sonnet 24.72 20.00 20.00 15.00 18.33 32.50 25.00 22.50 26.67 32.50 17.50 37.50 29.17

Gemini-2.5-flash 32.50 15.00 37.50 27.50 26.67 32.50 30.00 27.50 30.00 55.00 27.50 40.00 40.83

Gemini-2.5-pro 35.00 57.50 40.00 32.50 43.33 37.50 27.50 30.00 31.67 45.00 10.00 35.00 30.00

Doubao-1-5-vision-pro 28.06 25.00 37.50 32.50 31.67 22.50 22.50 25.00 23.33 45.00 17.50 25.00 29.17

Qwen-VL-max 24.44 27.50 25.00 20.00 24.17 12.50 15.00 25.00 17.50 42.50 22.50 30.00 31.67

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Table 9: Comparison of model performances on Visual Penetration tasks.

Model Overall
CrossSection CubeCounting CubeAssembly

L0 L1 L2 Avg L0 L1 L2 Avg L0 L1 Avg

Human 75.42 75.00 75.00 68.75 72.92 81.25 75.00 56.25 70.83 87.50 75.00 82.50

Random 28.12 32.50 27.50 30.00 30.00 30.00 20.00 25.00 25.00 22.50 37.50 30.00

Open Source
3B

SAIL-VL-1.5-2B 27.19 37.50 20.00 15.00 24.17 40.00 20.00 20.00 26.67 32.50 32.50 32.50

InternVL3-2B 26.56 22.50 22.50 15.00 20.00 22.50 32.50 37.50 30.83 27.50 32.50 30.00

Deepseek-VL2-tiny(3B) 20.94 17.50 25.00 20.00 20.83 25.00 25.00 17.50 22.50 17.50 20.00 18.75

Qwen2.5-VL-3B-Instruct 25.94 25.00 25.00 27.50 25.83 17.50 35.00 17.50 23.33 30.00 30.00 30.00

7B

Qwen2.5-VL-7B-Instruct 27.19 12.50 12.50 25.00 16.67 32.50 50.00 27.50 36.67 35.00 22.50 28.75

Qwen2.5-Omni-7B 27.19 15.00 22.50 25.00 20.83 37.50 27.50 35.00 33.33 25.00 30.00 27.50

SAIL-VL-1.6-8B 21.25 17.50 22.50 25.00 21.67 22.50 17.50 17.50 19.17 30.00 17.50 23.75

InternVL3-8B 30.94 17.50 15.00 15.00 15.83 25.00 45.00 52.50 40.83 45.00 32.50 38.75

16B

Kimi-VL-A3B-Instruct(16B) 17.19 17.50 25.00 22.50 21.67 7.50 2.50 5.00 5.00 27.50 30.00 28.75

Kimi-VL-A3B-thinking(16B) 29.38 27.50 17.50 30.00 25.00 45.00 40.00 25.00 36.67 20.00 30.00 25.00

Deepseek-VL2-small(16B) 25.31 7.50 12.50 7.50 9.17 30.00 32.50 42.50 35.00 30.00 40.00 35.00

32B

Kimi-VL-A3B-Instruct(16B) 17.19 17.50 25.00 22.50 21.67 7.50 2.50 5.00 5.00 27.50 30.00 28.75

Kimi-VL-A3B-thinking(16B) 29.38 27.50 17.50 30.00 25.00 45.00 40.00 25.00 36.67 20.00 30.00 25.00

Deepseek-VL2-small(16B) 25.31 7.50 12.50 7.50 9.17 30.00 32.50 42.50 35.00 30.00 40.00 35.00

72B

Qwen2.5-VL-72B-Instruct 39.06 27.50 40.00 22.50 30.00 32.50 50.00 42.50 41.67 55.00 42.50 48.75

QvQ-72B-preview 27.81 32.50 30.00 27.50 30.00 35.00 25.00 7.50 22.50 40.00 25.00 32.50

InternVL3-78B 35.00 17.50 25.00 20.00 20.83 37.50 52.50 30.00 40.00 42.50 55.00 48.75

108B

Llama-4-Maverick-17B-128E-Instruct 32.19 27.50 15.00 15.00 19.17 27.50 47.50 30.00 35.00 52.50 42.50 47.50

LLama-4-Scout-17B-16E-Instruct 34.06 17.50 17.50 17.50 17.50 35.00 47.50 30.00 37.50 50.00 57.50 53.75

Closed Source
GPT-4o 32.50 25.00 25.00 7.50 19.17 40.00 45.00 37.50 40.83 52.50 27.50 40.00

o1 37.81 40.00 42.50 30.00 37.50 45.00 32.50 45.00 40.83 35.00 32.50 33.75

Claude-3.5-sonnet 33.44 35.00 20.00 12.50 22.50 35.00 45.00 27.50 35.83 47.50 45.00 46.25

Claude-3.7-sonnet 31.56 20.00 35.00 17.50 24.17 30.00 32.50 30.00 30.83 40.00 47.50 43.75

Gemini-2.5-flash 32.81 32.50 35.00 22.50 30.00 52.50 32.50 30.00 38.33 30.00 27.50 28.75

Gemini-2.5-pro 42.19 32.50 35.00 32.50 33.33 80.00 52.50 32.50 55.00 45.00 27.50 36.25

Doubao-1-5-vision-pro 39.69 35.00 30.00 25.00 30.00 62.50 65.00 40.00 55.83 42.50 17.50 30.00

Qwen-VL-max 38.44 32.50 20.00 27.50 26.67 57.50 62.50 22.50 47.50 50.00 35.00 42.50

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Table 10: Comparison of model performances on Mental Animation tasks.

Model Overall
ArrowMoving BlockMoving MechanicalSystem

L0 L1 Avg L0 L1 Avg L0 L1 Avg

Human 88.33 92.50 87.5 90.00 95.83 79.16 87.5 87.50 87.50 87.50

Random 23.33 32.50 25.00 28.75 10.00 22.50 16.25 30.00 20.00 25.00

Open Source
3B

SAIL-VL-1.5-2B 24.58 15.00 27.50 21.25 22.50 27.50 25.00 35.00 20.00 27.50

InternVL3-2B 27.08 22.50 15.00 18.75 37.50 27.50 32.50 25.00 35.00 30.00

Deepseek-VL2-tiny(3B) 21.67 25.00 12.50 18.75 25.00 17.50 21.25 25.00 25.00 25.00

Qwen2.5-VL-3B-Instruct 35.83 35.00 35.00 35.00 32.50 27.50 30.00 57.50 27.50 42.50

7B

Qwen2.5-VL-7B-Instruct 32.50 22.50 22.50 22.50 22.50 25.00 23.75 67.50 35.00 51.25

Qwen2.5-Omni-7B 35.42 27.50 35.00 31.25 32.50 27.50 30.00 67.50 22.50 45.00

SAIL-VL-1.6-8B 35.00 12.50 37.50 25.00 37.50 32.50 35.00 52.50 37.50 45.00

InternVL3-8B 37.08 30.00 30.00 30.00 30.00 30.00 30.00 62.50 40.00 51.25

16B

Kimi-VL-A3B-Instruct(16B) 27.92 17.50 12.50 15.00 27.50 35.00 31.25 57.50 17.50 37.50

Kimi-VL-A3B-thinking(16B) 40.42 22.50 37.50 30.00 35.00 52.50 43.75 62.50 32.50 47.50

Deepseek-VL2-small(16B) 26.25 25.00 27.50 26.25 25.00 22.50 23.75 47.50 10.00 28.75

32B

Deepseek-VL2(27B) 29.17 20.00 32.50 26.25 35.00 25.00 30.00 40.00 22.50 31.25

Qwen2.5-VL-32B-Instruct 37.08 22.50 35.00 28.75 27.50 27.50 27.50 62.50 47.50 55.00

InternVL3-38B 37.08 25.00 25.00 25.00 25.00 35.00 30.00 65.00 47.50 56.25

72B

Qwen2.5-VL-72B-Instruct 43.75 27.50 27.50 27.50 45.00 35.00 40.00 67.50 60.00 63.75

QvQ-72B-preview 39.58 27.50 22.50 25.00 40.00 60.00 50.00 42.50 45.00 43.75

InternVL3-78B 35.42 25.00 22.50 23.75 35.00 47.50 41.25 55.00 27.50 41.25

108B

Llama-4-Maverick-17B-128E-Instruct 39.17 35.00 35.00 35.00 40.00 40.00 40.00 45.00 40.00 42.50

LLama-4-Scout-17B-16E-Instruct 39.58 15.00 42.50 28.75 47.50 32.50 40.00 57.50 42.50 50.00

Closed Source
GPT-4o 38.33 32.50 12.50 22.50 25.00 40.00 32.50 62.50 57.50 60.00

o1 57.50 75.00 60.00 67.50 50.00 55.00 52.50 62.50 42.50 52.50

Claude-3.5-sonnet 40.42 42.50 32.50 37.50 25.00 37.50 31.25 57.50 47.50 52.50

Claude-3.7-sonnet 46.25 72.50 60.00 66.25 25.00 32.50 28.75 55.00 32.50 43.75

Gemini-2.5-flash 50.00 82.50 52.50 67.50 32.50 35.00 33.75 62.50 35.00 48.75

Gemini-2.5-pro 62.92 97.50 92.50 95.00 27.50 42.50 35.00 75.00 42.50 58.75

Doubao-1-5-vision-pro 35.83 22.50 22.50 22.50 32.50 42.50 37.50 57.50 37.50 47.50

Qwen-VL-max 39.17 25.00 27.50 26.25 35.00 37.50 36.25 65.00 45.00 55.00

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

F.3 TEST CASES

This section presents test cases from Gemini-2.5-pro across various tasks, helping us identify error
sources and provide direction for model improvement.

Mental Rotation-2D Rotation-Level 1

Thinking Process:

 1. Analyze the Original Grid:

 The grid is 3x3. Note the pattern in each cell and the position of the red square marker in the bottom-left corner.

 Top row: Blank, Diagonal, Blank

 Middle row: Circle, X-shape, Diagonal

 Bottom row: Vertical lines, Blank, Diagonal

 Red square: Bottom-left.

 2. Analyze Option A: → Wrong incorrect pattern details

 The grid pattern in A is identical to the Original grid. The red square is also in the bottom-left corner. This corresponds to a 0-

degree (or 360-degree) rotation. While technically a rotation, it doesn't change the orientation.

 3. Analyze Option B:

 The red square is in the top-right corner. This position corresponds to a 180-degree rotation from the original bottom-left

position. Let's check if the pattern matches a 180-degree rotation: Rotating the Original grid 180 degrees means the cell at (row,

col) moves to (3-row+1, 3-col+1) = (4-row, 4-col), and the content of the cell is also rotated 180 degrees.

 Original (3,1) [Vertical lines] -> Rotated (1,3) [Vertical lines] (Matches B)

 Original (3,2) [Blank] -> Rotated (1,2) [Blank] (Matches B)

 Original (3,3) [Diagonal] -> Rotated (1,1) [Diagonal] (Matches B)

 Original (2,1) [Circle] -> Rotated (2,3) [Circle] (Matches B)

 Original (2,2) [X-shape] -> Rotated (2,2) [X-shape] (Matches B)

 Original (2,3) [Diagonal] -> Rotated (2,1) [Diagonal] (Matches B)

 Original (1,1) [Blank] -> Rotated (3,3) [Blank] (Matches B)

 Original (1,2) [Diagonal] -> Rotated (3,2) [Diagonal] (Matches B)

 Original (1,3) [Blank] -> Rotated (3,1) [Blank] (Matches B)

 The pattern in B perfectly matches a 180-degree rotation of the Original grid.

 4. Analyze Option C:

 The red square is in the top-right corner, also suggesting a 180-degree rotation. However, the pattern does not match the

expected 180-degree rotation derived above. For example, the top-left cell in C is Blank, but the expected cell is Diagonal . The

top-right cell in C has Horizontal lines, but the expected cell has Vertical lines. Grid C is not a rotation of the Original.

 5. Conclusion:

 Grid A is a 0-degree rotation (identical), and Grid B is a 180-degree rotation. Grid C is not a rotation. The question asks

which grid can be obtained by rotating. Both 0-degree and 180-degree rotations are rotations. However, usually, such questions

imply a change in orientation (non-zero rotation). Grid B represents a non-trivial rotation (180 degrees) of the original grid.

Final Answer: B

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a patterned grid with a red square marking one corner. Which grid can be obtained by rotating the

left grid only? Please answer from options A, B, C, or D.

Choices:

 A. A B. B

 C. C D. All three other options are incorrect

Ground Truth Answer: B

Figure 20: Test case of 2D Rotation Task from Gemini-2.5-pro.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Mental Rotation-3D Rotation-Level 0

Thinking Process: → Confusing description

1. Analyze the Original Shape:

The original shape consists of 5 equal-sized cubes. Visual inspection suggests a central cube connected to four other cubes.

Given the 3D isometric view, it’s reasonable to assume the central cube (which might be hidden) has cubes attached to four of its

faces. Let's assume the structure is a central cube C with neighbours North (N), South (S), East (E), and Top (T). This structure, {C,

N, S, E, T}, is inherently 3-dimensional (non-planar). The central cube C has 4 connections (neighbours), and the other 4 cubes (N,

S, E, T) each have only 1 connection (to C).

2. Analyze Shape A:

Shape A consists of 5 cubes. It appears non-planar. Let's determine its connectivity (number of neighbours for each cube). By

visual inspection, it seems to have a ‘backbone’ of 3 cubes and two ‘legs’. The central cube of the backbone appears connected to

3 other cubes. No cube appears connected to 4 others. The connectivity pattern seems to be (1 cube with 3 neighbours, 1 cube with

2 neighbours, 3 cubes with 1 neighbour). This differs from the Original’s pattern (1 cube with 4 neighbours, 4 cubes with 1

neighbour). Therefore, A cannot be obtained by rotating the Original.

3. Analyze Shape B:

Shape B consists of 5 cubes. It appears non-planar. Let's determine its connectivity. It looks like an L-shape base of 3 cubes,

with two cubes stacked vertically on two of the base cubes (one on the corner, one on an end). By visual inspection, the maximum

number of neighbours any cube has is 2 (the corner cube of the L and the two cubes adjacent to it in the L). The connectivity

pattern seems to be (3 cubes with 2 neighbours, 2 cubes with 1 neighbour). This differs from the Original's pattern (1x4, 4x1).

Therefore, B cannot be obtained by rotating the Original.

4. Analyze Shape C:

Shape C consists of 5 cubes. This shape appears to be planar, meaning all cubes lie in a single layer. It forms a shape known

as the ‘P’ pentomino (a 2x2 square with one cube attached to the side). A planar shape consists of cubes whose centers all lie on

the same plane.

5. Compare Shapes with Original:

The Original shape {C, N, S, E, T} is non-planar because the Top cube (T) is in a different layer than the N, S, E cubes.

Shape C is planar. Rotation is a rigid transformation. It cannot change a non-planar object into a planar object.

Since the Original shape is non-planar and Shape C is planar, Shape C cannot be obtained by rotating the Original shape.

While analysis also suggested A and B cannot be obtained by rotating the Original (due to different connectivity patterns), the

difference in planarity between the Original and C is a more fundamental geometric property preserved under rotation. Given that

usually only one option is correct in such problems, the planarity difference provides the strongest reason.

6. Conclusion:

Shape C cannot be obtained by rotating the original cube stack because the original stack is non-planar and shape C is planar.

Final Answer: C

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the original cube stack made of equal-sized small cubes. Which of the options on the right cannot

be obtained by rotating the original cube stack? Please answer from options A, B, C, or D.

Choices:

A. A B. B

C. C D. All three other options are incorrect

Ground Truth Answer: A

Figure 21: Test case of 3D Rotation Task from Gemini-2.5-pro.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Mental Rotation-3View Projection-Level 0

Thinking Process:

 1. Analyze the Isometric View:

 The object is composed of stacks of cubes on a 3x3 base grid (viewed from top-down, let's label rows as Front, Middle, Back

and columns as Left, Middle, Right).

 Front-Left stack: 3 cubes high (Bottom Red, Middle Grey, Top Red).

 Front-Middle stack: 3 cubes high (All Grey).

 Front-Right stack: 1 cube high (Grey).

 Middle-Left stack: 3 cubes high (All Grey).

 Middle-Middle stack: 4 cubes high (3 Grey base + 1 Red on top).

 Middle-Right stack: 1 cube high (Grey).

 Back-Left stack: 3 cubes high (All Grey, implied by structure).

 Back-Middle stack: 3 cubes high (All Grey, implied base for MM red cube).

 Back-Right stack: 1 cube high (All Grey, implied by structure).

 2. Determine the Left View:

 The left view shows the object as seen from the left side. The 2D view grid will have columns representing the depth (Back,

Middle, Front) and rows representing the height (Bottom, Middle, Top). We need to determine the color of the cube face visible at

each position in this grid. Since the options are 3x3, we consider heights up to 3.

 3. Looking from the left:

 We see the leftmost faces of the stacks in each depth layer (Front, Middle, Back).

 Front layer (Closest depth to the right in the left view): The leftmost stack is the Front-Left stack. It is 3 high (Bottom Red,

Middle Grey, Top Red). Its left face is visible. So, the rightmost column of the left view is R (Top), G (Middle), R (Bottom).

Middle layer (Middle depth): The leftmost stack is the Middle-Left stack. It is 3 high (All Grey). Its left face is visible. So,

the middle column of the left view is G (Top), G (Middle), G (Bottom).

 Back layer (Furthest depth to the left in the left view): The leftmost stack is the Back-Left stack. It is 3 high (All Grey). Its

left face is visible. So, the leftmost column of the left view is G (Top), G (Middle), G (Bottom).

 4. Construct the 3x3 Left View Grid:

 Row 3 (Top): Grey (Back), Grey (Middle), Red (Front)

 Row 2 (Middle): Grey (Back), Grey (Middle), Grey (Front)

 Row 1 (Bottom): Grey (Back), Grey (Middle), Red (Front)

 5. Compare with Options:

 Option A: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, R). This matches the derived left view.

 Option B: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (R, G, G). Mismatch.

 Option C: Top Row (G, G, R), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.

 Option D: Top Row (R, G, G), Middle Row (G, G, G), Bottom Row (G, G, G). Mismatch.

 Note on discrepancies: The provided Front and Top views in the question appear inconsistent with the Isometric view (e.g.,

the height of the Front-Right stack, the position of the topmost Red cube, the empty space in the Top view). However, the question

asks for the left view of the cube stack shown in the isometric view. Therefore, we derive the left view from the isometric drawing.

The derivation based on the isometric view matches Option A.

Final Answer: A

Prompt：You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and

<answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: The cube stack is made of equal-sized small cubes, mostly

gray with a few red ones. The top row shows its isometric view, front

view, and top view from left to right. Which image in the bottom row is

the left view of the cube stack? Please answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: A

Figure 22: Test case of Three-View Projection (Level 0) Task from Gemini-2.5-pro.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Mental Rotation-3View Projection-Level 1

Thinking Process:

 1. Understand the Task:

 The goal is to identify the correct front view of the 3D object, given its isometric view and top view.

 2. Analyze the Isometric View:

 The isometric view shows a 3D representation of the object. It consists of a main rectangular prism (or block) and a cylinder

attached to one of the larger faces of the prism. The cylinder extends outwards from this face.

 3. Analyze the Top View:

 The top view shows the object as seen from directly above. It appears as a ‘T’ shape. The wider horizontal part of the ‘T’

corresponds to the top surface of the rectangular prism. The narrower vertical part of the ‘T’ corresponds to the top view of the

cylinder. This confirms that the cylinder is centered horizontally on the face it’s attached to. It also shows the relative width of the

prism and the diameter of the cylinder, as well as the length the cylinder protrudes.

 4. Determine the Orientation for the Front View:

 The isometric view typically shows the front, top, and one side (usually right). The top view is given. The front view would

be looking at the face from which the cylinder protrudes.

 5. Visualize the Front View:

 Imagine looking directly at the face of the rectangular prism where the cylinder is attached. You would see the rectangular

outline of that face. You would also see the end of the cylinder, which is a circle, superimposed onto that rectangular face.

 From the isometric view, the cylinder appears centered vertically on the face.

 From the top view, the cylinder is centered horizontally on the face.

 Therefore, the front view should be a rectangle with a circle located in its center.

 6. Compare with the Options:

 Option A: Shows a rectangle with a circle inside, centered horizontally and vertically. This matches the visualization of the

front view derived from the isometric and top views.

 Option B: Shows a ‘T’ shape lying on its side. This does not match the front view. It resembles the top view rotated.

Option C: Shows only a rectangle. This would be the back view of the object, or the front view if the cylinder were absent.

 7. Conclusion:

 Option A is the correct representation of the front view of the given 3D object.

Final Answer: A

Prompt：You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and

<answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: The top row shows the isometric view (left) and the top view

(right) of a 3D model. Which image in the bottom row is the front view

of the model? Please answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. All three other options are incorrect

Ground Truth Answer: A

Figure 23: Test case of Three-View Projection (Level 1) Task from Gemini-2.5-pro.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Mental Folding-Paper Folding-Level 0

Thinking Process:

 Step 1: Analyze the starting paper.

 The paper is a 3x3 grid. Let's label the cells by (row, column) starting from the top-left as (1,1).

 (1,1) (1,2) (1,3); (2,1) (2,2) (2,3); (3,1) (3,2) (3,3)

 Step 2: Analyze Operation 1.

 A horizontal fold is made across the middle of the original 3x3 grid. The diagram shows the bottom third (row 3) being

folded upwards, lying underneath the middle third (row 2). The fold line is between row 2 and row 3.

 The state after Operation 1 is a 3x2 grid shape (rows 1 and 2 are visible).

 - Row 1 contains cells (1,1), (1,2), (1,3) (single layer).

 - Row 2 (visible) contains cells (2,1), (2,2), (2,3) as the top layer, and cells (3,1), (3,2), (3,3) as the bottom layer, folded

underneath.

 Step 3: Analyze Operation 2.

 Starting from the 3x2 shape after Operation 1. A diagonal fold is made within the right 2x2 section (columns 2 and 3). The

fold line goes from the bottom-left corner of cell (2,2) to the top-right corner of cell (1,3). The top-right triangular part (involving

cells (1,2), (1,3), (2,3)) is folded down/left onto the bottom-left triangular part (involving cells (1,2), (2,2), (2,3)).

 The state after Operation 2 is shown. Note the layers:

 - The leftmost column (original cells (1,1) and (2,1)/(3,1)) is unaffected by this fold.

 Cell (1,1) is single layer. Cell (2,1) is the top layer, (3,1) is the bottom layer.

 - The right part is now folded.

 Step 4: Analyze Punch Holes.

 A single hole is punched. Its location is in the bottom-left square of the shape shown after Operation 2. This corresponds to

the cell location (2,1) in the configuration after Operation 1. Since this location (2,1) had two layers of paper from Operation 1

(original cell (2,1) on top and original cell (3,1) underneath), punching a hole here creates holes through both layers. This area was

not affected by the fold in Operation 2.

 Step 5: Unfold Operation 2.

 We reverse Operation 2 by unfolding the diagonal fold. Since the punched hole was in the part not involved in this fold ((2,1)

area), unfolding Operation 2 does not change the location of the holes or create new ones. The paper returns to the state after

Operation 1 (the 3x2 shape). We have holes through both layers at position (2,1). That means original cell (2,1) has a hole, and

original cell (3,1) has a hole.

 Step 6: Unfold Operation 1.

 We reverse Operation 1 by unfolding the bottom third (row 3) back down. The fold line was between row 2 and row 3. The

holes are currently in cell (2,1) and cell (3,1). Unfolding separates these layers. The final unfolded 3x3 paper will have a hole in

cell (2,1) (middle row, left column) and a hole in cell (3,1) (bottom row, left column).

 Step 7: Compare with options.

 - Option A shows holes at (2,1) and (3,1). This matches our result.

 - Option B shows holes at (1,1), (2,1), (3,1). Incorrect.

 - Option C shows holes at (1,1) and (3,1). Incorrect.

 - Option D shows a hole at (3,1). Incorrect.

 Therefore, the correct unfolded pattern is shown in Option A.

Final Answer: A

Prompt：You should first provide a reasoning process, then provide a single

option(A, B, C or D) as the final answer. The reasoning process and the answer

are enclosed within <think></think> and <answer></answer> tags, respectively,

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The original paper is a 3×3 grid paper. The images in the top row

show the results of 2 consecutive folding operations on the grid paper. Folding

operations include folding along horizontal, vertical, or 45-degree direction.

The rightmost image in the top row shows the result after punching holes in the

folded paper. Which image represents the appearance of the paper after

unfolding the punched paper? Black solid circles represent grid cells with holes.

Please answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: A

Figure 24: Test case of Paper Folding Task from Gemini-2.5-pro.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Mental Folding-Cube Unfolding-Level 0

Thinking Process:

 1. Analyze the Target Cube:

 The image shows a cube with three visible faces meeting at a vertex: Red (Top), Blue (Front), and Green (Right). This means

Red, Blue, and Green must be adjacent faces in any valid net representation. → Wrong color detection

 2. Analyze the Nets (A, B, C, D):

 Each net represents an unfolded cube. To determine if a net can form the target cube, we need to check if the required faces

(Red, Blue, Green) are adjacent and if their spatial relationship matches the target cube when folded. A key property of cube nets

is identifying opposite faces. Faces are opposite if they are separated by one face in a straight line in the net, or by other standard

rules depending on the net’s shape.

 3. Check Net A:

 Identify opposite faces: Trace paths or visualize folding. In Net A, Teal is opposite Blue, Red is opposite Yellow, and Green is

opposite Purple. → Wrong opposite faces

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. Since none of these are opposite

pairs in Net A (Red/Yellow, Blue/Teal, Green/Purple), they can be adjacent.

 Visualize folding: It's possible to fold Net A such that Red is Top, Blue is Front, and Green is Right. (For example, place Red

top, Yellow bottom. Arrange neighbours Teal, Purple, Green around Red. Blue is opposite Teal. One possible fold results in

Top:Red, Bottom:Yellow, Front:Purple, Right:Green, Back:Blue, Left:Teal. Rotating this gives the target view.)

 Thus, Net A can form the cube.

 4. Check Net B:

 Identify opposite faces: In Net B, Yellow is opposite Red, Teal is opposite Green, and Purple is opposite Blue.

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in

Net B (Red/Yellow, Blue/Purple, Green/Teal), so they can be adjacent.

 Visualize folding: It's possible to fold Net B to match the target cube. (For example, one fold gives Top:Blue, Bottom:Purple,

Front:Green, Back:Teal, Left:Yellow, Right:Red. This can be rotated to match the target view: Red-Top, Blue-Front, Green-Right).

Thus, Net B can form the cube.

 5. Check Net C:

 Identify opposite faces: In Net C, Yellow is opposite Blue, Red is opposite Purple, and Green is opposite Teal.

 Check required adjacencies: The target cube requires Red, Blue, and Green to be adjacent. None of these are opposite pairs in

Net C (Red/Purple, Blue/Yellow, Green/Teal), so they can be adjacent.

 Visualize folding: It's possible to fold Net C to match the target cube. (For example, one fold gives Top:Teal, Bottom:Green,

Front:Red, Back:Purple, Left:Yellow, Right:Blue. This configuration can be rotated into the target view Red-Top, Blue-Front,

Green-Right).

 Thus, Net C can form the cube.

 6. Check Net D:

 Identify opposite faces: In Net D, Blue is opposite Red, Purple is opposite Teal, and Green is opposite Yellow.

 Check required adjacencies: The target cube shows Red, Blue, and Green meeting at a vertex, which requires Red and Blue to

be adjacent. However, in Net D, Red and Blue are opposite faces.

 Conclusion:

 Opposite faces cannot meet at a vertex or share an edge. Since Net D places Red and Blue opposite each other, it is

impossible to fold Net D into the cube shown on the left where Red and Blue are adjacent. Thus, Net D cannot form the cube.

 7. Final Answer:

 Based on the analysis, Nets A, B, and C can form the target cube, while Net D cannot because it places two adjacent faces

from the target cube (Red and Blue) in opposite positions.

Final Answer: D

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a colored cube from a particular viewing angle. The options are nets (unfolded patterns) of the

cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube shown in the left image? Please

answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: C

Figure 25: Test case of Cube Unfolding Task from Gemini-2.5-pro.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Mental Folding-Cube Unfolding-Level 2

Thinking Process:

Let's analyze the visible faces of the cube:

Top face (T): Pattern of Blue, Purple, Green dots. Specifically, (B B B / P . P / G G G). The bottom-right corner dot is Green

(G).

Front face (F): Pattern of Purple, Green, Red, Blue dots. Specifically, (P G / G R / G B). The top-right corner dot is Green (G).

Right face (R): Pattern of Green, Purple, Black, Blue, Red dots. Specifically, (G P . / G Bl B / R B R). The top-left corner dot

is Green (G).

The common vertex where these three faces (T, F, R) meet has a Green dot from each face. So, this vertex is (G, G, G).

Now let's examine each net:

Net A:

Let's identify the patterns T, F, R in Net A if they exist.

Face 2 of Net A matches T. (B B B / P . P / G G G)

Face 3 of Net A matches F. (P G / G R / G B)

Now, we need to find face R: (G P . / G Bl B / R B R).

Let's list the patterns of the other faces in Net A:

Face 1: (B G . / M R . / Bl B .) (M=Magenta/Purple). Face 4: (Bl B . / P R . / G P .) Face 5: (P Bl . / B R . / G M .) Face 6: (P

G . / B M . / B R .) Comparing R with faces 1, 4, 5, 6: None of them match the pattern of R. Since face R is not present in Net A,

Net A cannot form the cube shown.

Let's verify other nets, assuming this is the primary criterion. If other nets contain T, F, R and can be arranged correctly, then

A is the answer.

Net B:

Face 2 is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the

standard T, F, R configuration.

Let's check the common vertex: T (face 2): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G.

So, the common vertex is (G,G,G). This is consistent with the cube. Thus, Net B can form the cube.

Net C:

Face 1 is T. Face 3 is F. Face 4 is R. These faces are arranged such that T is above F, and R is to the right of F. This is the

standard T, F, R configuration. Let's check the common vertex:

T (face 1): bottom-right dot is G. F (face 3): top-right dot is G. R (face 4): top-left dot is G. So, the common vertex is (G,G,G).

This is consistent with the cube. Thus, Net C can form the cube.

Net D:

The topmost face is R. The face below it is T. The face to the left of T is F. So, R, T, F are present. Arrangement when folded:

R is Top, T is Front, F is Left.

Let's find the common vertex for this configuration: R (Top): bottom-left dot is R (from R B R). T (Front): top-left dot is B

(from B B B). F (Left): top-right dot is G (from P G). So, the common vertex is (R, B, G). For this to match the (G,G,G) vertex of

the cube, we would need R=G and B=G, which is false as the colors are distinct. Therefore, Net D cannot form the cube shown

with this specific corner.

However, the primary reason for Net A being unable to form the cube is the absence of face R. This is a more fundamental

issue than corner matching if all faces are present. If a face is missing, it absolutely cannot form the cube.

If we assume that there’s only one incorrect option, and the “missing face” criterion for A is decisive, then A is the answer.

The issues with D (and potential edge matching issues with B and C) might be secondary or based on misinterpretations of

“forming the cube”. But missing a face is a definitive failure. Let's reconfirm the “missing face R in Net A” argument. R = (G P . /

G Bl B / R B R)

Net A, Face 1: (B G / M R / Bl B) - No match (e.g., G at top-left of R, B at top-left of Face 1)

Net A, Face 4: (Bl B / P R / G P) - No match (e.g., G at top-left of R, Bl at top-left of Face 4)

Net A, Face 5: (P Bl / B R / G M) - No match (e.g., G at top-left of R, P at top-left of Face 5)

Net A, Face 6: (P G / B M / B R) - No match (e.g., G at top-left of R, P at top-left of Face 6)

The conclusion that face R is not present in Net A seems correct. Therefore, Net A cannot form the cube. The final answer is

$\\boxed{A}$.

Final Answer: A

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows a cube with different patterns on its six faces from a particular viewing angle. The options are

nets (unfolded patterns) of the cube, which are folded upward to form the cube. Which net, when folded, cannot form the cube

shown in the left image? Please answer from options A, B, C, or D.

Choices:

A. A B. B C. C D. D

Ground Truth Answer: A

Figure 26: Test case of Cube Unfolding Task from Gemini-2.5-pro.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Mental Folding-Cube Reconstruction-Level 1

Thinking Process:

 1. Identify the faces and their opposite pairs:

 Label the faces in the net based on the number of dots: Top row: 4; Middle row: 3, 2, 6; Bottom row: 1, 5 (where 1 is below 3,

and 5 is below 6) → Wrong pattern detection

 Determine opposite faces by folding mentally or noting faces separated by one other face in a straight line (or around corners):

 The face with 4 dots is opposite the face with 1 dot.

 The face with 3 dots is opposite the face with 6 dots.

 The face with 2 dots is opposite the face with 5 dots.

 2. Evaluate the options based on opposite faces:

 A cube view can only show faces that are adjacent to each other. Opposite faces can never be seen together.

 Option A: Shows faces with 4 dots, 3 dots, and 1 dot. Since 4 and 1 are opposite faces, this view is impossible.

 Option B: Shows faces with 5 dots, 3 dots, and 2 dots. Since 2 and 5 are opposite faces, this view is impossible.

 Option D: Shows faces with 3 dots, 6 dots, and 5 dots. Since 3 and 6 are opposite faces, this view is impossible.

 Option C: Shows faces with 2 dots, 4 dots, and 3 dots. None of these pairs (2-4, 2-3, 4-3) are opposite pairs (Opposites: 2-5,

4-1, 3-6). Therefore, this combination of adjacent faces is possible.

 3. Verify Option C with adjacency and orientation (Optional but recommended):

 Consider the face with 2 dots (let's call it F2) as the front face.

 In the net, the face with 4 dots (F4) is attached to the top edge of F2 (relative to the net layout shown). When folded, F4

becomes the top face.

 In the net, the face with 3 dots (F3) is attached to the left edge of F2. When folded, F3 becomes the left face.

 So, the faces 2, 4, and 3 can indeed meet at the top-front-left vertex.

 Check orientations shown in C:

 Front (2 dots): The dots run diagonally from top-left to bottom-right. This matches the orientation on the net relative to the

edges connected to F4 and F3.

 Top (4 dots): The dots form a square. This matches the orientation on the net relative to the edge connected to F2.

 Left (3 dots): The dots run vertically. The middle dot is closer to the edge shared with F2 (the front face). This matches the

orientation on the net relative to the edge connected to F2.

 The adjacencies and orientations in Option C are consistent with the net.

 Conclusion:

 Options A, B, and D are impossible because they show opposite faces.

 Option C shows three faces that are adjacent in the net and whose orientations are consistent with folding.

Final Answer: C

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the net (unfolded pattern) of a cube, with six faces having different patterns. The net is folded

upward to form a cube. From an axonometric (3D) viewing angle of the cube, which combination of adjacent patterns is possible

to see? Please answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: A

Figure 27: Test case of Cube Reconstruction Task from Gemini-2.5-pro.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Visual Penetration-Cross Section-Level 0

Thinking Process:

 1. Analyze the 3D Shape:

 The object consists of a cone positioned inside a circular depression on the top face of a square frustum. The base of the cone

is circular and lies on the plane of the top face of the frustum. The frustum has a square base and tapers upwards to a smaller

square top face. The circular depression (and thus the cone's base) is contained entirely within this top square face.

 2. Analyze Option A (Circle):

 A horizontal cross-section plane passing through the cone part (above the frustum's top face) will intersect the cone to form a

circle. This is a possible cross-section.

 3. Analyze Option D (Square):

 A horizontal cross-section plane passing through the frustum part below the level of the cone's base (and below the

depression) will intersect the frustum to form a square. This is a possible cross-section.

 4. Analyze Option C (Triangle on Trapezoid):

 A vertical cross-section plane passing through the central axis of both the cone and the frustum, and parallel to two opposite

side faces of the square frustum, will intersect the cone to form a triangle and the frustum to form an isosceles trapezoid. The

triangle will sit atop the trapezoid. This is a possible cross-section.

 5. Analyze Option B (Curve on Trapezoid): → Correct and detailed analysis

 This shape represents a cross-section formed by a plane cutting through both the cone and the frustum. The curved top part

represents the intersection with the cone. If the plane is vertical and off-center, this curve is typically a hyperbola segment. If the

plane is tilted, it could be an ellipse or parabola segment. The trapezoidal bottom part represents the intersection with the frustum.

A vertical plane cutting the frustum can result in a rectangle (if parallel to a side face) or a trapezoid (if cutting diagonally or at an

angle relative to the side faces). A tilted plane could also result in a trapezoid.

 The key feature to examine is the junction between the curved top and the trapezoidal base. This junction line represents the

intersection of the cutting plane with the plane containing the cone’s base (the top surface of the frustum). The width of the curved

section at its base corresponds to the length of the chord formed by the cutting plane intersecting the cone’s circular base. The

width of the top side of the trapezoid corresponds to the length of the line segment formed by the cutting plane intersecting the

frustum's top square face. Since the cone’s circular base is strictly smaller than and contained within the frustum's top square face

(as seen in Views 1 and 2), any cutting plane that intersects both the circle and the square will create a chord across the circle that

is strictly shorter than the segment across the square (unless the plane is merely tangent to the circle). Therefore, the base width of

the curved (cone) section must be strictly narrower than the top width of the trapezoidal (frustum) section. However, in option B,

the base width of the curve appears to be equal to the top width of the trapezoid. This configuration is geometrically impossible

given that the cone’s base circle lies inside the top square face of the frustum.

 6. Conclusion: → Incorrect identification of the relative length relationship of options

 Options A, C, and D represent possible cross-sections of the described 3D object.

 Option B depicts a configuration where the width of the cone section matches the width of the frustum section at the joining

plane, which contradicts the geometry shown in Views 1 and 2 where the cone base is smaller than the top face of the frustum.

Therefore, B cannot be a cross-section.

Final Answer: B

Prompt：You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and

<answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: The top row shows the combined shape viewed from two

different angles. The shape consists of a cone on top of a square frustum.

Which of the following images cannot be a cross-section of the shape?

Please answer from options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: C

Figure 28: Test case of Cross-Section Task from Gemini-2.5-pro.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Visual Penetration-Cube Counting-Level 1

Thinking Process: → Incorrect details, but based on the wrong details, the analysis is correct

 1. Understand the Goal:

 The objective is to find the minimum number of unit cubes required to build a 3D structure whose orthographic projections

(Front, Top, Left views) match the given diagrams.

 2. Analyze the Top View:

 The Top view shows the layout of the cubes on the base level (or the projection of all cubes onto the base). It occupies a 2x3

grid area, with the cell in the top-right corner (row 1, column 3) and the bottom-right cell (row 2, column 3) being potentially

different.

 The cells occupied are: Top row (back): (1,1), (1,2), (1,3); Bottom row (front): (2,1), (2,2); Cell (2,3) is empty.

 This means there must be at least one cube stacked at each of the locations (1,1), (1,2), (1,3), (2,1), and (2,2).

 This establishes a minimum of 5 cubes based on the footprint.

 3. Analyze the Front View: → Wrong order

 The Front view shows the maximum height of the stacks in each column (left-to-right).

 Column 1 (left): Height is 3. Corresponds to locations (1,1) and (2,1). So, max(Height(1,1), Height(2,1)) = 3.

 Column 2 (middle): Height is 3. Corresponds to locations (1,2) and (2,2). So, max(Height(1,2), Height(2,2)) = 3.

 Column 3 (right): Height is 1. Corresponds to location (1,3) (since (2,3) is empty according to the top view). So, Height(1,3)

= 1.

 4. Analyze the Left View:

 The Left view shows the maximum height of the stacks in each row (front-to-back, viewed from the left).

 Back Row (left side of the Left view): Height is 3. Corresponds to locations (1,1), (1,2), (1,3). So, max(Height(1,1),

Height(1,2), Height(1,3)) = 3.

 Front Row (right side of the Left view): Height is 1. Corresponds to locations (2,1), (2,2). So, max(Height(2,1), Height(2,2))

= 1.

 5. Combine Information and Minimize Cubes:

 Let H(r, c) denote the height of the stack at row ‘r’ and column ‘c’.

 From Top view: H(1,1)>=1, H(1,2)>=1, H(1,3)>=1, H(2,1)>=1, H(2,2)>=1.

 From Front view: Height(1,3) = 1.

 From Left view: max(H(2,1), H(2,2)) = 1.

 Since we know H(2,1)>=1 and H(2,2)>=1, this forces H(2,1) = 1 and H(2,2) = 1.

 Now use the Front view constraints again:

 max(H(1,1), H(2,1)) = 3. Since H(2,1) = 1, we must have H(1,1) = 3 to satisfy the maximum height and minimize cubes.

max(H(1,2), H(2,2)) = 3. Since H(2,2) = 1, we must have H(1,2) = 3 to satisfy the maximum height and minimize cubes.

 Check the remaining Left view constraint: max(H(1,1), H(1,2), H(1,3)) = max(3, 3, 1) = 3.

 This is satisfied by our determined heights.

 6. Calculate Total Cubes: → The error does not affect the final numerical result

 We have determined the minimum required heights for each stack: H(1,1) = 3, H(1,2) = 3, H(1,3) = 1, H(2,1) = 1, H(2,2) = 1

 Total number of cubes = H(1,1) + H(1,2) + H(1,3) + H(2,1) + H(2,2)

 Total cubes = 3 + 3 + 1 + 1 + 1 = 9

 7. Compare with Options:

 The calculated minimum number of cubes is 9. This matches option B.

Final Answer: B

Prompt：You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and

<answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: Given three views, what is the minimum number of cubes

required to satisfy the constraints shown in the images? Please answer

from options A, B, C, or D.

Choices:

 A. All three other options are incorrect B. 9 C. 11 D. 10

Ground Truth Answer: B

Figure 29: Test case of Cube Counting Task from Gemini-2.5-pro.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

Visual Penetration-Cube Assembly-Level 0

Thinking Process: → Most of the identifications of the number of cube stacks are incorrect

 1. Analyze the Complete Cube Stack:

 Visualize the stack layer by layer or column by column. Let’s use columns from back-left to front-right (like reading order if

viewed from slightly above).

 Back-Left Column: 2 cubes high.

 Back-Right Column: 2 cubes high.

 Middle-Left Column: 2 cubes high.

 Middle-Right Column: 1 cube high (only bottom layer).

 Front-Left Column: 1 cube high (only bottom layer).

 Front-Right Column: 1 cube high (only bottom layer).

 Total Cubes = 2 + 2 + 2 + 1 + 1 + 1 = 9 cubes.

 2. Analyze Part 1:

 Using the same column description:

 Back-Left Column: 2 cubes high.

 Back-Right Column: 0 cubes.

 Middle-Left Column: 1 cube high (only bottom layer).

 Middle-Right Column: 1 cube high (only bottom layer).

 Front-Left Column: 1 cube high (only bottom layer).

 Front-Right Column: 0 cubes.

 Total Cubes = 2 + 0 + 1 + 1 + 1 + 0 = 5 cubes.

 3. Determine the Missing Part (Complete Stack - Part 1): → Incorrect approach to calculation

 Subtract the cubes in Part 1 from the Complete Stack for each column position:

 Back-Left Column: 2 (Complete) - 2 (Part 1) = 0 cubes.

 Back-Right Column: 2 (Complete) - 0 (Part 1) = 2 cubes (column 2 high).

 Middle-Left Column: 2 (Complete) - 1 (Part 1) = 1 cube (must be the top cube).

 Middle-Right Column: 1 (Complete) - 1 (Part 1) = 0 cubes.

 Front-Left Column: 1 (Complete) - 1 (Part 1) = 0 cubes.

 Front-Right Column: 1 (Complete) - 0 (Part 1) = 1 cube (must be the bottom cube).

 Total Cubes in Missing Part = 0 + 2 + 1 + 0 + 0 + 1 = 4 cubes.

 Structure of Missing Part: A column of 2 cubes in the back-right position, a single cube in the middle-left top position, and a

single cube in the front-right bottom position.

 4. Analyze the Options:

 Option A: Has a column of 2 in the back-left, 1 in middle-left (bottom), 1 in front-left (bottom). Total 4 cubes. Does not

match the required structure.

 Option B: Has a column of 2 in back-left, 1 in back-right (bottom), 1 in middle-left (bottom), 1 in middle-right (bottom).

Total 5 cubes. Incorrect number of cubes and structure.

 Option C: Has a column of 2 in the back-right position, a single cube that aligns with the middle-left top position, and a

single cube that aligns with the front-right bottom position. Total 4 cubes. This matches the required structure derived in step 3.

5. Conclusion:

 Option C is the missing part that combines with Part 1 to form the Complete Cube Stack.

Final Answer: C

Prompt：You should first provide a reasoning process, then provide a

single option(A, B, C or D) as the final answer. The reasoning process

and the answer are enclosed within <think></think> and

<answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: The top left image shows the original complete cube stack

made of equal-sized cubes. It can be formed by combining the small

cube stack on the right(part 1) with one of the options below. Which

option completes the original cube stack? Please answer from options A,

B, C, or D.

Choices:

 A. A B. B C. C D. All three other options are incorrect

Ground Truth Answer: B

Figure 30: Test case of Cube Assembly Task from Gemini-2.5-pro.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Mental Animation-Arrow Moving-Level 0

Thinking Process:

 1. Analyze Initial State:

 The red arrow (start) is located in the top-left quadrant. Its center appears to be at coordinates approximately (0.5, 1.5).

 The direction of the red arrow is pointing downwards (South).

 2. Analyze Final State:

 The green arrow (end) is located in the bottom-right quadrant. Its center appears to be at coordinates approximately (1.5, 0.5).

The direction of the green arrow is pointing to the right (East).

 3. Define Movement Rules:

 The arrow can move Forward, Backward, Left, or Right relative to its current orientation. After each move, the arrow's

orientation changes to the direction of the move. Cardinal Directions relative to current orientation:

 If facing North (Up): Forward=Up, Backward=Down, Left=West, Right=East.

 If facing South (Down): Forward=Down, Backward=Up, Left=East, Right=West.

 If facing East (Right): Forward=Right, Backward=Left, Left=Up, Right=Down.

 If facing West (Left): Forward=Left, Backward=Right, Left=Down, Right=Up. → Fully comprehend the rules

 4. Evaluate Option A: (Left, 2 units) -- (Left, 1 unit)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Left, 2 units. Relative to Down, Left is East (Right). Move 2 units East.

 -- New Position: (0.5 + 2, 1.5) = (2.5, 1.5). New Direction: East (Right).

 Move 2: Left, 1 unit. Relative to East (Right), Left is North (Up). Move 1 unit North.

 -- New Position: (2.5, 1.5 + 1) = (2.5, 2.5).

 New Direction: North (Up).

 Result: Position (2.5, 2.5), Direction Up. Does not match the final state.

 5. Evaluate Option B: (Forward, 1 unit) -- (Backward, 1 unit)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Backward, 1 unit. Relative to Down, Backward is Up. Move 1 unit Up.

 -- New Position: (0.5, 0.5 + 1) = (0.5, 1.5). New Direction: Up.

 Result: Position (0.5, 1.5), Direction Up. Does not match the final state.

 6. Evaluate Option C: (Forward, 1 unit) -- (Backward, 2 units)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Backward, 2 units. Relative to Down, Backward is Up. Move 2 units Up.

 -- New Position: (0.5, 0.5 + 2) = (0.5, 2.5). New Direction: Up.

 Result: Position (0.5, 2.5), Direction Up. Does not match the final state.

 7. Evaluate Option D: (Forward, 1 unit) -- (Left, 1 unit)

 Start: Position (0.5, 1.5), Direction Down.

 Move 1: Forward, 1 unit. Relative to Down, Forward is Down. Move 1 unit Down.

 -- New Position: (0.5, 1.5 - 1) = (0.5, 0.5). New Direction: Down.

 Move 2: Left, 1 unit. Relative to Down, Left is East (Right). Move 1 unit East.

 -- New Position: (0.5 + 1, 0.5) = (1.5, 0.5). New Direction: East (Right).

 Result: Position (1.5, 0.5), Direction East (Right). Matches the final state (green arrow).

 8. Conclusion: Option D correctly describes the path from the red arrow to the green arrow.

Final Answer: D

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or

D) as the final answer. The reasoning process and the answer are enclosed within

<think></think> and <answer></answer> tags, respectively, i.e., <think>reasoning

process</think>, <answer>answer</answer>.

Question: In the diagram, the red arrow is the initial arrow, and the green arrow is the final arrow.

The arrow can move in four directions (forward, backward, left, right), where 'forward' always

refers to the current direction the arrow is pointing. After each movement, the arrow's direction is

updated to the direction of movement. Which of the following paths can make the arrow move

from the starting position to the ending position? Please answer from options A, B, C, or D.

Choices:

 A. (Left, 2 units)--(Left, 1 unit)

 B. (Forward, 1 unit)--(Backward, 1 unit)

 C. (Forward, 1 unit)--(Backward, 2 units)

 D. (Forward, 1 unit)--(Left, 1 unit)\

Ground Truth Answer: D

Figure 31: Test case of Arrow Moving Task (Level 0) from Gemini-2.5-pro.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Mental Animation-Arrow Moving-Level 1

Thinking Process:

 1. Analyze Initial State:

 Grid coordinates range from x=0 to x=2 and y=0 to y=2 (implicitly, based on positions).

 Arrow 1: Red at (0, 0), Orientation: Right (East).

 Arrow 2: Green at (1, 0), Orientation: Down (South).

 Arrow 3: Pink at (2, 0), Orientation: Right (East).

 Arrow 4: Red at (0, 2), Orientation: Up (North).

 2. Analyze Transformation 1: ((0, 0) Left, 2 units)

 Identify the arrow: The arrow starting at (0, 0) is Arrow 1 (Red, facing Right).

 Determine the movement direction: ‘Left’ relative to the arrow’s orientation (Right). If facing Right, ‘Left’ is Up (North).

Determine the target position: Move 2 units Up from (0, 0). Target is (0, 0 + 2) = (0, 2).

 Check the target position: Position (0, 2) is occupied by Arrow 4 (Red, facing Up).

 Execute swap: Since the target is occupied, Arrow 1 and Arrow 4 must swap positions.

 Arrow 1 moves from (0, 0) to (0, 2). Movement direction: Up. New orientation for Arrow 1: Up.

 Arrow 4 must move from (0, 2) to (0, 0). Movement direction: Down.

 Check if Arrow 4’s move is valid: Arrow 4 is facing Up.

 Moving Down is ‘Backward’. This is a valid relative move.

 New orientation for Arrow 4: Down (direction of movement).

 State after Transformation 1: Arrow 4: Red at (0, 0), Orientation: Down. Arrow 2: Green at (1, 0), Orientation: Down. Arrow

3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

 3. Analyze Transformation 2: ((1, 0) Right, 1 unit)

 Identify the arrow: The arrow currently at (1, 0) is Arrow 2 (Green, facing Down).

 Determine the movement direction: ‘Right’ relative to the arrow’s orientation (Down). If facing Down, ‘Right’ is Left (West).

 Determine the target position: Move 1 unit Left from (1, 0). Target is (1 - 1, 0) = (0, 0).

 Check the target position: Position (0, 0) is occupied by Arrow 4 (Red, facing Down).

 Execute swap: Since the target is occupied, Arrow 2 and Arrow 4 must swap positions.

 Arrow 2 moves from (1, 0) to (0, 0). Movement direction: Left. New orientation for Arrow 2: Left.

 Arrow 4 must move from (0, 0) to (1, 0). Movement direction: Right.

 Check if Arrow 4’s move is valid: Arrow 4 is facing Down. Moving Right is ‘Right’. This is a valid relative move.

 New orientation for Arrow 4: Right (direction of movement).

 State after Transformation 2 (Final State): Arrow 2: Green at (0, 0), Orientation: Left. Arrow 4: Red at (1, 0), Orientation:

Right. Arrow 3: Pink at (2, 0), Orientation: Right. Arrow 1: Red at (0, 2), Orientation: Up.

 4. Compare Final State with Options:

 Option A: Incorrect arrows/positions/orientations.

 Option B: Incorrect arrows/positions/orientations.

 Option C: Green at (0, 0), facing Left. (Match); Red at (1, 0), facing Right. (Match); Pink at (2, 0), facing Right. (Match);

Red at (0, 2), facing Up. (Match). This matches the derived final state.

 Option D: Incorrect arrows/positions/orientations.

 5. Conclusion: The state reached after the transformations matches Option C.

Final Answer: C

Prompt：You should first provide a reasoning process, then provide a single option(A, B, C or D) as the final answer. The

reasoning process and the answer are enclosed within <think></think> and <answer></answer> tags, respectively, i.e.,

<think>reasoning process</think>, <answer>answer</answer>.

Question: The left image shows the initial state. Arrows can move in four directions (forward, backward, left, right), where

'forward' always refers to the current direction the arrow is pointing. After each movement, the arrow's direction is updated to

the direction of movement. If the target position is empty, the arrow can move there directly; otherwise, it needs to swap with the

arrow at the target position, and both arrows' movements should satisfy the aforementioned requirements. After the

transformations '((0, 0) Left, 2 units)--((1, 0) Right, 1 unit)', which state from the options can be reached? Please answer from

options A, B, C, or D.

Choices:

 A. A B. B C. C D. D

Ground Truth Answer: C

Figure 32: Test case of Arrow Moving Task (Level 1) from Gemini-2.5-pro.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Mental Animation-Block Moving-Level 1

Thinking Process:

 1. Analyze States:

 Identify block positions (R, G, DB, P, C) in Initial and Final states using a consistent coordinate system (e.g., R at 0,0,0).

Initial: R(0,0,0), G(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1). → Missing 1 block and the positions of blocks are wrong

 Final: R(0,0,0), DB(1,0,0), G(0,1,0), P(1,1,0), C(1,1,1).

 The change is G swaps with DB.

 2. Analyze Rules:

 Moves are 1 unit. Target empty = move. Target occupied = swap. Gravity applies if support is removed.

 3. Evaluate Options:

 A: (1,1,1)x- moves C to (0,1,1). (0,0,0)x+ swaps R and G.

 Result: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(0,1,1). Incorrect state.

 B: (1,1,0)x- swaps P and DB. (1,1,0)x+ moves DB(now at 1,1,0) to (2,1,0), causing C(1,1,1) to fall to (1,1,0). (1,1,1)z-

attempts to move from empty (1,1,1). Invalid.

 C: (1,1,1)x+ moves C(1,1,1) to (2,1,1), causing C to fall to (2,1,0). (2,1,0)x- swaps C(2,1,0) and P(1,1,0). (1,1,1)x+ attempts

to move from empty (1,1,1). Invalid.

 D: (0,0,0)x+ swaps R(0,0,0) and G(1,0,0). State: G(0,0,0), R(1,0,0), DB(0,1,0), P(1,1,0), C(1,1,1). (2,1,0)x- attempts to move

from empty (2,1,0). Invalid.

 4. Conclusion:

 All options appear invalid or incorrect based on the rules. B, C, D reference empty coordinates. A leads to the wrong state.

 5. Reassess:

 The problem likely contains an error. However, if forced to choose, D's first move is valid. The required transformation

(swapping G and DB) needs multiple steps. I found a 3-step sequence: (0,1,0)y-, (0,0,0)x+, (0,0,0)y+. Another 3-step sequence

starting like D: (0,0,0)x+, (0,1,0)x+, (0,0,0)y+. Since Option D has only 2 steps and the second is invalid, it cannot be correct as

written. But in multiple-choice questions with flaws, sometimes the intended answer has the most ‘reasonable’ start or structure.

Option D starts with a valid swap. Without clarification, choosing D assumes it’s the intended answer despite the error.

Final Answer: D

Prompt：You should first provide a reasoning process, then provide a single

option(A, B, C or D) as the final answer. The reasoning process and the answer

are enclosed within <think></think> and <answer></answer> tags, respectively,

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: The top row of images shows different views of the initial state of a

cube stack, while the bottom row shows different views of the final state after

transformation. During the transformation process, blocks can move one unit in

any direction (forward, backward, left, right, up, down). If the target position is

empty, the block can move there directly; if the target position already has a

block, they swap places. Blocks cannot float in the air. If a block is moved away

from a position, any block above it will fall down until reaching a supporting

surface. The xyz axes are shown in the diagram, and each block's position can

be precisely identified using coordinates (x1,y1,z1). Which of the following

transformation sequences can change the cube stack from the initial state to the

final state shown in the diagram? Please answer from options A, B, C, or D.

Choices:

 A. (1, 1, 1) x- -- (0, 0, 0) x+

 B. (1, 1, 0) x- -- (1, 1, 0) x+ -- (1, 1, 1) z-

 C. (1, 1, 1) x+ -- (2, 1, 0) x- -- (1, 1, 1) x+

 D. (0, 0, 0) x+ -- (2, 1, 0) x-

Ground Truth Answer: B

Figure 33: Test case of Block Moving Task from Gemini-2.5-pro.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Mental Animation-Mechanical System-Level 0

Thinking Process: Can’t intuitively thinking without theoretical derivation

 1. Define the system and motion:

 We have an epicyclic gear train. The orange gear (Sun) is fixed (ω_o = 0). The yellow gear (Planet 1) meshes with the orange

gear and rotates clockwise (ω_y < 0). The green gear (Planet 2) meshes with the yellow gear, and is identical to it (N_g = N_y).

The yellow and green gears are carried by an implicit arm that revolves around the center of the orange gear. We need to find the

absolute rotation (spin) and revolution (orbit) of the green gear relative to the fixed orange gear.

 2. Determine the arm's revolution (ω_arm):

 The relationship between the sun, planet, and arm is given by the Willis equation: (ω_y - ω_arm) / (ω_o - ω_arm) = -N_o /

N_y. Substituting ω_o = 0: (ω_y - ω_arm) / (-ω_arm) = -N_o / N_y. Simplifying: ω_y - ω_arm = (-ω_arm) (-N_o / N_y) = ω_arm

(N_o / N_y). Rearranging for ω_y: ω_y = ω_arm + ω_arm (N_o / N_y) = ω_arm (1 + N_o / N_y). We are given that ω_y is

clockwise (negative). Since N_o and N_y are positive tooth counts, the term (1 + N_o / N_y) is positive. Therefore, for ω_y to be

negative, ω_arm must also be negative. This means the arm, carrying the yellow and green gears, revolves clockwise around the

orange gear.

 3. Determine the green gear's rotation (ω_g):

 Now consider the meshing between the yellow and green gears. They are carried by the same arm. The relative motion

formula applies: (ω_g - ω_arm) / (ω_y - ω_arm) = -N_y / N_g. Since the yellow and green gears are identical, N_y = N_g. The

ratio -N_y / N_g = -1. So, (ω_g - ω_arm) / (ω_y - ω_arm) = -1. ω_g - ω_arm = -(ω_y - ω_arm) = -ω_y + ω_arm. Rearranging for

ω_g: ω_g = -ω_y + 2 ω_arm.

 4. Express ω_g in terms of ω_y and gear ratio:

 Substitute the expression for ω_arm from step 2 [ω_arm = ω_y / (1 + N_o / N_y)] into the equation for ω_g: ω_g = -ω_y + 2

[ω_y / (1 + N_o / N_y)]. Factor out ω_y: ω_g = ω_y [-1 + 2 / (1 + N_o / N_y)]. Combine terms inside the bracket: ω_g = ω_y [(-

1 (1 + N_o / N_y) + 2) / (1 + N_o / N_y)]. ω_g = ω_y [(-1 - N_o / N_y + 2) / (1 + N_o / N_y)]. ω_g = ω_y [(1 - N_o / N_y) / (1

+ N_o / N_y)]

 5. Analyze the rotation based on relative sizes:

 Case 1: If N_o > N_y (Orange gear larger than Yellow, as suggested by the image). Then (1 - N_o / N_y) is negative. Since

ω_y is negative (clockwise), ω_g = (negative) (negative / positive) = positive. Green gear rotates counter-clockwise. Motion:

CCW rotation, CW revolution. (Not an option).

 Case 2: If N_o < N_y (Orange gear smaller than Yellow). Then (1 - N_o / N_y) is positive. ω_g = (negative) (positive /

positive) = negative. Green gear rotates clockwise. Motion: CW rotation, CW revolution. (Option A).

 Case 3: If N_o = N_y (Orange gear same size as Yellow). Then (1 - N_o / N_y) = 0. ω_g = ω_y (0 / positive) = 0. Green gear

has no rotation (absolute rotation is zero). Motion: No rotation, CW revolution. (Option C).

 6. Select the most plausible answer:

 Although the image suggests N_o > N_y, this leads to a result not listed in the options. Gear train problems in multiple-choice

format often rely on specific configurations, sometimes simplifying assumptions (like equal gear sizes if not explicitly stated

otherwise) that lead to one of the provided answers. Assuming the problem intends for the case where N_o = N_y allows us to

match option C.

 7. Final Motion (assuming N_o = N_y):

 Rotation of green gear (ω_g): 0 (No rotation). Revolution of green gear (ω_arm): Clockwise

Final Answer: C

Prompt：You should first provide a reasoning process, then provide a single

option(A, B, C or D) as the final answer. The reasoning process and the answer

are enclosed within <think></think> and <answer></answer> tags, respectively,

i.e., <think>reasoning process</think>, <answer>answer</answer>.

Question: In the coaxial system shown, the orange gear is fixed, and the yellow

and green gears are identical in shape. If the yellow gear rotates clockwise,

what is the motion of the green gear relative to the orange gear? Please choose

from options A, B, C, or D.

Choices:

 A. Clockwise rotation, clockwise revolution

 B. Clockwise rotation, counterclockwise revolution

 C. No rotation, clockwise revolution

 D. No rotation, counterclockwise revolution

Ground Truth Answer: C

Figure 34: Test case of Mechanical System Task from Gemini-2.5-pro.

G DECLARATION OF LLM USAGE

We utilized a LLM to improve the grammar, clarity, and style of this manuscript. Its role was limited
to language refinement, without involvement in the research ideas, methodology, data analysis, or
conclusions. The LLM was also used to generate LaTeX code for tables from the authors’ data and
instructions, assisting only in formatting. In addition, it performed preliminary classification of error
types in model responses, which were subsequently reviewed and validated by human annotators to
reduce workload rather than replace human judgment.

69

	Introduction
	Related Works
	SpatialViz-Bench
	Spatial Visualization
	Overview of SpatialViz-Bench
	Construction of SpatialViz-Bench

	Evaluation
	Evaluation Setup
	Evaluation Results
	Main Results
	CoT Prompting Ablation Study
	Robustness to Prompting and Extraction Strategies

	Error Analysis
	Statistical Error Analysis
	Analysis of Test Cases

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Detailed Related Works
	Current Landscape in Spatial Reasoning Benchmarks
	The Inadequate Evaluation of Spatial Visualization

	Data Curation Details
	Task Construction
	Programmatic Data Generation Pipeline
	Manul Design for Mechanical System Task
	Pseudocode

	Dataset Characteristic
	Data Examples
	Evaluation Details
	Models
	Prompts for Response Generation
	Zero-shot Setting
	Methods for Answer Extraction
	Human Performance
	Error Analysis

	Detailed Results
	Intra-Category Comparisons Across Levels
	Performance Comparison between Different Question Format
	Test Cases

	Declaration of LLM Usage

