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ABSTRACT

Non-rigid point cloud registration is a critical challenge in 3D scene understand-
ing, particularly in surgical navigation. Although existing methods achieve excel-
lent performance when trained on large-scale, high-quality datasets, these datasets
are prohibitively expensive to collect and annotate, e.g., organ data in authen-
tic medical scenarios. With insufficient training samples and data noise, existing
methods degrade significantly since non-rigid patterns are more flexible and com-
plicated than rigid ones, and the distributions across samples are more distinct,
leading to higher difficulty in representation learning with few data. In this work,
we aim to deal with this challenging few-shot non-rigid point cloud registration
problem. Based on the observation that complex non-rigid transformation patterns
can be decomposed into rigid and small non-rigid transformations, we propose
a novel and effective framework, UniRiT. UniRiT adopts a two-step registration
strategy that first aligns the centroids of the source and target point clouds and then
refines the registration with non-rigid transformations, thereby significantly reduc-
ing the problem complexity. To validate the performance of UniRiT on real-world
datasets, we introduce a new dataset, MedMatch3D, which consists of real human
organs and exhibits high variability in sample distribution. We further establish
a new challenging benchmark for few-shot non-rigid registration. Extensive em-
pirical results demonstrate that UniRiT achieves state-of-the-art performance on
MedMatch3D, improving the existing best approach by 94.22%.

1 INTRODUCTION

Non-rigid point cloud registration(N-PCR) is a fundamental problem in 3D scene understanding,
with significant applications in motion estimation (Liu et al., 2019; Shen et al., 2023), reconstruc-
tion (Newcombe et al., 2015; Das et al., 2024), robotic manipulation (Yin et al., 2021; Weng et al.,
2022), and surgical navigation (Baum et al., 2021; Golse et al., 2021). In contrast to rigid registra-
tion, which confines point cloud transformations to rotation and translation (Yew & Lee, 2020; Qin
et al., 2022), N-PCR demands the application of distinct displacements to individual points (Baum
et al., 2021; Li & Harada, 2022), consequently producing a wide range of transformation pat-
terns (Wang et al., 2017). This complexity makes N-PCR significantly more challenging to achieve.

Despite prior learning-based N-PCR methods have demonstrated significant potential on various
general benchmarks (Li & Harada, 2022; Liu et al., 2024; Yu et al., 2023), their success typically
relies on large-scale training datasets with similar distributions and noise-free conditions (Lv et al.,
2018; Li et al., 2021). However, such assumptions are often unrealistic in real-world scenarios. A
typical example is the acquisition of organ point clouds (Devi & Bansal, 2024). The collection of
medical data requires the involvement of specialized medical personnel and involves patient privacy
concerns. Moreover, organ point clouds collected from different patients often exhibit substantial
variability, leading to limited-scale medical datasets with significant distributional differences. Or-
gan point clouds are typically captured using CT and MRI technologies (Li et al., 2023), and the
complex internal structures of organs, combined with the dynamic nature of the scanning process,
inevitably introduce noise and result in incomplete structural capture. This exacerbates the chal-
lenge of NPCR. Although non-learning-based methods do not rely on training datasets, their com-
putational inefficiency severely limits their practical applicability. Our experimental results indicate
that existing N-PCR methods cannot adapt well to such real scenarios.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To simulate realistic N-PCR scenarios (Zhang et al., 2024), we propose a new benchmark, Med-
Match3D, based on a 3D point cloud dataset of real human organs (Li et al., 2023), which comprises
a total of 3,408 pairs of registered point clouds across 10 different human organ types. Our study
demonstrates that existing registration methods (Li & Harada, 2022; Yu et al., 2023) perform well
on individual liver datasets but show suboptimal performance on the larger MedMatch3D dataset.
To explain this phenomenon, we re-examined the issue of few-shot point cloud registration (Zhao
et al., 2021; Kang & Cho, 2022). Although all samples belong to the same organ type, signifi-
cant distributional differences may exist between different samples. In some cases, the intra-organ
variability may even exceed the inter-organ variability. This suggests that a single organ type may
present a wide range of transformation patterns, which increases the difficulty of network learning.
Consequently, the core challenge is no longer merely aligning different organ types, but enabling
the model to generalize to a variety of complex and sparsely sampled transformation patterns under
few-shot conditions. Based on this analysis, we define the problem of few-shot N-PCR.

Learning the complex transformation patterns inherent in N-PCR (Baum et al., 2021; Wu et al.,
2020) presents significant challenges for neural networks, particularly in small-sample datasets with
notable distributional differences, which may result in training samples that fail to cover all possible
pattern variations. Consequently, test samples may exhibit significantly different transformation pat-
terns than those encountered during training. A promising solution is to decompose these complex
patterns into simpler fundamental patterns. Non-rigid pattern can often be characterized as a combi-
nation of rigid and smaller non-rigid movements. By applying a unique displacement vector to each
point in the target point cloud, we can derive the source point cloud. First, we apply a rigid transfor-
mation to align the centroid of the source point cloud with that of the target point cloud, followed
by non-rigid registration. This two-step approach converts the unconstrained non-rigid registration
problem into a more manageable one, where small adjustments are made to individual points while
keeping the centroid fixed. This significantly reduces the complexity of transformation patterns and
eases the N-PCR process. Based on this framework, we propose UniRiT, a joint model for few-shot
N-PCR. We utilize Gaussian Mixture Model (GMM) to analyze the registration process from the
perspectives of data distribution similarity and generalization.

Our contributions are as follows: (1) We systematically study a new task of few-shot N-PCR for
data-scarse scenarios. To the best of our knowledge, this is the first work to define and address this
new task. (2) Having observed that the complex non-rigid patterns in point clouds can be decom-
posed into a combination of rigid pattern and non-rigid refinement, we present a two-step registration
approach to simplify the learning process for complex transformation patterns. (3) We establish a
new benchmark based on a real human organ 3D point cloud dataset, MedMatch3D, for few-shot
N-PCR. Extensive results demonstrate that our method is simple yet effective, achieving state-of-
the-art performances and achieving substantial performance improvements over existing approaches
on the challenging dataset, verifying its effectiveness in few-shot and high-noise scenarios.

2 RELATED WORKS

2.1 NON-RIGID POINT CLOUD REGISTRATION METHOD

The objective of non-rigid point cloud registration is to estimate a deformation matrix that can be
applied to the source point cloud to map it to the target point cloud. Coherent Point Drift (CPD) (My-
ronenko & Song, 2010) formulates point cloud registration as a probability density estimation prob-
lem, but it is sensitive to occlusions and outliers. Bayesian Coherent Point Drift (BCPD) (Hirose,
2020) enhances the robustness of CPD through variational inference but is prone to local minima.
For learning-based methods, FPT (Baum et al., 2021) is a non-rigid point cloud registration approach
for the prostate, which achieves high efficiency due to its simple architecture, but lacks robustness
in complex scenarios. Lepard (Li & Harada, 2022) employs a Transformer architecture to estimate
point correspondences, followed by N-ICP (Serafin & Grisetti, 2015) for registration, providing
high-quality encoding but with slower processing speed. RoITr (Yu et al., 2023) introduces rotation-
invariant attention into an encoder-decoder framework to improve point correspondence estimation.
Scene flow estimation is a problem similar to non-rigid registration that involves predicting point-
level displacements. Relevant methods include PointPWC-Net (Wu et al., 2020), which captures
fine-grained motion through iterative refinement, albeit with high computational costs. In contrast,
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BPF (Cheng & Ko, 2022) leverages bidirectional learning to enhance the robustness of the model
when dealing with outliers and partial correspondences.

2.2 FEW-SHOT POINT CLOUD LEARNING

Given the complexity and labor-intensive nature of point cloud data collection, the importance of
few-shot point cloud learning has become increasingly evident. Previous few-shot point clouds
learning tasks have primarily focused on classification and segmentation. The pioneering work
attMPTI (Zhao et al., 2021) leverages label propagation to exploit the relationship between pro-
totypes and query points. BFG (Mao et al., 2022) introduces bidirectional feature globalization to
activate the global perception of both prototypes and point cloud features, thereby enhancing context
aggregation. CSSMRA (Wang et al., 2023) employs a multi-resolution attention module that utilizes
the nearest and farthest points to improve context aggregation. ViewNet (Chen et al., 2023) proposes
a novel projection-based backbone framework, incorporating a View Pooling mechanism to boost
few-shot point cloud classification performance. Additionally, SCAT (Zhang et al., 2023) presents a
stratified class-specific attention-based Transformer architecture, constructing fine-grained relation-
ships between support and query features.

2.3 NON-RIGID POINT REGISTRATION BENCHMARK

Collecting a large-scale dataset for non-rigid point cloud registration is challenging. Existing non-
rigid datasets (Bogo et al., 2014; Ye et al., 2012; Guo et al., 2015; Zuffi et al., 2017) are either
limited in size or acquired through high-precision scanning, making them less applicable to real-
world registration tasks. Synthetic datasets, widely used in dense optical flow methods (Mayer
et al., 2016; Lv et al., 2018), such as Sinter (Butler et al., 2012), Monka (Mayer et al., 2016), and
Lepard (Li & Harada, 2022), leverage rendered animations of deformable objects. While scene flow
estimation utilizes real-world datasets like KITTI (Menze & Geiger, 2015), the motion changes
between consecutive point clouds are often minor.

3 FEW-SHOT NON-RIGID POINT REGISTRATION

GMM is a commonly used probabilistic model to represent 3D point clouds (Qu et al., 2016;
Yuan et al., 2020; Mei et al., 2023). Suppose that two point clouds are represented as X =
{x1, . . . ,xi, . . . ,xN} and Y = {y1, . . . ,yi, . . . ,yN}, where each xi and yi are points within
the point clouds. Taking the point cloud X as an example, it can be modeled using a GMM, and its
mathematical formulation is as follows:

G(X) =

K∑
k=1

πkN (x|µk,Σk), (1)

N (x|µk,Σk) =
exp

(
− 1

2 (x− µk)
⊤Σ−1

k (x− µk)
)

(2π)d/2|Σk|1/2
, (2)

where K is the number of Gaussian components. πk is the weight of the k-th Gaussian component,
satisfying

∑K
k=1 πk = 1 and πk ≥ 0. N (x|µk,Σk) is the probability density function of the k-th

Gaussian component.

Following the previous studies (Ma et al., 2015; Liu et al., 2021), we use two distinct GMMs to
represent the two point clouds X and Y. Subsequently, by calculating the divergence between the
GMMs, we can approximate the distributional difference between the point clouds X and Y. The
L2 divergence between these two GMMs can be computed as follows:

L2(X,Y) =

∫
(G(X)− G(Y))

2
dx. (3)

In practical applications, directly computing this integral is challenging (Hershey & Olsen, 2007).
Therefore, we estimate the divergence Lmc using the Monte Carlo sampling method:

Lmc(X,Y) =
1

N

N∑
i=1

(log G(X)− log G(Y)) . (4)

3
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GMM
Lmc

liver brain gall
bladder

sto-
mach

pan-
creas spleen kidney

liver 0.62 0.98 1.32 1.62 1.95 1.21 1.25
brain 0.98 0.76 0.83 1.52 1.68 1.29 1.58
gallbladder 1.32 0.83 1.40 2.15 1.75 1.63 1.05
stomach 1.62 1.52 2.15 1.06 2.76 2.35 1.31
pancreas 1.95 1.68 1.75 2.76 2.93 3.19 2.47
spleen 1.21 1.29 1.63 2.35 3.19 2.07 1.85
kidney 1.25 1.58 1.05 1.31 2.47 1.85 0.82

Table 1: Comparison of Lmc values between different organs.

To quantitatively analyze the distributional differences of MedMatch3D, we use Eq. 4 to compute the
distributional divergence between random samples of different organs in the MedMatch3D dataset
(details are provided in appendix). Traditional datasets typically classify samples based on anatom-
ical labels (e.g., organ types), assuming that samples within each category exhibit similar distribu-
tions. However, for a complex dataset like MedMatch3D, this assumption is overly simplistic. Due
to two major challenges, samples in MedMatch3D exhibit highly diverse transformation patterns.

The first challenge is the significant distributional divergence. As shown in Table 1, even the same
organ category, samples may exhibit substantial distributional differences due to patient-specific
variations. This high intra-organ variability may result in deformation differences within the same
organ that are even larger than those observed between different organs. Therefore, organ-level
categorization cannot capture these complex patterns, and the model must learn and adapt to com-
plex transformation patterns that extend beyond conventional organ-specific variations. The second
challenge is the complexity of transformation patterns in the registration task itself. MedMatch3D
focuses on aligning intra-operative and pre-operative point clouds to facilitate surgical navigation.
Compared to existing benchmark datasets (e.g., sequential frames with minimal variations (Li et al.,
2021; Menze & Geiger, 2015)), the morphological differences between intra-operative and pre-
operative point clouds can be much larger. These pronounced shape variations lead to a significant
increase in the complexity of the required transformation models (Zampogiannis et al., 2019).

Thus, the core challenge is no longer merely aligning different organ types, but enabling the model
to generalize to various complex and sparsely sampled transformation patterns under few-shot con-
ditions. The goal of few-shot non-rigid point cloud registration is to train a model that can adapt to
unseen transformation patterns using only a limited number of samples with similar distributional
characteristics, rather than merely fitting organ-level distributions. This redefinition highlights the
practical challenges faced by registration models and emphasizes the need to effectively capture the
diverse transformation patterns present in the MedMatch3D dataset.

4 METHODOLOGY

Problem Definition: In non-rigid registration, we are given a source point set PS =
{x1, . . . ,xi, . . . ,xN} and a target point set PT = {y1, . . . ,yj , . . . ,yN}, where xi,yj ∈ R3 rep-
resent the 3D coordinates of the points, and N is their respective counts. The goal is to estimate
deformation matrix Dpred = [dpred1 , . . . ,dpredN ] that align each point xi ∈ PS to its correspon-
dence in PT . The aligned point set P̂S = {x̂1, . . . , x̂i, . . . , x̂N} is formulated as:

x̂i = xi + f(xi,Dpred) = xi + dpredi + ϵ(xi), (5)

where ϵ(xi) represents a small adjustment term to enhance registration smoothness and robustness.

The Challenge of Real-World Small-Sample Point Cloud Registration: We introduce the non-
rigid registration problem into real-world applications, using organ point clouds as a representative
case. The success of existing one-stage non-rigid registration significantly relies on a massive num-
ber of training samples. However, when faced with few-shot scenarios with limited annotated data
(e.g., organ point clouds), they suffer from a non-trivial gap of transformation patterns between lim-
ited training samples and real-world testing cases. To address these challenges, we first analyze the
characteristics of non-rigid motion with GMM and illustrate the decomposition of non-rigid regis-
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tration process. Based on our analysis, we design UniRIT, a dual-stage non-rigid architecture to
achieve well-generalized non-rigid registration under the few-shot setting.

4.1 ANALYSIS WITH GAUSSIAN MIXTURE MODEL

Following previous work (Ma et al., 2015; Liu et al., 2021), we model the source point cloud PS
and the target point cloud PT using two different GMMs denoted as G(PS ) and G(PT ). From the
probabilistic perspective, the point cloud registration aims to align these two different GMMs, which
minimizes the Lmc divergence between these two probability distributions, formulated as:

Lmc(PS ,PT ) =
1

N

N∑
i=1

(log G(PS)− log G(PT )) . (6)

For clearer visaulization, we take k = 1 as an example to illustrate the non-rigid registration process
between G(PS) and G(PT ). As shown in Fig. 1a, the distributions of the source point cloud G(PS)
and the target point cloud G(PT ) exhibit a significant difference in terms of shapes and positions.
Such a nontrivial discrepancy increases the complexity and variety of the point-cloud transformation
patterns and is therefore challenging to mitigate without a large amount of training data. To ease the
burden of learning such complex patterns from a limited number of training samples, we propose to
decompose the conventional one-stage non-rigid registration process.

Aligning the source and target GMMs G(PS ) and G(PT ) can be decoupled into two steps, where a
change in the mean results in a translation of the distribution and a change in the eigenvalues of the
covariance matrix leads to changes in the shape of the distribution. The rigid rotation and translation
of the point cloud result in a change in the mean of the distribution, while non-rigid transformations
of the point cloud lead to changes in the eigenvalues of the covariance matrix. Given the rotation
and translation matrix R ∈ R3×3, t ∈ R3, the rigid transformation of GMM is formulated as:

R∗, t∗ = min
R,t

Lmc(ΨR,t(PS),PT ) =
1

N

N∑
i=1

(log G(ΨR,t(PS))− log G(PT )) , (7)

G(ΨR,t(PS)) = ΨR,t(G(PS)) =

K∑
k=1

πkN (x|Rµk + t,RΣkR
⊤), (8)

where R∗, t∗ indicate the optimal solution to align G(PS ) and G(PT ) with rigid transformation as
shown in Fig. 1b. Compared to the conventional one-step non-rigid registration, Eq. 7 is much easier
to solve due to the additional rigid constraint. The result R∗, t∗ also poses a prior to the overall
registration problem, which reduces the size of the following non-rigid transformation problem.
Here we denote the source point cloud after the rigid transform as P′

S .

After the rigid transformation as shown in Fig.1b, the divergence between the probability distribu-
tions of the source and target point clouds has been significantly reduced. At this stage, we proceed
with the non-rigid registration step, which assigns different displacements to each point in the source
point cloud. According to the CPD (Myronenko & Song, 2010; Jian & Vemuri, 2010), the process of
non-rigid registration can be interpreted as applying a component-specific transformation that maps
the means µk and covariances Σk of each Gaussian component in the GMM. This transformation
can be applied to the original GMM formulation and can be expressed as follows:

min
f={fµ,fΣ}

Lmc(f(P
′
S),PT ) =

1

N

N∑
i=1

(log f(G(P′
S))− log G(PT )) , (9)

f(G(P′
S)) =

K∑
k=1

πkN (x|fµ,k(R∗µk + t∗), fΣ,k(R
∗ΣkR

∗⊤)), (10)

where fµ,k(·) represents the mapping applied to the mean µk of the k-th Gaussian component, and
fΣ,k(Σk) represents the mapping applied to the covariance Σk of the k-th Gaussian component.

As shown in Fig. 1c, after the non-rigid transformation, the transformed source point cloud has a dis-
tribution that is highly similar to that of the target point cloud. The non-rigid transformation slightly
adjust to the shape of P′

S while preserving a nearly unchanged location. Compared to previous

5
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Figure 1: UniRiT performs a rigid transformation phase between the source PS and target PT point
clouds, where the features of both point clouds are extracted using MLPs. These features are then
passed through a decoder composed of fully connected (FC) layers, which iteratively generates ro-
tation and translation matrices over n cycles. The transformed point cloud output from the rigid
module is subsequently utilized along with the target point cloud to re-extract features. These fea-
tures are concatenated with the coordinate information and then input into the decoder to generate a
deformation matrix, which applied to P′

S , yields the final transformed point cloud P̂S .

one-stage solutions, our decoupled alignment as in Eq. 10 regulates the non-rigid transformation
primarily to local adjustments of point positions rather than the global ones and therefore reduce the
complexity and difficulty of non-rigid registration problem.

4.2 UNIRIT ARCHITECTURE

Following our GMM-based analysis, we decompose point clouds’ complex non-rigid transformation
patterns into two sub-components: a unified rigid motion and a less challenging non-rigid motion.
To this end, our rigid and non-rigid model forms an end-to-end foundational model for non-rigid
registration, which is built on a computationally efficient architecture composed of pure MLP and
fully connected (FC) layers as shown in Fig. 1. Using two MLP-based modules, the estimation
of both motions can be accomplished accurately. Additionally, a rigid registration loss function is
incorporated to encourage the network capture the optimal combination of the two transformation
patterns, leading to a noticeable performance improvement.

In our rigid registration module, we designed a bidirectional encoding phase that enables the net-
work to perceive the positional differences between the source point cloud PS and the target point
cloud PT , thereby obtaining more optimal rotation and translation matrices. MLPs with non-shared
parameters are used to extract features from both the source and target point clouds. The extracted
features are then concatenated and fed into FC layers to output the rigid transformation. For higher
accuracy, we iterated the rigid registration process n times, obtaining the output point cloud P′

S ,
where n is a hyperparameter. This process can be formulated as:

{Ri, ti} = Drm(MLP1(PS,i−1)⊕ MLP2(PT )), (11)

where Ri and ti represent the rotation matrix and translation matrix, and Drm represents the decoder
of the rigid module composed of FC layers. The index i denotes the i-th iteration of the rigid
registration process. ⊕ indicates the concatenation operation along the feature channel.

In the non-rigid registration stage, we adopt a bidirectional encoding scheme similar to the one
used in the rigid registration stage to extract features from P

′

S and PT , resulting in the feature
representations FP

′
S

and FPT . These two features are concatenated and replicated N times, where
N denotes the number of points in the point cloud. The original coordinates of the source and target
point clouds, P′

S and PT , are then appended to the feature block, forming the final global feature

6
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Fglobal . This global feature is subsequently fed into a decoder composed of FC layers to predict the
deformation matrix. The predicted deformation matrix is then applied to P′

S , yielding the non-rigid
transformed output point cloud P̂S . This process can be formulated as follows:

Fglobal = P
′

S ⊕ λ(FP′
S
⊕FPT , n)⊕PT , P̂S = P′

S +Ddm(Fglobal), (12)

where λ(ρ, n) represents the replication of ρ n times and Ddm denotes the decoder of the non-rigid
module composed of FC layers..

4.3 LOSS FUNCTION

For our rigid and non-rigid end-to-end joint architecture, we adopted a training approach that com-
bines supervision from both the global loss function and the loss function from the rigid module.

We found that using only a global loss function may not optimally balance the allocation of rigid
and non-rigid transformation. We addressed this issue by introducing a rigid loss between the output
of the rigid module and the target point cloud. This ensures that the rigidly transformed point cloud
aligns as closely as possible with the target point cloud during the rigid stage, thereby constraining
the subsequent non-rigid transformation to a smaller range. The global loss function Lgl and the
rigid module loss function Lrd can be written as:

Lgl =

√√√√ 1

N

∑
xi∈P̂S

min
xj∈PT

∥xi − xj∥2, Lrd =

√√√√ 1

N

∑
xk∈P′

S

min
xj∈PT

∥xk − xj∥2. (13)

During the training process, the overall loss Ltotal is the combination of both Lgl and Lrd , balanced
by a pre-defined coefficient α as:

Ltotal = αLgl + (1− α)Lrd. (14)

5 EXPERIMENTS

5.1 MEDMATCH3D

Figure 2: The ten types of the organs in MedMatch3D.

Unlike previous artificially generated or meticulously crafted high-precision datasets (Li et al., 2021;
De Aguiar et al., 2008; Bogo et al., 2014), our proposed MedMatch3D dataset is derived from real
human organ point clouds collected in authentic medical scenarios (Li et al., 2023). The dataset
is derived from 3D depth information of organs collected using CT and MRI, which is processed
and reconstructed to obtain point cloud data, making it highly representative of real-world. This
approach extends the non-rigid registration problem to more realistic applications rather than fo-
cusing solely on addressing virtual shape transformation issues. We conducted a thorough review
of the original 7,356 samples of 10 organ types from MedShapeNet (Li et al., 2023), uncovering
a substantial number of errors and missing information in the point clouds. Specific errors can be
found in the appendix. After refinement, we obtained 3,408 usable point clouds. Subsequently, we
applied uniform strength TPS (Wood, 2003) deformations across all organ types, resulting in 3,408
pairs of non-rigidly registered point clouds. We conducted three sets of experiments on the Med-
Match3D dataset, each with different objectives. To validate UniRiT’s capability to adapt and learn
from a large number of diverse samples, we performed experiments on 3,277 pairs of point clouds
across nine different organs. We then employed the trained model for zero-shot testing on the small
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bowel dataset, characterized by significant distribution differences, structural missingness, and real
noise. This experiment aimed to assess UniRiT’s robustness and superiority in registering unseen
point cloud classes. Additionally, we explored the superiority of our method in handling few-shot
learning problems through experiments on the small-sample liver dataset.

5.2 EXPERIMENTAL ANALYSIS USING THE MEDMATCH3D DATASET

We conducted experiments on the MedMatch3D dataset, covering 9 types of organs excluding the
small bowel, with a total of 3, 277 point cloud samples, as detailed in Table 2. As previously dis-
cussed, real-world point cloud registration tasks often involve low-quality and small-sample. The
MedMatch3D dataset, collected from real human organs, aligns with these real-world constraints in
terms of low quality. Many non-rigid point cloud registration methods that rely on abundant geo-
metric information cannot be applied to our dataset (Litany et al., 2017; Donati et al., 2020), which
only contains raw spatial coordinates. Given the strong alignment between our problem definition
and the challenges posed by real-world data, we compared our method with scene flow estimation
techniques (Cheng & Ko, 2023), as they are highly relevant to the nature of our task.

Method
Overall Metrics RMSE (mm)

RMSE
(mm)

CD
(mm)

IT
(ms)

FLOPs
(G) liver brain kidney tumor

brain
gall

bladder
sto-

mach spleen pan-
creas atrium

CPD 52.98 2.07 1063.21 - 3.54 88.18 45.37 94.94 22.79 70.25 53.01 52.12 37.04
BCPD 47.70 8.35 5105.63 - 17.75 80.09 44.23 85.57 22.49 69.44 50.28 55.13 33.51

FPT 38.98 20.35 8.23 7.58 17.14 66.82 34.11 71.29 18.79 54.33 40.10 42.04 28.78
PointPWC 39.96 11.35 31.52 8.91 19.22 68.38 34.78 72.68 19.76 54.64 40.70 42.62 30.31
BPF 38.85 11.92 33.86 8.16 14.42 67.25 34.47 71.49 20.81 54.63 40.48 42.55 29.72
DifFlow3D 42.34 13.35 90.43 16.97 30.06 68.43 35.53 72.94 20.94 56.10 41.30 43.72 30.64
MSBRN 38.32 12.05 93.02 18.38 14.17 67.21 34.41 71.56 18.63 54.24 40.07 41.88 29.42
RoITr 37.41 16.23 22.41 3.72 10.23 86.98 44.61 93.46 21.72 71.45 52.56 54.06 35.01

w/o rigid 8.29 5.01 7.51 3.19 12.21 10.22 6.13 9.01 8.78 8.54 6.41 8.19 7.86
UniRIT 2.16 1.88 18.08 4.58 2.76 2.74 1.59 2.82 1.17 2.98 1.75 2.21 1.34

Table 2: The performance comparison of different methods across various categories is evaluated
using RMSE, chamfer distance (CD), FLOPs, and inference time (IT), where IT refers to the time
required by the model to perform registration on a pair of point clouds. The best results are in bold,
and the second best are underlined.

Figure 3: In the comparison of visualization results for certain organs, the differences in pre-
registration RMSE across different organ types are due to their different size and complexity. The
blue point cloud represents the target point cloud, while the before image illustrates the discrepancy
between the source and target point clouds before registration. In the method figure, the red point
cloud indicates the transformed source point cloud.

Table 2 presents the performance of UniRiT and comparative methods on the few-shot real dataset
MedMatch3D. The w/o rigid refers to the version of UniRiT where the rigid module has been re-
moved, which is used for conducting ablation studies. Most methods fail to achieve high-precision
registration. Taking RMSE as an example, the registration error for FPT (Baum et al., 2021) is
38.98mm, RoITr (Yu et al., 2023) yields 37.41mm, and MSBRN (Cheng & Ko, 2023) results in
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38.32mm. In contrast, UniRiT achieves a significantly lower registration error of only 2.16mm, far
surpassing all existing methods and demonstrating the effectiveness of our motion decomposition
strategy. During the registration process for different organs, it can be observed that the comparative
methods exhibit larger registration errors, particularly for organs with complex structures or large
deformation. These two factors complicate the transformation patterns of the point cloud. For in-
stance, the registration error of MSBRN (Cheng & Ko, 2023) on the brain is 67.21 mm, which is
significantly higher than the average. However, even when dealing with such complex transforma-
tion patterns, UniRiT still achieves high-precision registration with an error of only 2.74 mm.

Fig. 3 presents the registration process for some organs. Among them, BPF (Cheng & Ko, 2022) is a
typical representative of comparative methods. It can be observed that the transformed point clouds
become scattered. The transformation results of other scene flow estimation methods are similar to
those of BPF. FPT (Baum et al., 2021) and RoiTr (Yu et al., 2023) aggregate the transformed point
clouds into a dense cluster. Both phenomena indicate a failure in the registration task. We provide
a detailed comparison of the remaining methods in the appendix, along with their corresponding
visualizations. UniRiT is the only method that can achieve normal registration with high accu-
racy. Although the accuracy declines when removing the rigid module, it does not become scattered
points and fails the registration. This fully demonstrates the superiority of UniRiT in the real-world
challenge dataset with few samples.

5.3 EXPERIMENTAL ANALYSIS USING A REPRESENTATIVE SMALL BOWEL DATASET

Method RMSE (mm) CD (mm)

CPD (Myronenko & Song, 2010) 109.63 9.38

BPF (Cheng & Ko, 2022) 99.60 10.51

PointPWC (Wu et al., 2020) 90.85 13.52

RoITr (Yu et al., 2023) 109.20 7.51

FPT (Baum et al., 2021) 84.45 36.73

w/o rigid 15.19 8.33

UniRIT 6.65 5.18

Table 3: Benchmark comparison on zero-shot
small bowel dataset of various methods. The
best results are in bold, while the second best are
underlined.

Method Case A Case B

RMSE(mm) CD(mm) RMSE(mm) CD(mm)
CPD 3.54 2.99 7.65 4.98
BCPD 17.75 11.17 23.06 17.72
FPT 12.80 8.08 30.72 12.19
PointPWC 10.01 6.41 24.38 12.53
BPF 8.07 5.51 67.25 22.45
Livermatch 14.17 8.10 27.01 12.90
Lepard 8.10 6.02 12.19 6.98
RoITr 3.01 2.44 6.71 4.24
w/o rigid 8.29 7.88 24.82 12.57
UniRIT 2.72 2.31 3.04 2.83

Table 4: Performance comparison of different
methods in Case A and Case B, evaluated by
RMSE and CD. The best results are in bold, and
the second best are underlined.

In real-world point cloud registration scenarios, challenges often arise when testing on unseen
classes (Cheraghian et al., 2022). The small bowel dataset serves as a typical example for the follow-
ing reasons: First, the effective sample size for the small bowel is extremely limited, consisting of
only 131 samples, which is insufficient to meet the training requirements. Second, the structure and
distribution of the small bowel are highly complex and diverse, coupled with the presence of external
noise, resulting in low-quality samples with significant noise and substantial information loss. Fig. 4
qualitatively illustrates seven small bowel samples with significant distribution differences. Conse-
quently, to evaluate the generalization and robustness of UniRiT, we conducted zero-shot testing on
the challenging small bowel dataset.

Table 3 presents the quantitative results of the zero-shot testing conducted on the small bowel dataset,
evaluated using RMSE. The FPT (Baum et al., 2021) method yielded an error of 84.45 mm, while
RoITr (Yu et al., 2023) and BPF (Cheng & Ko, 2022) reported errors of 109.20 mm and 99.60 mm,
respectively. The corresponding CD values for these methods were 36.73 mm, 7.51 mm, and 10.51
mm. All three methods performed poorly on the small bowel dataset and failed to complete the
registration task. In contrast, UniRiT achieved a registration error of 6.65 mm, making it the only
method capable of successfully performing few-shot registration on the small bowel dataset. This
outcome validates the robustness and superiority of our approach.
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Figure 4: Seven randomly selected samples of the small bowel are shown. It can be observed
that, during the acquisition of small bowel samples, issues such as incomplete structural scans and
significant noise are present.

5.4 TESTING ON LIVER DATA WITH LARGE RIGID DISPLACEMENTS

To evaluate the performance of UniRiT on a small-sample dataset, we conducted tests on a liver
dataset containing 551 samples. We utilized 487 samples as the training set, while the remaining 64
samples served as the validation and test set. Table 4 presents the corresponding quantitative results,
including RMSE and CD, which are defined in the appendix. Case A in Table I describes the exper-
imental scenario where only TPS deformation is applied, while Case B describes the experimental
conditions involving significant displacement in addition to non-rigid transformation. Specifically,
in Case B, random rigid rotations were applied within the range of [-45°, +45°], and displacements
were randomly sampled in the normalized space of [-0.2, 0.2]. In Case A, UniRiT achieved an
RMSE value of 2.72 mm, which is slightly better than RoITr’s (Yu et al., 2023) RMSE of 3.01 mm
and significantly outperforms other non-rigid registration algorithms. In Case B, UniRiT’s RMSE
value was 3.04 mm, outperforming RoITr’s RMSE of 6.71 mm. This advantage may be attributed
to UniRiT’s combined rigid and non-rigid registration architecture, which provides a natural benefit
in handling non-rigid registration scenarios involving rigid displacements.

Figure 5: The visualization results of Case B. For Case B, the non-rigid deformation magnitude is
15 mm, the rotation angle ranges from [0, 45°], and the translation range is [20, 30] mm.

Fig. 5 presents the registration process of UniRiT and the comparative methods in case B. RoITr, as
a representative, achieved the best performance among the comparative methods with an RMSE of
6.71 mm. However, significant errors can still be observed in detailed areas, as shown in the enlarged
sections of the figure. Other methods, such as Lepard (Li & Harada, 2022), PointPWC (Wu et al.,
2020), and FPT (Baum et al., 2021), while not reducing to scattered points as in other organ cases in
Experiment 1, still exhibit suboptimal registration results. UniRiT, on the other hand, achieves the
highest registration accuracy and maintains precision in detailed regions.

6 CONCLUSION AND DISCUSSION

In this study, we systematically analyzed and defined the problem of few-shot non-rigid point cloud
registration. Through three experimental setups—the mixed organ experiment, the zero-shot small
bowel experiment, and the single small-sample liver experiment—we revealed the limitations of
existing methods in handling samples with significant distributional differences, particularly in
small-sample scenarios and complex transformation patterns. The introduction of the MedMatch3D
benchmark dataset provides new research directions for this field and underscores the importance
of considering distributional characteristics in the context of few-shot learning. Looking ahead, we
plan to enrich the MedMatch3D dataset by increasing the variety and quantity of point clouds to
enhance its applicability across different research challenges. Additionally, we will introduce point
cloud segmentation tasks into MedMatch3D, making it a more versatile benchmark.
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A APPENDIX

A.1 MEDMATCH3D

Unlike previous artificially generated or meticulously crafted high-precision datasets, our proposed
MedMatch3D dataset is derived from real human organ point clouds collected in authentic medical
scenarios. This approach extends the non-rigid registration problem to more realistic applications,
providing a new benchmark for future methods designed for real-world non-rigid registration sce-
narios, rather than focusing solely on virtual shape transformation issues. We conducted a compre-
hensive review of the 7356 samples from 10 organ types in MedShapeNet, uncovering a substantial
number of errors and missing information within the point clouds. After refinement, we obtained
3,408 usable point clouds. In the subsequent modules, we present the selected point clouds and
those with errors. Subsequently, we applied uniform strength TPS deformations across all organ
types, resulting in 3,408 pairs of non-rigidly registered point clouds.

Implementation details. All methods were implemented using the PyTorch framework on a sin-
gle GPU (Nvidia GeForce RTX 4090, 24GB). The model was further fine-tuned on 1024 points
randomly sampled from the original point sets, each consisting of 10,000 points. The Adam op-
timizer was employed, with a batch size set to 1, and the network was trained for a total of 300
epochs. For the comparative methods, we utilized their publicly available code versions and setup
for epochs,optimizer and hyperparameters. To ensure fairness, all comparative methods have been
thoroughly retrained on our organ datasets.

Evaluation metrics. To evaluate the registration quality, we use two different evaluation metrics,
namely RMSE and Chamfer Distance (CD). In addition to quality evaluation, we also assess the
efficiency of the model using various metrics. Inference Time (IT) refers to the time required by the
trained model to process a single point cloud during testing. Furthermore, FLOPs is evaluated to
measure the model’s complexity and computational efficiency.

RMSE =

√√√√ 1

N

N∑
i=1

∥pi − qi∥22

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥q − p∥22

(15)

A.2 NINE TYPES OF ORGANS IN MEDMATCH3D.

As shown in Fig. 6 and Fig. 7, we present the selected samples along with the visualization re-
sults. Significant shape variations exist among different samples of the same organ; for instance,
the gallbladder, stomach, and pancreas exhibit considerable distribution differences. Although the
gallbladder has a relatively simple structure, its shape demonstrates the greatest diversity and distri-
bution variability. Additionally, it is noteworthy that the point cloud structure of the liver appears
relatively simple, with minimal distribution differences among various samples. This may explain
the effective registration results observed with comparison methods on the liver dataset.

A.3 FALSE SAMPLES

We identified a significant number of samples with missing information and errors in MedShapeNet.
We filtered and visualized these samples, presenting the erroneous ones to provide a clearer under-
standing of our selection process. Fig. 8 illustrates a representative subset of the erroneous informa-
tion we identified during the filtering process. The most common type of error observed is incom-
plete scanning, characterized by substantial gaps in the point cloud where only partial data has been
captured. These incomplete point clouds exhibit significant morphological differences from normal
samples, rendering them unsuitable for training and application. Consequently, we excluded these
erroneous samples and retained those with more complete point cloud information.
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Figure 6: Visualized samples of the brain, gallbladder, kidney, pancreas, and spleen.

Figure 7: Visualized samples of the stomach, small bowel, atrium and liver.

A.4 ANALYSIS OF DISTRIBUTIONAL DIFFERENCES IN ORGAN SAMPLES

To quantitatively analyze the distributional differences within organ samples and between different
organ types, we randomly selected 12 groups of samples for each organ type, repeating this random
selection four times. Subsequently, we utilized Lmc to calculate the differences between samples
from different organs. The detailed results are shown in Table 5

A.5 A DETAILED GRAPHICAL EXPLANATION OF GMM DECOMPOSITION OF
TRANSFORMATION PATTERNS.

To better illustrate the variations of the GMM image with each module of UniRiT as shown in
Figure 1, we utilized a specific pair of registered gallbladder organ images for demonstration. This
figure facilitates a clearer understanding of the principles behind applying constraints to non-rigid
registration as discussed in our paper.
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Figure 8: The visualization of erroneous and missing samples indicates severe structural loss in
the point cloud, with only a minimal portion of the organ information preserved. The surface is
characterized by severe perforations, leading to significant information loss.

GMM
Lmc

liver brain gall
bladder

sto-
mach

pan-
creas spleen kidney

liver 0.62 0.98 1.32 1.62 1.95 1.21 1.25
brain 0.98 0.76 0.83 1.52 1.68 1.29 1.58
gallbladder 1.32 0.83 1.40 2.15 1.75 1.63 1.05
stomach 1.62 1.52 2.15 1.06 2.76 2.35 1.31
pancreas 1.95 1.68 1.75 2.76 2.93 3.19 2.47
spleen 1.21 1.29 1.63 2.35 3.19 2.07 1.85
kidney 1.25 1.58 1.05 1.31 2.47 1.85 0.82

Table 5: Comparison of Lmc values between different organs.

The purpose of non-rigid registration is to derive a mapping transformation for the source point
cloud, enabling its transformation to align with the target point cloud. The source point cloud can
be modeled using GMM. The formula for GMM can be written as:

G(X) =

K∑
k=1

πkN (x|µk,Σk), (16)

N (x|µk,Σk) =
exp

(
− 1

2 (x− µk)
⊤Σ−1

k (x− µk)
)

(2π)d/2|Σk|1/2
, (17)

The distribution differences between the source point cloud and the target point cloud are illustrated
in Fig. 9(a), where the red and blue points represent the centroids of the source and target point
clouds, respectively. The purpose of the rigid registration component is to perform an initial shape
adjustment on these two point clouds to align their centroids. The GMM after the rigid transforma-
tion is given by:

R∗, t∗ = min
R,t

Lmc(ΨR,t(PS),PT ) =
1

N

N∑
i=1

(log G(ΨR,t(PS))− log G(PT )) , (18)

G(ΨR,t(PS)) = ΨR,t(G(PS)) =

K∑
k=1

πkN (x|Rµk + t,RΣkR
⊤), (19)

At this point, the transformation from Fig. 9(a) to Fig. 9(b) has been completed. The subsequent
non-rigid registration process is constrained to a smaller range of motion, thereby successfully de-
composing complex non-rigid transformation patterns. At this stage, only minor adjustments to
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Figure 9: The GMM is employed to describe the non-rigid registration process, where the alignment
is achieved by iteratively fitting a mixture model to the point clouds. In the illustration, the blue
and red points denote the centroids of the source and target point clouds, respectively. The diagram
presents two randomly selected test samples, positioned on the left and right, demonstrating the
variation in the spatial distribution of the point clouds. By matching the centroids and minimizing
the distance between them, the GMM effectively captures the transformation required for non-rigid
registration.

individual points are required to achieve the transformation from Fig. 9(b) to Fig. 9(c), which can
be expressed as:

min
f={fµ,fΣ}

Lmc(f(P̂S),PT ) =
1

N

N∑
i=1

(
log f(G(P̂S))− log G(PT )

)
, (20)

f(G(P̂S)) =

K∑
k=1

πkN (x|fµ,k(Rµk + t), fΣ,k(RΣkR
⊤)), (21)

Where fµ,k(µk) represents the mapping applied to the mean µk of the k-th Gaussian component,
and fΣ,k(Σk) represents the mapping applied to the covariance Σk of the k-th Gaussian component.

A.6 VISUALIZE OF THE EXPERIMENTAL ANALYSIS USING THE MEDMATCH3D DATASET

Fig. 10, Fig. 11, and Fig. 12 present the comparative visualization results of UniRiT, its ablated
variants, and other competing methods across different organ types, serving as a supplement to the
error metrics and partial visualization results provided in the main text. Specifically, only UniRiT
achieved efficient and accurate registration. In contrast, scene flow estimation methods such as
MSBRN (Cheng & Ko, 2023), PointPwc (Wu et al., 2020), and BPF (Cheng & Ko, 2022) tend
to transform the source point cloud into a scattered set of points, while organ-specific registration
methods like FPT (Baum et al., 2021) tend to aggregate the source point cloud into a dense cluster.
Similarly, the non-rigid point cloud registration method, RoiTr (Yu et al., 2023), also tends to cluster
the points. These methods essentially failed to achieve successful registration. As for the ablated
version of UniRiT without rigid transformations, although it did not completely fail, its registration
accuracy is too low for practical applications.
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Figure 10: In the visualization comparison of certain organs, the differences in pre-registration
RMSE across various organ types are attributed to variations in their size and complexity. The
blue point cloud represents the target point cloud, while the before image illustrates the discrepancy
between the source and target point clouds prior to registration. In the method image, the red point
cloud indicates the transformed source point cloud. This figure presents a comparison against the
RoiTr (Yu et al., 2023) and BPF (Cheng & Ko, 2022) methods.

Figure 11: This figure presents the results of UniRiT and its ablation study without the rigid com-
ponent, along with a comparison against the FPT (Baum et al., 2021) and BPF (Cheng & Ko, 2022)
methods. The registration visualization results for the pancreas, stomach, and atrium are shown. It
can be observed that BPF tends to transform the source point cloud into a scattered set of points,
whereas FPT tends to aggregate them into a cluster.

A.7 VISUALIZE OF THE ZERO-SHOT SMALL BOWEL DATASET

As previously mentioned, it is often challenging to collect a substantial amount of high-quality train-
ing datasets in the real world. A typical case is the small bowel dataset. Fig. 13 illustrates the visual
samples collected during the acquisition of small bowel samples. Due to the complex structure of
the small bowel and the relatively large size of the organ, it is difficult to obtain complete samples
during collection; the samples are often incomplete and vary widely in their deficiencies. In this
context, it is challenging to use these scarce and diverse incomplete samples for training. Therefore,
conducting zero-shot testing on existing methods is of significant importance. Fig. 14 illustrates the
visualization results of UniRiT alongside several comparative methods. It is evident that PointPWC,
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Figure 12: This figure presents UniRiT and its ablation study without the rigid component, along
with a comparison against the MSBRN (Cheng & Ko, 2023) and PointPwc (Wu et al., 2020) meth-
ods. The registration visualization results for the tumor brain, kidney, and spleen are shown. This
registration phenomenon further supports our previous observation that scene flow estimation meth-
ods such as MSBRN, BPF (Cheng & Ko, 2022), and PointPwc tend to transform the source point
cloud into a scattered set of points, which essentially indicates a failure in the registration task.

Figure 13: Seven randomly selected samples of the small bowel are shown. It can be observed
that, during the acquisition of small bowel samples, issues such as incomplete structural scans and
significant noise are present.

with an RMSE error of 90.85 mm, fails to perform adequately; similar scene flow estimation meth-
ods yield comparable results, transforming the point clouds into a collection of scattered points. The
FPT method, with an error of 84.45 mm, tends to cluster the point clouds together, thereby losing
its registration capability. Although UniRiT, when excluding the rigid module, can achieve regis-
tration, it exhibits a larger error with significant inaccuracies in finer details. In contrast, UniRiT
successfully achieves accurate registration even in detailed areas.

A.8 ABLATION EXPERIMENT

We conducted ablation experiments across three experimental groups. In the mixed experiment on
the MedMatch3D dataset, the RMSE without the non-rigid module was 8.29 mm and the CD was
5.01 mm. In contrast, UniRiT achieved an RMSE of 2.16 mm and a CD of 1.88 mm, representing
improvements of 73.9% and 62.5%, respectively. In the experiments on the liver dataset (Case B),
the RMSE and CD improvements were 87.7% and 77.4%, respectively. These results demonstrate
the superiority of UniRiT and the critical role of the rigid module, validating the effectiveness of the
two-step strategy.
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Figure 14: The results of zero-shot testing for certain methods on the small bowel dataset are pre-
sented. In the visualization, the blue point cloud represents the target point cloud. The before image
shows the source point cloud before registration, while the method image displays the transformed
source point cloud after applying the registration method. This comparison highlights the alignment
performance and transformation effects of the respective techniques.

A.9 ANALYSING FEW-SHOT POINT REGISTRATION

Comparing the results of Experiment 1 and Experiment 3, we found that existing methods achieved
high-accuracy registration on the small-sample dataset for the single organ, liver, but failed on the
mixed dataset containing multiple organs with more samples. For instance, RoITr (Yu et al., 2023)
achieved an RMSE registration error of only 3.01 mm, but when trained on the comprehensive
dataset, the test error for liver samples was 10.23 mm, despite the deformation of the liver being
around 15 mm before registration, indicating a failure in registration. This observation seems coun-
terintuitive. Upon re-evaluating the original concept of few-shot learning, we recognized that prior
work defined few-shot samples based on human-classified organ categories, neglecting the distribu-
tional differences among samples within each organ category. In other words, samples with similar
distributions map to a similar feature space, and when there is substantial distributional variation
among different samples of the same organ, the network struggles to extract similarities.

Specifically regarding the liver dataset, the simple structure and small deformation of the liver result
in simpler transformation patterns, making it easier for the neural network to capture such similar
features. In contrast, other organs in MedMatch3D, such as the brain and pancreas, have more com-
plex structures, while organs like the gallbladder exhibit larger deformations and distributional dif-
ferences. Consequently, these organs present greater distributional discrepancies and more diverse
transformation patterns. As shown in Table 1, we conducted a quantitative analysis of the distribu-
tional differences among samples within the same organ and between different organs. Our findings
revealed significant distributional discrepancies among samples of the same organ, with some cate-
gories showing greater differences than those between different organs. This effectively explains the
failure of existing methods in mixed datasets: although the sample size increases, the introduction
of numerous samples with substantial distributional differences poses considerable challenges for
the network.
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