
Published as a conference paper at ICLR 2022

PARETO POLICY POOL FOR MODEL-BASED OFFLINE
REINFORCEMENT LEARNING

Yijun Yang1,4, Jing Jiang1, Tianyi Zhou2,3, Jie Ma1, Yuhui Shi4
1Australian Artificial Intelligence Institute, University of Technology Sydney
2University of Washington, Seattle, 3University of Maryland, College Park
4Department of Computer Science and Engineering, Southern University of Science and Technology
{yijun.yang-1, jie.ma-5}@student.uts.edu.au, jing.jiang@uts.edu.au, tianyizh@uw.edu, shiyh@sustech.edu.cn

ABSTRACT

Online reinforcement learning (RL) can suffer from poor exploration, sparse re-
ward, insufficient data, and overhead caused by inefficient interactions between an
immature policy and a complicated environment. Model-based offline RL instead
trains an environment model using a dataset of pre-collected experiences so online
RL methods can learn in an offline manner by solely interacting with the model.
However, the uncertainty and accuracy of the environment model can drastically
vary across different state-action pairs, so the RL agent may achieve a high model
return but perform poorly in the true environment. Unlike previous works that need
to carefully tune the trade-off between the model return and uncertainty in a single
objective, we study a bi-objective formulation for model-based offline RL that aims
at producing a pool of diverse policies on the Pareto front performing different
levels of trade-offs, which provides the flexibility to select the best policy for each
realistic environment from the pool. Our method, “Pareto policy pool (P3)”, does
not need to tune the trade-off weight but can produce policies allocated at different
regions of the Pareto front. For this purpose, we develop an efficient algorithm
that solves multiple bi-objective optimization problems with distinct constraints
defined by reference vectors targeting diverse regions of the Pareto front. We
theoretically prove that our algorithm can converge to the targeted regions. In order
to obtain more Pareto optimal policies without linearly increasing the cost, we
leverage the achieved policies as initialization to find more Pareto optimal policies
in their neighborhoods. On the D4RL benchmark for offline RL, P3 substantially
outperforms several recent baseline methods over multiple tasks, especially when
the quality of pre-collected experiences is low.

1 INTRODUCTION

Offline reinforcement learning (offline RL) (Levine et al., 2020) or batch RL (Lange et al., 2012) can
train an agent without interacting with the environment by instead using pre-collected experiences on
other agents/policies. Recently, offline RL has been attracting growing interest due to the availability
of large-scale datasets of diverse experiences in many RL applications, e.g., autonomous driving (Shin
& Kim, 2019), healthcare (Yu et al., 2019), robot control (Schulman et al., 2016), etc. However,
RL algorithms developed for the online/interactive setting usually perform poorly in the offline
setting (Fujimoto et al., 2019; Janner et al., 2019) due to the data distribution shift caused by (1)
the difference between the policy-in-training and the behavior policies used to collect the data; and
(2) the difference between the realistic environment in which we will deploy the policy and the
environments used to collect the data. These differences can result in function approximation error
and biased policy learning (Levine et al., 2020). To address these challenges, model-based RL
approaches (Yu et al., 2020; Kidambi et al., 2020; Rafailov et al., 2021; Yu et al., 2021) firstly learn an
environment model from a dataset of logged experiences using supervised learning and then conduct
online RL interacting with the model. The learned environment model fully exploits the pre-collected
experiences and can avoid/reduce the costly interactions with the realistic environment required by
RL, hence improving the sample efficiency.

That being said, due to the large size of state-action space, model-based offline RL approaches
can still suffer from “model exploitation” (Levine et al., 2020): when the dataset does not contain

1

Published as a conference paper at ICLR 2022

Figure 1: Model return-uncertainty trade-off of P3 (ours), MOPO (Yu et al., 2020), and MOReL (Kidambi
et al., 2020) on an offline RL dataset “halfcheetah-random” from the D4RL benchmark (Fu et al., 2020). P3
achieves policies with different levels of model return-uncertainty trade-off. MOPO and MOReL are run three
times with regularization weights {0.1, 0.3, 0.5} and {1.0, 3.0, 5.0}, respectively. Detailed discussion in Sec. 1.

sufficient samples for some state-action pairs, the epistemic uncertainty of the model on these “out-
of-distribution” pairs can lead to a poor policy in offline RL. For example, an RL agent may easily
exploit the model by repeatedly visiting the out-of-distribution states where the model erroneously
issues higher rewards than the true environment dynamics, and thus the RL objective is biased
by overly optimistic evaluation of the agent’s performance. A widely-studied strategy to tackle
this problem is applying regularization to the reward function, which keeps the model uncertainty
small when maximizing the reward issued by the model (Yu et al., 2020; Kidambi et al., 2020;
Rafailov et al., 2021). By carefully tuning the regularization weight, it can achieve preferable
trade-off between the model reward and model uncertainty. However, it is usually challenging to
tune the weight without access to the realistic environment that the learned policy will be deployed
to. Moreover, even with access to the realistic environment, hyperparameter tuning methods such
as Bayesian optimization (Frazier, 2018) need to run multiple instances of offline RL and can be
computationally expensive. In addition, the offline-trained policy may not be directly generalized to
different environments. In this paper, we address a challenging problem, i.e., how to balance between
the model reward and model uncertainty during offline RL so it can produce diverse policies that can
be adapted to different realistic environments?

Instead of formulating the problem as a single-objective optimization with regularization as in
previous works, a primary contribution of this paper is to treat the model reward/return and model
uncertainty as two separate objectives and develop an efficient bi-objective optimization method
producing a pool of diverse policies on the Pareto front, which correspond to different trade-offs
between the two objectives. Therefore, when deployed to a new realistic environment, we can
accordingly choose the best policy from the pool. Our method is called “Pareto policy pool (P3),”
and an example of the policies achieved by P3 is shown in Fig. 1. When deployed to the realistic
environment, Pareto policy 1 is overly optimal on the model return, so it runs fast at the beginning
but quickly falls to the ground due to the aforementioned “model exploitation”. On the contrary,
Pareto policy 4 favoring small model uncertainty is overly conservative and keeps standing still for
1000 time-steps because it avoids taking exploratory actions that potentially increase the uncertainty.
As expected, Pareto policy 2&3 with the more balanced trade-off between the model return and
uncertainty perform better and achieve higher returns in the test environment. These results imply
that model-based offline RL’s performance significantly relies on the trade-off between model return
and uncertainty in the optimization objectives. However, it is usually challenging or intractable to
determine the optimal trade-off before deployment and control it during training. Moreover, for
existing methods adopting a regularized single-objective, i.e., scalarization (Boyd & Vandenberghe,
2004, Chapter 4.7), even trying all possible regularization weights cannot fully recover the Pareto front
and thus cannot guarantee to find the optimal trade-off. For example, in Fig. 1, by running multiple
instances with different regularization weights, MOPO (Yu et al., 2020) and MOReL (Kidambi et al.,

2

Published as a conference paper at ICLR 2022

2020) can only generate a few separated solutions, and it is difficult to find one with advantageous
trade-off among them. In contrast, our method aims at efficiently generating a rich pool of diverse and
representative policies covering the entire Pareto front without tuning the trade-off during training.
Thereby, when deployed to a new realistic environment, the best policy for the new environment
can be efficiently selected from the pool. Hence, P3 provides a simple and principal approach
that addresses the two major challenges in model-based offline RL, i.e., “model exploitation” and
generalization to different unseen states in order to achieve high returns.

Due to the complicated shape of the Pareto front that is unknown during training, finding a pool of
diverse policies covering the whole Pareto front raises several non-trivial algorithmic challenges:
(1) How to find policies located at different regions of the Pareto front associated with different
levels of model return-uncertainty trade-off? (2) How to avoid training each policy from scratch and
reduce the computational cost linearly increasing with the number of policies? Inspired by recent
works in multi-objective optimization (Cheng et al., 2016; Ma et al., 2020; Xu et al., 2020), we
explore different regions of the Pareto front by generating multiple diverse reference vectors in the
bi-objective space, each defining a constrained bi-objective optimization whose solution resides in a
local region of the Pareto front. By solving these constrained bi-objective optimization problems, we
can obtain a diverse set of policies covering the whole Pareto front. For solving each problem, we
extend MGDA algorithm (Désidéri, 2012) to be a two-stage gradient-based method that provably
converges to the Pareto front region targeted by the reference vector. In order to achieve more
policies on the Pareto front without linearly increasing the cost, we start from the previously obtained
policies for initialization and explore their neighborhoods on the Pareto front by perturbing their
corresponding reference vectors, resulting in a dense set of Pareto policies in each local region.

In experiments, we evaluate P3 and compare it with several state-of-the-art model-based/free offline
RL methods on the standard D4RL Gym benchmark (Fu et al., 2020). P3 achieves the highest
average-score over all datasets and significantly outperforms the baseline methods in 5 out of the 9
low/medium-quality datasets, showing the advantages of P3 on learning from non-expert experiences.
We also present a thorough ablation study to identify the most important components in P3.

2 RELATED WORK

Due to lack of space, we focus our discussion here on directly related works and present a more
detailed overview of related work in Appendix A.2. To address the aforementioned “model exploita-
tion”, recent works rely on applying uncertainty regularization to the model return (Yu et al., 2020;
Kidambi et al., 2020; Rafailov et al., 2021) which can be difficult and costly to tune the weight
of regularization. In contrast, our work reframes the policy learning under the environment model
as a bi-objective optimization problem and produces a diverse set of policies on the Pareto front
performing different levels of model return-uncertainty trade-off, which provides flexibility to select
the best policy in the inference stage.

3 PRELIMINARIES

We consider an episodic Markov Decision Process (MDP)M = {S,A, P, r,H, ρ0}, where S is the
state space, A is the space of actions, P is the transition probability: S ×A → ∆(S) where ∆(S) is
a probability distribution over S , r : S ×A → R is the reward function so r(sh, ah) is the immediate
reward for taking action ah at state sh, H is the horizon of the process, and ρ0 is the distribution
of the initial state s0. RL aims at learning a policy π : S → A maximizing the expected return in
Eq. (1), where π in this paper takes a deterministic action ah based on the state sh.

max
πθ

Rρ0(πθ,M) = Es0∼ρ0,πθ

[
H−1∑
h=0

r (sh, ah)

]
. (1)

In model-based offline RL, the agent instead interacts with an environment model rather than the
realistic one. We train an environment model M̂ = {Ŝ,A, P̂ , r̂, H, ρ̂0} using a pre-collected dataset
D , {(sh, ah, sh+1, rh)|πb} of experiences by behavior policies, hand-designed controllers, or
human demonstrators. By interacting with the model, online RL methods can learn in an offline
manner. However, when D does not contain sufficient samples for some state-action pairs, the
epistemic uncertainty of the model on these “out-of-distribution (OOD)” pairs can result in a poor
policy. For example, an RL agent may easily exploit the model by repeatedly visiting the OOD states
where the model erroneously issues r̂ higher than the true environment reward r and thus the RL
objective is biased by overly optimistic evaluation of the agent’s performance. A widely-studied

3

Published as a conference paper at ICLR 2022

strategy to tackle this problem is applying regularization to r̂, which keeps the model uncertainty
small while maximizing the model reward (Yu et al., 2020; Kidambi et al., 2020; Rafailov et al.,
2021). A practical implementation of the regularized reward function is developed by (Yu et al.,
2020): r̃h = r̂h − λu(ŝh, ah), where u(ŝh, ah) denotes the estimation of the model uncertainty at
the state-action pair (ŝh, ah) and λ controls the trade-off between r̂ and u, which has to be carefully
tuned in practice. Based on the regularized reward function, Yu et al. (2020) proposed a modified
policy optimization objective:

max
π

R̃ρ̂0(π,M̂) = Es0∼ρ̂0,π

[
H−1∑
h=0

(r̂ (ŝh, ah)− λu (ŝh, ah))

]
. (2)

Despite being intuitive, this method’s performance is sensitive to the regularization weight λ (Ki-
dambi et al., 2020; Yu et al., 2021), and tuning λ is usually challenging without access to the realistic
environment that the learned policy will be deployed to. Moreover, even granted the access, hy-
perparameter tuning methods such as Bayesian optimization (Frazier, 2018) require running many
instances of offline RL, which can be computationally prohibitive.

Instead of optimizing a single regularized objective, our “Pareto policy pool (P3)” proposed later
treats r̂ and u as two separate objectives and develop an efficient bi-objective optimization method
that does not need to tune the trade-off deliberately but produces a pool of diverse policies, which are
learned under different trade-offs between the two objectives. Thereby, when deployed to a realistic
environment, the best policy can be chosen from the pool.

4 PARETO POLICY POOL FOR MODEL-BASED OFFLINE RL

4.1 PROBLEM FORMULATION

In order to estimate the model uncertainty accurately and alleviate the model exploitation problem, we
follow previous works (Janner et al., 2019; Yu et al., 2020; Kidambi et al., 2020; Rafailov et al., 2021;
Yu et al., 2021) and construct a bootstrap ensemble of K environment models {M̂i}Ki=1. Each model
M̂i = {Ŝ,A, P̂ i, r̂i, H, ρ̂0} is a two-head feed-forward neural network that takes a state-action
pair (ŝh, ah) as input and outputs the mean µi and standard deviation σi of [ŝh+1, r̂h], i.e., the next
state concatenated with the reward. More details about our model are given in Appendix A.5. As
demonstrated in Yu et al. (2020), this ensemble is effective in estimating the model uncertainty as the
maximal standard deviation over all models, i.e., u(ŝh, ah) = maxi∈[K] ‖σi(ŝh, ah)‖2. Moreover, by
randomly selecting a model in each step to provide the reward r̂(ŝh, ah) = r̂h, we can effectively mit-
igate the model exploitation problem. Unlike previous works combining r̂ and u as a single objective,
we treat them as two separate objectives and aims at solving the bi-objective optimization below.

max
θ

Jρ̂0(πθ,M̂) = max
θ

(J r̂ρ̂0(πθ,M̂), Juρ̂0(πθ,M̂))T, (3)

(J r̂ρ̂0(πθ,M̂), Juρ̂0(πθ,M̂))T = Es0∼ρ̂0,π

[
H−1∑
h=0

(r̂ (ŝh, ah) , exp (−u (ŝh, ah) /κ))
T

]
, (4)

where κ is a temperature applied to u (ŝh, ah). For simplicity, in the rest of this paper, we remove ρ̂0

and M̂. In Eq. (3), J r̂ aims to maximize the expected model return, and Ju is designed to minimize
the expected cumulative model uncertainty. However, the bi-objective optimization naturally has mul-
tiple (up to infinite) optimal solutions instead of one single policy and each optimal policy performs a
different level of trade-off between the two objectives. For example, a policy favoring small model un-
certainty maybe overly conservative and avoids taking exploratory actions so its model return can be
low. In contrast, a policy pursuing high model return might fail in realistic environments at a state that
the model is highly uncertain about. Examples of these policies are given in Fig. 1. Formally, for any
two policies πi and πj , πi dominates πj if and only if J(πi) ≥ J(πj) and J(πi) 6= J(πj). A policy
π∗ is Pareto optimal if no any policy dominates π∗ in Rd, i.e., no objective can be improved without
detriment to another objective at π∗. All Pareto optimal policies constitute the Pareto set, and the
Pareto front is the image of the Pareto set in the space spanned by all the objectives. Unfortunately, it is
almost infeasible in practice to find the whole Pareto set and the Pareto front’s shape is also unknown.

As discussed in Sec. 3, it is difficult to determine the optimal trade-off between J r̂ and Ju because
we cannot access the realistic environment during training. It is also challenging and costly to control

4

Published as a conference paper at ICLR 2022

the trade-off. Hence, a straightforward strategy is to find a diverse set of policies on the Pareto
front performing different levels of trade-off and select the best one when deployed to a realistic
environment. However, how to find these Pareto optimal policies is still an open challenge. In
addition, it is expensive to train each Pareto policy from scratch. After allocating a few diverse
policies on the Pareto front, can we start from them to find more Pareto policies so we can avoid
linearly increasing the computational costs? To overcome these challenges, we develop “Pareto policy
pool (P3)”, which can efficiently and precisely find a diverse set of policies on the Pareto front of
return-uncertainty bi-objective optimization.

4.2 PARETO POLICY POOL

Figure 2: Illustration of P3 by solving a benchmark
problem from (Lin et al., 2019).

Fig. 2 illustrates the main idea of “Pareto policy pool
(P3)”, whose detailed procedure are given in Alg. 1.
In order to find diverse Pareto policies and precisely
control the trade-off of each policy, P3 generates
multiple reference vectors {vi}ni=1 in the objective
space, each forming a constraint to the bi-objective
optimization in Eq. (3) and targeting a different re-
gion on the Pareto front (Sec. 4.2.1). Thereby, the
Pareto policies {πi}ni=1 achieved by solving the n
constrained bi-objective optimizations are diverse in
terms of the objective trade-off. For solving each of
them, we develop an efficient two-stage optimization
algorithm, i.e., Alg. 2, which starts from an initial
point and moves to a region fulfilling the constraint
(correction stage), and then apply a multi-objective
optimization algorithm to find a Pareto policy in the
targeted region. To avoid training each Pareto policy from scratch, which leads to linearly increasing
costs for ≥ n policies, we develop a local extension method on the Pareto front in Sec. 4.2.2. This
“Pareto Extension” firstly generates more reference vectors by perturbing each vector in {vi}ni=1
and then uses their associated Pareto policies {πi}ni=1 to warm start the bi-objective optimization
constrained by the new vectors (Line 9-13 in Alg. 1). These locally extended policies, together with
the n policies, compose a pool of diverse policies on the Pareto front, from which we can select the
best policy when deploying them to realistic environments.

Algorithm 1 Pareto policy pool (P3) for model-based offline RL

1: input: dataset D, constraint ψ < 0, step size η, num. reference vectors n, Tg � Tl
2: initialize: environment models, Pareto policy pool P = ∅, 0 < τa < τb < 1 for Eq. (5),

0 < ε < τa for Eq. (8), number of updates: T = n(Tg + 2Tl)
3: Train the model on D using supervised learning;
4: Generate n reference vectors {v1, . . . ,vn} by Eq. (5);
5: for i ∈ {1, . . . , n} (in parallel) do . Diverse Pareto Policies
6: Initialize a policy πi
7: for j = 0, 1, . . . , Tg − 1 do
8: Update the parameters of πi by Alg. 2 with vi;
9: Generate {v+

i ,v
−
i } to vi by Eq. (8); . Local Pareto Extension

10: for v′ ∈ {v+
i ,v

−
i } do

11: for j′ = 0, 1, . . . , Tl − 1 do
12: P = P ∪ {πi}; . Store Pareto policies into the pool
13: Update the parameters of πi by Alg. 2 with v′;
14: output: P;

4.2.1 DIVERSE PARETO POLICIES BY REFERENCE VECTORS

Inspired by recent works in multi-objective optimization (Cheng et al., 2016; Lin et al., 2019; Ma et al.,
2020; Xu et al., 2020), we explore the Pareto front by generating a diverse set of reference vectors
defining multiple constrained bi-objective optimization problems. As shown in Fig. 2, we generate n

5

Published as a conference paper at ICLR 2022

uniformly distributed reference vectors {vi}ni=1 in a 0-1 normalized objective space by Eq. (5), i.e.,

vi , (τb − (i− 1)τc, τa + (i− 1)τc), τc =
τb − τa
n− 1

, 0 < τa < τb < 1, i ∈ {1, 2, . . . , n}, (5)

where τa and τb control the range covered by reference vectors. Each vi = (v1
i , v

2
i) defines a

constrained bi-objective optimization problem based on Eq. (3) whose solution resides in the targeted
region of the Pareto front:

max
θ

J(πθ) , max
θ

(J r̂(πθ), J
u(πθ))

T,

s.t. Ψ(πθ,vi) , −DKL

(
vi
‖vi‖1

∥∥ J(πθ)

‖J(πθ)‖1

)
≥ ψ, (6)

where Ψ(πθ,vi) defines a similarity metric between the reference vector vi and the objective vector
J(πθ) > 0. When ψ is large, J(πθ) is constrained to be close to vi, and the targeted region on the
Pareto front is small. Hence, solving the constrained bi-objective optimization for the diverse set
of reference vectors produces a diverse set of Pareto policies associated with different trade-offs
between J r̂ and Ju. In the following, we develop an efficient two-stage algorithm for solving this
optimization problem in Eq. (6).

Algorithm 2 A two-stage method for solving con-
strained bi-objective optimization

1: input: πθt , vi, ψ
2: if Ψ(πθt ,vi) < ψ then . Correction stage
3: if J r̂(πθt)/Ju(πθt) < v1

i /v
2
i then

4: Compute ∇θJ r̂(πθt);
5: θt+1 = θt + η∇θJ r̂(πθt);
6: else
7: Compute ∇θJu(πθt);
8: θt+1 = θt + η∇θJu(πθt);
9: else . Ascending stage

10: Compute ∇θF(πθt);
11: Find α∗t to Eq. (7);
12: θt+1 = θt + ηα∗t∇θF(πθt);
13: t← t+ 1
14: output: πθt

To solve the bi-objective optimization with an
inequality constraint in Eq. (6), we propose a
two-stage gradient-based method in Alg. 2. It
first finds a solution meeting the constraint by
alternating between optimizing the two objec-
tives (correction stage) and then treats the con-
straint as the third objective and applies an ex-
isting multi-objective optimization algorithm to
find a Pareto policy in the region targeted by
the constraint (ascending stage). In the first
stage, the algorithm checks how the constraint
is violated (line 3), e.g., whether J r̂ or Ju is
too small, and then accordingly chooses one
to apply gradient ascent towards meeting the
constraint. Once it finds a feasible solution
fulfilling the constraint, it switches to the sec-
ond stage, which reframes the problem as a tri-
objective optimization by turning the constraint
to be the third objective, i.e., maxθ F(πθ) ,
(J r̂(πθ), J

u(πθ),Ψ(πθ,vi))
T, and applies MGDA (Désidéri, 2012) to find a Pareto solution for

this problem. Each step of MGDA aims at finding a convex combination αt∇θF(πθt) of all ob-
jectives’ gradients∇θF(πθt) , (∇θJ r̂(πθt),∇θJu(πθt),∇θΨ(πθt ,vi))

T such that no objective is
decreasing on the combined direction. This is equal to solving the following min-norm problem.

min
αt
‖αt∇θF(πθt)‖2, s.t.‖α‖1 = 1,αt ≥ 0, (7)

which can be efficiently solved by Frank-Wolfe’s algorithm (Jaggi, 2013). Then MGDA takes one
step along the direction to update the policy θt, i.e., θt+1 = θt+ηαt∇θF(πθt). Since MGDA always
improves each objective, the constraint will not be violated, and the algorithm will finally find a Pareto
policy in the targeted region. In practice, we use OpenAI’s ES (Salimans et al., 2017) to estimate
the gradient of each objective (see Appendix A.3) for its efficiency and stability. Alg. 2 provably
converges to the Pareto front region targeted by the reference vector with approximate gradients.
Assumption 1. Suppose m objectives {fi}mi=1 of a multi-objective function are differentiable and
that their gradients are Lipschitz continuous with constant Li > 0.
Assumption 2. For the ES gradient∇fi,ν(xt), we have Eεt∼N (0,I)[∇fi,ν(xt)] = ∇fi(xt). Suppose
Var(∇fi,ν(xt)) ≤ σ2.
Lemma 1. ∀ mutually independent objectives fi ≥ 0, which satisfies Assumption 1 & 2, has
Eεt [fi(xt+1)]− fi(xt) ≤ −(η − Liη

2

2)‖d̄t‖2 + Liη
2

2 σ2 where d̄t =
∑m
i=1 αi,t∇fi(xt).

Lemma 1 implies that when η < ‖d̄t‖2
‖d̄t‖2+σ2

2
Li

, the ascending stage leads to a monotonically non-
increasing sequence of the objectives.

6

Published as a conference paper at ICLR 2022

Theorem 1 (Non-convex convergence rate). Let Assumption 1 & 2 hold, ∆ = fi(x0) − fi(x∗),
β = η − Liη

2

2 , and γ = Liη
2

2 . For an arbitrary objective fi, given any ε > 0, after T = O(∆
βε−γσ2)

iterations of ascending stage, we have 1
T

∑T−1
t=0 Ext [‖d̄t‖2] ≤ ε.

Complete proofs are provided in Appendix A.1. Theorem 1 provides the convergence rate of the
ascending stage for non-convex objectives. For the correction stage that performs a single-objective
ES gradient ascent, Nesterov & Spokoiny (2017) have proved its convergence rate to a stationary
point of the non-convex objective.

4.2.2 LOCAL EXTENSION OF PARETO FRONT

Although solving Eq. 6 for a diverse set of reference vectors using the algorithm in Sec. 4.2.1 can
produce a diverse set of Pareto policies, the computational cost linearly increases with the number
of policies. In practice, a few Pareto policies cannot cover all possible trade-offs and thus may lead
to sub-optimal choices of policy in deployment. In order to efficiently obtain more policies with
different fine-grained levels of model return-uncertainty trade-off, we propose a “Pareto Extension”
that starts from the diverse set of Pareto policies and locally searches for more policies near them on
the Pareto front. This warm-start strategy avoids training more policies from scratch and practically
saves a significant amount of computation. As illustrated in Fig. 2 and Alg. 1, we perturb each
reference vector vi for more reference vectors v+

i and v−i , i.e.,

v+
i = vi + ε,v−i = vi − ε, ε , (ε,−ε), 0 < ε < τa. (8)

These new vectors create more constrained bi-objective optimization problems in the same form
as Eq. (6). Instead of using a random initialization, we start from and fine-tune {πi}ni=1 for a few
iterations to achieve the Pareto policies of these new optimization problems. These policies and
{πi}ni=1 together constitute a pool of Pareto policies. When deployed to a realistic environment, we
first evaluate these policies for a few steps and then select the one achieving the highest return to
deploy. More details about our selection strategy are given in Appendix A.4. As long as we include
sufficient diverse policies in the pool, we can find a promising policy that significantly outperforms
the policies trained by other model-based offline RL methods.

5 EXPERIMENTS

This section aims to answer the following questions by evaluating P3 with other offline RL methods
on the datasets from the D4RL Gym benchmark (Fu et al., 2020). (1) Comparison to prior work:
Does P3 outperform other state-of-the-art offline RL methods? Moreover, when the dataset does not
contain high-quality samples for some state-action pairs, can the policies generated by P3 generalize
to unseen states in order to achieve high returns? (2) Ablation study: In the experiments, we apply
several techniques used in previous work (see Appendix A.6 for more details). How do they affect
performance? (3) Effectiveness of P3: Why is it challenging to find the optimal trade-off between
the model return and its uncertainty? We empirically explain how P3 efficiently alleviate this problem
by generating a rich pool of diverse and representative policies.

To answer question (1), we compare P3’s performance with the state-of-the-art offline RL algo-
rithms, including BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019), CQL (Kumar et al., 2020),
UWAC (Wu et al., 2021), TD3+BC (Fujimoto & Gu, 2021), MOPO (Yu et al., 2020), MOReL (Ki-
dambi et al., 2020), and COMBO (Yu et al., 2021). For fairness of comparison, we re-run these
algorithms using author-provided implementations1 and train each algorithm for 1000 epochs. We
also carefully tune the hyperparameters of baselines such as BCQ, CQL, TD3+BC, MOPO, and
MOReL by grid search and choose the best ones for each benchmark dataset. Most of them achieve
higher scores than those previous versions. For other baselines, such as UWAC and COMBO, we
adopt the hyperparameters in their original papers, assuming they have chosen the best hyperparam-
eters they can find. More details on the experimental setting can be found in Appendix A.6. Our
experiment results are provided in Table 1. It is obvious that P3 achieves the highest average-score
across all datasets, and significantly outperforms the baseline methods in 5 out of the 9 low/medium-
quality datasets. Moreover, we find that the low/medium-quality datasets in the D4RL benchmark
are “imbalanced”. As illustrated in Fig. 8, there are a large number of bad samples, some mediocre

1As noted by https://github.com/aravindr93/mjrl/issues/35, we remark that the imple-
mentation provided by MOReL’s author achieves lower results than their reported ones.

7

https://github.com/aravindr93/mjrl/issues/35

Published as a conference paper at ICLR 2022

BCQ BEAR CQL UWAC* TD3+BC MOPO MOPO* MOReL COMBO* P3+FQE P3

R
an

do
m HalfCheetah 2.2±0.1 2.3±0.1 21.7±0.6 14.5±3.3 10.6±1.7 35.9±2.9 35.4±2.5 30.3±5.9 38.8 37.4±5.1 40.6±3.7

Hopper 8.1±0.5 3.9±2.3 8.1±1.4 22.4±12.1 8.6±0.4 16.7±12.2 11.7±0.4 44.8±4.8 17.9 33.8±0.4 35.4±0.8
Walker2d 4.6±0.7 12.8±10.2 0.5±1.3 15.5±11.7 1.5±1.4 4.2±5.7 13.6±2.6 17.3±8.2 7.0 19.7±0.5 22.9±0.6

M
ed

iu
m HalfCheetah 45.4±1.7 42.9±0.2 49.2±0.3 46.5±2.5 47.8±0.4 73.1±2.4 42.3±1.6 20.4±13.8 54.2 61.4±2.0 64.7±1.6

Hopper 53.9±3.7 51.8±3.9 62.7±3.7 88.9±12.2 69.1±4.5 38.3±34.9 28.0±12.4 53.2±32.1 94.9 105.9±1.4 106.8±0.7
Walker2d 74.5±3.7 -0.2±0.1 57.5±8.3 57.5±7.8 81.3±3.0 41.2±30.8 17.8±19.3 10.3±8.9 75.5 71.1±3.5 81.3±2.0

M
ed

iu
m

-r
ep

la
y HalfCheetah 40.9±1.1 36.3±3.1 47.2±0.4 46.8±3.0 44.8±0.5 69.2±1.1 53.1±2.0 31.9±6.1 55.1 43.4±1.1 48.2±0.6

Hopper 40.9±16.7 52.2±19.3 28.6±0.9 39.4±6.1 57.8±17.3 32.7±9.4 67.5±24.7 54.2±32.1 73.1 89.5±2.0 94.6±1.4
Walker2d 42.5±13.7 6.9±7.8 45.3±2.7 27.0±6.3 81.9±2.7 73.7±9.4 39.0±9.6 13.7±8.1 56 60.1±9.5 64.0±8.2

Mean 34.8±4.7 23.2±5.2 35.6±2.2 39.8±7.2 44.8±3.5 42.8±12.1 34.3±8.3 30.7±13.3 52.5 58.0±2.8 62.1±2.2

E
xp

er
t HalfCheetah 92.7±2.5 92.7±0.6 97.5±1.8 128.6±2.9 96.3±0.9 81.3±21.8 − 2.2±5.4 − 81.4±1.72 88.8±0.4

Hopper 105.3±8.1 54.6±21.1 105.4±5.9 135.0±14.1 109.5±4.1 62.5±28.9 − 26.2±13.9 − 110.6±1.2 111.3±0.5
Walker2d 109.1±0.4 106.8±6.8 108.9±0.4 121.1±22.4 110.3±0.4 62.4±3.2 − -0.3±0.3 − 102.0±3.4 106.7±0.2

M
ed

iu
m

-e
xp

er
t HalfCheetah 93.9±1.2 46.1±4.7 70.6±13.6 127.4±3.7 88.9±5.3 70.3±21.9 63.3±38.0 35.9±19.2 90 57.1±16.0 69.9±10.5

Hopper 108.6±5.9 50.6±25.3 111.0±1.2 134.7±21.2 102.0±10.1 60.6±32.5 23.7±6.0 52.1±27.7 111.1 109.4±1.3 110.8±0.5
Walker2d 109.7±0.6 22.1±44.5 109.7±0.3 99.7±12.2 110.5±0.3 77.4±27.9 44.6±12.9 3.9±2.8 96.1 90.3±4.2 98.9±3.4

Mean 103.2±3.1 62.2±17.2 100.5±3.9 124.4±12.8 102.9±3.5 69.1±22.7 43.9±19.0 20.0±7.7 99.1 91.8±4.6 97.7±2.6

Total Mean 62.2±4.1 38.8±10.0 61.6±2.9 73.6±9.4 68.0±3.5 53.3±16.3 36.8±11.0 26.4±11.1 64.2 71.5±3.5 76.3±2.4

Table 1: Results on D4RL Gym experiments. Normalized score (mean±std) over the final 10 evaluations and 5
seeds. ∗ marks previously reported results. Dataset quality gradually improves from Random to Medium-expert.

Figure 3: Learning curves on low-quality datasets. Returns are averaged over 10 evaluations and 5 seeds.
The shaded area depicts the standard deviation over 5 seeds. P3 outperforms two recent model-based offline
RL methods (i.e., MOPO and MOReL) and the SoTA model-free method (i.e, TD3+BC). A full results of all
datasets are in Fig. 7 of Appendix.

samples, and a few good samples, causing problems with learning accurate behavior policies or
generalizable environment models (Buckman et al., 2021; Zhang et al., 2021). Therefore, many
offline RL algorithms, especially model-free algorithms that heavily rely on the accurate recovery of
behavior policy (Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021), perform poorly on
these datasets. According to the results in Table 1, P3 achieves SoTA performance and outperforms
other baselines by a large margin on random, medium, and medium-replay datasets, indicating the
advantages of P3 on learning from low-quality experiences. We use online policy evaluation to select
the best policy during the test phase of P3, which can be computationally intensive or cause over-
heads when deployed to realistic environments. To overcome this drawback, we replace the online
evaluation with Fitted Q Evaluation (FQE) (Le et al., 2019), an offline policy evaluation method,
which (approximately) evaluates policies using the offline data only. The implementation details and
experimental results are reported in Appendix A.4 and Table 1, respectively. We surprisingly find that
“P3+FQE (offline policy evaluation)” only slightly degrades from “P3+online policy evaluation” on
the performance, but still outperforms all baselines on the low/medium datasets, suggesting that FQE
enables more efficient inference for P3 so it has exactly the same inference cost as other baselines.

To answer question (2), we conduct a thorough ablation study toward five variants of P3, each
removing/changing one component used in P3. Table 2 reports their results on the D4RL Gym
benchmark with 9 representative environment-dataset combinations. In Fig. 9 in Appendix, we
visualize the Pareto policies obtained by P3 to highlight the effectiveness and superiority of our
method. Among the five variants of P3, “scalarization” replaces our porposed Alg. 2 with the
scalarization method (Boyd & Vandenberghe, 2004, Chapter 4.7); “no StateNorm” removes the state
normalization (Mania et al., 2018; Fujimoto & Gu, 2021); “no RankShaping” removes the rank-based
scale shaping (Wierstra et al., 2014); “no ParetoExtension” removes the Pareto extension proposed in
Sec. 4.2.2; “no BehaviorCloning” removes the behavior cloning initialization (Kumar et al., 2020;
Kidambi et al., 2020). More details on these variants are provided in Appendix A.9. According
to the results in Table 2 and Fig. 9, we give the following conclusions: (1) except “scalarization”
and “no ParetoExtension”, other variants perform comparably to our P3 while outperforming the
previous results achieved by model-based (MOPO) and model-free (TD3+BC) RL algorithms on

8

Published as a conference paper at ICLR 2022

Data Quality Random Medium-replay Medium-expert

Environment HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d HalfCheetah Hopper Walker2d

P3: scalarization 15.5±0.8 32.3±1.5 15.2±5.0 40.1±1.4 88.5±8.3 49.9±15.0 52.4±7.3 77.3±22.9 84.7±8.5
P3: no StateNorm 35.3±2.5 34.9±0.2 21.8±0.3 41.7±0.4 82.3±12.9 61.6±9.4 47.1±0.3 99.9±6.0 90.3±2.2
P3: no RankShaping 37.6±4.4 33.6±0.3 27.3±6.2 44.3±0.7 95.6±1.7 64.7±3.9 66.3±1.9 108.3±1.2 97.0±2.6
P3: no ParetoExtension 31.2±2.4 5.2±0.4 0.1±0.2 43.4±1.6 91.3±4.9 2.0±0.6 4.7±3.2 88.2±16.4 0.3±0.1
P3: no BehaviorCloning 38.2±1.4 35.5±0.5 24.1±1.1 45.4±1.8 97.1±2.1 26.1±4.9 52.2±3.5 89.8±16.6 69.1±9.1
P3: our version 40.6±3.7 35.4±0.8 22.9±0.6 48.2±0.6 94.6±1.4 64.0±8.2 69.9±10.5 110.8±0.5 98.9±3.4

MOPO 35.9±2.9 16.7±12.2 4.2±5.7 69.2±1.1 32.7±9.4 73.7±9.4 70.3±21.9 60.6±32.5 77.4±27.9
TD3+BC 10.6±1.7 8.6±0.4 1.5±1.4 44.8±0.5 57.8±17.3 81.9±2.7 88.9±5.3 102.0±10.1 110.5±0.3

Table 2: Ablation study. Normalized score (mean±std) of P3 variants over the final 10 evaluations and 5
seeds when applied to three representative D4RL datasets, i.e., random, medium-replay, and medium-expert,
corresponding to low, medium and high-quality data, respectively.

Figure 4: Model-based offline RL’s performance in the deployed environment (heatmap) under different trade-
offs between the model return (y-axis) and uncertainty (x-axis). Each red circle is a Pareto policy from the pool
generated by P3. Zoom in for more details. More results are shown in Fig. 10 of Appendix.

the low/medium-quality datasets, reflecting that these widely-used techniques can improve P3’s
performance but are not crucial to our appealing results. (2) “scalarization” shows noticeable
degradation in performance and cannot obtain a dense set of diverse policies, as shown in Fig. 9. The
results can be explained as follows: the scalarization method only finds a few separated policies,
and it is difficult to find one with advantageous trade-off among them. In addition, we remark that
the computational cost of multiple training with different weight assignments is similar to the cost
of running P3. (3) “no ParetoExtension” degrades P3’s performance on all 9 environment-dataset
combinations, corroborating that a dense set of policies on the Pareto front is essential to our results.

To answer question (3), in Fig. 4, we study how the P3 policies with different uncertainty-return
trade-off perform in the deployed environment. For low/medium-quality datasets (the left three plots
in Fig. 4), the optimal policies with high realistic returns (bright areas in the heatmap) spread across
almost the whole Pareto front. Therefore, to find the best policy, it is essential to explore the whole
Pareto front and select one from a diverse set of Pareto optimal/stationary policies as P3 does. This
explains why P3 performs the best on all the low/medium datasets. On the contrary, for high-quality
datasets (the right two plots in Fig. 4), the optimal policies with high realistic returns gather within
a small region of the Pareto front and associate to one trade-off level. Therefore, by carefully tuning
the trade-off weight, previous methods can still find the optimal policy without visiting the whole
Pareto front. Hence, we observe less advantages of P3 on the high-quality datasets. The reason
behind is that the MDP models are very confident on high-return (realistic) state-action pairs if
most samples in the training data are with high-return (high-quality), while they can be uncertain
about many high-return pairs if the training data only cover a few high-return samples (low/medium
quality). It is worth noting that collecting high-quality datasets is usually expensive or infeasible
in practice and many applications lack sufficient high-quality data. In these imperfect but practical
scenarios, P3 performs significantly better and more stably than existing model-based offline RL
methods that only learns one single policy.

6 CONCLUSION

In this paper, we find that model-based offline RL’s performance significantly relies on the trade-off
between model return and its uncertainty, while determining the optimal trade-off is challenging with-
out access to the realistic environment. To address the problem, we study a bi-objective formulation
for model-based offline RL and develop an efficient method that produces a pool of diverse policies
on the Pareto front performing different levels of trade-offs, which provides flexibility to select the
best policy in the inference stage. We extensively validate the efficacy of our method on the D4RL
benchmark, where ours largely outperforms several recent baselines and exhibits promising results
on low-quality datasets.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

Yijun Yang and Yuhui Shi are supported in part by the Shenzhen Fundamental Research Program under
Grant No. JCYJ20200109141235597, the National Science Foundation of China under Grant No.
61761136008, the Shenzhen Peacock Plan under Grant No. KQTD2016112514355531, the Program
for Guangdong Introducing Innovative and Entrepreneurial Teams under Grant No. 2017ZT07X386.

REPRODUCIBILITY STATEMENTS

Code is available at https://github.com/OverEuro/P3. We provide a full description of
all our experiments in Section 5 and Appendix A.6.

REFERENCES

Abbas Abdolmaleki, Sandy H. Huang, Giulia Vezzani, Bobak Shahriari, Jost Tobias Springenberg,
Shruti Mishra, Dhruva TB, Arunkumar Byravan, Konstantinos Bousmalis, András György, Csaba
Szepesvári, Raia Hadsell, Nicolas Heess, and Martin A. Riedmiller. On multi-objective policy
optimization as a tool for reinforcement learning. CoRR, 2021.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In NeurIPS, 2017.

Rinu Boney, Juho Kannala, and Alexander Ilin. Regularizing model-based planning with energy-based
models. In CoRL, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Jacob Buckman, Carles Gelada, and Marc G. Bellemare. The importance of pessimism in fixed-dataset
policy optimization. In ICLR, 2021.

Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A reference vector guided
evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput., 2016.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Deepali Jain, Yuxiang
Yang, Atil Iscen, Jasmine Hsu, and Vikas Sindhwani. Provably robust blackbox optimization for
reinforcement learning. In CoRL, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS, 2018.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-based reinforcement learning via meta-policy optimization. In CoRL, 2018.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 2002.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 2012.

Peter I. Frazier. A tutorial on bayesian optimization. CoRR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. In arXiv,2004.07219, 2020.

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R. Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine,
and Thomas Paine. Benchmarks for deep off-policy evaluation. In ICLR, 2021.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

10

https://github.com/OverEuro/P3

Published as a conference paper at ICLR 2022

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In NeurIPS,
2018.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, 2013.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In NeurIPS, 2019.

Michael Janner, Igor Mordatch, and Sergey Levine. γ-models: Generative temporal difference
learning for infinite-horizon prediction. In NeurIPS, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In NeurIPS, 2020.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. In NeurIPS, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Reinforce-
ment Learning. 2012.

Hoang Minh Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In
ICML, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. In CoRR, 2020.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and Sam Kwong. Pareto multi-task learning. In
NeurIPS, 2019.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. In NeurIPS, 2020.

Pingchuan Ma, Tao Du, and Wojciech Matusik. Efficient continuous pareto exploration in multi-task
learning. In ICML, 2020.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In NeurIPS, 2018.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In ICLR, 2021.

Nikola Milojkovic, Diego Antognini, Giancarlo Bergamin, Boi Faltings, and Claudiu Musat. Multi-
gradient descent for multi-objective recommender systems. In AAAI, 2020.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Comput. Math, 2017.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Çaglar Gülçehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
CoRR, 2020.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In L4DC, 2021.

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game theoretic framework for model
based reinforcement learning. In ICML, 2020.

Martin A. Riedmiller. Neural fitted Q iteration - first experiences with a data efficient neural
reinforcement learning method. In João Gama, Rui Camacho, Pavel Brazdil, Alı́pio Jorge, and
Luı́s Torgo (eds.), ECML, 2005.

11

Published as a conference paper at ICLR 2022

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. In arXiv,1703.03864, 2017.

Julian Schrittwieser, Thomas K Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. In NeurIPS, 2021.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. In ICLR, 2016.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In NeurIPS,
2018.

MyungJae Shin and Joongheon Kim. Randomized adversarial imitation learning for autonomous
driving. In IJCAI, 2019.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 1991.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Cameron Voloshin, Hoang Minh Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy policy
evaluation for reinforcement learning. CoRR, 2019.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. J. Mach. Learn. Res., 2014.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M. Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In ICML,
2021.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In ICML,
2020.

C. Yu, G. Ren, and J. Liu. Deep inverse reinforcement learning for sepsis treatment. In ICHI, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: model-based offline policy optimization. In NeurIPS, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy optimization. CoRR, 2021.

Hongchang Zhang, Jianzhun Shao, Yuhang Jiang, Shuncheng He, and Xiangyang Ji. Reducing
conservativeness oriented offline reinforcement learning. CoRR, 2021.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Trans. Evol. Comput., 2007.

Siyuan Zhang and Nan Jiang. Towards hyperparameter-free policy selection for offline reinforcement
learning. CoRR, 2021.

Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS: latent action space for offline reinforce-
ment learning. In CoRL, 2020.

12

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 CONVERGENCE ANALYSIS OF ALG. 2

We provide a proof for Lemma 1.

Proof. For αt obtained by solving minαt ‖
∑m
i=1 αi,t∇fi,ν(xt)‖2, s.t.

∑
αit = 1, αit ≥ 0, let

xt+1 = xt − ηdt

= xt − η
m∑
i=1

αi,t∇fi,ν(xt) (9)

According to assumption 1:

fi(xt+1) ≤ fi(xt) +∇fi(xt)T(xt+1 − xt) +
Li
2
‖xt+1 − xt‖2

= fi(xt)− η∇fi(xt)Tdt +
Li
2
‖ηdt‖2 (10)

Take expectation on both sides:

Eεt [fi(xt+1)] ≤ fi(xt)− η∇fi(xt)Td̄t +
Liη

2

2
Eεt [‖dt‖2] (d̄t =

∑m
i=1 αi,t∇fi(xt))

= fi(xt)− η∇fi(xt)Td̄t +
Liη

2

2
(‖Eεt [dt]‖2 + Var(dt))

≤ fi(xt)− η‖d̄t‖2 +
Liη

2

2
(‖d̄t‖2 + Var(dt)) ((Désidéri, 2012, Lemma 1))

= fi(xt)− η‖d̄t‖2 +
Liη

2

2
(‖d̄t‖2 +

m∑
i=1

α2
i,tVar(∇fi,ν(xt)))

≤ fi(xt)− η‖d̄t‖2 +
Liη

2

2
(‖d̄t‖2 +

m∑
i=1

αi,tVar(∇fi,ν(xt)))

≤ fi(xt)− (η − Liη
2

2
)‖d̄t‖2 +

Liη
2

2
σ2 (11)

Hence, we have Eεt [fi(xt+1)]− fi(xt) ≤ −(η − Liη
2

2)‖d̄t‖2 + Liη
2

2 σ2.

Let the right term:

−(ηt −
Liη

2
t

2
)‖d̄t‖2 +

Liη
2
t

2
σ2 < 0 (12)

We have:

ηt <
‖d̄t‖2

‖d̄t‖2 + σ2

2

Li
(13)

When ηt <
‖d̄t‖2
‖d̄t‖2+σ2

2
Li

,−(ηt− Liη
2
t

2)‖d̄t‖2 +
Liη

2
t

2 σ2 < 0, then Eεt [fi(xt+1)]−fi(xt) ≤ 0. Hence,
the ascending stage leads to a monotonically non-increase sequence, convergence proved.

We provide a proof for Theorem 1.

Proof. According to Lemma 1, we have:
fi(xt)− Eεt [fi(xt+1)] ≥ β‖d̄t‖2 − γσ2 (14)

Take expectation with respect to the solution xt and do telescoping:
Ex0 [fi(x0)]− Ex0,ε0 [fi(x1)] ≥ βEx0 [‖d̄0‖2]− γσ2

Ex1
[fi(x1)]− Ex1,ε1 [fi(x2)] ≥ βEx1

[‖d̄1‖2]− γσ2

. . .

ExT−1
[fi(xT−1)]− ExT−1,εT−1

[fi(xT)] ≥ βExT−1
[‖d̄T−1‖2]− γσ2 (15)

13

Published as a conference paper at ICLR 2022

Note that ExT ,εT [fi(xT+1)] = ExT+1
[fi(xT+1)], hence

∆ = fi(x0)− fi(x∗)
≥ fi(x0)− ExT [fi(xT)] (x∗ dominates xT)

≥ T (β
1

T

T−1∑
t=0

Ext [‖d̄t‖2]− γσ2) (16)

According to Eq. 16, we can obtain

1

T

T−1∑
t=0

Ext [‖d̄t‖2] ≤ (
∆

T
+ γσ2)

1

β
(17)

Let

(
∆

T
+ γσ2)

1

β
≤ ε (18)

Rearranging terms, we have

T ≥ ∆

βε− γσ2
(19)

By the condition that βε− γσ2 > 0, we have the following:

ε(η − Liη
2

2
)− Liη

2

2
σ2 > 0

ε− Liη

2
ε− Liη

2
σ2 > 0

ε

ε+ σ2

2

Li
> η (20)

Let η < ε
ε+σ2

2
Li

, given ε > 0, after T = O(∆
βε−γσ2) iterations, 1

T

∑T−1
t=0 Ext [‖d̄t‖2] ≤ ε.

A.2 DETAILED RELATED WORK

Model-based Offline RL. Model-based RL methods are promising candidates for sequential decision-
making problems due to their high sample-efficiency and compact modeling of a dynamic environ-
ment. Time-dependent linear models and Gaussian processes provide excellent performance in the
low-data and low-dimensional scenario. High-capacity models, e.g., deep neural networks, are more
successful because they benefit from powerful supervised learning techniques that allow the leverage
of large-scale datasets, even in domains with high-dimensional image observations. Although the
convenience of working with large-scale datasets, these methods still suffer from the effects of
distribution shift and error accumulation of the model predictions (Levine et al., 2020), especially in
the offline setting. Existing works explore several classical methods to solve the problem. Dyna-style
algorithms (Sutton, 1991) utilize a technique named branched rollout to collect short-horizon model
rollouts, which alleviates accumulated extrapolation errors. Another method introduces ensemble
learning (Chua et al., 2018), i.e., the leverage of multiple dynamics models, against model errors.
Other works also incorporate novel concepts into model-based RL, e.g., an energy-based model
regularization (Boney et al., 2019), a game-theoretic framework for model-based RL (Rajeswaran
et al., 2020), meta-learning (Clavera et al., 2018), policy regularization (Berkenkamp et al., 2017), and
generative temporal difference learning (Janner et al., 2020). In the offline setting, since the learned
model cannot be corrected with additional data collection and training, it is crucial to prevent the
policy from visiting “out-of-distribution” states. Recent two works propose uncertainty-regularized
policy optimization algorithms for this purpose (Yu et al., 2020; Kidambi et al., 2020). One adds a
soft uncertainty penalty associated with a user-chosen weight to the reward issued by the model, and
the other constructs a pessimistic MDP model associated with a hard threshold for terminating the
interaction between the policy and the model when the model prediction is inaccurate. (Matsushima
et al., 2021) presents a deployment-efficient RL framework to avoid the offline distribution shift issue.
(Rafailov et al., 2021) extends an existing model-based offline RL method to image-based tasks.
More recently, conservative offline model-based policy optimization (COMBO) (Yu et al., 2021)
regularizes the value function on out-of-distribution states yielded via interacting with the learned
model, which leads to a conservative estimate of value function for these state-action pairs, without
requiring explicit uncertainty penalty. Moreover, a recent method named MuZero Unplugged focuses
on using the model-based planning directly for policy improvement (Schrittwieser et al., 2021).

14

Published as a conference paper at ICLR 2022

Multi-objective Optimization. Multi-objective optimization (MOO), also known as Pareto optimiza-
tion, aims to optimize more than one objective function. For a nontrivial MOO problem, no single
solution exists that optimizes all objectives simultaneously. In this case, these objective functions
are said to be conflicting, and we can find a set of Pareto optimal solutions given different trade-offs
among objectives. Existing methods in MOO can be divided into two categories: gradient-based
methods and heuristic methods. Multiple gradient descent algorithm (MGDA) (Désidéri, 2012) is
an extension of the classical gradient descent algorithm to multiple objectives. It uses an adaptive
weighting aggregation of sub-objective gradients to compute the descent direction for all objectives.
Because of the ability of fast convergence with theoretical guarantee, MGDA-based methods have
been widely used to solve multi-task learning (Sener & Koltun, 2018; Lin et al., 2019) and multi-
objective recommendation (Milojkovic et al., 2020). However, MGDA-based methods generate
only one solution or a finite set of sparse solutions with different trade-offs. In contrast, heuristic
methods usually find a Pareto set by various evolutionary algorithms such as the genetic algorithm
(NSGA-II) (Deb et al., 2002) and the decomposition-base evolution algorithm (MOEA/D) (Zhang
& Li, 2007). They can find a dense set of Pareto near-optimal solutions by only one time running.
But in practice, these black-box optimization methods usually take unacceptable run time when the
parameter space is extremely large, e.g., the number of parameters for a deep neural network, or
when the function evaluation is computationally expensive, e.g., population-based training for RL
agents. In this paper, our approach borrows the ideas from the heuristic methods to achieve a dense
set of policies. Moreover, we replace inefficient evolutionary operators with a gradient-based method,
reducing the training cost significantly.

Model-free Offline RL. Model-free RL directly learn a policy without requiring the learning of an
environment model. A direct extension of model-free RL methods to offline setting (Fujimoto et al.,
2019) usually perform poorly due to the data distribution shift. To address this issue, prior model-free
offline RL methods regularize the learned policy to be “close” to the behavior policy either implicitly
by conservative Q learning (Riedmiller, 2005; Fujimoto et al., 2019; Kumar et al., 2020; Zhang et al.,
2021; Fujimoto & Gu, 2021), or explicitly by direct constraints in state or action spaces (Kumar
et al., 2019; Liu et al., 2020; Zhou et al., 2020). Compared with model-based offline RL methods,
these model-free methods behave more conservatively and lack broader generalization when the
distribution of pre-collected experiences is narrow. Instead of formulating as a single-objective
optimization with regularization, a concurrent work (DiME) by Abdolmaleki et al. (2021) takes a
multi-objective perspective for model-free offline RL. It adopts a modified scalarization method to
achieve multiple policies on the Pareto front. However, scalarization cannot find any solution on the
non-concave parts of Pareto front and thus may lead to sub-optimal performance.

A.3 EVOLUTION STRATEGY

For black-box or noisy objective functions such as RL’s policy optimization, computing accurate the
gradient is usually challenging. Hence, as a derivative-free optimization method, evolution strategy
(ES) has seen a recent revival in the RL community (Salimans et al., 2017; Mania et al., 2018).
Instead of solving the complicated objective function F(θ) directly, ES solves its Gaussian smoothing
version: Fν(θ) = Eε∼N (0,I)[F(θ + νε)], where ν > 0 denotes a smoothing parameter. When ν is
small, the smoothed version Fν(θ) is close to the original objective (Nesterov & Spokoiny, 2017),
and its gradient with respect to policy parameters θ is defined by ∇θFν(θ) = (2π)−d/2

∫
Rd F(θ +

νε)e−
1
2‖ε‖

2
2εdε. Although the gradient is intractable, it can be estimated by a standard Monte

Carlo method: ∇θFν(θ) = 1
kν

∑k
i=1 F (θ + νεi) εi. The Monte Carlo estimation has no bias but

high variance. Many following algorithms were proposed to reduce the variance while keeping the
bias unchanged. In this paper, we adopt an antithetic estimator (Mania et al., 2018), as shown in
Eq. (21), which uses the symmetric difference between a perturbation εi ∼ N (0, I) and its antithetic
counterpart −εi.

∇θFν(θ) =
1

2kν

k∑
i=1

[F (θ + νεi)− F (x− νεi)] εi, (21)

F(θ) =
(
J r̂(θ), Ju(θ),Ψ(θ,vi)

)T
. (22)

where J r̂(θ), Ju(θ) and Ψ(θ,vi) are results achieved by the policy πθ on one trajectory generated
from the environment model. Despite the simplicity, ES achieves competitive performance compared
to policy gradient methods (Choromanski et al., 2020).

15

Published as a conference paper at ICLR 2022

A.4 SELECTION OF PARETO POLICIES BY FITTED Q EVALUATION (FQE)

Given a pool of Pareto policies, how do we determine the best one for a realistic environment? A
straightforward method is online policy selection that evaluates the performance of every Pareto
policy in the real environment, and then selects the one with the highest return. Most existing
offline RL methods (Kidambi et al., 2020; Kumar et al., 2020; Matsushima et al., 2021; Zhang et al.,
2021) adopt this method, which however requires many steps of online interactions with the realistic
environment, especially when the number of policies to be evaluated is large. We also follow these
works and use online policy evaluation to achieve the results in Table 1.

Probably a more efficient alternative is offline policy selection (Voloshin et al., 2019), which is
proposed very recently, and aims at choosing the best policy from a set of policies, given only offline
data. However, offline policy selection/evaluation is an open problem (Levine et al., 2020), and a
number of recent works in RL (Paine et al., 2020; Zhang & Jiang, 2021; Fu et al., 2021) are still
exploring new strategies for it while combining our method with offline policy evaluation methods
can potentially improve the efficiency of P3. To evaluate this strategy, we use FQE (Le et al., 2019)
to estimate the performance of each policy. Although there exist various offline policy evaluation
methods, we choose FQE for its simplicity and stability in practice. By contrast, other methods have
to solve complex estimation problems, such as learning a transition model from visual inputs or
estimating the importance weights in a continuous action space (Fu et al., 2021). In our experiments,
both P3 and FQE have access to the same offline data.

On an offline dataset D, FQE algorithm trains a critic Qφi for each Pareto policy πi generated
by P3, and then uses the critic to estimate the expected value of πi w.r.t. the initial state s0, i.e.,
V̂πi = Es0∼D[Qφi(s0, πi(s0))], which reasonably quantifies the performance of πi when deployed
to a realistic environment. The pseudo-code for FQE algorithm can be found in Alg. 3. FQE can
efficiently find a near-optimal Pareto policy after only hundreds of epochs, which is demonstrated by
the results in Appendix A.7.

Algorithm 3 Fitted Q evaluation (FQE) for Pareto policy selection

1: input: Pareto policy pool P , dataset D, γ = 0.99, β = 0.995
2: for πi ∈ P (in parallel) do
3: Initialize a critic Qφi and the corresponding target critic Q′φ′i ← Qφi ;
4: for k = 1, 2, . . . ,Kepoch do
5: Sample a batch {sj , aj , rj , s′j}batchsizej=1 from D;
6: Update Qφi by minimizing MSELoss(Qφi(s, a), r + γQ′φ′i

(s′, πi(s
′)));

7: φ′i = βφ′i + (1− β)φi; . Update target critic Q′φ′i
8: V̂πi = Es0∼D[Qφi(s0, πi(s0))];
9: output: ibest = arg maxi V̂πi

A.5 ENVIRONMENT MODEL

We train an ensemble of N models and pick the best K models based on their prediction error on
a hold-out set. In the training phase, each model is optimized independently using the maximum
likelihood estimation with mini-batch stochastic gradient descent. In the inference phase, we randomly
select one ofK models and draw a state-reward concatenation from the resulting distribution, allowing
for different transitions along a single episode to be sampled from different dynamics models. The
method makes our model more uncertain and noisier than the realistic environment, resulting in a
more challenging MDP problem. Prior work (Ha & Schmidhuber, 2018; Janner et al., 2019; Yu
et al., 2020) demonstrated that the method effectively alleviates the model exploitation issue (Levine
et al., 2020), especially in the offline setting. As shown in Table 3, we list the hyperparameters of
environment model for D4RL Gym experiments.

A.6 D4RL GYM EXPERIMENTS

D4RL Gym Datasets. D4RL is a widely-used benchmark for evaluating offline RL algorithms. It
provides a variety of environments, tasks, and corresponding datasets containing samples of multiple
trajectories generated via behavior policies, hand-designed controllers, or human demonstrators (Fu
et al., 2020). In the continuous control domain based on the MuJoCo simulator (Todorov et al., 2012),

16

Published as a conference paper at ICLR 2022

we apply a subset of datasets, including three environments (halfcheetah, hopper, and walker2d) and
five dataset types (random, medium, medium-replay, expert, and medium-expert), to yield a total of
15 benchmark problems, in which random contains 1M samples from a random policy, medium
contains 1M samples from a policy trained to approximately 1/3 of the performance of the expert,
expert contains 1M samples from a policy trained to the performance of the expert, medium-replay
contains the whole replay buffer of a policy trained up to the performance of the medium agent, and
medium-expert contains a 50-50 split of medium and expert dataset (2M samples).

Practical Modifications. We list the techniques adopted by P3 for D4RL Gym experiments.

(1) P3 applies a simple behavior cloning approach (Kidambi et al., 2020; Matsushima et al., 2021;
Kumar et al., 2020) to estimate the initial policy πi. The technique effectively alleviates the data
distribution shift caused by the difference between the policy-in-training and the behavior policies
used to collect the data.

(2) We notice that the states of the high-dimensional complex tasks take the values in a broad range,
causing the policies only pay attention to particular features of these states. Therefore, we normalize
the received state before feeding it to the policy network: ah = π(σ−1

s (ŝh − µs)) where µs and σs
are the mean and standard deviation of states, respectively. In the offline setting, we can easily obtain
µs and σs by computing the mean and standard deviation of all the states in the dataset, similar to
the feature normalization in supervised learning. Previous work (Mania et al., 2018; Fujimoto & Gu,
2021) demonstrated that the technique makes the policies more robust to multiple-scale state inputs.

(3) P3 applies the rank-based scale shaping (Wierstra et al., 2014) to compute the ES gradients, which
transforms the objective function value via a rank-based score function, suppressing the influence of
outlier perturbations.

Hyperparameters. We outline the hyperparameters used in the experiments.
Table 3: Hyperparameters of environment model for D4RL Gym experiments.

Hyperparameter Value

Number of models/elites 7/5
Structure of hidden layers MLP(200, 200)× 4
Nonlinearity function Swish
Batch size 256
Optimizer Adam
Learning rate 10−4

Weight decay 10−5

Holdout ratio 0.1

Table 4: Hyperparameters of P3 for D4RL Gym experiments.

Hyperparameter Value

Policy network MLP(32, 32)
Nonlinearity function Tanh
Step size η HalfCheetah: 2× 10−2

Hopper: 2× 10−2

Walker2d: 1.5× 10−2

Number of perturbations k (ES) HalfCheetah: 30
Hopper: 30
Walker2d: 40

Std. of perturbations ν (ES) HalfCheetah: 3× 10−2

Hopper: 3× 10−2

Walker2d: 2.5× 10−2

Horizon length H 1000
Number of reference vectors n 5
Number of updates T = n(Tg + 2Tl) 1000 = 5× (150 + 2× 25)
Range (τa, τb) of reference vectors (0.1, 0.9)
Temperature κ 1.5
Constraint threshold ψ −10−3

Local perturbation ε 5× 10−2

17

Published as a conference paper at ICLR 2022

A.7 RANK CORRELATION BETWEEN OFFLINE AND ONLINE POLICY EVALUATION IN P3 ON
D4RL GYM EXPERIMENTS

In Section A.4, in order to remove the extra computation required by online policy evaluation during
the test, we instead use Fitted Q Evaluation (Alg. 3) to provide metrics for policy selection. Here
we take a closer look at the correlation between the policy ranking by the online evaluation and the
policy ranking by FQE.

First, we rank all the policies in the P3 pool by the two metrics and show their generated rank orders
(in an ascending order) for every policy in Fig. 5. On three datasets, the two rank orders show a
strong correlation, which indicates that the FQE based offline policy evaluation provides an accurate
approximation to the realistic return of P3 policies, and thus can be used to improve the test efficiency
of P3. In addition, we report the Spearman’s rank correlation (“Spearman’s ρ”) and Kendall rank
correlation (“Kendall’s τ”) to quantitatively measure the correlation between the two rank orders. We
report the results in Fig. 6, which demonstrates a strong correlation coefficient close to 1.0 for all
datasets. Therefore, replacing the online evaluation with FQE is an efficient solution preserving the
original rank orders of P3 policies.

Rank of policies according to FQE values

R
a

n
k
 o

f
p

o
lic

ie
s
 a

c
c
o

rd
in

g
 t
o

 t
ru

e
 v

a
lu

e
s

R
a

n
k
 o

f
p

o
lic

ie
s
 a

c
c
o

rd
in

g
 t
o

 t
ru

e
 v

a
lu

e
s

R
a

n
k
 o

f
p

o
lic

ie
s
 a

c
c
o

rd
in

g
 t
o

 t
ru

e
 v

a
lu

e
s

Rank of policies according to FQE values Rank of policies according to FQE values

Figure 5: Scatter plots of the ordinal rankings of the FQE value estimates vs. the true values.

Figure 6: Rank correlation of our FQE algorithm for D4RL Gym benchmark datasets. HC = HalfCheetah, Hop
= Hopper, W = Walker, r = random, m = medium, mr = medium-replay, e = expert, me = medium-expert.

18

Published as a conference paper at ICLR 2022

A.8 RESULTS ON THE D4RL GYM EXPERIMENTS

Figure 7: Learning curves for the D4RL Gym experiments. Curves are averaged over the 10 evaluations and
5 seeds, and the shaded area represents the standard deviation across seeds. P3 performs better compared to two
model-based offline RL methods while exhibiting similar performance as the state-of-the-art model-free method
(TD3+BC). Note that we sweep the hyperparameters of MOPO and MOReL and choose the best combination
for each task.

19

Published as a conference paper at ICLR 2022

Figure 8: The histogram of returns from low-quality to high-quality datasets. Low/medium-quality datasets
in the D4RL Gym benchmark are “imbalanced” and degrade the training of environment models. P3 (ours)
exhibits more advantages on these datasets.

20

Published as a conference paper at ICLR 2022

A.9 ABLATION STUDY

For clarity in ablation study, we provide implementation details on the scalarization method (Boyd
& Vandenberghe, 2004, Chapter 4.7). The method maximizes a weighted sum of objectives:
maxωJ(πθ) where ω ∈ [0, 1] denotes the weight assignment. By solving multiple single-objective
optimization with different weight assignments, we can obtain multiple policies with different trade-
offs, as shown in Fig. 9. For the experimental results in Table 2 and Fig. 9, we train 5 policies from
scratch using the scalarization method with random weights and report the best score among them.

Figure 9: Ablation study. Pareto front comparison between the scalarization method (red circles) and our P3
(blue circles) on low/medium-quality datasets. We train 5 policies from scratch using scalarization with random
weights. P3 also adopts 5 reference vectors. Hence, we remark that P3 takes the roughly same run time as
scalarization but achieves a dense set of policies and better Pareto front approximation.

21

Published as a conference paper at ICLR 2022

A.10 EFFECTIVENESS OF PARETO POLICY POOL

Figure 10: Contour plots on how model-based offline RL’s performance (color bar) varies with different trade-offs
between the model return (y-axis) and uncertainty (x-axis). Meanwhile, red circles denote the pool of policies
generated by P3.

22

	Introduction
	Related Work
	Preliminaries
	Pareto Policy Pool for Model-based Offline RL
	Problem Formulation
	Pareto Policy Pool
	Diverse Pareto Policies by Reference Vectors
	Local Extension of Pareto Front

	Experiments
	Conclusion
	Appendix
	Convergence Analysis of Alg. 2
	Detailed Related Work
	Evolution Strategy
	Selection of Pareto Policies by Fitted Q Evaluation (FQE)
	Environment Model
	D4RL Gym Experiments
	Rank Correlation between offline and online policy evaluation in P3 on D4RL Gym Experiments
	Results on the D4RL Gym Experiments
	Ablation Study
	Effectiveness of Pareto policy pool

