
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HESSIAN-FREE NATURAL GRADIENT DESCENT FOR
PHYSICS INFORMED MACHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Machine Learning (PIML) methods, such as Physics-Informed
Neural Networks (PINNs), are notoriously difficult to optimize. Recent advances
utilizing second-order optimization techniques, including natural gradient and
Gauss-Newton methods, have significantly improved training accuracy over first-
order methods. However, these approaches are computationally prohibitive, as
they require evaluating, storing, and inverting large curvature matrices, limiting
scalability to small networks. In this work, we propose a Hessian-Free Natural
Gradient Descent frameworks that employs a matrix-free approximation of the
Hessian-vector product. This approach circumvents the need for explicitly con-
structing the Hessian matrix and incorporates a novel preconditioning scheme that
significantly enhances convergence rates. Our method enables scaling to large
neural networks and complex PDEs with up to a millions parameters. Empiri-
cally, we demonstrate that our approach outperforms state-of-the-art optimizers,
such as LBFGS and Adam, achieving orders-of-magnitude speedup and superior
accuracy across various benchmark PDE problems.

1 INTRODUCTION

Partial Differential Equations (PDEs) Partial Differential Equations (PDEs) are central to the
mathematical modeling of complex physical systems, including fluid dynamics, thermodynamics,
and material sciences. Traditional numerical methods, such as finite element and spectral methods,
often require fine discretization of the physical domain to achieve high accuracy. These approaches
can become computationally expensive, particularly in engineering applications where systems must
be solved repeatedly under varying parameters or initial conditions. Recent advances in machine
learning (ML) have shown promise in addressing these challenges by leveraging neural networks
(NNs) as potential alternatives or enhancements to traditional numerical solvers Kovachki et al.
(2021); Li et al. (2020).

Physics-Informed Neural Networks (PINNs) PINNs are a machine learning tool to solve for-
ward and inverse problems involving partial differential equations (PDEs) using a neural network
ansatz. They have been proposed as early as Dissanayake & Phan-Thien (1994) and were later
popularized by the works Raissi et al. (2019); Karniadakis et al. (2021). PINNs are a meshfree
method designed for the seamless integration of data and physics. Applications include fluid dy-
namics Cai et al. (2021), solid mechanics Haghighat et al. (2021) and high-dimensional PDEs Hu
et al. (2023) to name but a few areas of ongoing research. Despite their popularity, PINNs are
notoriously difficult to optimize Wang et al. (2020) and fail to provide satisfactory accuracy when
trained with first-order methods, even for simple problems Zeng et al. (2022); Müller & Zeinhofer
(2023). Recently, second-order methods that use the function space geometry to design gradient pre-
conditioners have shown remarkable promise in addressing the training difficulties of PINNs Zeng
et al. (2022); Müller & Zeinhofer (2023); Ryck et al. (2024); Jnini et al. (2024); Müller & Zeinhofer
(2024). However, these methods require solving a linear system in the network’s high-dimensional
parameter space at cubic computational iteration cost, which prohibits scaling such approaches and
limits their applicability to small-scale neural-networks.

A promising solution to alleviate this computational burden is the use of matrix-free methods. These
methods avoid the need for explicitly forming or inverting the Hessian matrix and instead approxi-
mate the curvature matrix implicitly via iterative procedures Schraudolph (2002). While matrix-free
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approaches have been explored for PINNs Zeng et al. (2022); Bonfanti et al. (2024); Jnini et al.
(2024); Zampini et al. (2024), their success is often limited in scale due to the ill-conditioning of
the underlying optimization problems and the absence of straightforward scalable preconditioning
scheme, resulting in prohibitively high iteration counts.

Main Contributions Our main contributions can be summarized as follows:

• Hessian-Free Natural Gradient Descent (HF-NGD): We introduce a novel HF-NGD
framework that leverages a matrix-free approximation of the Hessian. Our method incor-
porates a Matrix-Free low-rank preconditioning strategy based on the truncated eigenvalue
decomposition of the Gauss-Newton Hessian to address the issue of ill-conditioning by re-
ducing large gaps between eigenvalues. This significantly enhances the convergence rates
of iterative solvers like Conjugate Gradient (CG).

• Scalability to Large Networks and Complex PDEs: Our approach scales second-order
optimizers that respect the underlying function space geometry, enabling us to train neu-
ral networks with up to a million parameters and optimize neural operators. This results
in state-of-the-art performance, achieving more than a 1-order-of-magnitude improvement
compared to LBFGS across benchmarks and over a 2-orders-of-magnitude improvement
on neural operators.

Related Works Improving the training of PINNs has been the focus of extensive research. Early
approaches explored adaptive re-weighting of loss terms for PDE residuals, data terms, and bound-
ary conditions Wang et al. (2021), and adaptive sampling methods to optimize collocation points
based on error indicators like the PDE residual Wu et al. (2023). While these techniques enhanced
PINN training, they often failed to achieve relative L2 errors below 10−4 for even simple problems.

Recent work has shown that second-order optimization methods, including LBFGS, significantly im-
prove PINN accuracy. Notably, methods adopting an infinite-dimensional perspective have achieved
near-single-precision accuracy for PINNs Zeng et al. (2022); Müller & Zeinhofer (2023); Ryck
et al. (2024); Jnini et al. (2024); Zampini et al. (2024). However, their high per-iteration cubic
cost—solving a large linear system in the network’s parameter space—limits their scalability to
small networks.

Matrix-free methods have been proposed to compute Gauss-Newton directions without explicitly
forming the Hessian Martens (2010); Schraudolph (2002); Zeng et al. (2022); Jnini et al. (2024).
Despite reducing computational costs, these methods suffer from ill-conditioning, leading to slow
convergence for large networks without efficient preconditioners. Our algorithm addresses this by
leveraging the structure of the curvature matrix to design a function space-based preconditioner,
significantly improving inner solver convergence.

An alternative approach uses Kronecker-Factored Approximate Curvature (KFAC) Dangel et al.
(2024) to scale second-order optimizers but requires problem-specific adaptations. Our method, in
contrast, is both PDE- and architecture-agnostic.

Our idea of cutting large gaps within the leading eigenvalues of the Hessian spectrum is also aligned
with recent advances in preconditioning techniques, such as volume sampling Rodomanov & Kropo-
tov (2020), polynomial preconditioning Doikov & Rodomanov (2023), and spectral preconditioning
Doikov et al. (2024). While these methods have shown promise for structured convex objectives,
ours is the first to apply low-rank preconditioning in Gauss-Newton methods for PINN optimization.

2 PRELIMINARIES

2.1 PHYSICS-INFORMED NEURAL NETWORKS

For a given domain Ω ⊂ Rd and a general PDE of the form

Lu = f in Ω, u = g on ∂Ω,

where L is a differential operator, f is the source term, and g represents the boundary conditions,
the solution u is approximated using a neural network uθ, parameterized by θ. The loss function is
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defined as:

L(θ) =
1

2NΩ

NΩ∑
n=1

(Luθ(xn)− f(xn))
2
+

1

2N∂Ω

N∂Ω∑
n=1

(uθ(xn)− g(xn))
2
, (1)

where {xn ∈ Ω}NΩ
n=1 are the collocation points in the interior of the domain and {xn ∈ ∂Ω}N∂Ω

n=1 are
the boundary points.

First-order optimizers, such as gradient descent and Adam, often fail to provide satisfactory results
when applied to Physics-Informed Neural Networks (PINNs) due to the ill-conditioning and non-
convexity of the loss landscape, as well as the complexities introduced by the differential operator
L Wang et al. (2020); Krishnapriyan et al. (2021). To overcome these challenges, we adopt the
”optimize-then-discretize” paradigm, as advocated in Müller & Zeinhofer (2024). This approach
formulates the optimization problem in the infinite-dimensional function space and only then dis-
cretizes it into the finite-dimensional parameter space of the neural network.

2.2 GAUSS-NEWTON NATURAL GRADIENT METHOD

Given its applicability to both linear and nonlinear PDEs, we focus on the Gauss-Newton Natu-
ral Gradient (GNNG) method for PINNs, introduced in Jnini et al. (2024) for the Navier-Stokes
equation. When applied to PINN objectives like Eq. equation 1, GNNG corresponds to the Gauss-
Newton method in parameter space.

GNNG mimics the Gauss-Newton method in function space up to a projection onto the model’s
tangent space and a discretization error that vanishes quadratically in the step size, thus providing
locally optimal residual updates as shown in Jnini et al. (2024).

Natural gradient methods perform parameter updates via a preconditioned gradient descent scheme:

θ ← θ − αH(θ)+∇L(θ),

whereH(θ)+ denotes the pseudo-inverse of the Gauss-Newton HessianH(θ), and α is a step size.

In general, the Gauss-Newton HessianH(θ) for the PINN loss is formulated as:

H(θ) = 1

N

N∑
n=1

DR(uθ)[∂θiuθ](xn)DR(uθ)[∂θjuθ](xn),

where DR(uθ) is the Fréchet derivative of the residual operator R which corresponds to both the
PDE residual and the boundary conditions. When applied to PINN objectives like Eq. equation 1,
the residuals are defined as follows: the interior residual is given by rΩ,n(θ) = Luθ(xn) − f(xn),
for xn ∈ Ω, and the boundary residual is r∂Ω,n(θ) = uθ(xn) − g(xn), for xn ∈ ∂Ω. This gives us
the full Gauss-Newton Hessian, which consists of two components:

H(θ) = HΩ(θ) +H∂Ω(θ),

2.3 MATRIX-FREE COMPUTATION

The correspondence between the Gauss-Newton method in function space and parameter space is
shown in Müller & Zeinhofer (2024), where it is demonstrated that the following relation holds:

H(θ) = J(θ)⊤J(θ),

where J(θ) denotes the Jacobian of the corresponding residual r(θ). This equivalence ensures that
applying Gauss-Newton’s method to the discretized residual agrees with the function space algo-
rithm, provided the same quadrature points are used in the discretization of H. This formulation
allows us to compute the action of the Gauss-Newton Hessian H(θ) on a vector v in a matrix-
free manner, using a combination of forward and backward mode automatic differentiation, which
requires only a constant overhead compared to a gradient computation Schraudolph (2002). Specif-
ically, we computeH(θ)v = J⊤w, where w = Jv.

With these Hessian-vector products, we can employ matrix-free solvers like the conjugate gradient
method Trefethen & Bau (2022) to efficiently compute H(θ)†∇L(θ). This approach circumvents
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the prohibitive cubic computational cost of direct methods, enabling scalable optimization in high-
dimensional parameter spaces.

However, as described in Jnini et al. (2024) and demonstrated experimentally, the naive matrix-
free approach suffers from severe ill-conditioning. Without appropriate preconditioning, conjugate
gradient solvers require a prohibitively high number of iterations to converge. We address this issue
by proposing a matrix-free preconditioning strategy that takes advantage of the particular structure
of the Gauss-Newton Hessian, and that scales to networks with millions of parameters.

3 MATRIX-FREE PRECONDITIONING OF THE GAUSS-NEWTON HESSIAN

The efficiency of the Conjugate Gradient (CG) method in solving linear systems depends on the
spectral properties of the matrix. The number of iterations k required to reduce the initial error
∥e0∥A by a factor ε when solving Ax = b using CG satisfies Saad (2003):

k ≤ 1

2

√
κ(A) log

(
∥e0∥A

ε

)
,

where κ(A) = λmax(A)
λmin(A) is the condition number of A in the A-norm. For ill-conditioned matrices,

κ(A) is large, resulting in slow convergence of CG. In our case, the Gauss-Newton Hessian H,
derived from the discretized PDE residuals, is typically ill-conditioned due to the wide range of
scales in the eigenvalues.

3.1 SPECTRAL ANALYSIS OF THE GAUSS-NEWTON GAUSS-NEWTON HESSIAN

In practice, the eigenvalue distribution of the Gauss-Newton Hessian frequently exhibits a small
number of significantly large eigenvalues, followed by a rapid decay to much smaller values. This
indicates that only a few directions in the parameter space are associated with high curvature, while
the majority of directions have low curvature. This spectral structure can substantially affect the
efficiency of CG methods, as they tend to converge slowly in directions corresponding to small
eigenvalues.

To further illustrate the spectral properties of the Gauss-Newton Hessian, we analyze the Kovasznay
flow, from the experiment described in section4.1. For this problem, the Gauss-Newton Hessian
matrix H is observed to be rank-deficient, with only a small number of large eigenvalues dominat-
ing the spectrum. This indicates that the problem is effectively low-dimensional, with only a few
directions in the parameter space contributing significantly to the residual minimization.

Figure 1: Spectrum of the Gauss-Newton Hessian for a multi-layer perceptron (MLP) with pa-
rameter size n = 7953. The red dots represent all the eigenvalues, while the highlighted blue dots
correspond to the eigenvalues larger than 100. The indices λ7684 and λ7953 indicate the first and last
of these top eigenvalues, respectively.
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3.2 PRECONDITIONING STRATEGY

The observed spectral properties of the Gauss-Newton Hessian suggest that the matrix possesses a
few large eigenvalues followed by a rapidly decaying tail of smaller eigenvalues (see Figure 1). This
indicates that the ill-conditioning is primarily due to a small number of dominant eigenvalues, while
the majority of the spectrum corresponds to directions with smaller curvature.

To address the ill-conditioning and improve the convergence of the Conjugate Gradient (CG) solver,
we propose a preconditioning strategy that effectively truncates the spectrum by approximating G
with a low-rank matrix capturing the dominant eigenvalues. We approximate the Gauss-Newton
Hessian G using its truncated eigenvalue decomposition with a damping factor:

Mk = VkΛkV
⊤
k + λI, where Vk ∈ Rn×k, Λk ∈ Rk×k,

and λ is a damping parameter.

To efficiently compute the action of the inverse preconditioner M−1
k on a vector without explicitly

forming Mk, we employ the Sherman-Morrison-Woodbury formula:

M−1
k =

1

λ
I − 1

λ2
VkD

−1V ⊤
k , D =

(
Λ−1
k +

1

λ
Ik

)−1

,

where Ik is the k × k identity matrix. To compute M−1
k v for any vector v, we use:

M−1
k v =

1

λ
v − 1

λ2
VkDV ⊤

k v.

The steps for applying M−1
k are as follows:

• Compute z = V ⊤
k v (requiring k dot products),

• Compute y = Dz (element-wise multiplication since D is diagonal),
• Compute w = Vky,
• Combine results: M−1

k v = 1
λv −

1
λ2w.

Since we only store Vk and Λk (both of size n× k and k× k, respectively), and k ≪ n, the memory
requirements are minimaland reduce to O(kn) memory complexity.

Condition Number of the Preconditioned System

Let G ∈ Rn×n be a symmetric positive definite matrix with eigenvalues λ̃1 ≥ λ̃2 ≥ · · · ≥
λ̃n > 0 and corresponding orthonormal eigenvectors {vi}ni=1, such that:

G = V Λ̃V ⊤, V = [v1,v2, . . . ,vn], Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n).

Consider the preconditioner Mk defined by:

Mk = VkΛkV
⊤
k + λI,

where:
• Vk = [v1,v2, . . . ,vk] ∈ Rn×k,

• Λk = diag(λ̃1, λ̃2, . . . , λ̃k) ∈ Rk×k,
• λ > 0 is a damping parameter.

Then, the exact condition number κ(M−1
k G) of the preconditioned system M−1

k G is:

κ(M−1
k G) =

λ̃k+1(λ̃k + λ)

λ̃kλ
.

In the working limit where λ̃k ≫ λ, the condition number of the preconditioned system simplifies
to κ(M−1

k G) ≈
λ̃k+1

λ . This implies that the preconditioner effectively cuts the top k eigenvalues,

leaving the condition number dependent on the ratio λ̃k+1

λ . We can thus design an online control
Algorithm for the condition number of the Hessian.
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3.3 ONLINE CONDITION NUMBER CONTROL ALGORITHM

We propose an algorithm that controls the condition number of the Gauss-Newton HessianH online
by dynamically adjusting the rank of its low-rank decomposition.

To efficiently approximate the low-rank structure of the Gauss-Newton Hessian Hk, we employ
a hybrid approach combining Lanczos decomposition with orthogonal iteration. Lanczos captures
dominant eigenvalues, while orthogonal iteration refines the subspace between Lanczos updates. For
details of the Lanczos and Orthogonal Iteration algorithms, refer to Appendix 3 and Appendix 4,
respectively.

Lanczos Decomposition: Lanczos is performed periodically (every NL iterations) to generate a
Krylov subspace that approximates the largest eigenvalues and eigenvectors of Hk. Due to its opti-
mal convergence behavior, especially for the largest eigenvalues, Lanczos often exhibits superlinear
convergence Saad (2003).

Orthogonal Iteration: Orthogonal iteration refines the subspace V̂k−1 between Lanczos updates,
adapting to changes inHk as parameters are updated. Its linear convergence is offset by its low com-
putational cost, making it suitable for maintaining subspace accuracy without incurring the higher
cost of a full Lanczos decomposition at each step.

Adaptive Low-Rank Decomposition and condition number control: Our algorithm adaptively
alternates between full Lanczos decomposition and orthogonal iteration, depending on the epoch
and the residual norm. The rank of the subspace is dynamically adjusted by monitoring the smallest
eigenvalue of the previous Ritz values. When this eigenvalue surpasses a threshold tied to the damp-
ing factor—which serves as an approximation of the condition number—the rank is incremented.

Algorithm 1 Adaptive Low-Rank Decomposition with Condition Number Control

Require: Current epoch e, previous subspace V̂k−1, previous Ritz values Λk−1, Lanczos update
interval NL, tolerance ϵ, maximum orthogonal iterations T , initial rank k, damping factor λ,
max admissible condition number α, rank increment ∆k, maximum rank kmax

Ensure: Updated subspace V̂k, updated Ritz values Λk, updated rank k
1: if e mod NL = 0 then
2: Check the smallest previous Ritz eigenvalue:
3: λmin = min(Λk−1) {Get the smallest eigenvalue from the previous iteration}
4: if λmin > α · λ then
5: Increase rank k ← min(k + ∆k, kmax) {Increase rank by ∆k if smallest previous eigen-

value exceeds threshold}
6: end if
7: Perform Lanczos decomposition to obtain V̂k, Λk {Ritz values for the current epoch}
8: else
9: Compute residual norm r =

∥∥∥HkV̂k−1 − V̂k−1Λk−1

∥∥∥
F

10: if r > ϵ then
11: Perform Lanczos decomposition to obtain V̂k, Λk

12: else
13: Update the subspace V̂k using Orthogonal Iteration
14: Compute updated Ritz values Λk based on the new subspace V̂k{In practice, old Ritz values

provide a satisfying approximation}
15: end if
16: end if

3.4 OPTIMIZATION WORKFLOW: HESSIAN-FREE NATURAL GRADIENT WITH LINE SEARCH
AND LOW-RANK PRECONDITIONING

Given a partial differential equation (PDE) defined by a differential operator L and boundary con-
ditions , with a corresponding neural network ansatz for uθ, we employ the following optimization
procedure. The objective is to minimize the loss function, as described in Eq. equation 1, using

6
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Hessian-Free Natural Gradient optimization with low-rank preconditioning and line search. The
workflow is detailed below in Algorithm 2:

Algorithm 2 Hessian-Free Natural Gradient with Line Search and Low-Rank Preconditioning
1: Input: initial parameters θ0 ∈ Θ, maximum number of iterations Nmax, Lanczos update interval

NL, tolerance ϵ, maximum orthogonal iterations T
2: Initialize subspace V̂0 and Ritz values Λ0
3: for k = 1 to Nmax do
4: Compute gradient∇L(θk−1), where L(θ) is the loss function in Eq. equation 1
5: Perform Adaptive Low-Rank Decomposition to obtain V̂k, Λk {Refer to Algorithm 1}
6: Construct the low-rank approximation Hk = V̂kΛkV̂

⊤
k {Matrix-free Hessian approximation}

7: Define the preconditioning operator M−1
k via the Woodbury matrix identity:

M−1
k =

1

αk
In −

1

α2
k

V̂k

(
Λ−1
k +

1

αk
Ik

)−1

V̂ ⊤
k

8: Use the Preconditioned Conjugate Gradient (PCG) method with M−1
k as the preconditioner

to solve:
(H(θk−1) + αkI)sk = ∇L(θk−1)

9: Perform line search to determine step size ηk:

ηk = arg min
η∈[0,1]

L(θk−1 − ηsk)

10: Update parameters θk = θk−1 − ηksk
11: end for

4 EXPERIMENTS

We evaluate the performance and versatility of our proposed Hessian-Free Gauss-Newton Natural
Gradient (HF-NGD) optimization algorithm across diverse benchmark PDEs. These experiments
are designed to demonstrate the algorithm’s robustness to varying PDE complexities and neural
network architectures. Table 4 summarizes the residuals and their linearized forms, and detailed
hyperparameter settings and additional implementation specifics are provided in Appendix B.

We report the results of our experiments using the runs with the lowest relative L2 error across
10 different initialization seeds. A statistical breakdown of all runs is available in Appendix B.
All experiments were conducted on a compute cluster equipped with NVIDIA A100 GPUs (80GiB
RAM) in double precision, using the JAX library Bradbury et al. (2018). Each optimizer was given
the same computation time budget.

We summarize the results in Table 1, and an additional experiment with the Allen-Cahn equation is
provided in Appendix B.

Table 1: Best relative L2 error across different solvers for benchmark experiments within the allo-
cated time budget. Best-performing solver is highlighted.

Experiment HF-NGD ADAM LBFGS SGD

Allen-Cahn 5.5788× 10−4 9.1279× 10−3 9.1654× 10−4 5.7104× 10−1

Klein-Gordon 3.8747× 10−5 2.0676× 10−3 1.1752× 10−4 1.0860× 10−3

Poisson (10D) 3.2020× 10−5 4.2226× 10−3 3.2373× 10−4 5.0698× 10−3

Navier-Stokes 9.0018× 10−5 9.0281× 10−3 1.8595× 10−3 1.8706× 10−2

4.1 EFFICACY OF THE PRECONDITIONING: 2D NAVIER-STOKES

We demonstrate the efficacy of our proposed preconditioning strategy using the two-dimensional
steady Navier-Stokes flow described by Kovasznay (1948), with Reynolds number Re = 40, over
Ω = [−0.5, 1.0]× [−0.5, 1.5]. The analytical solutions for the velocity and pressure fields are:

7
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Figure 2: Relative L2 Error vs. Time and CG Iterations vs. Epoch for different methods on the
Kovasznay flow problem. The proposed preconditioning approach shows significantly faster con-
vergence.

u∗(x, y) = 1− eλx cos(2πy), v∗(x, y) =
λ

2π
eλx sin(2πy), p∗(x, y) =

1

2

(
1− e2λx

)
,

where λ =
1
2

ν −
√

1
4

ν2 + 4π2 and ν = 1
Re .

The neural network model used is a Multi-Layer Perceptron (MLP) with 4 hidden layers, each
containing 100 neurons, resulting in a total of 30,903 trainable parameters. The neural network
model used is a Multi-Layer Perceptron (MLP) with 4 hidden layers, each containing 100 neurons,
resulting in a total of 30,903 trainable parameters.

We evaluate the performance of our proposed preconditioning strategy in comparison with two alter-
native methods. The first method is UGNNG, which is the unpreconditioned Gauss-Newton natural
gradient descent using Conjugate Gradient (CG), where no preconditioning is applied. The sec-
ond method is DGNNG, which utilizes diagonal preconditioning. This method approximates the
Gauss-Newton Hessian by computing a diagonal preconditioner to accelerate CG convergence. The
diagonal is calculated as:

diag(H) = 1

|x|

|x|∑
i=1

o∑
j=1

(
∂res(θ, xi)

∂θ

⊤
ej

)2

,

where |x| is the batch size, o is the output dimension, and ej is the j-th unit vector.

Figure 2 compares the performance of each method in terms of relative L2 error versus time , as
well as CG iterations per epoch over a maximum of 10,000 iterations. Our proposed precondition-
ing strategy (HF-NGD) achieves significantly faster convergence compared to both (UGNNG) and
DGNNG proposed in Martens (2010). This performance improvement is primarily attributed to the
fact that the Gauss-Newton Hessian matrix is not diagonally dominant, making the diagonal precon-
ditioning less effective. As a result, our method demonstrates more robust convergence behavior,
especially for larger models or more complex PDEs.

4.2 KLEIN-GORDON EQUATION

The Klein-Gordon equation is a non-linear hyperbolic PDE, commonly used in applied physics to
model relativistic wave propagation. The inhomogeneous Klein-Gordon equation is given by:

∂2u

∂t2
−∆u+ u2 = f, x ∈ Ω, t ∈ Γ,

where Ω = [−5, 5]2 is the spatial domain and Γ = [0, 1] is the temporal domain. The initial
conditions are:

u(x, 0) = cos(πx1) cos(πx2),
∂u

∂t
(x, 0) = 0.

8
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Figure 3: Loss and Relative L2 Error plotted against time for different methods on the Klein-Gordon
equation for the best run from each optimizer. Our method achieves significantly faster convergence
compared to all other optimizers.

For error measurement, we use a manufactured solution:

u(x, t) = cos(πx1) cos(πx2) cos(t).

The boundary conditions ubc(x) are derived from this exact solution.

The network used is a separable Physics-Informed Neural Network (PINN) architecture, as proposed
in Cho et al. (2023), with 4 hidden layers and 128 neurons per layer for each spatial dimension,
resulting in approximately 149,376 trainable parameters.

Figure 3 shows the superior convergence of HF-NGD compared to other optimizers, achieving up
to an order of magnitude improvement in accuracy compared to LBFGS.

4.3 POISSON EQUATION IN 10 DIMENSIONS

Figure 4: Loss and Relative L2 Error plotted against Time for different methods on the Poisson
equation. HF-GNNG achieves the fastest convergence out of all optimizers.

We consider a 10-dimensional Poisson equation, defined as −∆u = f(x), x ∈ [0, 1]10, where f(x)
is the source term derived from the analytical solution u∗(x) =

∑5
k=1 x2k−1 · x2k. This analytical

solution is used as a reference for training.

We utilize a standard MLP with 5 hidden layers, each containing 512 neurons and Tanh activations,
resulting in approximately 1,102,849 trainable parameters. In this experiment, as shown in Figure 6
HF-GNNG achieves up to one order of magnitude improvement in performance compared to other
optimizers.
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4.4 OPTIMIZATION OF A NEURAL OPERATOR FOR THE VORTICITY EQUATION

Figure 5: Loss and Relative L2 Error plotted against Time for different methods on the vorticity
equation with a DeepONet for the best run out of each optimizer. Our optimizer noticeably achieves
the fastest convergence out of all optimizers.

We apply our optimization algorithm to a neural operator framework trained with a purely physics-
informed loss for the vorticity formulation of the Navier-Stokes equation in the Kovasznay flow
configuration, as described in Section 4.1. The steady vorticity equation is:

u · ∇ω − ν∆ω = 0,

where ω represents the vorticity, u is the velocity field, and ν is the kinematic viscosity.

We train a DeepONet, consisting of two subnetworks: a branch network and a trunk network. The
branch network, which encodes the Reynolds number, has 6 hidden layers with 100 neurons each.
The trunk network, which encodes the spatial coordinates with periodic embeddings, also has 6
hidden layers with 100 neurons each. This configuration results in a total of approximately 101,500
trainable parameters. The network is trained without labeled data, relying entirely on a physics-
informed loss that enforces the residuals of the governing PDE across a range of Reynolds numbers
from 50 to 250. After training, the network’s generalization capability is evaluated by inferring the
solution for an unseen Reynolds number of Re = 500.

We observe that formulating the vorticity problem as a function-to-function mapping, using the
DeepONet architecture, leads to a smoother loss landscape. This enhances the effectiveness of our
HF-NGD method, allowing it to converge more rapidly compared to other optimizers. Our approach
demonstrates up to two orders of magnitude improvement in accuracy compared to LBFGS within
the time budget, as shown in Figure 5. This result highlights the potential of our method for solving
parametric PDEs with high accuracy.

CONCLUSION AND LIMITATIONS

We introduced a Hessian-Free Natural Gradient Descent (HF-NGD) framework for Physics-
Informed Machine Learning, leveraging a matrix-free Gauss-Newton Hessian approximation to sig-
nificantly reduce computational overhead. Our low-rank preconditioning scheme based on truncated
eigenvalue decomposition mitigates Hessian ill-conditioning and accelerates convergence. Empiri-
cal results on diverse PDE benchmarks—including Allen-Cahn, Klein-Gordon, Navier-Stokes, and
high-dimensional Poisson equations—demonstrate that HF-NGD outperforms optimizers such as
Adam and LBFGS, providing faster convergence with superior accuracy, achieving up to a 2-order-
of-magnitude accuracy improvement in benchmark performance.

While our approach scales to large neural networks with up to a million parameters and neural
operators, it is still limited by the memory complexity of O(kn), where k is the rank and n is the
number of parameters. Scaling to evel larger networks may require exploring stochastic methods to
estimate spectra or other efficient approximation techniques, which we consider as future work.
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REPRODUCIBILITY STATEMENT

All efforts have been made to ensure the reproducibility of the results presented in this paper. The
theoretical contributions, including algorithm derivations and proofs, are provided in the appendix
for clarity and completeness. We have also included all hyperparameters and network configurations
used in the experiments to facilitate replication of the results.

Statistical data, such as the best, worst, and median performance metrics, are provided for each
experiment across multiple optimization algorithms. In addition, we provide a working example
of the proposed algorithm, included as supplementary material, to ensure the reproducibility of the
results in a standard machine learning environment.
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A APPENDIX

A.1 LANCZOS ALGORITHM

Algorithm 3 Lanczos Algorithm
Require: Symmetric matrix A ∈ Rn×n, initial vector v0 ∈ Rn with ∥v0∥ = 1, maximum number

of iterations k
Ensure: Approximation of A’s largest k eigenvalues and corresponding eigenvectors

1: v1 ← 0, β0 ← 0
2: V1 ← [v0] {Initialize orthonormal basis for Krylov subspace}
3: for j = 1 to k do
4: wj ← Avj−1 − βj−1vj−2

5: αj ← v⊤j−1wj

6: wj ← wj − αjvj−1 {Orthogonalize against previous vectors}
7: βj ← ∥wj∥
8: if βj = 0 then
9: break {If wj is zero, terminate early}

10: end if
11: vj ← wj/βj

12: Vj+1 ← [Vj , vj ] {Expand Krylov subspace}
13: end for
14: Form tridiagonal matrix Tk with αj’s on the diagonal and βj’s on the off-diagonals.
15: Compute eigenvalues and eigenvectors of Tk to approximate the leading eigenvalues of A.
16: return Eigenvalues λ1, . . . , λk and corresponding eigenvectors.

A.2 ORTHOGONAL ITERATION

Algorithm 4 Orthogonal Iteration
Require: Symmetric matrix A ∈ Rn×n, initial orthonormal matrix V ∈ Rn×k, tolerance ϵM ,

maximum iterations T
Ensure: Approximate leading k eigenvectors of A

1: QR-factorize V R = Z for the starting matrix Z
2: for k = 1 to T do
3: Y ← AV
4: H ← V TY
5: if ∥Y − V H∥2 ≤ ϵM then
6: stop
7: end if
8: QR-factorize V R = Y
9: end for

A.3 PROOF OF LEMMA 3.2

Proof. We aim to compute the eigenvalues of M−1
k G and determine the exact condition number

κ(M−1
k G) =

λmax

λmin
.

Step 1: Eigenvalue Decomposition of G
Since G is symmetric positive definite, it admits the eigenvalue decomposition:

G = V Λ̃V ⊤ =

n∑
i=1

λ̃iviv
⊤
i ,

where V is an orthogonal matrix whose columns are the eigenvectors vi, and Λ̃ is a diagonal matrix
containing the eigenvalues λ̃i.
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Step 2: Construction of the Preconditioner Mk

The preconditioner Mk is constructed using the top k eigenvectors and eigenvalues of G, along with
the damping term λI:

Mk = VkΛkV
⊤
k + λI =

k∑
i=1

λ̃iviv
⊤
i + λ

n∑
i=1

viv
⊤
i − λ

k∑
i=1

viv
⊤
i =

k∑
i=1

(λ̃i − λ)viv
⊤
i + λI.

Simplifying:

Mk =

k∑
i=1

(λ̃i + λ)viv
⊤
i + λ

n∑
i=k+1

viv
⊤
i .

Step 3: Eigenvalues of Mk

From the above expression, the eigenvalues mi of Mk are:

mi =

{
λ̃i + λ, for i = 1, . . . , k,

λ, for i = k + 1, . . . , n.

Step 4: Eigenvalues of M−1
k G

Since G and Mk share the same eigenvectors vi, the action of M−1
k G on vi is:

M−1
k Gvi = M−1

k (λ̃ivi) = λ̃iM
−1
k vi.

But Mkvi = mivi, so:

M−1
k vi =

1

mi
vi.

Therefore, the eigenvalues µi of M−1
k G are:

µi =
λ̃i

mi
.

Substituting mi from Step 3:

µi =


λ̃i

λ̃i + λ
, for i = 1, . . . , k,

λ̃i

λ
, for i = k + 1, . . . , n.

Step 5: Determining the Maximum and Minimum Eigenvalues

Maximum Eigenvalue λmax:

- For i = k + 1, . . . , n:

µi =
λ̃i

λ
≤ λ̃k+1

λ
,

since λ̃i ≤ λ̃k+1. - For i = 1, . . . , k:

µi =
λ̃i

λ̃i + λ
< 1.

Therefore, the maximum eigenvalue is:

λmax =
λ̃k+1

λ
.

Minimum Eigenvalue λmin:
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- For i = 1, . . . , k:

µi =
λ̃i

λ̃i + λ
≥ λ̃k

λ̃k + λ
,

since λ̃i ≥ λ̃k. - For i = k + 1, . . . , n:

µi =
λ̃i

λ
≥ λ̃n

λ
> 0.

Since
λ̃k

λ̃k + λ
≤ 1 and λ̃n > 0, the minimum eigenvalue is:

λmin =
λ̃k

λ̃k + λ
.

Step 6: Computing the Condition Number

The condition number is given by:

κ(M−1
k G) =

λmax

λmin
=

λ̃k+1

λ
λ̃k

λ̃k + λ

=
λ̃k+1(λ̃k + λ)

λ̃kλ
.

Conclusion:

Thus, the exact condition number of the preconditioned system M−1
k G is:

κ(M−1
k G) =

λ̃k+1(λ̃k + λ)

λ̃kλ
.

B ADDITIONAL MATERIAL FOR THE EXPERIMENTS

B.1 ADDITIONAL EXPERIMENT: THE ALLEN-CAHN EQUATION

Figure 6: Loss and Relative L2 Error plotted against Time for different methods on the Allen-
Cahn equation for the best run out of each optimizer. Our optimizer noticeably achieves the fastest
convergence out of all optimizers.

We consider the Allen-Cahn equation, a representative case with which conventional PINN models
are known to struggle. It takes the form:

ut − 0.0001uxx + 5u3 − 5u = 0, t ∈ [0, 1], x ∈ [−1, 1],
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u(0, x) = x2 cos(πx), u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1).

The network used is a modified MLP from Wang et al. (2023), with periodic embeddings and 4
hidden layers of 128 neurons each, resulting in approximately 51k trainable parameters.

While L-BFGS performs quite well on this task, achieving competitive convergence rates, our
Hessian-Free Natural Gradient Descent (HF-NGD) method significantly outperforms it, particu-
larly in terms of speed and final accuracy. As shown in Figure 6, HF-NGD achieves much faster
convergence, and the final relative L2 error is approximately five times lower than that of L-BFGS.

Solver Best Worst Median
L2 Error Loss L2 Error Loss L2 Error Loss

ADAM 9.1279e-03 4.3189e-07 9.3110e-03 1.1468e-06 9.2569e-03 6.0420e-07
LBFGS 9.1654e-04 2.5690e-08 9.1740e-04 2.5670e-08 9.1690e-04 2.5660e-08

SGD 5.7104e-01 3.7522e-03 5.7110e-01 3.7527e-03 5.7108e-01 3.7526e-03
HF-NGD 5.5788e-04 2.5640e-09 5.8536e-04 2.9216e-08 5.8518e-04 2.9092e-08

Table 2: Best, worst, and median final relative L2 error and loss for each solver in the Allen-Cahn
experiment.

Hyperparameter Value
Network Architecture Modified MLP with Periodic Embeddings
Embedding Period 2.0
Layer Sizes 4 hidden layers (128 neurons each)
Trainable Parameters 50,304
Levenberg-Marquardt Damping min(1× 10−5, loss)
Lanczos Steps (NL) 10
Initial Rank for Adaptive Steps 250
Adaptive Rank Increment 50
Max Rank for Eigen Decomposition 1500
Grid Points (Interior) 262,144
Grid Points (Boundary) 32,768
CG Tolerance min(1× 10−5, loss)
Time Budget 3000 seconds
Adam Optimizer Learning Rate: 1× 10−3

Warmup Steps: 1000 (Linear Scheduler)
Decay Steps: 20,000 (Exponential Decay Scheduler)

Decay Rate: 0.5
L-BFGS Optimizer Maximum Iterations: 50,000

Tolerance: 1× 10−5

SGD Optimizer Learning Rate: 5× 10−3

Momentum: 0.9
Gradient Clipping: 1.0

Table 3: Hyperparameters for the Allen-Cahn equation experiment
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B.2 RESIDUES AND LINEARIZED RESIDUES

Equation Residual,R(uθ) Linearized Residual, DR(uθ)[δuθ]
Allen-Cahn

ut − d · uxx + 5(u3 − u)− f ∂δuθ

∂t − d · ∂
2δuθ

∂x2 + (15u2
θ − 5)δuθ

2D Klein-Gordon
utt − uxx − uyy + u2 − f ∂2δuθ

∂t2 −
∂2δuθ

∂x2 − ∂2δuθ

∂y2 + 2uθδuθ

Poisson
−∇2u− f −∇2δuθ

Navier-Stokes (Vorticity)
ωt + u · ∇ω − ν∇2ω − f ∂δωθ

∂t +u ·∇δωθ + δuθ ·∇ω− ν∇2δωθ

Navier-Stokes (Velocity)
∂u
∂t + u · ∇u+∇p− ν∇2u− f ∂δuθ

∂t +u · ∇δuθ + δuθ · ∇u+∇δpθ −
ν∇2δuθ

Table 4: Residuals R(uθ) and their linearized residuals DR(uθ)[δuθ] for considered benchmarks:
Allen-Cahn, 2D Klein-Gordon, Poisson, and Navier-Stokes in both vorticity and velocity forms.

B.3 HYPERPARAMETERS FOR THE NAVIER-STOKES 2D STEADY-STATE EXPERIMENT

Hyperparameter Value
Layer Sizes [2, 100, 100, 100, 100, 3]
Activation Function tanh
Reynolds Number (Re) 40
Viscosity (ν) 1/Re
Levenberg-Marquardt Damping min(1, loss)
Lanczos Steps (NL) 10
Initial Rank for Adaptive Steps 250
Adaptive Rank Increment 50
Max Rank for Eigen Decomposition 1500
Seed for Random Initialization 0
Grid Points (Interior) 2601
Grid Points (Boundary) 400
CG Tolerance min(1, loss)

Table 5: Hyperparameters for the Navier-Stokes 2D steady-state experiment

B.4 ADDITIONAL RESOURCES FOR THE KLEIN-GORDON EQUATION EXPERIMENT

Solver Best Worst Median
L2 Error Loss L2 Error Loss L2 Error Loss

ADAM 2.0676e-03 9.8366e-07 8.4513e-03 5.5133e-06 3.5232e-03 3.7752e-06
LBFGS 1.1752e-04 5.2457e-09 7.4118e-04 1.0437e-08 3.6707e-04 1.4234e-08

HF-NGD 3.8747e-05 4.5910e-10 2.5555e-04 7.8761e-10 1.3485e-04 4.0539e-10
SGD 1.0860e-03 3.0317e-06 4.4600e-02 3.7092e-03 3.0289e-02 7.6686e-03

Table 6: Best, worst, and median final relative L2 error and loss for each solver in the Klein-Gordon
experiment.
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Hyperparameter Value
Network Architecture Separable PINNCho et al. (2023)
Layer Sizes 4 hidden layers (128 neurons per spatial dimension)
Trainable Parameters 149,376
Levenberg-Marquardt Damping min(1× 10−5, loss)
Lanczos Steps (NL) 10
Initial Rank for Adaptive Steps 250
Adaptive Rank Increment 50
Max Rank for Eigen Decomposition 1500
Grid Points (Interior) 262,144
Grid Points (Boundary) 32,768
CG Tolerance min(1× 10−5, loss)
Time Budget 6000 seconds
HF-NGD Optimizer Learning Rate: 1× 10−3

Warmup Steps: 1000 (Linear Scheduler)
Decay Steps: 20,000 (Exponential Decay Scheduler)

Decay Rate: 0.5
HFLR Optimizer Learning Rate: 5× 10−4

Maximum Iterations: 50,000
Tolerance: 1× 10−5

Adam Optimizer Learning Rate: 1× 10−3

Warmup Steps: 1000 (Linear Scheduler)
Decay Steps: 20,000 (Exponential Decay Scheduler)

Decay Rate: 0.5
L-BFGS Optimizer Maximum Iterations: 50,000

Tolerance: 1× 10−5

SGD Optimizer Learning Rate: 5× 10−3

Momentum: 0.9
Gradient Clipping: 1.0

Table 7: Hyperparameters for the Klein-Gordon equation experiment and associated solvers

B.5 ADDITIONAL RESOURCES FOR THE POISSON EQUATION IN 10 DIMENSIONS

Solver Best Worst Median
L2 Error Loss L2 Error Loss L2 Error Loss

ADAM 4.2226e-03 4.4942e-06 1.0286e-02 9.9630e-05 5.4410e-03 3.1723e-05
LBFGS 3.2373e-04 2.6123e-08 4.8860e-04 3.0253e-08 4.7009e-04 4.4788e-08

HF-NGD 3.2020e-05 4.0725e-10 7.1201e-05 1.9829e-09 3.8316e-05 3.4561e-10
SGD 5.0698e-03 1.1918e-05 3.2487e-02 1.5308e-03 6.9154e-03 3.6156e-05

Table 8: Best, worst, and median final relative L2 error and loss for each solver in the Poisson
equation in 10 dimensions experiment.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hyperparameter Value
Network Architecture MLP (5 hidden layers, Tanh activations)
Layer Sizes [10, 512, 512, 512, 512, 512, 1]
Trainable Parameters 1,102,849
Lanczos Steps (NL) 10
Initial Rank for Adaptive Steps 250
Adaptive Rank Increment 150
Max Rank for Eigen Decomposition 1500
Levenberg-Marquardt Damping min(1× 10−5, loss)
Grid Points (Interior) 262,144
Grid Points (Boundary) 32,768
Integrator Resampling Frequency Every 250 epochs
Interior Integrator Sample Size 4000
Boundary Integrator Sample Size 500
Evaluation Integrator Sample Size 4000
Time Budget 3000 seconds
Adam Optimizer Learning Rate: 1× 10−3

Warmup Steps: 1000 (Linear Scheduler)
Decay Steps: 20,000 (Exponential Decay)

Decay Rate: 0.5
L-BFGS Optimizer Maximum Iterations: 50,000

Tolerance: 1× 10−5

SGD Optimizer Learning Rate: 5× 10−3

Momentum: 0.9

Table 9: Hyperparameters for the Poisson equation in 10 dimensions experiment

B.6 ADDITIONAL RESOURCES FOR THE VORTICITY EQUATION EXPERIMENT

Solver Best Worst Median
L2 Error Loss L2 Error Loss L2 Error Loss

ADAM 9.0281e-03 1.4407e-04 9.0281e-03 1.4407e-04 9.0281e-03 1.4407e-04
LBFGS 1.8595e-03 1.1438e-06 5.4369e-02 1.4413e-03 1.8636e-03 1.1486e-06

HF-NGD 9.0018e-05 1.1977e-08 9.0810e-05 1.2204e-08 9.0137e-05 1.2011e-08
SGD 1.8706e-02 4.4375e-04 1.8706e-02 4.4375e-04 1.8706e-02 4.4375e-04

Table 10: Best, worst, and median final relative L2 error and loss for each solver in the Kovaznay
experiment.
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Hyperparameter Value
Branch Network Architecture MLP (6 hidden layers, Tanh activations)
Branch Network Layer Sizes [1, 100, 100, 100, 100, 100, 100]
Trunk Network Architecture MLP (6 hidden layers, Tanh activations)
Trunk Network Layer Sizes [2, 100, 100, 100, 100, 100, 100]
Total Trainable Parameters 101,500
Batch Size 256
Reynolds Number Range 50 to 250
Reynolds Number Validation 500
Training Time Budget 3000 seconds
Grid Points (Interior) 2601
Grid Points (Boundary) 400
Lanczos Steps (HF-NGD) 10
Initial Rank for Adaptive HF-NGD 250
Adaptive Rank Increment 50
Max Rank for Eigen Decomposition 1500
Levenberg-Marquardt Damping (HF-NGD) min(1× 10−5, loss)
Learning Rate (Adam) 1× 10−3

Learning Rate (SGD) 1× 10−2

Learning Rate Decay (Adam/SGD) Exponential (Decay Rate: 0.96 every 1000 steps)
SGD Momentum 0.9
Gradient Clipping Threshold (SGD) 1.0
Optimizer Tolerance (BFGS) 1× 10−5

Table 11: Hyperparameters for the DeepONet applied to the Vorticity Equation in Kovasznay flow
configuration.
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