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Abstract— A long-standing question in robot hand design is
how accurate tactile sensing must be. This paper uses simulated
tactile signals and the reinforcement learning (RL) framework
to study the sensing needs in grasping systems. Our first
experiment investigates the need for rich tactile sensing in the
rewards of RL-based grasp refinement algorithms for multi-
fingered robotic hands. We systematically integrate different
levels of tactile data into the rewards using analytic grasp
stability metrics. We find that combining information on contact
positions, normals, and forces in the reward yields the highest
average success rates of 95.4% for cuboids, 93.1% for cylinders,
and 62.3% for spheres across wrist position errors between
0 and 7 centimeters and rotational errors between 0 and 14
degrees. This contact-based reward outperforms a non-tactile
binary-reward baseline by 42.9%. Our follow-up experiment
shows that when training with tactile-enabled rewards, the
use of tactile information in the control policy’s state vector
is drastically reducible at only a slight performance decrease
of at most 6.6% for no tactile sensing in the state. Since
policies do not require access to the reward signal at test time,
our work implies that models trained on tactile-enabled hands
are deployable to robotic hands with a smaller sensor suite,
potentially reducing cost dramatically.

I. INTRODUCTION

Tactile sensing provides information about local object ge-
ometry, surface properties, contact forces, and grasp stability
[1]. Hence, tactile sensors can be a valuable tool in contact-
rich scenarios such as robotic grasp refinement [2] where a
grasping system recovers from calibration errors. Computer
vision approaches for grasp refinement often face limitations
due to the occlusion of contact events. Tactile sensors can be
expensive and fragile hardware components. Hence, for cost-
effective robotic hand design, it is essential to understand
when robot hands need precise sensing and how accurate it
should be to achieve good grasping performance.

A few research papers investigated the effect of tactile
sensor resolution on grasp success. Wan et al. [3] found
that reduced spatial resolution of tactile sensors negatively
impacts grasp success since inaccuracies in contact position
and normal sensing can influence grasp stability predictions.
Other works analyzed the effect of contact sensor resolu-
tion on grasp performance in the context of reinforcement
learning. In simulated experiments, Merzić et al. [4] found
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Fig. 1: The hypothesized workflow for training and deploying
RL-controlled grasping systems. First, train a policy π(a|s)
on a hand Hf with a full tactile sensor suite (e.g., contact
position, normal and force sensors) where the grasp quality
metrics are available as a reward rf to learn a task, but only
provide a subset of the available contact data in the state
vector sr. Afterwards, deploy the policy to many structurally
similar hands Hr with a reduced sensor set to save cost.

that contact feedback in a policy’s state vector improves the
performance of RL-based grasping controllers, and [5], [6]
presented similar results for in-hand manipulation. However,
[5], [6] also concluded that models trained with binary
contact signals perform equally well as models that receive
accurate normal force information. Furthermore, [5], [6]
found that tactile resolution (92 vs. 16 sensors) has no
noticeable effect on performance and sample efficiency of
reinforcement learned manipulation controllers.

In this paper, we use accurate tactile signals from simula-
tion and the reinforcement learning framework to explore the
tactile sensing needs in robotic systems. RL algorithms aim
to produce a policy π(a|s) that outputs actions a given state
information s such that the cumulative reward signal r is
maximized. The reward function is a critical part of every RL
algorithm [7]. While the previous work in [4], [5], [6] only
studied the tactile resolution in the policy’s state, our first
contribution investigates the impact of tactile information in
the reward signal. We propose a unified framework to sys-
tematically incorporate different levels of tactile information
from robotic hands into a reward signal via analytic grasp
stability metrics. We conduct grasp refinement experiments
on two types of quality metrics discussed in Section II:
ε [8] calculated from contact positions and normals and a
contact force-based reward δ. In Section III, we estimate the
relevance of contact position, normal, and force sensing for
the reward signal by comparing the individual and combined
performance of ε and δ.



Calculating grasp stability metrics requires costly tactile
sensing capabilities on physical grippers. However, the re-
ward signal is only required during the training of policies
but not while testing, which suggests that sensing needs in
both stages could be different. We hypothesize in Fig. 1 that
policies trained with grasp stability metrics on a robotic hand
Hf with a full tactile sensor suite are deployable to struc-
turally similar but more affordable hands Hr with reduced
tactile sensing at a small performance decrease. Hence, our
second experiment in Section IV gradually decreases tactile
resolution in the state vector to find realistic training and
deployment workflows for grasping algorithms.

II. GRASP STABILITY METRICS

A. Largest-minimum resisted forces and torques

Mirtich and Canny [8] define two quality metrics εf
and ετ that measure a grasp’s ability to resist unit forces
and torques, respectively. As discussed in [9], the fric-
tion cone constrains the contact force f i at each con-
tact i. It is discretized using m edges f i,j . The set of
forces Wf that the contacts can apply to the object is
Wf = ConvexHull

(⋃nc
i=1

{
f i,1, . . . ,f i,m

})
, where nc is

the number of contacts. Finally, the quality metric εf =
minf∈∂Wf

‖f‖ is the shortest distance from the origin to
the nearest hyper-plane of Wf . Hence, the metric defines a
lower bound on the resisted force in all directions.

This concept is easily extended to the torque domain.
The reaction torque τ i,j resulting from a friction cone edge
f i,j is τ i,j = ri × fi,j , where ri is a vector pointing
from the object’s center of mass to the contact point pi.
Further, Wτ = ConvexHull (

⋃n
i=1 {τ i,1, . . . , τ i,m}) is the

set of resisted torques. The metric ετ = minτ∈∂Wτ ‖τ‖
evaluates the grasp’s quality by identifying the magnitude
of the largest-minimum resisted torque.

B. Minimum distance to the friction cone

The quality metrics εf and ετ analyze the forces that each
contact can theoretically exert on the object. However, these
metrics do not consider the actual contact forces that the
contacts apply to the object. To this end, we define two force-
based quality metrics δcur and δtask.
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Fig. 2: Grasp with current contact forces f i,cur and tangen-
tial force margins f̄ i,cur to the friction cones.

Similar to Buss et al. [10], we measure grasp stability in
terms of how far the contact forces are from the friction
limits. Fig. 2 shows a grasp with the current contact forces
f i,cur and the tangential force margins f̄ i,cur. The vectors
f̄ i,cur are forces in the tangential direction that point from

f i,cur to the closest point on the friction cone, thereby
identifying the direction in which the contact can take the
least tangential force before slipping. A grasp with large
tangential force margins f̄ i,cur is desirable since the contacts
are less prone to sliding when an object wrench is applied.
Hence, the metric δcur measures the average magnitude of
the safety margins ‖f̄ i,cur‖ across all contacts i.

The set of wrenches that the grasp must resist during task
execution (e.g., object weight or wrenches from expected
collisions) can often be estimated. Our task-oriented metric
δtask evaluates whether the current contact forces of a grasp
are suitable to balance the anticipated task wrenches. We
calculate the additional contact force f i,add that each contact
i must react with to compensate a task wrench w with
G+w = ( fT1,add fT2,add . . . fTnc,add )T , where G+

is the pseudoinverse of the grasp matrix as defined in [11].
The task contact force is f i,task = f i,cur + f i,add for each
contact. Finally, δtask computes the average magnitude of the
tangential force margins ‖f̄ i,task‖ of the task contact forces
f i,task to the friction cone.

III. TACTILE SENSING AND THE REWARD FUNCTION

A. Train and Test Dataset
Each training sample consists of a tuple (O,E), where

O is the object, and E is the wrist pose error sampled
uniformly before every episode. There are three object types
(cuboid, cylinder, and sphere) with a mass ∈ [0.1, 0.4] kg and
randomly sampled sizes. Fig. 3 visualizes the minimum and
maximum object dimensions. The wrist pose error E con-
sists of a translational and a rotational error. We uniformly
sample the translational error (ex, ey, ez) from [−5, 5] cm
and the rotational error (eξ, eη, eζ) from [−10, 10] deg for
each variable, respectively.

Fig. 3: Minimum and maximum object sizes. We place the
spheres on a concave mount to prevent rolling.

We define 8 different wrist error cases for the test dataset.
Let d(a, b, c) =

√
a2 + b2 + c2 be the L2 norm of the

variables (a, b, c). Table I shows the wrist error cases, where
case A corresponds to no error and case H means maximum
wrist error. The test dataset consists of 30 random objects O
(10 cuboids, 10 cylinders, and 10 spheres). Per object O, we
randomly generate the eight wrist error cases {A,B, . . . ,H}
from Table I. Hence, we run 30 × 8 = 240 grasping
experiments to test one model.

TABLE I: Wrist error cases

Wrist Error Case A B C D E F G H
d(ex, ey , ez) in cm 0 1 2 3 4 5 6 7
d(eξ, eη , eζ) in deg 0 2 4 6 8 10 12 14
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Fig. 4: Overview of one algorithm episode. (A) Initialization
of hand and object. (B) We split the grasp refinement algo-
rithm into four stages and compare four reward frameworks:
(1) ε and δ, (2) only δ, (3) only ε and (4) the non-tactile
binary reward baseline β. The weighting factors of α1 = 5
and α2 = 0.5 were empirically determined.

B. State and Action Space

The state vector s consists of 7 joint positions (1 finger
separation, 3 proximal bending, 3 distal bending degrees of
freedom), and 7 contact cues (3 on proximal links, 3 on
distal links, and 1 on palm) that include contact position,
contact normal and contact force, which have 3 (x, y, z)
components each. The dimension of the state vector is s ∈
R7+7×(3×3)=70. Note that we do not assume any information
about the object (e.g., object pose, geometry, or mass) in the
state vector. The contact normals and positions are provided
in the wrist frame, while the contact forces are represented
in the contact frame. The action vector a consists of 3
finger position increments, 3 wrist position increments and
3 wrist rotation increments. The action vector’s dimension
is a ∈ R3+3+3=9. The policy πθ is parametrized by a
neural network with weights θ. The network is a multi-
layer perceptron with four layers (70, 256, 256, 9). We use
the stable-baselines3 [12] implementation of the soft
actor-critic (SAC) [13] algorithm and train for 25000 steps.

C. Experimental Setup

We simulate the three-fingered ReFlex TakkTile hand
(RightHand Robotics, Somerville, MA USA) using a custom
Gazebo [14] simulation environment and the DART [15]
physics engine. We model the under-actuated distal flexure
[16] as a rigid link with two revolute joints (one between
the proximal and one between the distal finger link). Fur-
ther, we approximate the finger geometries as cuboids to

Fig. 5: Test results for reward frameworks.

reduce computational load. Our source code is available at
github.com/axkoenig/grasp_refinement.

Fig. 4 shows an overview of one training episode. In stage
(A), we initialize the world. Thereby, we randomly generate
a new object, wrist error tuple (O,E) (or we select one from
the test dataset). We assume a computer vision system and
a grasp planner that produces a side-ways facing grasp at
a fixed 5 cm offset from the object’s center of mass. We
add the wrist pose error E to this grasp pose to simulate
calibration errors and close the fingers of the robotic hand
in the erroneous wrist pose until the fingers make contact
with the object. Consequently, the grasp refinement episode
(B) starts. We divide each episode into three stages, as
displayed in Fig. 4. Firstly, the policy πθ refines the grasp.
Afterward, the agent lifts the object by 15 cm via hard-coded
increments to the wrist’s z-position and holds the object in
place to test the grasp’s stability. The policy πθ can update
the wrist and finger positions while lifting and holding. The
control frequency of the policy in all stages is 3 Hz, while
the update frequency of the low-level proportional–derivative
(PD) controllers in the wrist and the fingers is 100 Hz.

As shown in the table of Fig. 4, we use the analytic grasp
stability metrics from section II as reward functions. We
compare the following reward configurations: (1) both ε and
δ, (2) only ε, (3) only δ and (4) the baseline β. Fig. 4 shows
that δ refers to δtask in the refine stage to measure expected
grasp stability before lifting and δcur in the lift and hold
stages to measure current stability. Further, ε is a weighted
combination of εf and ετ . While ε and δ, δ, and ε provide
stability feedback after every algorithm step, the baseline β
gives a sparse reward after the holding stage, indicating if
the object is still in the hand (1) or not (0).

D. Results and Discussion

For all experiments in this paper, we average over 40
models trained with different seeds for each framework. The
error bars in all plots represent ±2 standard errors. Fig. 5
summarizes the performance on the test dataset. Our main
observation is that combining the geometric grasp stability
metric ε with the force-agnostic metric δ yields the highest
average success rates of 83.6% across all objects (95.4% for
cuboids, 93.1% for cylinders, and 62.3% for spheres) over all
wrist errors. The ε and δ framework outperforms the binary
reward framework β by 42.9%. The p-values for our results
µε and δ > µδ , µε and δ > µε and µε and δ > µβ (where µx
is the mean performance of framework x) are all � 0.001
and are hence statistically significant. We also notice that

github.com/axkoenig/grasp_refinement


the combination between ε and δ is particularly helpful
for spheres. The average performance of all frameworks on
spheres is greatly reduced, while the algorithms trained with
β especially struggle to grasp spheres.

This study investigates the tactile sensing needs in the
reward of RL grasping controllers by incorporating highly
accurate contact information via analytic grasp stability met-
rics. The results demonstrate that information about contact
positions and normals encoded in ε combines well with the
force-based information in the δ reward. This result motivates
building physical robotic hands capable of sensing these
types of information. The low success rates for the spheres
may be because they can roll and are therefore harder to
grasp (cuboids and cylinders move comparatively less when
touched by fingers or the palm). The β framework performs
worst after the defined number of training steps, which is
unsurprising because shaped rewards are known to be more
sample efficient than sparse rewards [17].

IV. TACTILE SENSING AND THE STATE VECTOR

A. Experimental Setup

In a second experiment, we investigate the effect of contact
sensing resolution in the state vector on grasp refinement. We
compare four contact sensing frameworks. The full contact
sensing framework receives the same state vector s ∈ R70 as
in section III-B. In the normal framework, we only provide
the algorithm with the contact normal forces and omit the
tangential forces (s ∈ R56). In the binary framework we only
give a binary signal whether a link is in contact (1) or not
(0) (s ∈ R56). Finally, we solely provide the joint positions
in the none framework (s ∈ R7). We adjust the size of the
input layer of the neural network from section III-B to match
the size of the state vector of each framework. The reward
function in these experiments is ε and δ from Fig. 4. Hence,
all contact sensing frameworks receive contact information
indirectly via the reward.

B. Results and Discussion

In Fig. 6, we observe that the frameworks which receive
contact feedback (full, normal, binary) outperform the none
framework by 6.3%, 6.6% and 3.7%, respectively. Providing
normal force information yields a performance increase of
2.9% compared to the binary framework. However, training
with the full contact force vectors only increases the per-
formance by 2.6% compared to the binary framework. As
expected, performance decreases for larger wrist errors. The
results µnormal > µbinary and µnormal > µnone are statistically
significant (p-values � 0.001), while the result µnormal >
µfull is not (p-value 0.2232).

This experiment studies how contact sensing resolution in
the policy’s state vector is related to grasp success when
training with fully contact informed rewards. Thereby, we
investigate the viability of our hypothesized training and
deployment workflow in Fig. 1. The improvements for the
normal force framework over the binary and none frame-
works are small. The results suggest that an affordable binary
contact sensor suite, or even no contact sensing at all, may be

Fig. 6: Test results for contact sensing frameworks.

suitable if a small decrease in performance is tolerable. This
result supports our hypothesis that RL grasping algorithms
are deployable to hands with reduced contact sensor resolu-
tion at little performance decrease when incorporating rich
tactile feedback at train time. The algorithms trained with
the full force vector perform approximately on par with the
ones that receive the normal force information. This could
be due to three reasons. (1) The full force framework has the
most network parameters and requires even longer training
times. (2) The model fails to represent the concept of the
friction cone internally. An alternative representation of the
tangential forces could be a solution (e.g., providing a margin
to the friction cone instead of a tangential force vector).
(3) Simulated contact forces are prone to instability [18],
especially when simulating robotic grasping [19].

V. CONCLUSION

This paper investigated the importance of tactile signals in
the reward and the policy’s state vector to identify the tactile
sensing needs in RL-based grasping algorithms. We found
that rewards incorporating contact positions, normals, and
forces are the most powerful optimization objectives for RL
grasp refinement controllers. While this tactile information is
essential in the reward function, we uncovered that reducing
contact sensor resolution in the policy’s state vector de-
creases algorithm performance only by a small amount. This
result has implications for the design of physical grippers
and their training and deployment workflows.

In future work, we aim to build physical robotic hands
with advanced sensing capabilities to calculate grasp metrics.
Secondly, we want to test the proposed training and deploy-
ment workflow, providing only limited contact information
in the state vector and testing the algorithm on other robotic
hands.
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