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Cognitive control permits adapting behaviour to task demands, 
crucial in an ever-changing environment. The flexibility of 
such a fundamental cognitive ability lies at the core of intel-

ligent behaviour. Cognitive control is supported by neural oscilla-
tions in the theta band (4–7 Hz)1,2 (also called frontal midline theta) 
that coordinate distant neural populations to create task-relevant 
functional networks through synchronization3–7. Medial frontal 
cortex (MFC) generates theta oscillations when cognitive control is 
needed, that is, during conflict or in preparation of a difficult task1. 
Task rules and goals dictating behaviour are instead encoded in lat-
eral frontal cortex (LFC)8–10. The coordination of these two areas 
through theta-rhythmic processes has been shown to support suc-
cessful task performance11. It has been proposed that task-relevant 
functional networks are established through top-down gating from 
these frontal areas by synchronizing distant neural populations, 
allowing efficient communication, that is, communication through 
coherence (CTC)3,12.

Theta oscillations thus play a critical role in the implementation 
of cognitive control, but to be adaptive, theta oscillation character-
istics must change with task demands. However, the exact neural 
mechanisms that support flexible control remain largely unknown. 
Most research has focused on theta amplitude, showing that it 
increases after conflicts and errors, causing subsequent neural adap-
tation leading to better task performance1.

Critically, a second essential aspect of theta oscillations, their 
peak frequency within the 4–7 Hz range, has occasionally been 
reported to vary across tasks and participants13–15. However, most 
studies report band-average theta power per condition, which pre-
cludes observing changes in peak theta frequency across conditions. 
Moreover, estimating shifts in peak frequency from conventional 
representation of spectral data (for example, power spectra or time–
frequency maps) is nontrivial and must avoid confounding factors 
such as changes in the aperiodic component of the power spectra16. 
It therefore remains unclear whether reliable theta peak differences 
exist. Finally, this variability and its mechanistic consequences are 
commonly ignored, and no theoretical account has considered its 

role in cognitive control. To address this gap, we draw from two 
prominent frameworks: biased competition (BC)17 and CTC12. We 
build a computational model where theta oscillations orchestrate 
competition between task representations, which in turn guides 
CTC to set up task-relevant functional networks. Model simulations 
show that, depending on task demands, different theta frequencies 
are optimal for task performance. We tested model predictions on 
behavioural and electrophysiological data and confirmed that the 
frequency of theta oscillations shifts adaptively towards optimal fre-
quency depending on task demands.

Results
Theta frequency controls reliable task implementation. We 
designed a stimulus–action mapping task (Fig. 1a) wherein on each 
trial, a different mapping (that is, a rule, with variable difficulty) 
must be established. The task consists of reporting the tilt of one 
of two gratings, clockwise (CW) or counter-CW (CCW) from the 
vertical axis, using the index or middle finger of one of both hands. 
On each trial, a two-letter cue instructed the rule, that is, which was 
the target grating (left (L) or right (R), top letter) and which hand 
to use (L or R, bottom letter). We thus manipulated task difficulty: 
same-side cues (that is, RR and LL, indicating top and bottom letter, 
respectively) were easier than different-side cues (LR and RL).

Our model consists of five units (Fig. 1b): two control units 
(LFC and MFC), two processing units (sensory and action) and 
an integrator unit. In LFC, cues activate instruction nodes, which 
themselves activate rule nodes. Rule nodes form a competitive 
accumulator network18 that implements BC: In a Stroop-like man-
ner, the connectivity between instruction nodes induces stronger 
competition between rule nodes for different-side than same-side 
rules. Importantly, rule node competition is orchestrated by theta 
oscillations generated by the MFC unit: competition is (re)initiated 
when MFC theta exceeds a processing threshold (Fig. 2a,b). Each 
rule node points to rule-relevant processing modules. Processing 
nodes oscillate at gamma frequency. Rule nodes gate communica-
tion between sensory and action units through CTC12,19, thereby 
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implementing the instructed mapping, by means of phase-resetting 
bursts emitted by MFC at theta oscillation peaks3,19 (Fig. 2b–d). 
The integrator unit constitutes a competitive accumulator net-
work18 that accumulates information received from action nodes 
and triggers a response once one of the integrator nodes reaches a  
threshold (Fig. 2e).

Crucially, with a fast theta frequency, for example, 7 Hz, rule 
nodes gate processing modules frequently, shortening ‘off ’ periods 
in which rule-relevant processing nodes desynchronize, at the cost 
of shorter competition windows. With a slow theta frequency, for 
example, 4 Hz, gating is imposed less frequently but competition 
windows are longer. Due to BC, one rule will win the competition. 
However, for difficult rules, resolving the competition will take 
more time, that is, require longer competition windows. In our task, 
different-side rules are more difficult, so the model achieves better 
performance at slower theta frequencies where competition is long 
enough for the correct rule node to win (Extended Data Fig. 1a,b). 
In contrast, for easy rules, competition is won quickly, thus higher 
theta frequencies yield better performance as rule-relevant nodes 
are frequently gated, reducing ‘off ’ periods. Hence, an optimal agent 
would shift theta frequency depending on task demands.

Model simulations (Fig. 3a) confirmed that, for difficult rules, 
the model achieves optimal accuracy at a slow theta frequency, 
whereas for easy rules, a fast theta is optimal (W = 105.5, P < 0.001, 
r = 0.64, 95% CI 1.00–2.00; Fig. 3b). Fits from the drift–diffusion 
model (DDM) on model data (Methods) showed that only drift rate 
exhibited this theta frequency–rule difficulty interaction (Extended 
Data Fig. 2a), refuting a speed–accuracy trade-off explanation. 
Theta amplitude alone could not explain this result as theta ampli-
tude only negligibly affected competition window length relative to 
frequency (Extended Data Fig. 1c,d).

Furthermore, theta-rhythmic gating of processing nodes should 
yield better model performance shortly after a burst, that is, at theta 
oscillation peaks (Fig. 3c). By varying the instruction–stimulus 
delay (ISD), to sample model performance at different phases of  
the theta-rhythmic process20,21, we showed that model accuracy 

oscillates at a frequency closely matching MFC theta frequency  
(Fig. 3d and Supplementary Fig. 1).

These simulations lead to two key behavioural and neural pre-
dictions. First, oscillations of accuracy-by-ISD should shift towards 
optimal theta frequency depending on task demands. Second, fron-
tal theta oscillations should also exhibit this effect, and the degree to 
which theta frequency shifts according to task demands should be 
predictive of subsequent task performance.

Frequency shift in behavioural performance oscillations. In an 
experiment on human participants (dataset 1), we first confirmed 
that rules varied in difficulty (Fig. 4a). There was a significant target 
location–hand interaction in accuracy (RR and LL easier than LR 
and RL; F(1, 33) = 27.82, P < 0.001, η2 = 0.236) and a main effect of 
hand (F(1, 33) = 4.33, P = 0.045, η2 = 0.012). Consistent with model 
simulations, only drift rate exhibited this interaction (Extended 
Data Fig. 2b). We therefore used accuracy as our dependent vari-
able. To test model predictions on behavioural oscillations, we 
computed peak theta frequency of accuracy-by-ISD (Methods and 
Supplementary Fig. 2a). As predicted, we found a significant target 
location–hand interaction (F(1, 33) = 6.51, P = 0.015, η2 = 0.047), 
showing that accuracy oscillated at a slower theta frequency for dif-
ficult rules (LR and RL; Fig. 4b), and no main effect.

Frequency shift in frontal theta predicts task performance. Next, 
we investigated whether neural theta exhibited this frequency shift 
due to task demands. We extracted electroencephalogram (EEG) 
theta peak frequency in a 1 s prestimulus window from an elec-
trode cluster exhibiting significantly higher theta power in correct 
than incorrect trials (P < 0.001; Fig. 4c and Methods). As pre-
dicted, peak theta frequency in correct trials significantly decreased 
from same-side to different-side rules (F(1, 33) = 18.96, P < 0.001, 
η2 = 0.107; Fig. 4d and individual participant spectra in Extended 
Data Fig. 3). Although peak theta frequency differed numerically 
between different-side rules (that is, LR and RL), this difference  
was not statistically significant (W = 211, P = 0.139, r = −0.29,  
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Fig. 1 | Task and model structure. a, The stimulus–action mapping task. Each trial starts with a cue instructing the mapping to use. In this example, the rule 
is LR, instructing to report the left grating’s tilt with the right hand. b, Model architecture. c, Each node of MFC and processing (sensory and action) units 
is a neural triplet composed of one excitatory (E), one inhibitory (I) and one rate neuron (x). The E–I pair generates oscillations (whose frequency depends 
on their coupling parameter). MFC bursts are sent to E neurons. Rate neurons receive input from, and send output to, other nodes’ rate neurons. The 
activity (output) of a rate neuron is modulated by its E neuron.
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95% CI −0.72 to −0.14). Furthermore, contrasting correct and 
incorrect trials revealed that higher theta frequency improved 
performance in same-side rules whereas a lower theta frequency 
improved performances in different-side rules (F(1, 33) = 4.62, 
P = 0.039, η2 = 0.036; Fig. 4d). Finally, across participants, the degree 
to which theta frequency shifted from difficult to easy rules posi-
tively correlated with overall accuracy (r(32) = 0.49, P = 0.004, 95% 
CI 0.17–0.71; Fig. 4e), indicating that a higher sensitivity of theta 
frequency to rule difficulty improved task performance. These 
analyses were carried out by using the FOOOF toolbox16 to estimate 
peak and power of theta oscillations. Additional control analyses 
revealed that our results were robust and observable without using 
this toolbox (that is, by estimating theta peak frequency on raw 
spectra; Methods and Supplementary Fig. 7). These results can-
not be explained by changes in theta power alone as both peak and 
power were estimated independently over the 1/f spectrum, where f 
is frequency (Supplementary Fig. 2b and Control analyses section).

Theta frequency shift generalizes to other tasks. Having estab-
lished a robust effect of task demands on theta frequency in our 
stimulus–action mapping task, we tested the generality of this 
mechanism, namely a decrease of theta frequency for difficult tasks, 

to other cognitive control tasks. First, we reanalysed previously 
published data22 from an experiment in which 17 participants per-
formed an arithmetic task, preceded by a cue indicating whether 
the arithmetic operation was going to be easy or difficult (dataset 2;  
Fig. 5a). Different from our original experiment (that is, dataset 1), 
in dataset 2, only two levels of difficulty were used, thus allowing us 
to test whether theta frequency is lower following a difficult com-
pared with an easy cue. There was a significant effect of difficulty 
on error rates and on reaction times (see the original article22 for 
details). To use a comparable time window for the analysis of the 
EEG data (relative to dataset 1), we selected a 1 s segment of EEG 
data in the post-cue interval. This segment was centred around the 
time point at which the difference in theta power between difficult 
and easy conditions was the highest (2,000 ms post-cue onset; fig. 4a  
in ref. 22). Thus, we considered EEG data in the 1,500–2,500 ms 
segment post cue onset. Furthermore, because of the low number 
of incorrect responses (error rates of 1% and 6% for the easy and 
difficult conditions, respectively), we decided not to use the cor-
rect–incorrect contrast as in dataset 1 (Fig. 4c) and chose an a priori 
electrode (FCz) on the basis of prior findings in theta oscillations 
in cognitive control1,23–25. Due to the absence of identified theta 
oscillations using the FOOOF toolbox in the easy condition of  

b

c

Excitatory
Inhibitory
Rate

MFC node neurons

A
ct

iv
ity

A
ct

iv
ity

a

Easy-rule trial (RR)

A
ct

iv
ity

Competition
window

Instructed
rule winning

Competition
window (in LFC)

LFC: rule node competition

Difficult-rule trial (RL)

MFC: theta generation and MFC bursts

d
A

ct
iv

ity
A

ct
iv

ity
e

A
ct

iv
ity

Instruction

L

R

A
ct

iv
ity

LFC: biasing signal sent to processing nodes

Time relative to instructions (s)

Instruction

L

R

Time relative to 
instructions (s)

StimuliStimuli

Time relative to instructions (s)

Incorrect
responses

Correct
response

A
ct

iv
ity

Correct
response

–1
0
1

Stimuli

Time relative to
instructions (s) 

2

Response

A
ct

iv
ity

Time relative to instructions (s)Time relative to instructions (s)

0 0.4 0.60.2 0.8 1.0 1.2 0 0.4 0.60.2 0.8 1.0 1.2

0.5

0

Time relative to 
instructions (s)

Excitatory Inhibitory Rate

MFC E neuron (theta: 5 Hz)

Processing node neurons

MFC E 
neuron

2

0

2

0

2.5

1.0

0.5

0
–0.2

1
0

–1

1

0.5

0

–0.5

0
–1

1.7 1.8

0.5

0

–0.5

1.9 2.0 2.1 2.2

1.7 1.8 1.9 2.0 2.1 2.2 1.7 1.8 1.9 2.0 2.1 2.2

1.8 1.9 2.0 2.1

1.7 1.8 1.9 2.0 2.1 2.2

–0.1 0.1 0.2 0.3 0.4

0

–2.5
–0.2 –0.1 0 0.1 0.2 0.3

–0.2 –0.1
+

0.1 0.2 0.3

+

+ +

+ +

Fig. 2 | Model dynamics. a, The two upper panels represent rhythmic BC in rule nodes at instructions onset (from two different trials): three cycles at a fast 
MFC theta frequency (7 Hz) to illustrate difference in dynamics between easy and difficult rules. Top left panel (easy rule): the rule node corresponding to 
the instructed rule in this trial (green curve) rapidly wins the competition over other rule nodes (grey curves). Top right panel (difficult rule): the rule node 
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possible responses to the task, around stimuli presentation. The green line represents the correct response in the simulated trial.
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3 participants, we analysed 14 participants in total in dataset 2. 
Confirming the model predictions and the observations from data-
set 1, we found a lower peak theta frequency in correct trials in the 
difficult compared with easy condition (W = 86, P = 0.017, r = 0.64, 
95% CI 0.01–0.14; Fig. 5b).

Second, we reanalysed another published dataset26 from an 
experiment in which 33 participants performed a go–no-go task, 
where each trial was preceded by a cue indicating whether the 
upcoming stimulus was a certain-go (that is, a go stimulus with 
100% certainty) or a maybe-go (that is, a no-go stimulus with 25% 
certainty, dataset 3; Fig. 5c). There was a significant effect of cue 
type on error rates (see the original article26 for details). We tested 
whether theta frequency is lower following a maybe-go cue com-
pared with a certain-go cue (followed by a no-go stimulus). As for 
datasets 1 and 2, we estimated peak theta frequency in a 1 s segment 
preceding stimulus onset. Similar to dataset 2, the number of incor-
rect responses was low (1.7% error rates in the certain-go condi-
tion), thus we used electrode FCz. Again, confirming our findings 
from the model and datasets 1 and 2, we found a higher peak theta 
frequency following certain-go cues compared with maybe-go cues 
(W = 358, P = 0.039, r = 0.36, 95% CI −0.01 to 0.08; Fig. 5d).

Control analyses. We showed that peak theta frequency decreases 
with task difficulty. A recent study demonstrated that, in the case of 
posterior alpha oscillations, amplitude and frequency are intrinsi-
cally related27 due to the thalamocortical circuits thought to generate 
alpha oscillations28. One concern could be that such a relationship 
also exists in the case of midfrontal theta oscillations, thereby con-
founding frequency and power. We thus verified whether peak 
theta amplitude exhibited the same pattern of decrease with task 

difficulty. We carried out the same analysis procedure that was 
used for peak theta frequency on peak theta amplitude (Fig. 6) and 
showed that there was no statistically significant difference in peak 
theta amplitude between easy and difficult conditions in any of the 
three datasets (all P values >0.078, uncorrected for multiple com-
parisons). This result shows that peak theta amplitude could not 
account for the decrease in peak theta frequency across conditions.

Additionally, we tested whether the shift in peak theta frequency 
could be confounded by amplitude or frequency of nearby fre-
quency bands. For both the delta and alpha frequency bands, we fol-
lowed the same procedure as for the main results on the theta band 
but instead analysed peaks in the 1–3 Hz range (delta) or 8–12 Hz 
range (alpha band). No statistically significant decrease with task 
difficulty was found for the delta or alpha band, neither in peak fre-
quency (all P values >0.091, uncorrected for multiple comparisons; 
Extended Data Fig. 3a,c,e,g,i,k) nor in peak amplitude (all P val-
ues >0.200, uncorrected for multiple comparisons; Extended Data  
Fig. 3b,d,f,h,j,l).

These control analyses therefore suggest that the shift of peak 
theta frequency with task difficulty occurs independently of changes 
in theta amplitude or changes in nearby frequency bands.

Discussion
We have identified an adaptive mechanism allowing flexible cogni-
tive control. We propose a computational model, test its predictions 
in behavioural and electrophysiological data and show that theta 
oscillations lawfully adapt to task demands by shifting towards opti-
mal frequency for task performance. Moreover, we replicate this 
finding in two independent datasets implementing entirely different 
tasks (arithmetic operations and response inhibition) and show that 
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the shift of theta frequency according to task demands is a general 
mechanism involved in a wide range of cognitive processes. Finally, 
we controlled for possible confounding factors such as amplitude 
modulations and changes in nearby frequency bands and showed 
that the shift in theta peak frequency took place independently from 
other changes in oscillatory activity.

These findings are in line with evidence that frequency of neu-
ral oscillations adapts to external demands, for example, perceptual 
demands in alpha band29,30, and is related to short-term memory 
capacity in theta band31. Our study complements and extends our 
understanding of how neural oscillations support cognitive pro-
cesses by providing a mechanistic account allowing to simulate and 
test further hypotheses. An exciting avenue for future research lies 
in characterizing how adaptive shifts in theta frequency relate to 
cross-frequency coupling dynamics32, for example, between theta 
and gamma oscillations.

A related body of work has investigated the role of theta peak 
frequency in working memory processes. Indeed, theta oscillations 
originating from medial temporal lobe and basal forebrain struc-
tures (for example, hippocampus and septum) have been hypoth-
esized to support the maintenance of ordinal information in an 
item sequence in working memory31. According to this theory, the 
phase of theta oscillations structures the (re)activation of distinct 
neural populations oscillating at gamma frequency, each represent-
ing an item of the maintained sequence. This theory thus predicts 
that a slower theta frequency, leading to longer periods in which 
items could be nested, would increase working memory capacity 
(see also ref. 33 for a discussion of oscillatory frequency and cog-
nitive resources). Some studies have confirmed this prediction 
empirically by showing that higher working memory loads led to 
a reduction of theta frequency34,35. Moreover, a recent study caus-
ally tested this prediction using transcranial alternating current 
stimulation (tACS)36 and showed that stimulating a frontoparietal 
network at a slow (4 Hz) versus fast (7 Hz) theta frequency led to 

increase in working memory capacity. Although theta oscillations 
that support working memory and cognitive control serve differ-
ent purported roles (that is, structuring maintained information 
in working memory versus synchronizing for communication in 
cognitive control) and have distinct neural origins (hippocampus/
septum in working memory versus MFC in cognitive control), both 
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for each rule and for correct and incorrect trials separately. e, Correlation 
between theta peak slope across rule difficulty and overall accuracy: 
the degree to which theta frequency shifted from difficult to easy rules 
positively correlated with overall accuracy (robust Spearman correlation: 
r(32) = 0.49, P = 0.004, 95% CI 0.17–0.71). Each dot represents a  
single participant.

Nature Human BehavIour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


Articles Nature Human Behaviour

views on theta oscillations highlight the importance of peak oscil-
latory frequency. One exciting avenue of research concerns the 
interplay between theta oscillations supporting cognitive control 
and supporting working memory. Indeed, the control over memo-
rized items in a working memory task, for instance after retro-cuing 
a subset of maintained items or during manipulation of a memo-
rized sequence of items, has been shown to depend on midfrontal 
theta oscillations37,38, which are plausibly homologous to the ones 
observed in the current experiment and in cognitive control more 

generally1,39. Finally, some studies have demonstrated that midfron-
tal and hippocampal theta oscillations can phase-lock or exhibit 
coherence with each other in certain contexts39,40, suggesting that 
the two theta-generating systems can interact. For now, more stud-
ies are needed, for instance using intracranial recordings in humans, 
to better understand the relationship between midfrontal and hip-
pocampal theta oscillations.

In our model, the MFC unit generates theta oscillations when a 
rule is instructed. These oscillations orchestrate rule-node competi-
tion and generate bursts synchronizing rule-relevant sensory and 
action nodes. This mechanism based on theta oscillations is coher-
ent with an energizing, or more generally modulatory, role of the 
dorsal anterior cingulate cortex (dACC), in line with the expected 
value of control theory41,42, according to which the dACC specifies 
the intensity of the control signal. This has also been described as 
a motivational function of the dACC, in line with the observation 
that lesion of dACC can lead to deficits in motivated behaviour43. 
However, these accounts do not discuss the specific role or impor-
tance of theta oscillations. Another line of work demonstrated that 
the exertion of cognitive control critically relies on theta oscilla-
tions1,2 to create task-relevant functional networks3,4. Most of these 
studies showed that the amplitude of theta oscillations generated in 
the dACC increases after conflicts and errors and predicts improve-
ment in task performance1. Our study thus extends our knowledge 
on the energizing role of dACC by showing that, in addition to theta 
amplitude, another dimension of theta oscillations is crucial for 
optimal control of task representations, that is, theta frequency. This 
generalization of the energizing role to a modulatory one allows for 
an extra degree of freedom in control. Specifically, it posits that two 
separate aspects of this control signal can be independently manip-
ulated (by the dACC): the intensity of the control signal through 
theta amplitude and the time window of the control signal’s effect 
on the task representations through theta frequency. Previous stud-
ies have shown that adaptive changes in theta amplitude (that is, the 
intensity of the control signal) are critical for cognitive control, for 
example, in conflict adaptation44,45. On the other hand, adaptively 
changing the processing time window through theta frequency 
allows to adjust a trade-off in the orchestration of task representa-
tions by theta oscillations. In easy task rules, a faster theta frequency 
is optimal as these representations are set up quickly and reliably, 
whereas a slower theta frequency is necessary for difficult rules. 
This observation opens new avenues for research to understand the 
functional role of both theta amplitude and frequency in dACC.

Prior models have ascribed some aspects of rule or action rep-
resentations to the dACC (for example, refs. 46,47), and it has been 
shown empirically that dACC represents certain aspects of task 
sets41,48–51. It could thus be argued that our MFC unit should repre-
sent some aspects of actions or task sets. Here, we underline that our 
anatomical labelling (for example, LFC and MFC) was rather broad, 
in part because the functional architecture is not fully known, espe-
cially with respect to the division of labour between lateral and 
medial prefrontal cortices. Thus, the two theories are not necessarily 
in contradiction and may simply highlight different functional roles 
of LFC and MFC. We believe that it will be critically important for 
future modelling studies to investigate how the modulation of task 
representations can be implemented through targeted theta oscilla-
tions and that future experimental work should aim at disentangling 
how dACC and LFC modulate and represent task information.

Theta oscillations have also been shown to support attention in 
a several previous studies (for example, refs. 20,52–56). Many studies 
have shown that the amplitude of theta oscillations increases when 
attention is endogenously oriented (sometimes referred to as sus-
tained attention52,55) or when it needs to be reoriented20,53. These 
studies report changes of amplitude in neural oscillations in the 
theta frequency band or theta band fluctuations in behavioural per-
formance55–58 (see also ref. 21 for a review). It has been proposed that 
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Fig. 5 | Testing model predictions in other datasets. a, Experimental 
protocol in dataset 2. In this study, participants performed a cued serial 
mental calculation task in which a cue indicated whether the following 
calculations would be easy (that is, only +1 additions were used) or difficult 
(that is, addition or subtraction of different numbers). b, Theta peak 
frequency at FCz for easy and difficult cues. Circles represent correct trials. 
Peak theta frequency was lower in correct trials in the easy compared with 
difficult condition (one-sided Wilcoxon sign-rank test: W = 86, P = 0.018, 
r = 0.63, 95% CI 0.01–0.14). c, Experimental protocol in dataset 3. In this 
study, participants reacted to an action signal (stimulus; white square, 
circle or triangle). Each shape was randomly assigned towards one action 
(go, no-go or switch-go). Only the go and no-go actions were analysed, 
because switch-go data were unavailable. On half of the trials, a certain-go 
cue (for example, brown cross) indicated that the stimulus was going to 
be a go shape with 100% certainty. On 50% of the trials, a maybe-go cue 
(for example, blue cross) indicated that the stimulus had a 25% chance 
of being a no-go shape. d, Theta peak frequency at FCz for certain-go and 
maybe-go cues. Circles represent correct trials. Peak theta frequency was 
lower in correct trials following certain-go cues compared with maybe-go 
cues (one-sided Wilcoxon sign-rank test: W = 358, P = 0.039, r = 0.35, 
95% CI −0.01 to 0.08). The yellow framing around the cue and instruction 
stages in a and c represents the time window from which we extracted 
peak theta frequency. Data presented as mean values. Error bars represent 
s.e.m. computed over n = 14 participants in dataset 2 or n = 33 participants 
in dataset 3. Grey dots represent individual participants’ data.
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theta oscillations supporting attentional processes reflect rhythmic 
sampling of visual information at the attended location and across 
the visual field. These theta oscillations are thought to be supported 
by a network comprising the lateral intraparietal cortex, the pulvi-
nar nucleus of the thalamus and the frontal eye fields59,60 (but see 
also evidence that interaction between local receptive fields in V4 
can induce theta oscillations61). But to date, none of these studies 
have reported a shift in theta frequency across conditions. One pos-
sibility is that such shifts have been overlooked due to averaging of 
spectral amplitude across frequencies in the theta frequency band 
that is commonly performed to test for difference in amplitude of 
theta band oscillations, or contamination of peak frequency by other 
factors (for example, the aperiodic component of the spectrum).

However, it seems unlikely that differences in attentional 
demands underlie our findings. In dataset 1, the difficulty between 
same-side and different-side instructions (which induced the theta 
frequency shift) was situated at the stimulus–action mapping level, 
in contrast with attentional demand manipulations of stimulus dis-
criminability or identity (for example, simple feature versus feature 
conjunction searches in ref. 57 or the number of stimuli to track in 
ref. 58). Indeed, the tilt of grating stimuli in dataset 1 was determined 
in a separate block before the main experiment and kept constant 
throughout the main experiment blocks. Furthermore, there was no 
difference in the validity of rule instructions relative to target loca-
tion (that is, all instructions were 100% valid) and thus no uncer-
tainty in stimuli location that would differentially affect sampling of 
visual information by attentional processes. Similarly, no differences 
specific to attentional orientation or attentional sampling demands 
distinguished the conditions in datasets 2 and 3. Thus, differences 
in attentional demands alone cannot explain the shift in theta fre-
quency observed here. Nevertheless, it is possible that different 
theta oscillation-generating systems coexist and interact to support 
attention and cognitive control. In fact, in our model, the activity 
of rule-relevant sensory nodes oscillates at theta frequency due to 
the bursts sent from the MFC unit. It would therefore be interest-
ing in future studies to investigate how midfrontal theta oscillations 
supporting cognitive control interact with other generators of theta 
oscillations shown to support attentional processes62.

Our study also provides a potential explanation for the discrep-
ancy in reported oscillatory frequencies contributing to top-down 
cognitive processes63. Indeed, several studies have reported the  

involvement of different low-frequency bands14,64–67 during top- 
down control processes (for example, decision-making, working 
memory and hierarchical task implementation). The intrinsic fre-
quency range of theta oscillations poses limits on the processes that 
they can orchestrate. Therefore, based on the overwhelming evi-
dence that theta oscillations support task rule implementation and 
action monitoring1,68,69, it would seem that such processes must take 
place within a theta cycle. In our model, we chose to use the canoni-
cal 4–7 Hz limits of theta oscillations, thus a task rule that would 
require a longer build-up time than the slowest theta frequency 
(4 Hz, period 250 ms) could not be reliably instantiated. However, 
several recent studies have shown that the implementation of com-
plex task rules (for example, multiple simultaneous novel rules or 
nested task rules) elicit slow frontal midline oscillations in the delta 
range (1–3 Hz; see, for example, refs. 65,66). Although we did not find 
such a spread into lower or higher frequency bands in our own data-
sets (Extended Data Fig. 3), these results potentially question the 
conventional frequency limits of oscillations supporting cognitive 
control (usually attributed to the theta band). More abstract task 
rules (see, for example, refs. 65,70) recruit a larger extent of frontal 
areas71 and more rostral frontal areas, in line with accounts of a 
hierarchical organization of the frontal cortex70,72. This larger net-
work of areas might thus require longer periods to build up stable 
task representations and necessitate slower oscillations (in the low 
theta or delta bands) to efficiently and reliably implement such  
abstract task rules.

It would therefore be of interest to further test whether a grad-
ual increase in task complexity or abstractness could elicit a slow-
ing of neural oscillations generated by MFC towards the delta 
range. For instance, based on the stimulus–action mapping task we 
developed for our model and dataset 1, it would be interesting for 
future research to see whether we observe further slowing of mid-
frontal theta oscillations (that is, into the delta frequency band) 
if we increase the number of response options from two (that is, 
CW or CCW) to three or four (that is, different angles of grating 
rotation relative to vertical). Another possibility to study the effect 
of gradual increase in task complexity would be to use multistep 
tasks, such as hierarchical and/or temporally extended tasks73,74. 
Such studies would inform our understanding of the interaction 
between task complexity and the flexibility of the temporal scale of  
neural operations.
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Our model predicts that a decrease in MFC theta frequency from 
easy to difficult tasks is beneficial for behavioural performance. 
Several studies have tested the causal role of theta oscillations in 
cognitive control using tACS in the theta frequency band75–77. In 
these studies, a fixed theta frequency (for example, 6 Hz) is used 
across participants and conditions. It would therefore be interesting 
to test this prediction from our model by varying tACS frequency 
across the theta frequency range.

The integrator unit in our model aggregates inputs from the 
action unit, which is itself activated by the sensory unit. The integra-
tor unit commits to a response when the activity of any node in this 
unit reaches a (collapsing) threshold (Methods). The slope of the 
information accumulation of the correct node (for a particular trial) 
thus reflects the strength of the sensory signal or the difficulty of the 
instructed rule, or more generally, the task difficulty. This relation-
ship with task difficulty is consistent with the relationship observed 
empirically between the P3b event-related potential component 
(also referred to as centroparietal positivity) and the difficulty of 
perceptual decisions78. Indeed, the integrator unit of our model con-
stitutes a leaky competing accumulator network18, which is thought 
to capture essential dynamics of perceptual decision-making as 
studied in ref. 78. One interesting avenue for future research is the 
observation that our model accumulation in the integrator node 
associated with the correct response is locked to gamma oscillations 
that modulated the activity of rate code neurons in each neural trip-
let. It has been previously shown that evidence accumulation is sub-
ject to slow rhythmic fluctuations in the delta frequency band79. It 
would therefore be interesting to test whether additional fast rhyth-
mic dynamics exist in the upslope of the P3b component, which 
could have been hidden in previous studies. Indeed, if these gamma 
oscillations were not phase-locked across trials, the event-related 
potential averaging procedure would average out such fluctuations.

We observed a large interindividual variability in peak theta fre-
quency across conditions (see individual spectra in Supplementary 
Figs. 3–6). Although interindividual variability of the absolute theta 
peak (in hertz) can be partly attributed to nonfunctional sources 
of variance such as skull conductivity and thickness80,81, variations 
in individual peak frequency correlate with cognitive performance 
in the alpha band82–84 and this variability is related to properties of 
corticothalamic white-matter projections85. This suggests that indi-
vidual peak frequencies in different frequency bands can be a stable 
neurophysiological trait86 and that this variability of peak theta fre-
quency would itself be an interesting topic of investigation for future 
studies. For instance, investigating the causes and consequences of 
individual peak theta frequency could have an important impact 
on the development of personalized neurostimulation interven-
tions using transcranial magnetic stimulation or tACS77. Indeed, 
targeting peak theta frequency could allow to optimally modulate 
functional connectivity, which has been shown to be dysregulated 
in Alzheimer’s disease87–89. Moreover, substantial response variabil-
ity exists in repetitive transcranial magnetic stimulation treatment 
using intermittent theta burst stimulation for treatment of major 
depressive disorder90. It would thus be interesting to test whether 
individualized intermittent theta burst stimulation frequency, esti-
mated in a separate experimental procedure (see, for example, ref. 
91), could, at least partly, reduce this response variability.

Despite the robust and replicable association of theta oscillations 
and cognitive control, the neurobiological underpinnings of theta 
generation and modulation remain unclear. Microcircuit models 
of theta generation in anterior cingulate cortex (ACC) have been 
proposed92, and although the relevance of peak frequency fluctua-
tions has been mentioned, no clear mechanism driving such fluc-
tuations has yet been proposed. One candidate mechanism could 
be a reinforcement-learning system based on ACC–brainstem 
structures involving the locus coeruleus and noradrenergic neuro-
modulation of ACC circuits93. Indeed, the locus coeruleus heavily 

innervates MFC and has been shown to modulate cortical oscilla-
tions, and its activity increases with task demands94. It would thus 
be interesting to test whether noradrenergic pathways modulate the 
frequency of ACC-generated theta oscillations in response to task 
demands. Future studies investigating these candidate neurobiolog-
ical mechanisms allowing adaptive cognitive control will be crucial 
to better understand pathogenesis of several psychiatric disorders, 
for example, attention deficit hyperactivity disorder93,95.

Neural oscillations may address the fundamental binding prob-
lem in cognition by gating information flow in the brain to support 
cognitive flexibility33,96. Our results provide critical insights into the 
adaptive nature of theta oscillations supporting cognitive control 
and call for a more systematic evaluation of theta characteristics at 
computational, behavioural and neurophysiological levels.

Methods
Model. Overview. The model implements BC and CTC and consists of five units: 
two control units (LFC and MFC), two processing units (sensory and action units) 
and an integrator unit accumulating evidence from the action unit and producing a 
response. We first briefly describe how BC and CTC are implemented in the model, 
then proceed to a detailed description of each unit and the nodes composing them.

BC proposes that task representations compete, biased by top-down input. We 
implemented BC in the LFC unit, which was composed of rule nodes that pointed 
to specific processing nodes. Each rule node pointed to processing modules 
composing the rule. This allows a rule node to gate task representations (encoded 
via an input–output matrix), relevant for that particular rule. For instance, a rule 
node could implement the rule ‘report sensory feature 1 using action set 2’ (see 
this example in Fig. 1b). We used location (L or R) as a sensory feature. We used 
two action sets, namely L and R hand (see action unit in Fig. 1b). Rule nodes 
were interconnected to create a competitive accumulator network. Each rule node 
also received a biasing input throughout a trial from instructions in the form 
of two letters presented simultaneously and modelled as a top letter instructing 
which stimulus feature was the target (L or R) and a bottom letter instructing 
which action set to use (L or R). We refer to these instructions, or rules, in this 
manner: RL for right–left, where the first letter is the top one, instructing the 
target stimulus feature (right grating in this case), while the second letter is the 
bottom one, instructing the action set to use (left hand in this case). Each rule in 
the task (that is, RR, LL, LR or RL) activated a unique set of instruction nodes (Fig. 
1b, LFC unit). Two nodes represented the top letter of an instruction, and two 
others the bottom letter. This network of instruction nodes created a congruency 
effect between instruction letters: top and bottom L nodes were connected, 
thereby activating each other, and similarly for R nodes. In a Stroop-like manner, 
the connectivity in instruction nodes induced a stronger input to rule nodes for 
same-side (LL and RR) than for different-side (LR and RL) rules. Furthermore, 
different-side rules also activated noninstructed instruction nodes more than 
same-side rules due to the lateral excitation in instruction nodes, thereby making 
the BC between rule nodes more difficult for different-side rules to win.

The top-down bias signal from control units was implemented through CTC. 
The MFC unit generated theta oscillations. During a temporal window whose size 
depended on the specific theta frequency (that is, the slower theta, the longer the 
temporal window), a competition was initiated between rule nodes. During this 
competition window, MFC unit sent bursts of activity11,19,97. The most active rule 
node (that is, the one ‘winning’ the competition) amplified the burst and sent it 
to sensory and action nodes it points to. All sensory and action nodes oscillated 
at gamma frequency. These bursts reset the phase of sensory and action nodes 
selected by the LFC unit, and increased synchrony between them, allowing for 
efficient communication, that is, gating. Through this selective routing of bursts 
to sensory and action nodes, the model implements CTC by creating functional 
networks to implement a rule.

As a result of BC, one rule (typically, the correct one) will win the competition. 
However, in cases in which the competition is stronger, it will require a longer 
competition window for the correct rule to win the competition. The latter are 
difficult rules. In the model, rule difficulty was implemented through conflicting 
instructions that activated more rule nodes than did easy instructions, making the 
competition more balanced between the instructed and the other rule nodes. The 
consequence is that, for difficult rules, the model will achieve better performance 
at a slower theta oscillation frequency because longer competition will permit rule 
nodes to win the competition and thus gate the rule-relevant processing nodes. 
In contrast, for easy rules, performance increases with a higher theta frequency 
because rule nodes quickly win the competition and the faster theta frequency 
allows to more frequently gate rule-relevant processing nodes. Hence, an adaptive 
agent would shift theta frequency depending on task demands.

Oscillatory nodes: a neuronal triplet. In the MFC unit and processing units, 
each node i implements a cortical column simplified as a triplet of neurons, as 
used in previous models:19,45,97 a rate code neuron (xi) and two phase neurons 
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(one excitatory (Ei) and one inhibitory (Ii) neuron) (Figs. 1b,c and 2b–d). Phase 
neurons, that is, the E–I pair, generate oscillations with a frequency defined 
by the E–I pair’s coupling parameter (C). This E–I architecture uses the same 
basic principles as the pyramidal-interneuron network gamma model, which is 
commonly used to model gamma frequency generation98–100 but has also been 
used to simulate neural oscillations in other frequency bands (see, for example, 
refs. 101,102). The activity of each phase neuron is defined by a system of stochastic 
difference equations, following previous work19,97, for E neurons:

Ei (t + Δt) = Ei + Δt (−CIi (t) − DampJ (r > rmin) Ei (t) + Bi (t)) , (1)

and for I neurons:

Ii (t + Δt) = Ii + Δt (CEi (t) − DampJ (r > rmin) Ii (t)) , (2)

in which Ei (t) and Ii (t) denote the activity of the excitatory and inhibitory 
neurons of node i at time t and model data were simulated at 500 Hz, so 
Δt = 0.005 s. The radius r of oscillation (r = E2 + I2) of an E–I pair, which 
corresponds to its oscillatory amplitude, is constrained to a radius rmin = 1 
(except for simulations in which we varied MFC theta amplitude; Extended Data 
Fig. 1c,d). To implement this constraint, we use an indicator function J(·), which 
returns 1 when its argument is true (that is, when r > rmin) and 0 otherwise. The 
parameter Damp represents the strength of the attraction towards rmin and prevents 
the activity of the E–I pair from growing too large (that is, it dampens the activity 
of the E and I neurons). In more neurophysiologically realistic models (see, for 
example, ref. 103), such dampening of the E–I pair oscillatory amplitude would 
be implemented via a projection between the E–I pair and a pool of inhibitory 
neurons that in turn can inhibit the E and I neurons. For convenience, we here 
implemented the simpler, approximate implementation via the indicator function J 
and the Damp parameter, in line with previous models19,45,97. The parameter Damp 
was set to 0.3 for processing nodes. For the MFC node, Damp was set to 0.005 
times the theta frequency to scale with the speed of the E–I pair theta oscillations 
and maintain an equal amplitude across time for all theta frequencies. The term 
Bi denotes the burst that processing nodes could receive depending on the trial 
instructions (see MFC unit and LFC unit sections for details). The MFC node did 
not receive bursts, thus BMFC was set to 0.

The frequency of oscillations generated by the E–I pair was defined by the 
coupling parameter C, and its relation to frequency in Hertz is given by the 
following equation:

C = f2π, (3)

in which f denotes the frequency in hertz.
Rate neurons receive, process and transmit information to other nodes. Their 

activity (xi) is determined by the input to the node (ini). For instance, in a sensory 
node, the input ini to a rate neuron is either 0 (if its preferred stimulus feature is 
not presented) or 0.02 (if its preferred stimulus is presented; see Processing units 
section for more details). This input is then modulated by its excitatory phase 
neuron (Ei). Thus, rate neuron activity is updated by

xi (t + Δt) = xi (t) + Δt (−xi (t) + iniF (Ei (t))) , (4)

with F(·) being a logistic function of Ei:

F (Ei) =

1
1 + e−5(Ei(t)−θE)

. (5)

Processing units. The processing units are a sensory unit and an action unit. Each 
unit is composed of nodes representing cortical columns (Oscillatory nodes: a 
neuronal triplet section).

In all nodes of sensory and action units, the coupling parameter C was 
set to generate gamma oscillations. The gamma oscillations were set to 30 Hz 
by using a coupling parameter of C = 188.5, which in the computational 
implementation of the model was set to 0.377 to account for the sampling rate 
of 500 Hz (C/500 = 0.377). We used low gamma-band oscillations around 30 Hz 
as this subband of gamma has been shown to be critically important for visual 
processes104,105 and to be modulated by theta-band oscillations following task cues11. 
To test model stability, we also ran simulations using a higher gamma frequency of 
50 Hz, finding similar results.

To further show model stability and induce noise in processing nodes’ 
oscillatory phase, we modified the neural triplet dynamics used in prior 
implementations19 in which noise was introduced by independently varying the 
oscillatory frequency of each neural triplet across trials, while fixing it across time 
for each single trial. For that purpose, we added random slow fluctuations in the 
coupling parameter of nodes oscillating at gamma frequency, thereby mimicking 
noise in ongoing gamma oscillations as observed in empirical studies106. We 
generated random numbers from a normal distribution with parameters μ = 1 
and σ = 1, for each trial and each processing unit (that is sensory and action).  
A low-pass filter was then applied to these coupling fluctuations time courses, that 
is, Gaussian convolution with σ = 1 (in seconds). Finally, the coupling parameter 
(that is, C = 0.377 for 30 Hz oscillations) was multiplied by the value of these 

low-frequency coupling fluctuations. The result of this manipulation was slow 
random fluctuations of gamma frequencies in phase neurons of processing units. 
For example, for one trial, sensory nodes were oscillating at 32 Hz at a certain time 
t, then gradually shifting to 27 Hz, then to 35 Hz, etc. This slow fluctuation was 
generated independently for sensory and action units.

Rate neurons of the action unit receive input from rate neurons of sensory 
nodes to implement the two-alternative orientation-discrimination task on 
gratings. The main task was to report whether the target grating was tilted CW or 
CCW from the vertical axis. To report the tilt, the rule was to use the index and 
middle fingers of either the left or right hand, as indicated by the instructions.  
The left middle finger and right index finger should be used to report a grating 
tilted CW, and the left index finger and right middle finger to report a grating  
tilted CCW. Therefore, the connectivity between sensory and action nodes’  
rate neurons implemented this rule.

Integrator unit. The integrator unit accumulates information for each response, and 
triggers the model response once one of the integrator nodes reaches a threshold. 
There is thus one integrator node for each action node. The integrator nodes 
constitute a competitive accumulator network (as implemented in prior work, for 
example, ref. 18) with the following update:

yInteg(t + Δt) = yInteg(t) + Δt
(

WIntegxA + Wlat,IntegyInteg (t)
)

+ σIntegN (t) , (6)

in which σInteg = 0.05 is a vector collecting the activity of all integrator nodes 
at time t, WInteg denotes the weight matrix between action nodes and integrator 
nodes and xA denotes input from action nodes to integrator nodes. Wlat,Integ 
denotes the update matrix of integrator nodes in which off-diagonal cells are  
set to −0.10 to implement lateral inhibition while diagonal cells, representing the 
update rate of the competitive accumulator network, are set to 1. Finally, noise  
was added for each of the four variable integrator nodes with σInteg = 0.05 
multiplying a vector N (t) of four random values drawn from a standard-normal 
Gaussian distribution.

As stated above, the integrator unit produces a response when a threshold is 
reached by one of the integrator nodes. To model a speeded task constraint, we 
modified the classic competitive accumulator network18 to implement a collapsing 
threshold, equivalent to a collapsing bound in the DDM, which has been shown 
to adequately model the dynamics of response threshold in speeded tasks107. The 
threshold θy therefore decreased exponentially from stimulus presentation to 
response deadline according to the equation

θy (t) = 4 −

(

1 − e
(

−

t
0.35

)2
)

a
2
, (7)

in which θy(t) denotes the threshold of the integrator unit at time t and a 
denotes the initial starting point of θy. In all simulations, a was set to 4. Once 
one of the four Integrator nodes reached the threshold, we recorded the accuracy, 
depending on instruction, stimuli and the integrator node which reached the 
threshold, and the time elapsed from stimuli onset, which provided reaction time 
for this response (Fig. 2e).

MFC unit. The MFC unit generates theta oscillations that (1) generate bursts that 
phase-reset the processing units, as in prior work19,45,97, and (2) additionally initiate 
a competition window in LFC nodes (Fig. 2a,b).

The MFC unit is composed of a single node in which the E–I pair generates 
theta oscillations, whose frequency depends on the coupling parameter between 
the E–I pair. The rate neuron of the MFC node follows a Bernoulli process (Be) 
with a probability defined by the activity of the node’s E neuron as

MFCx(t) = Be
(

1
1 + e−5(EMFC(t)−θburst)

)

, (8)

In which Be denotes the Bernoulli process, EMFC denotes the activity of  
the MFC E neuron and θburst (set to −1) denotes the offset of the relation between 
EMFC and p (the probability to trigger a burst). Be(p) is 1 with probability p.  
It will thus typically be 1 when the EMFC(t) oscillation is near its peak. When 
MFCx = 1, a fixed amplitude burst of 0.5 is emitted to the LFC unit. The  
purpose of this burst is to synchronize processing nodes selected by the LFC,  
by phase-reset of their E neuron (see Processing units section for the burst’s  
effect and LFC unit section for the selection of the processing nodes receiving  
the burst).

In addition to the burst-emitting function of the MFC proposed in earlier 
work3,19, the MFC in the present model opens a competition window between 
rule nodes in the LFC at each cycle of its theta oscillations. At each cycle of theta 
oscillations in EMFC activity, a competition window is opened in which LFC rules 
compete. This competition starts when EMFC > θcomp, with θcomp = 0.1. The 
competition window lasts a fixed temporal interval across cycles defined by (as 
just defined) θcomp and the crucial CMFC parameter, which determines the theta 
frequency. To simulate different theta frequencies in the MFC, we varied the MFC 
coupling parameter (CMFC) from 0.050 (for 4 Hz theta), to 0.087 (for 7 Hz theta). 
See equation (3) in Oscillatory nodes: a neuronal triplet section.
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LFC unit. To implement biased competition in rule implementation, we extended 
previous models simulating task rules. We considered rule nodes as pointers to 
processing nodes constituting components of the rule (see, for example, refs. 41,108). 
Such pointers permit to bias processing units according to task rules and to create 
bindings between task-relevant components (see, for example, ref. 109). In recent 
computational accounts incorporating oscillations and synchrony, the LFC has 
been hypothesized to contain such pointers which route MFC bursts to processing 
nodes3,19,45,97. However, in these latter models, no competition occurs between rule 
nodes. In the current model, LFC is composed of rule nodes, where each such 
node consisted of one rate code neuron only. Together, they form a competitive 
accumulator network18, thereby implementing competition between rules. Each 
rule node receives a constant input throughout a trial from instruction nodes, 
which themselves are activated by the two instruction letters. Two instruction 
nodes represent the top letter of an instruction, and two other instruction nodes 
the bottom letter. This network of instruction nodes implements a congruency 
effect between instruction letters: top and bottom L nodes were connected with 
a positive weight, thereby activating each other, and similarly for R nodes (see 
instruction nodes in Fig. 1b). Instructions are represented as a vector of binary 
values (zeros and ones) in which the first two indices represented a top L and R, 
respectively, and the two last indices represented the presence of a bottom L and R, 
respectively. For instance, the rule RL was represented as instructions = [0, 1, 1, 0]. 
This was the input to the instruction nodes, which then projected to rule nodes 
through the equation

inrule = Winstructioninstructions, (9)

in which inrule denotes the input to rule nodes (that is, from instruction nodes). 
The matrix Winstruction represents the connectivity between instruction nodes 
implementing the lateral excitation, that is, instruction letter congruency effect. 
The diagonal of Winstruction was set to 1, and the cells representing the positive weight 
implementing the lateral excitation were set to 0.5.

The activity of rule nodes is updated through the equation

yrule(t + Δt) = yrule(t) + Δt (Wininrule + Wlat,ruleyrule (t)) + σruleN(t), (10)

in which yrule (t) denotes the activity of all rule nodes at time t, inrule denotes 
the input to rule nodes (that is, instructions) and Win denotes the weight matrix 
between instruction nodes and rule nodes in which weights between an instruction 
node of a particular letter and rules containing this letter were set to 0.5. For 
example, instruction nodes ‘top R’ and ‘bottom L’ projected to the rule node RL 
with weight 0.5 (see connectivity between instruction and rule nodes in Fig. 1b). 
Wlat,rule denotes the update matrix of rule nodes in which off-diagonal cells are  
set to −0.1 to implement lateral inhibition. The diagonal cells, representing the 
update rate of the competitive accumulator network, are set at 0.13. Finally,  
noise was added for each of the four rule nodes with σrule = 0.075, multiplying  
a vector N (t) of four random values drawn from a standard-normal  
Gaussian distribution.

This architecture from instruction nodes to rule nodes allowed to 
manipulate task difficulty. For instance, the same-side rule LL, modelled as 
instructions = [1, 0, 1, 0], provided strong input to the LL rule node, and a 
small input to the LR and RL rule nodes as they each share the bottom and top 
letter, respectively, with the instruction LL. Thus, for instructions = [1, 0, 1, 0], 
inrule = [0, 1.4, 0.7, 0.7], in which the inrule indices represent (in this order) RR, 
LL, LR and RL. On the other hand, a different-side rule such as RL, modelled as 
instructions = [0, 1, 1, 0], provided a relatively strong input to the RL rule node 
and a small input to LL, RR and LR nodes. Thus, for instructions = [0, 1, 1, 0], 
inrule = [0.7, 0.7, 0.4, 1], creating a stronger competition between the instructed 
rule (RL) and the other rules (RR, LL and LR) (Fig. 2a).

Finally, the most activated rule node at each time t amplified and routed the 
burst emitted at time t by the MFC (MFCx(t)) to the processing nodes it points to

B (t) = LFCpointers [yrule (t) ◦ J (yrule (t) = max (yrule (t)))]MFCx(t), (11)

in which B (t) is a vector of burst values arriving at each processing node’s E 
neuron (to reset its phase). yrule (t) is the activity of rule nodes at time t and the 
circle represents point-wise product. J(·) is an indicator function that returns  
an array of 0 and 1, with 1 only for the most activated rule node at time t. 
LFCpointers is a matrix containing the processing nodes each rule node is pointing 
to. MFCx (t) is the activity of the MFC rate neuron at time t. This could be 0 or 
0.5 (activity values were fixed), depending on whether the MFC is emitting a 
burst or not at that particular time point. Critically, equation (11) shows that only 
processing nodes corresponding to the most activated rule node received the  
burst, while all other processing nodes did not. For instance, if the instructed 
rule is RR and the most activated rule node at time t is RR, the sensory module 
‘Right grating’ and the action module ‘right hand’ received the burst, thereby 
synchronizing their gamma oscillations.

As a result of the congruency in instruction letters and BC between rule nodes, 
the instructed rule will win the competition more quickly for same-letter rules, that 
is, easy rules, than for different-letter rules, that is, difficult rules (Extended Data 
Fig. 1a,b). Therefore, same-side rules will succeed in synchronizing rule-relevant 
processing nodes more quickly. One consequence is that, for difficult rules, the 

model will achieve better performance at a slower theta oscillation frequency when 
competition lasts longer. In contrast, for easy rules, model performance increases 
with a slightly higher theta frequency. Hence, an optimal agent would shift theta 
frequency depending on task demands.

Simulations. We ran simulations of the model on the task depicted in Fig. 1a. 
Instructions are shown for 200 ms (two letters), then a variable ISD between 
1,700 and 2,200 ms in 11 steps of 50 ms allows to prepare the instructed mapping, 
and subsequently two gratings are shown for 50 ms. There were four possible 
instructions: RR, LL, LR and RL.

The presentation of each possible stimulus was modelled as constant input 
set to a value of 0.02 to the corresponding sensory node. There were four possible 
stimulus configurations because each of the two gratings could be tilted either CW 
or CCW. For each combination of task parameters, we ran 100 repetitions, which 
amounts to (11 ISD + 4 instructions + 4 stimuli configurations) × 100 = 17,600 
trials. We then grouped repetitions into 34 groups of ~500 trials each, each 
representing one participant.

Effect of amplitude on competition window. To verify that high and low theta 
frequencies are optimal for easy and difficult tasks, respectively, we independently 
varied MFC theta amplitude and frequency, and computed the competition 
window lengths for each combination (Extended Data Fig. 1c). Higher theta 
amplitudes increased the competition window length but quickly reached a ceiling 
(around an amplitude of 3). Theta frequency on the other hand produced larger 
increases in competition window, indicating that effects of theta frequency on 
model performance cannot be explained by theta amplitude alone. Furthermore, 
we replicated our main simulation at different MFC theta amplitudes and obtained 
similar results (that is, the difference in optimal frequency for easy and difficult 
rules; Extended Data Fig. 1d).

Stimulus–action mapping experiment (dataset 1). Participants. Thirty-nine 
human participants were recruited for this experiment (mean ± s.d. age 
23.7 ± 4.5 years, range 18–41 years old; 27 female). All participants had normal 
or corrected-to-normal vision and no history of neurological problems. 
All participants provided written informed consent and received monetary 
compensation for their participation. Five participants were excluded from the 
analysis: two completed fewer than 5 blocks, one had fewer than 200 trials after 
trial rejection based on eye-tracking data, one had poor overall behavioural 
performance (that is, less than 50% overall accuracy) and one participant was 
left-handed. The experiment was approved by the local ethics committee (Faculty 
of Psychology and Educational Sciences, Ghent University). Sample size was not 
computed a priori: we aimed for more than 30 participants. First, we recruited 35 
participants to reach a total number of more than 30 participants after drop-out, 
considering a ~10% drop-out rate due to noise-corrupted data or other issues 
related to participants’ task performance. The sample size after exclusions dropped 
to 30 participants, thus we tested 4 more participants, who were all included, 
bringing the sample size to 34 participants. Assuming a medium effect size and 
aiming for a power of 0.8 in a within-subject repeated-measure ANOVA analysis, 
the study would require a sample of 32 participants. Data collection and analysis 
were not performed blind to the conditions of the experiments.

Apparatus and stimuli. Participants sat in a dimly lit room, 60 cm from a 24 inch 
liquid-crystal display monitor (refresh rate 60 Hz, resolution 1,280 × 1,080 pixels). 
A chinrest was used to stabilize head position and distance from the screen. The 
experiment was implemented using Python 2.7 and the PsychoPy toolbox110.

Experimental design. Participants were instructed to perform a two-alternative 
forced-choice orientation-discrimination task on two sinusoidal gratings presented 
simultaneously on each side of a central fixation cross (Fig. 1a). Each grating 
was randomly tilted either CW or CCW relative to the vertical axis. The stimuli 
were sinusoidal gratings windowed by a raised cosine (size of 5° visual angle, 10% 
contrast, three cycles per degree, at 5° eccentricity, on a grey background). The tilt 
angle was calculated for each participant using a staircase procedure (see below) to 
avoid ceiling accuracy. Participants were instructed at the beginning of every trial 
to perform the two-alternative forced-choice task on the right or left grating and 
to respond using their right or left hand (index and middle finger, respectively, for 
CW and CCW tilt).

Instructions letters were presented for 200 ms with a size of 0.75° visual angle, 
and positioned above and below the central fixation cross (vertical eccentricity 
of 1° visual angle). The letter above the fixation cross instructed which grating 
was the target, that is, on which grating the discrimination should be performed, 
and the letter below the fixation cross instructed which hand to use to respond. 
After instructions, a preparation interval followed to allow participants to process 
instructions and prepare the stimulus–action mapping to perform the task. We 
used a dense behavioural sampling paradigm with multiple, densely distributed 
ISD:20 the duration of the ISD, between instructions and stimuli, was randomly 
chosen on each trial from 11 possible durations from 1,700 to 2,200 ms in 11 
steps of 50 ms. The variation in ISD was introduced to measure oscillations in 
behavioural performance and test predictions of the model (Fig. 3c).
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A trial time course consisted of a 1,000 ms baseline period, followed by 
instruction presentation for 200 ms, then the ISD, and finally the stimuli 
presentation for 50 ms. After stimuli onset, the fixation cross turned blue, 
indicating the beginning of the 700 ms response window. If a correct response 
was given, the fixation cross turned green. If an incorrect response was given, the 
fixation cross turned red. If no response was given during the response window, 
a message indicated that the participant was too slow and the experiment was 
paused, prompting the participant to take a break if needed, and press ‘Space’ to 
resume the experiment. Every trial that was missed, that is, not responded to, was 
added to the trial queue, and presented again at the end of the block. Participants 
performed one training block to familiarize themselves with the experimental 
design, one staircase block to compute the participant’s grating tilt angle and 
between five and eight blocks of the task depending on the number of missed 
trials (that is, participants who missed more response deadlines had longer blocks 
because trials were queued at the end of the block). The practice block consisted 
of 80 trials, the stimulus was shown for 100 ms and the response window lasted 
1,000 ms to make the practice task easier.

Following the practice block, participants completed a block implementing a 
staircase procedure on the tilts of the gratings. The staircase was done across all 
instructions and all ISDs to find a tilt level that would avoid ceiling performance 
and thus allow for variability across ISDs. We used a one-up two-down staircase 
procedure consisting of 80 trials. The event timings and stimulus properties were 
the same as in the main task. Only the tilt of the gratings varied throughout the 
trials. Initially, a wide tilt (7°) was set. The procedure started with a step size of 3°, 
which was divided by 2 every other reversal starting at the second reversal. The 
reversal corresponded to switches in participants’ response accuracy, that is,  
from a sequence of correct responses to an incorrect response or the other way 
around. When a participant switched from a correct response to an incorrect 
response, the difficulty of the task was decreased by increasing the tilt of the 
gratings. Conversely, when a participant responded correctly after a sequence of 
errors, the difficulty of the task was increased, that is, the tilt of the gratings  
was decreased. The minimum tilt step size was set at 0.1°, the maximum final  
tilt of the gratings was 30° and the minimum was 0.5°. The final tilt was the  
average of the last ten tilts.

After the staircase block, participants completed between five and eight blocks 
of the main task depending on the number of trials missed. That is, participants 
who missed the response deadline more often had longer blocks (because of 
queued trials) and therefore completed fewer blocks. In total, the experiment lasted 
~3 h from explanation of the task to removing the EEG cap.

Eye-tracking acquisition and processing. We recorded eye movements using a 
SensoMotoric Instruments RED250 mobile system eye-tracker with a sampling  
rate of 250 Hz. The eye-tracker camera using infrared optics was attached to the 
bottom of the computer screen. We used the PyGaze Python toolbox111 to control 
the eye-tracker through the experiment’s script. Each block of the experiment 
started with a calibration procedure in which participants had to follow a moving 
red dot with their eyes to nine locations on a grey background, the success of  
which was validated before continuing. Gaze position was epoched from 
instructions onset to stimulus presentation. To epoch gaze position data and align 
them with EEG data, we aligned the trial onset (instructions presentation) using 
the trial onset trigger in eye-tracking data and the trial onset trigger in EEG  
data. We then calculated the distance from the fixation cross in degrees of visual  
angle at each time point in the epoch. Any trial in which the gaze was outside  
a 1.5° radius centred on the fixation cross at any moment in the ISD was rejected  
in the behavioural and EEG data.

Behavioural data analysis. As described above, trials in which gaze position 
distance from the fixation cross exceeded 1.5° of visual angle were discarded. 
Trials were grouped by instruction and by ISD. Model simulations showed a theta 
frequency–rule difficulty interaction in accuracy but not in reaction times (Fig. 3a 
and Extended Data Fig. 2a). We therefore used accuracy as our dependent variable.

To compute spectra of behavioural accuracy oscillations across ISDs, we first 
average-padded accuracy values (Supplementary Fig. 2a). Average-padding was 
performed for each participant and for each instruction independently to increase 
frequency resolution to 1 Hz (ref. 20). To pad the data, values corresponding to 
average accuracy across ISDs (by instructions) were added on either side of the 
empirical data points. Specifically, the eleven time points, spanning 500 ms, were 
padded to get a 1,000 ms segment, thus adding five data points before the first data 
point and five after the last one.

We then computed a fast Fourier transform to obtain frequency spectra of 
each accuracy-by-ISD time course for each participant and each instruction. 
Fast Fourier transform allows to decompose the behavioural data from the time 
domain into frequency components to estimate an amplitude spectrum, that is, 
the amplitude of oscillations at each frequency present in the original data. We 
then extracted peak theta frequency by selecting the frequency with the largest 
amplitude. Finally, we z scored the peak frequency value across rules, separately 
for each participant, to discard any difference in offset or range of theta peak 
frequencies across participants. This procedure was carried out to specifically 
test the model prediction that theta peak frequency decreases with task difficulty, 
thus interindividual differences in theta peak frequency for each instruction were 

not of interest in this specific analysis. The raw peak frequencies for behavioural 
oscillations are also available in Supplementary Fig. 7a (left panel).

EEG acquisition and preprocessing. EEG was recorded using a Brain Products 
actiChamp system with 64 active scalp electrodes positioned according to 
the standard international 10–20 system at a sampling rate of 512 Hz. Four 
electrooculographic channels were used to record eye movements and blinks:  
two were placed on the outer canthi of the eyes, and two were placed above and 
below the right eye. All preprocessing steps were carried out by using the Python 
MNE toolbox v.0.21112. Raw EEG data were downsampled offline to 200 Hz, 
re-referenced to the average reference and low-pass filtered at 48 Hz using a finite 
impulse response filter with a Hamming window. The analysis of the prestimulus 
interval was performed on epochs from −1,000 to 0 ms relative to stimulus 
onset, yielding epochs of 1,000 ms. A linear detrend was performed on each 
epoch individually. After trial rejection based on eye-tracking data (Eye-tracking 
acquisition and processing section), raw EEG and electrooculographic time 
courses were visually inspected on a trial-by-trial basis to reject visible artefacts, 
eye movements or blinks. The mean ± s.d. percentage of rejected trials across 
participants was 26 ± 14%.

EEG spectral analysis. To estimate peak frequency of theta oscillations, we first 
computed power spectral density over the 1,000 ms window using Welch’s  
method provided in the Scipy toolbox v.1.3.1113. The Welch power density 
estimation was performed using a Hann window and zero-padding to obtain 
400 time points of data to smooth the spectra to improve estimation of peak 
frequency in the following analysis step. We then used a recent method that allows 
to parametrize neural spectra by fitting the 1/f pattern in electrophysiological 
recordings spectra (also called the aperiodic component), and subsequently 
identifies spectral peaks by fitting Gaussians on the flattened spectrum (that 
is, after removing the aperiodic component). This method thereby provides a 
sensitive identification and estimation of oscillatory processes in neural activity 
(FOOOF toolbox, version 1.0.016).

Indeed, this method permits to deconfound several factors that can mask 
shifts in peak theta frequency in grand average spectra (Supplementary Fig. 3a). 
First and foremost, interindividual differences in the 1/f structure (also called 
aperiodic component) of the spectrum can mask shifts of peak theta frequency 
across conditions. More specifically, the offset and slope (also called exponent) 
of the aperiodic component have been shown to vary across participants16,114–116 
(Supplementary Fig. 3b). This variability can therefore affect the apparent peak 
frequency in the grand average spectrum. Second, interindividual variability in the 
height of theta band peaks makes it more difficult to compare the grand average 
(as can be seen in the grand average spectra in Supplementary Fig. 3a). And third, 
relatively large peaks in the alpha band (which can be as much as six times larger in 
power than the theta frequency peaks in some participants) vary in peak frequency 
and width across participants (see Supplementary Fig. 3b (middle panel), 
individual participants’ spectra in Extended Data Fig. 3 and Supplementary Figs. 5 
and 6). These large peaks in the alpha band can alter the shape of the grand average 
spectra and mask changes in peak theta frequency. Together, these confounding 
factors require the estimation of the aperiodic component of the spectrum and the 
independent estimation of oscillatory peaks over the aperiodic component, as is 
performed in the FOOOF toolbox16 (but see below for control analyses in which 
we show that our main results are visible in raw power spectra, and robust and 
statistically significant when estimating theta peak frequency based on the raw 
power spectra, that is without the FOOOF toolbox).

This algorithm yields several measures, including the peak frequency and 
amplitude of oscillations detected over the 1/f pattern in the spectra (that is, by 
reporting the mean and height of the Gaussian fitted to each identified spectral 
peak in the flattened spectrum; Supplementary Fig. 2b). Using this algorithm, we 
computed, separately for every participant, trial and electrode, whether a peak 
was detected in the theta frequency range (that is, higher than 3 Hz and lower 
than 8 Hz), and we saved the estimated peak (in hertz) and the amplitude of the 
peak (in µV2 Hz−1). Settings for the FOOOF algorithm were as follows: To obtain 
peak frequency and amplitude in the theta frequency range, the power spectra 
were parametrized across the frequency range from 2 to 20 Hz. The peak width 
limits were set between 0.5 and 2, to find peaks that were frequency specific. The 
maximum number of peaks was set at four, under the assumption that, in the 
2–20 Hz frequency range, there could be four meaningful peaks, that is, one in each 
band (delta, theta, alpha and beta). No minimum peak height was set, the peak 
threshold was set at 2 (default) and the aperiodic mode was fixed (default).

To test model predictions in theta peak frequency, we separated trials according 
to the instruction and accuracy for each participant and each electrode. As a 
sanity check, for replication of previous findings on theta amplitude and as an 
independent electrode selection procedure, we investigated the scalp distribution 
of theta oscillation power for correct versus incorrect trials for dataset 1 (FCz 
was selected based on previous findings1 for datasets 2 and 3 since there were not 
enough incorrect trials; Results). To perform this analysis, we extracted the power 
of peaks found in the theta band using the FOOOF toolbox, for each participant, 
for each electrode, for each instruction, and for each trial separately. We then 
z-scored these values across electrodes. This allowed to highlight the specific theta 
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power topography elicited by proactive cognitive control, that is, preparing to 
implement an instructed stimulus–action mapping. We performed a cluster-based 
permutation test117 with 10,000 permutations on scalp topographies to test 
whether a cluster of electrodes showed relatively higher theta power in correct 
versus incorrect trials (across all instructions). This analysis revealed a statistically 
significant cluster of electrodes in frontocentral sites (permutation cluster test 
P < 0.001; Fig. 4c). We then computed the average peak theta frequency (in hertz), 
extracted using the FOOOF toolbox, in the selected cluster of electrodes  
(Fig. 4c). In dataset 1, we z-scored the peak frequency value across rules, separately 
for each participant, to discard any difference in offset or range of the EEG 
theta peak frequencies across participants. In datasets 2 and 3, we centred the 
peak frequency value across conditions, separately for each participant, for the 
same reasons and because there were only two conditions. This procedure was 
carried out to specifically test the model prediction that theta peak frequency 
decreases with task difficulty, thus interindividual differences in theta peak 
frequency for each instruction were not of interest in this specific analysis. The 
raw peak frequencies for EEG oscillations in all three datasets are also available in 
Supplementary Fig. 7a–c.

Because of the challenging nature of characterizing power spectra (see, for 
example, ref. 118), we also carried out additional control analyses directly on  
the raw power spectra to test whether our main result was observable without 
using the FOOOF toolbox (that is, without aperiodic component estimation 
and Gaussian fitting). First, we sought to better illustrate the shift in theta peak 
frequency that can be confounded by interindividual differences and other factors 
(Supplementary Fig. 3a). To do so, we replotted the grand average spectra  
(from Supplementary Fig. 3a) after aligning each participant spectrum to its 
own peak in the most difficult rule (that is, RL) and scaling each grand average 
spectrum between 0 and 1. This analysis, anchored in the raw spectra (without 
using the FOOOF toolbox) showed that a clear shift towards higher frequencies 
was visible for easier rules, confirming that our results are robust and observable  
at the group level.

Second, we showed that our main finding that frontal peak theta frequency 
decreases with rule difficulty is also present (both substantially and statistically) 
when estimating theta peak frequency directly in the raw amplitude spectra as the 
theta-band frequency exhibiting the highest power (in µV2 Hz−1; Supplementary 
Fig. 8). More specifically, for each participant, condition and electrode in the 
identified frontocentral cluster, we extracted the theta-band frequency with the 
highest power, then averaged these peak frequencies across electrodes, resulting 
in a theta peak frequency per participant per condition. Moreover, to evaluate the 
presence of our predicted effect, that is, a decrease in peak theta frequency from 
same-side to different-side rules, we computed the proportion of participants 
exhibiting a positive difference in peak theta frequency between same-side 
and different-side rules. We carried out this analysis in both peak frequencies 
obtained using the FOOOF toolbox and peak frequencies obtained directly from 
the raw spectra. This analysis revealed that a majority of participants exhibited 
the predicted effect (see Supplementary Fig. 8 and discussion thereof), showing 
once again that our results are replicated without the FOOOF toolbox, thereby 
alleviating any concern about the challenges in the estimation of the aperiodic 
component performed by the FOOOF toolbox118. However, we still believe that 
condition- and participant-wise estimation of the aperiodic component of the 
spectra, and frequency and power of peaks (as performed by the FOOOF toolbox) 
is necessary to avoid confounding factors that could mask the effect or result in 
spurious differences in peak frequency or power.

Finally, for the control analyses on theta amplitude (Fig. 6) and nearby 
frequency bands (Extended Data Fig. 4), we followed the same procedure as for the 
main analyses on theta frequency band (that is, using the FOOOF toolbox). For the 
alpha frequency band, we followed the same procedure as for the main results on 
the theta band but considered peaks in the 8–12 Hz range. For the delta frequency 
band, we used frequency limit parameters of [0, 20] Hz in the parametrization of 
the power spectra, and considered peaks in the range of 1–3 Hz. For both delta 
and alpha frequency bands, we then followed the same procedure as for the main 
results on the theta frequency band.

Statistical analyses. To compute the optimal theta frequency per rule difficulty 
(same-side (RR, LL) versus different-side (LR, RL) rules) in the model, we 
calculated the MFC theta frequency yielding the highest accuracy for each group of 
simulations (Simulations section). We then compared the two samples of optimal 
theta frequencies per rule difficulty using a two-sided Wilcoxon signed-rank 
test (Fig. 3b). For this, and all other Wilcoxon signed-rank tests, we computed 
nonparametric confidence intervals using bootstrapping of the difference in 
medians between conditions. The reported effect size for Wilcoxon signed-rank 
tests is the matched-pairs rank-biserial correlation (r)119.

Reaction times and DDM parameters estimated on model data (Extended Data 
Fig. 2a) were analysed using a 2 × 7 repeated-measure ANOVA with factors of rule 
difficulty (two levels: same-side and different-side) and theta frequency (seven 
levels: from 4 to 7 Hz in steps of 0.5 Hz), using the StatsModels v0.10.1 (https://
www.statsmodels.org/v0.10.1/) and Pingouin v0.5.0120 (https://pingouin-stats.org/) 
Python packages. Data distribution was assumed to be normal, but this was not 
formally tested.

Participants’ behavioural and EEG data from the stimulus–action mapping 
experiment (dataset 1) were entered into two-way repeated-measure ANOVAs 
with factors of target location (two levels: L and R) and hand (two levels: L and R) 
using the StatsModels and Pingouin Python packages. For behavioural data, this 
consisted of accuracies, reaction times and DDM parameters per rule (Fig. 4a and 
Extended Data Fig. 2a) and peak theta frequency (that is, of accuracy-by-ISD) per 
rule (Fig. 4b). For EEG data, this consisted of the average peak theta frequency 
from the selected electrode cluster (Methods) of correct trials per rule (Fig. 4d, 
circles), and the difference between average peak theta frequency of correct and 
incorrect trials.

For datasets 2 and 3, we report the statistical results from their behavioural data 
analyses. For the analysis of their EEG data, we followed the same procedure as for 
dataset 1, and because only two difficulty levels were available in these datasets, we 
performed a one-sided Wilcoxon signed-rank test to test the hypothesis that theta 
frequency decreased from an easy to a difficult condition. For all control analyses, 
that is, effect of task difficulty on peak theta amplitude (Fig. 6), and on peak 
frequency and amplitude in the delta and alpha frequency bands (Extended Data 
Fig. 4), we performed two-sided Wilcoxon signed-rank tests.

To investigate interindividual differences in the sensitivity of EEG peak theta 
frequency to rule difficulty in dataset 1, we performed a linear regression of each 
participant’s raw EEG peak frequency (in hertz) in correct trials ordered by each 
rule’s overall accuracy across participants (that is, rule was treated as a linear 
predictor with 79.16% for RR, 76.70% for LL, 71.87% for LR and 71.44% for RL). In 
a second step, individual-participant slopes were correlated with overall accuracy, 
collapsed across rules (Fig. 4e). We used a robust Spearman correlation (that 
is, skipped correlation121) implemented in the Pingouin Python package, which 
identifies outliers based on the minimum covariance determinant. The effect was 
also significant using a simple Spearman correlation. For illustration purposes, 
we computed a linear regression, excluding the identified outlier, to plot it as a 
regression line in Fig. 4e.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw behavioural, eye-tracking and EEG data can be found on the Open Science 
Framework repository at https://osf.io/nwh87/?view_only=b11ee1f860804da582c
816fe8acdecad.

Code availability
Code of the model, the behavioural experiment and analysis scripts to reproduce 
all results and figures from the study can be found on Github at https://github.com/
mehdisenoussi/theta_shift_cog_control.
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Extended Data Fig. 1 | Rule node competition and effect of MFC theta amplitude. a Number of time points the correct rule node won the competition in 
the LFC unit depending on the instructed rule. Black bars represent the 95% Confidence Interval (smaller than dot size). The colour of each dot represents 
the rule, as represented in the rule names on the x-axis. b Time course of proportion of correct rule node winning the competition across a sample of 
the ISD. Only two rule nodes are shown for clarity, one easy (green curve) and one difficult (orange curve). Shaded area represents the 95% Confidence 
Interval. c Effect of MFC theta amplitude and frequency on competition time window. Average competition window length, in milliseconds, for one theta 
cycle, that is one competition window, as a function of theta frequency for different theta amplitude. Varying the amplitude (the different lines) shows that 
although the competition window increases with amplitude, this effect reaches a ceiling around amplitude values of 2-3. Each line represents simulations 
at different levels of MFC theta frequency with a fixed theta amplitude. Line color represents MFC theta amplitude as represented in the legend. d Varying 
MFC theta amplitude from 0.8 to 2.0 yielded similar results concerning what was the optimal theta frequency depending on rule difficulty (n = 34 
simulations per theta frequency and for each theta amplitude, two-sided Wilcoxon sign-rank test: all W > 33, all ps < 0.002). Data are presented as violin 
plots, left- and right-most bars represent extrema, middle bar represent the median. Distribution density is represented by violin plot width.
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Extended Data Fig. 2 | Reaction times and control analyses with DDM. Reaction times and DDM parameters (bound, drift rate and non-decision time) 
estimated in model and participant data with the EZ-Diffusion model (see Methods). a Reaction time and DDM parameters of model performance by 
rule difficulty (same-side, different-side) and theta frequency (4 to 7Hz, steps of 0.5Hz), n = 34 simulations per theta frequency. We ran a repeated-
measure 2x7 ANOVA with factors rule difficulty (2 levels) and theta frequency (7 levels). There was a main effect of rule difficulty in all measures, that is 
reaction times, bound, drift rate and non-decision time, (all Fs(1, 33) > 98.96, all ps < 10-10, all η2 > 0.20). There was a main effect of theta frequency in 
reaction times, drift rate and nondecision time (all Fs(6, 33) > 3.20, all ps < 0.006, all η 2 > 0.01). There was a significant rule-difficulty – theta-frequency 
interaction in drift rate (F(6, 33) = 6.69, p < 0.001, η2 = 0.021). Error bars represent standard deviation across simulations. b Reaction time and DDM 
parameters (bound, drift rate and nondecision time) estimated on participants’ data grouped by rule (n = 34 participants). Data were collapsed across  
ISD to avoid data sparsity. We ran a repeated-measure 2x2 ANOVA with factors target-location (2 levels: Left, Right) and hand (2 levels: Left, Right). 
Only drift rate showed a significant interaction between hand and target-location (F(1, 33) = 31.86, p < 0.001, η2 = 0.21), as well as a main effect of hand 
(F(1, 33) = 6.65, p = 0.014, η2 = 0.02). Reaction time and bound showed a significant effect of hand (Reaction time: F(1, 33) = 4.62, p = 0.039, η2 = 0.04; 
bound: F(1, 33) = 4.84, p = 0.034, η2 = 0.03). All other effects were not significant (all Fs(1, 33) < 3.29, all ps > 0.079). Data are presented as mean 
values, error bars represent s.e.m. Smaller grey dots represent individual participants’ data.
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Extended Data Fig. 3 | Raw spectra of individual participants per rule in Dataset 1. The grey area represents the theta frequency band.
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Extended Data Fig. 4 | Control analyses on the effect of peak frequency and amplitude of nearby frequency bands. Panels a to f: delta frequency  
band (1-3Hz). Panels g to l: alpha frequency band (8-12Hz). Two-way repeated-measure ANOVAs were used for all Dataset 1 data. Two-sided Wilcoxon 
sign-rank tests were used for all Dataset 2 and 3 data. a Peak frequency of delta band oscillations in Dataset 1 (all Fs < 0.78, all ps > 0.384). b Peak 
amplitude of delta band oscillations in Dataset 1 (all Fs < 0.76, all ps > 0.390). c Peak frequency of delta band oscillations in Dataset 2 (W = 26,  
p = 0.104, r = 0.50, 95% CI = (−0.00, 0.04)). d Peak amplitude of delta band oscillations in Dataset 2 (W = 49, p = 0.855, r = 0.07, 95% CI = (−0.02, 
0.03)). e Peak frequency of delta band oscillations in Dataset 3 (W = 173, p = 0.091, r = − 0.34, 95% CI = (−0.07, 0.01)). f Peak amplitude of delta band 
oscillations in Dataset 3 (W = 195, p = 0.200, r = −0.26, 95% CI = (−0.04, 0.01)). g Peak frequency of alpha band oscillations in Dataset 1 (all Fs < 1.71, 
all ps > 0.199). h Peak amplitude of alpha band oscillations in Dataset 1. There was a main effect of target-location (F(1, 33) = 5.32, p = 0.027, η 2 = 0.051; 
uncorrected for multiple comparisons). i Peak frequency of alpha band oscillations in Dataset 2 (W = 29, p = 0.153, r = 0.44, 95% CI = (−0.05, 0.13)).  
j Peak amplitude of alpha band oscillations in Dataset 2 (W = 51, p = 0.951, r = 0.03, 95% CI = (−0.02, 0.02)). k Peak frequency of alpha band oscillations 
in Dataset 3 (W = 244, p = 0.715, r = − 0.07, 95% CI = (−0.05, 0.03)). l Peak amplitude of alpha band oscillations in Dataset 3 (W = 218, p = 0.394,  
r = −0.17, 95% CI = (−0.03, 0.01)). Data are presented as mean values, error bars represent s.e.m. computed over n = 34, 14 and 33 participants for 
Dataset 1, 2 and 3, respectively. Smaller grey dots represent individual participants’ data.
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