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Abstract

In this paper we describe a method for explaining the differ-
ences between the quality of plans produced for similar plan-
ning problems. The method exploits a process of abstracting
away details of the planning problems until the difference in
the quality of the solutions they support has been minimised.5

We give a general definition of a valid abstraction of a plan-
ning problem. We then give the details of the implementa-
tion of a number of useful abstractions. Finally, we present a
depth-bounded breadth-first search algorithm for finding suit-
able abstractions for explanations; and detail the results of an10

evaluation of the approach.

1 Introduction
In mixed-initiative planning settings, human and automated
planners interact and collaborate to produce satisfactory
plans. An automated planner is used to produce plans15

quickly and a human can then add constraints and prefer-
ences to the model until they are satisfied with the resulting
plan produced by the automated planner. After each addi-
tion of a constraint the newly generated plan can be of better
or worse quality compared with the version generated with-20

out the constraint, or the problem could even become un-
solvable. In each of these cases it would be useful to have
accompanying explanations for why additional constraints
lead to a difference in plan quality.

The setting in which these types of explanations are use-25

ful does not have to be a mixed-initiative setting. We assume
that the setting is as follows: there is a planning model, Π,
a constraint, c, which when applied to Π limits it’s possi-
ble plans, a solution plan for Π, π, and a solution plan for
Π+ c, π′, where there is a difference in the quality of π and30

π′. A special case for this is where π′ does not exist, that is
the model Π+ c is unsolvable. As in Krarup et al. 2021, we
refer to this process as model restriction. We restrict plan-
ning models such that they admit only solutions that obey a
certain constraint. The problem is then to explain why there35

is a difference in the quality of π and π′. We assume that
an explanation of the form “the difference is because of the
constraint c” is not helpful.

While there is a long history of work on explanation in AI,
most work on explanation of plans (XAIP) is relatively re-40

cent. Fox et al. 2017 highlight contrastive ‘why’ questions as
being important for plan explanation, and describe a number

of different types of these questions and possible responses.
Chakraborti et al. 2017 adopt the position that explanation is
a model reconciliation problem – namely, that the need for 45

explanation is due to differences between the agent’s and the
human’s model of the planning problem. Eifler et al. 2020
approach answering local contrastive questions by explain-
ing the reason that a contrast case B was not in the plan,
or a feature of the plan, by using the properties that would 50

hold if B were the case. Kasenberg et al. 2019 focus on jus-
tifying an agent’s behaviour based on deterministic Markov
decision problems.

We are not aware of any work that focusses on explaining
the difference in the quality of plans. However, there is work 55

on explaining why planning models are unsolvable. Gob-
eldecker et al. 2010 focus on finding changes to the initial
state that would make the planning problem solvable, and
provide an algorithm to produce these excuses in a reason-
able time. Sreedharan et al. use abstractions to explain the 60

unsolvability of planning problems, as opposed to explain-
ing the difference in quality of problems. They do this by
considering relaxations of the planning problem until a so-
lution can be found, and then looking for landmarks of this
relaxed problem that cannot be satisfied in less relaxed ver- 65

sions of the problem. They assume that the existence of cer-
tain predicates cause a planning problem to be unsolvable.
Thus the only abstraction they use is the removal of pred-
icates from the model. We recognise a larger set of useful
abstractions for AI planning systems, especially those that 70

have languages to specify temporal characteristics of plans.
An explanation for why two similar problems produce dif-

ferent quality plans should focus on the essential character-
istics of the problems. For example, in a delivery problem,
a user might ask why a particular truck was used rather than 75

an alternative. The answer might be that the selected truck
is better because of a weight limit on a bridge, or refrigera-
tion properties of the truck. Inspired by Lipton’s difference
condition(Lipton 1990) we want to find and explain more
accurately the causal differences between the original and 80

hypothetical plans. Finding this kind of explanation requires
abstracting away unimportant details like drivers, cargo, and
perhaps route details. We show how these explanations can
be generated by abstracting features of the planning problem
until the two plans become equi-quality – that is, of equal or 85

similar quality. We can then explain why one plan is better or



worse than the other in terms of the abstracted features that
impacted the difference in plan quality between the two.

The primary contribution of this paper is to define a
framework for the use of abstractions to explain plan qual-90

ity differences. In this paper, we first define a valid abstrac-
tion for a planning model, these can be used to extend this
work for new abstractions. We then introduce a running ex-
ample we will use to motivate some useful abstractions. We
formalise the implementation of a number of useful abstrac-95

tions for explaining quality differences of temporal plans.
We show how these abstractions fit our definition of an ab-
straction. We detail a proof-of-concept breadth-first search
algorithm for finding suitable abstractions for explanation,
and present the results of an experiment evaluating it.100

2 Planning Formalism
Definition 1. A planning model is a pair Π = ⟨D,Prob⟩.
The domain D = ⟨Ps, V s,As, arity⟩ is a tuple where Ps is
a finite set of predicate symbols, V s is a finite set of function
symbols, As is a set of action schemas, called operators,105

and arity is a function mapping all of these symbols to their
respective arity. The problem Prob = ⟨Os, I,G,M, T ⟩ is a
tuple where Os is the set of objects in the planning instance,
I is the initial state, G is the goal condition, M is a plan-
metric function from plans to real values (plan costs) and T110

is a set of timed initial literals.

A set of atomic propositions P is formed by applying
the predicate symbols Ps to the objects Os (respecting ar-
ities). One proposition p is formed by applying an ordered
set of objects o ⊆ Os to one predicate ps, respecting its ar-115

ity. This process is called “grounding” and is denoted with
ground(ps, χ) = p, where χ ⊆ Os is an ordered set of ob-
jects. The inverse of this function ground−1(p) = ⟨ps, χ⟩
returns the predicate symbol and objects. Similarly the set
of ground functions V are formed by applying the function120

symbols V s to Os.
A state s consists of a time t ∈ R, a logical part sl ⊆

P , and a numeric part sv that describes the values for the
ground functions at that state. The initial state I is the state
at time t = 0. We use the function S(Π) to denote the state125

space for a model Π, i.e. all states reachable from the initial
state in Π. The goal G = g1, ..., gn is a set of propositions,
including a subset of the logical state variables, P , and a set
of constraints over numeric state variables in V , that must
hold at the end of an action sequence for a plan to be valid.130

Similarly to propositions and functions, the set of ground
actions A is generated by the substitution of objects for op-
erator parameters. Each ground action is defined as follows:

Definition 2. A ground action a ∈ A has a duration
Dur(a) = ⟨lb, ub⟩ which constrains the length of time135

that must pass between the start and end of a; a start
(end) condition Pre⊢(a) (Pre⊣(a)) which must hold in the
state that a starts (ends); a numeric condition Pre↔(a)
which must hold throughout the entire execution of a; add
effects Eff (a)+⊢ ,Eff (a)+⊣ ⊆ P that are made true at140

the start and end of the action respectively; delete effects
Eff (a)−⊢ ,Eff (a)−⊣ ⊆ P that are made false at the start and
end of the action respectively; and numeric effects Eff (a)n⊢,

Eff (a)n↔, Eff (a)n⊣ that act upon some v ∈ V , at the start
of an action, continuously over the entire execution of an 145

action, and the end of an action.

For ease of notation we allow access to multiple types of
effects or preconditions through the ground action functions
at once. For example for some ground action a, Eff + de-
notes all add effects of a, Pre⊢⊣(a) denotes all start and 150

end preconditions of a but not invariant conditions, Eff (a)
denotes all effects of a including numeric effects, etc.

A plan is a sequence of grounded actions, π =
⟨a1, a2, . . . , an⟩ each with a respective time denoted by
Dispatch(ai) and duration Dur(ai). A valid plan is a plan 155

that transforms the initial state from I into a state s such
that s |= G; such that the start and end preconditions of all
actions are satisifed at the time they start/end; all invariant
conditions hold throughout the durations of each action, and
all actions execute for their respective durations. 160

The plan-metric function is, by default, the makespan of
the plan. Therefore usually, and throughout this paper, the
higher the metric of the plan the worse the quality of the
plan. More generally, the metric assesses plan quality by tak-
ing into account both the extent to which a plan respects user 165

preferences and also the costs associated with the choices of
action or combinations of actions within a plan. It is often
the case that plans fail to meet expectations because of a
mismatch in the way that plans are evaluated.

Timed initial literals (TILs) were introduced as part of 170

PDDL2.2 (Hoffmann and Edelkamp 2005), allowing an ini-
tial state to include simple effects triggered at specified
times, regardless of the plan. Each timed initial literal t ∈ T
is a tuple t = ⟨ttime, tv⟩ where tv is a proposition which
becomes true or false, or a numeric effect which acts upon 175

some n ∈ V at the time ttime.

3 Food Delivery Problem

Figure 1: A diagram of the food delivery domain.

As a reference example, we use a simplified version of
a food delivery domain. There are two trucks: truck T1 is
a normal truck, whereas truck T2 is refrigerated. There is 180

only one driver. The goal of the problem is to deliver the
meat and cereals packages to their respective locations. The
meat must be delivered to loc b and the cereals to loc c. Both
trucks, the meat, and the cereals are initially at loc a. It takes
20 minutes for a truck to move between the loc a and loc b, 185



15 minutes from loc b and loc c, and 10 minutes between
loc a and loc c. The meat will spoil after 22 minutes, unless
it is refrigerated. The cereals do not spoil.

For simplicity, we define two possible routes. Route 1 is
any plan in which we load the meat and cereals packages190

into any truck, drive from loc a to loc b and deliver the meat,
and finally drive from loc b to loc c and deliver the cereals.
Route 1 takes 35 minutes. Route 2 is any plan in which we
load the meat and cereals packages into any truck, drive from
loc a to loc c and deliver the cereals, and finally drive from195

loc c to loc b and deliver the meat. Route 2 takes 25 min-
utes. Note, not every route is necessarily possible with every
truck. The optimal plan is to perform Route 2 with the re-
frigerated truck T2. We refer to this plan as π∗ throughout.

4 Abstraction200

In the setting of model restriction described in Section 1,
we want to explain why there is a difference in the qual-
ity of two plans π and π′ based on a constraint c added
to a planning model Π. We propose to do this through ab-
stracting away elements of one of the planning models until205

M(π) = M(π′). We will abstract away details from Π if
and only if M(π) > M(π′), and we will abstract away de-
tail from Π+c if and only if M(π′) > M(π). An abstraction
of a planning model can be thought of as a relaxation of the
problem that the planning model describes. For any planning210

model Π′ to be an abstraction of Π then every solution of Π
must be a solution of Π′. Therefore, we ensure that by ab-
stracting away details from the model with the lesser qual-
ity plan that we are always preserving valid plans for this
model and therefore making the problem as easy to solve,215

and likely easier.
There is a large body of work on abstraction in planning.

The majority of this work focuses on the use of abstrac-
tions for computing heuristics. A planning problem can be
abstracted, making it easier to solve, this abstracted solu-220

tion can then be used as an estimate for the actual solu-
tion. One abstraction for computing a heuristic is the relaxed
planning graph heuristic (Hoffmann and Nebel 2001), where
all delete effects are removed from the planning model to
make the problem easier to solve. This is then used to gen-225

erate a relaxed plan that provides an estimate of distance
to a goal state in the original problem. Another example of
an abstraction for computing heuristics is merge-and-shrink
heuristics (Helmert et al. 2014), where a planning model is
separated into transition graphs on each proposition. These230

transition graphs can then be merged and shrunk until a good
estimate for the total transition system implied by the orig-
inal planning model is found that can then be used for gen-
erating a heuristic. These are both examples of abstractions
under our definition. Helmert et al. 2007 define what a gen-235

eral abstraction is in the context of AI planning based on a
labeled state transition system that maps to the semantics of
a planning system. They do this for providing flexible ab-
straction heuristics.

In this section we propose a more general approach to ab-240

straction, where state merging is one realisation, based on
the idea that abstraction is a relaxation. We define the space
of legal abstractions using a labeled state transition system

(LST), which represents the state space corresponding to the
grounding of a planning problem, and a simple temporal 245

network (STN), which represents the temporal constraints
and orderings on possible solutions of a planning problem.
We rigorously define what a valid abstraction of a planning
model is as we later give the implementations of model surg-
eries that abstract planning models. We use the definitions in 250

this section to prove that these model surgeries are valid ab-
stractions. Abstractions that are not valid could make plan-
ning problems harder to solve, and so would not be useful
for providing explanations.

The states of a planning model and transitions between 255

them via applying actions can be modeled with an LST.

Definition 3. A labelled state transition system (LST), τ , is
a triplet ⟨S,L, T ⟩, where S is a set of states, L is a set of
labels and T ⊆ S × L × S is a set of transitions. A path,
π, in τ is a pair in S × L∗, consisting of a state and a finite 260

sequence of labels l0, ..., ln−1, such that there is a sequence
of states, s0, ..., sn such that s=s0 and, for each i=0, ..., n-1,
(si, li, si+1) ∈ T .

Given an LST τ we define an abstraction, τ ′, as follows:

Definition 4. An LST, τ ′ = (S′, L, T ′), is an abstraction of 265

LST, τ = (S,L, T ), with respect to initial state, I ∈ S, and
goal set, G ⊆ S, if there is a mapping, f : S → S′, such
that for every transition, ⟨x, l, y⟩ ∈ T , from a reachable and
relevant state, x ∈ S, there is ⟨f(x), l, f(y)⟩ ∈ T ′.

An LST can be derived from a planning model: 270

Definition 5. Let Π be a planning model; the LST derived
from Π is τ = ⟨S,L, T ⟩. S is the set of all valuations
of valid groundings of Ps and V s. L is the set of labels
corresponding to the ground actions A. T = {(s, o, s′)|s ∈
S, the ground action o represents is applicable ins, s′ is the 275

resulting state of applying the ground action o represents in s}.
We define the function σ(Π) = τ to denote the derivation of
an LST from a planning model Π.

In planning problems, only states that can be traversed
to from the initial state are reachable and only states that 280

support paths to a goal state are relevant to the solution:

Definition 6. Given an LST, τ = (S,L, T ), a problem is
a pair, (I,G), such that I ∈ S and G ⊆ S, and these are
referred to as the initial state and goal set of the problem.

Definition 7. Given an LST, τ = (S,L, T ), and a problem, 285

(I,G), a state, s ∈ S, is reachable if there is a path from I
to s in τ . A state, s ∈ S, is relevant if there is a path in from
s to some state g ∈ G in τ .

Instead of thinking about abstractions of boundless LSTs,
for planning problems we can think of abstractions of LSTs 290

with relevant problems. Definition 4 can be generalised to
define an abstraction that operates over all problems in some
family of problems, P , for a given LST.

Definition 8. An LST, τ ′ = (S′, L, T ′), is a general abstrac-
tion of LST, τ = (S,L, T ), with respect to a set of problems, 295

P , if τ ′ is an abstraction of τ for every problem, (I,G) ∈ P .

The next set of corollaries trivially follow from the set of
definitions above. These are useful for our presented proofs



in Section 5 and for proving some properties about abstrac-
tions that are generally useful, and expected from the defini-300

tion of an abstraction.
Corollary 1 is very informative for abstractions for plan-

ning problems. Many relaxations of a planning problem will
add transitions to the LST of the planning problem. Through
this corollary, we can know that these suite of relaxations are305

all valid abstractions. Note that not all relaxations to a plan-
ning problem are trivially valid abstractions due to this ab-
straction. For example, if we remove negative effects from a
planning problem but we allow negative preconditions, then
this will remove edges in the derived LST. This is, of course,310

not the case if modelling language does not allow negative
preconditions where this relaxation would be a valid abstrac-
tion trivially proved by this corollary.

Corollary 2 is a more formal way of denoting this effect
removal abstraction that is common in relaxations of plan-315

ning problems.
Corollary 3 is similarly informative. As abstractions of

planning problems are relevant to a problem, (I,G), then
any relaxation of a planning problem that affects only states
that are not relevant to the solution of the problem, of which320

there are often many, is a valid abstraction shown by this
corollary.

Finally, Corollary 4 shows that state merging is valid ac-
cording to our more general definition of an abstraction. This
is useful as state merging abstractions have been long used325

as powerful tools in planning. However, we do not rely on
this corollary for any of our proofs.

Corollary 1. A second specific type of abstraction that falls
trivially within those defined in Definition 4 is edge insertion
abstraction: the addition of transitions to an LST, with f as330

the identity function, certainly contains all transitions in T .

Corollary 2. For a planning model Π with an initial state I ,
goal state G, and ground actions A we can remove an effect
e ∈ Eff +−

⊢⊣ (a) ∪ Eff n
⊢↔⊣(a) for some action a ∈ A, to

produce a planning model Π′. The LST τ ′ with the problem335

(I,G) derived from Π′ is an abstraction of the LST τ with
the problem (I,G) derived from Π, if e does not make any
reachable and relevant condition c ∈ Pre⊢↔⊣(a

′) true for
any a′ ∈ A or satisfy any goal g ∈ G.

Corollary 3. Removing states s and transitions ⟨s, l, y⟩340

where s is not reachable or relevant for any problem P is
a legal abstraction.

Corollary 4. The state merging abstraction is an abstrac-
tion according to Definition 4 using the following construc-
tion: states u, v ∈ S are merged into the new state, m, by345

taking S′=S \ {u, v} ∪ {m} and f(s)=s if s /∈ {u, v},
f(u)=f(v)=m, and T ′ = {⟨f(s), l, f(s′)⟩|⟨s, l, s′⟩ ∈ T}.
This is an abstraction by construction.

To model plans in which action durations, temporal hap-
penings, and temporal constraints matter; we can create a350

Simple Temporal Network (STN) (Dechter, Meiri, and Pearl
1991) on top of the LST from Definition 5 that dictates the
timings of the state transitions in the LST. An STN is a graph
whose vertices represent time points and weighted edges
represent the maximum/minimum separation between these.355

Definition 9. A simple temporal network (STN), G, is a di-
rected graph denoted by the triplet ⟨V,E, L⟩, where V is a
set of vertices, E ⊆ V ×V is a set of edges, and L ⊆ E×R
is a set of labels applied to edges to represent temporal sep-
aration between vertices. 360

An STN is constructed over an LST, τ , as follows: given
a finite sequence of labels in τ , {a1, a2, ..., an}. the corre-
sponding STN has n + 2 vertices, labelled I , ai (for i =
1...n) and G. The edges of the STN comprise an edge from
a1 to I and from ai+1 to ai, each weighted−ϵ (where ϵ sep- 365

arates interfering actions), an edge from G to an weighted
0, and, for each pair of labels, ai and ai+j , that represent the
start and the end of the same durative action instance, edges
from ai+j to ai weighted with −Dur(ai)[0] and from ai to
ai+j weighted Dur(ai)[1], i.e. for the edge e1 from ai to 370

ai+j , l(e1) = Dur(ai)[1], and for the edge e2 from ai+j

to ai, l(e2) = −Dur(ai)[0]. If any action starts or ends are
not paired off, the label sequence is not a valid plan; the se-
quence of labels is otherwise a valid plan if and only if it is
both a valid path in the LST and also a consistent STN. 375

TILs can be captured within the framework of the LST
and STN described above as follows. Given a TIL, t =
⟨ttime, tv⟩, specifying effect tv occurs at time ttime, to be
added to a planning model Π, a new proposition, t, is cre-
ated and added to the initial state, an action, TILt is created 380

with precondition t, that deletes t and with add effects tv and
doneT ; doneT is added to the goal. An LST is then created
in the usual way. The STN created for this temporal domain
is then adjusted by adding edges of weight ttime from I to
TILt and −ttime in the opposite direction. In this model, 385

a valid plan will be forced to contain exactly one copy of
the action TILt, in order to satisfy the goal. No additional
copies can appear because of the deleted precondition. The
temporal constraints can only be satisfied if TILt occurs at
exactly time ttime, along with all the other constraints of the 390

temporal structure of the plan.
We can then define an abstraction of an STN:

Definition 10. An STN G′=⟨V ′, E′, L′⟩ is an abstraction of
STN G=⟨V,E, L⟩, where V ′ ⊆ V and E′ ⊆ E, and if for
any two vertices v, v′ ∈ V that are connected by an edge 395

e ∈ E where there is a label l for e in L, we have l′ ∈ L′

where l′(e) ≤ l(e) , if v, v′ ∈ V ′ and e ∈ E′.
Finally, as we are working with temporal-numeric plan-

ning domains, we can define what a valid abstraction of a
planning model is based on their derived LST and STN: 400

Definition 11. A planning model Π′ is an abstraction of Π if
the LST τ ′ and the STN G′ derived from Π′ are abstractions
of the LST τ and STN G derived from Π.

In a perfect world, we would be able to explain why a
model is not solvable, by adding states, labels, and transi- 405

tions to the LST of a planning model. The LST would have
to represent the entire state space of a problem. LSTs can be
large even for simple planning problems (Helmert 2009).

Not only can it become infeasible to explicitly represent
the LSTs for these problems, but it can become intractable to 410

realise what modifications to the LST we must make for pre-
cise abstractions. We instead make changes to the lifted rep-
resentation of the planning problem with model surgeries.



This can simplify the abstraction process. However, it leads
to abstractions having potentially larger affects to the state415

space than expected.

5 Abstraction Implementation
In this section we describe the implementation of abstrac-
tions that we have identified as important for explanation.
We motivate each abstractions use in explanation with an420

example, we give the formal process of performing the ab-
straction on a planning model, and show how these fit our
definition of abstraction. We prove proposition 1 for each
abstraction α. This proposition must hold to guarantee that
the model surgeries we propose do not reduce the number of425

valid plans for a model, and therefore can be used to search
for valid solutions or solutions of better quality.
Proposition 1 (Valid Abstraction). Given an LST τ =
⟨S,L, T ⟩ and STN G = ⟨V,E, L⟩ both derived from a
planning model Π and an LST τ ′ = ⟨S,L′, T ′⟩ and STN430

G = ⟨V ′, E′, L′⟩ derived from the planning model Πα, τ ′ is
a valid abstraction of τ and G′ is a valid abstraction of G,
and therefore Πα is a valid abstraction of Π.

Each proof of a valid abstraction in this section follows
the same approach. Definition 4 defines what it means for a435

planning problem to be an abstraction of another. Each proof
consists of showing that for τ τ ′, G, and G′ derived from Π
and α(Π), τ ′ is an abstraction of τ and G′ is an abstraction
of G and therefore α(Π) is an abstraction of Π.

For ease of notation, we define two new functions Prop :440

Ps → P and Pred : P → Ps. The function Prop takes
a set of predicates and returns each of the propositions in
P that were formed from it’s grounding, i.e. for a set of
predicates ps, Prop(ps) = {p ∈ P |∃ps′ ∈ ps, χ ⊆ Os :
ground−1(p) = ⟨ps′, χ⟩}. The function Pred takes a set of445

propositions and returns the the set of predicates that were
grounded for them to be formed, i.e. for a set of propositions
p, Pred(p) = {ps ∈ Ps|∃χ ⊆ Os : ground(ps, χ) = p}

5.1 Abstracting Predicates
Given the example spoken about in Section 3 with the plan450

being presented to a user as one in which truck T2 performs
route 2, the user might instead prefer truck T1 to be used.
Through the system of model restriction we can force the
planner to ensure that the truck T1 is used throughout the
plan. The resultant plan will consist of truck T1 perform-455

ing route 1. This is because truck T1 cannot perform route
2 as the meat will spoil at time 22 and it is not possible to
extend the life of the meat in the unrefrigerated truck T1.
Route 2 takes only 25 minutes. However more than 22 min-
utes would have passed before the meat was delivered and460

so it would no longer be fresh. This new plan π takes 35
minutes compared to the original 25 minutes.

Through the use of abstractions we can determine the
cause of the disparity in solution quality. If we abstract away
the predicates, ps ∈ Ps, that are responsible for modelling465

the need for refrigeration, then we can produce a plan, π′,
in which truck T1 can perform route 2. This is a plan of the
same quality as the original plan, but we are instead using
truck T1 rather than truck T2 as the user expected. We can

therefore produce an explanation such as “if there were no 470

need for refrigeration, then truck T1 could be used such as in
π′, otherwise our new plan will be π which is slower by 10
minutes”. Abstracting a predicate consists of removing the
predicate from everywhere that is appears in the model.

The formal process for abstracting a predicate from a 475

planning model is as follows. Given a planning model Π
and a set of predicates ps ⊆ Ps the abstracted model is
Πps = ⟨D,Prob⟩, where D = ⟨Ps \ {ps}, V s,As′, arity⟩
and As′ = {a′|∀a ∈ As : Dur(a′) = Dur(a), P re(a′) =
Pre(a) \ {ps},Eff (a′) = Eff (a) \ {ps}}; and Prob = 480

⟨Os, I \ {p}, G \ {p},M, T ⟩, where Prop(ps) = p.

Proof. Removing a predicate ps from the planning model is
a valid abstraction. Removing a predicate obviously causes
all preconditions involving that predicate to be removed.
However, it also removes all effects (positive and negative) 485

on that predicate, but these effects no longer matter, since
no transition depends on them. This operation is equivalent
to merging states that are otherwise identical except for the
presence or absence of ps.

This can be seen by realising that, for the LST τ with 490

a set of problems P , the mapping f(s) = s \ {ps} main-
tains that for every transition ⟨x, l, y⟩ ∈ T from a reach-
able and relevant state s with respect to the problems in P ,
⟨f(x), l, f(y)⟩ ∈ T ′.

5.2 Abstracting Preconditions 495

In the same scenario as above a user might want truck T1 to
be used rather than truck T2. After restricting our problem to
behave due to the contrast case our new plan would consist
of truck T1 taking route 1, for the same reasons described
in the previous chapter. As in the previous chapter this new 500

plan π takes 35 minutes compared to the original 25 minutes.
Through the use of abstractions we can determine the

cause of the disparity in solution quality. In some cases
abstracting away an entire predicate may be extreme and
unnecessary. Instead we can abstract away certain precon- 505

ditions for actions. If we abstract away the preconditions,
ps ∈ Ps, that are responsible for checking that the produce
is fresh before it is delivered, then we can produce a plan
π′ in which truck T1 can perform route 2. This is a plan of
the same quality as the original plan, but we are instead us- 510

ing truck T1 rather than truck T2 as the user expected. We
can therefore produce an explanation such as “if the produce
did not need to be fresh for it to be delivered, then truck T1
could be used such as in π′, otherwise our new plan will
be π which is slower by 10 minutes”. An abstraction of a 515

precondition consists of removing a predicate from all pre-
conditions that the predicate appears in.

The formal process of abstracting a precondition from a
planning model is as follows. Given a planning model Π
and a set of predicates ps ⊆ Ps the abstracted model is 520

Πpre(ps) = ⟨D,Prob⟩, where D = ⟨Ps, V s,As′, arity⟩
and As′ = {a′|∀a ∈ As : Dur(a′) = Dur(a), P re(a′) =
Pre(a) \ {ps},Eff (a′) = Eff (a)}.

Proof. Removal of preconditions from actions is a valid ab-
straction. This is because removing preconditions manifests 525



as adding transitions in the LST, as can be seen from Defini-
tion 5 (the ground action o represents is applicable in s), so
by Corollary 1, it is a valid abstraction.

By Corollary 1 this is an abstraction with T ′ = T ∪
{⟨s \ {ps}, a,Eff a(s \ {ps})⟩|⟨s, a,Eff a(s)⟩ ∈ T} where530

Eff a(s) is the result of updating s with the effects of a.

5.3 Abstracting Durations
Again, assuming a user prefers truck T1 to be used rather
than truck T2 in the example in Section 3. We would have
new plan, π, that would consist of truck T1 taking route 1535

and take 35 minutes compared to the original 25 minutes.
In our example, if we abstracted the duration of the action

drive truck, then we can produce a plan π′ in which truck
T1 can perform route 1 quicker. An abstraction of an action’s
duration involves editing the action’s duration constraint so540

that the planner can select any positive duration.
Given a planning model Π and action schemas as ⊆ As

,the abstracted model is Πas = ⟨D,Prob⟩, where D =
⟨Ps, V s,As′, arity⟩ and As′ = As \ {as} ∪ {a′|∀a ∈ as :
Dur(a′) = ⟨0, inf⟩, P re(a′) = Pre(a),Eff (a′) = (a)}.545

Proof. Our abstraction has no effect on the derived LST:
τ == τ ′, there is therefore no effect on the vertices and
edges in the STN: V ′ == V and E′ == E, only L′ ̸= L.

For any two vertices vi, vi+1 ∈ V connected by an edge
e1 ∈ E and vi+1, vi connected by e2 ∈ E, then vi, vi+1 ∈550

V ′ and e1, e2 ∈ E′ and l(e1)
′ >= l(e1) and l(e2)

′ <=
l(e2). This is because the labels in the STN are defined by
the duration’s of actions, the smallest possible duration of an
action is 0, and the largest is inf. Therefore the labels in G
are contained within the labels of G′.555

5.4 Abstracting Timed-Initial-Literals
Given the same scenario above, rather than abstracting the
duration of the drive truck action so that we can deliver
the meat before it spoils, we could abstract the TIL that is
responsible for the meat spoiling.560

Through this abstraction we can produce a plan π′ in
which truck T1 performs route 2. We can still deliver the
meat when we arrive to location c in the unrefrigerated truck
because it would not have spoiled. This is a plan of the same
quality as the original plan, but we are satisfying the users565

foil posed in their question. We can therefore produce an ex-
planation such as “if the meat did not spoil after 22 minutes,
then truck T1 could be used such as in π′, otherwise our new
plan will be π which is slower by 10 minutes. An abstraction
of a TIL consists of creating an action that models the TIL.570

This action can be performed at any time and will have the
same effect as the TIL.

Given a planning model Π and a set of TILs t ⊆ T
the abstracted model is Πt = ⟨D,Prob⟩, where D =
⟨Ps′, V s,As′, arity⟩ and Ps′ = Ps ∪ {pt, dt|∀t}, and575

As′ = As ∪ {at|∀t : Dur(at) = ⟨0, 0⟩, P re(at) =
{pt},Eff x(at) = {tv},Eff −(at) = {pt}}, where x is
+ if the TIL is positive and − otherwise; and Prob =
⟨Os, I,G ∪ {dt|∀t},M, T \ t.

Proof. The abstraction of a TIL consists of modelling it as 580

an action, which is exactly how TILs are handled in the LST
and STN. This is an exact copy of the TIL in the LST and
therefore the TIL is not changed and therefore τ == τ ′.
This differs in the LST only in that the action can now be
executed at any time, i.e. V ′ == V and E′ == E, only 585

L′ ̸= L. In the same way as the proof in Section 5.3 this is a
valid abstraction as per Definition 10.

6 Searching for Suitable Abstractions
As described in Section 1 we consider the problem where
we have a planning model, Π, with a solution, π, and a con- 590

strained model, Π+c, which we will call Π′, with a solution,
π′, and there is a difference in quality between π and π′.

We consider an abstraction α of a model Π′ to be suit-
able as part of an explanation if for both the solution to
the abstracted constrained model Π′

α, π′
α, and the abstracted 595

original model Πα, πα, have costs, M(π′
α) and M(πα) and

|M(π′
α) −M(πα)| < n. Where n is a user-defined bound

below which we consider plans to be equi-cost.
This creates a suitable explanation as it abstracts details

from both of the models until they produce equi-cost plans. 600

We can therefore say that it is those details that cause the dis-
crepancy between the quality of the solutions for the original
and constrained models. However, there may be many possi-
ble abstractions that produce equi-cost plans. To distinguish
between these we are guided by the principle that we want 605

to maintain, as much as possible, the most important and
relevant structures of the problem. To this end we prioritise
abstractions first by their size (fewer composed abstractions
is better) and then by the similarity of the solutions to the
abstracted and original problems, i.e the abstraction with the 610

smallest |M(πα)−M(π)|.

6.1 Search
In this section we propose a search algorithm to identify cor-
rect abstractions that produce informative explanations.

The approach we take is to search over a poset of possible 615

abstractions. Definition 12 allows us to determine a poset
given a planning model, Π, the set of possible abstractions,
α, as L(Π, α) = (MΠ,≤). This gives an ordering on the
models that can be reached through the set of abstractions α.
This underpins our approach of abstraction for explanation. 620

Definition 12. Given a planning model, Π, and a set of ab-
stractions, α, the collection of associated models, MΠ, is
the closure of the image of Π under the application of the
abstractions, α. The partial ordering onMΠ is defined by:
for Π1,Π2 ∈MΠ, Π1 ≤ Π2 iff ρ(Π1) ⊆ ρ(Π2). This deter- 625

mines the poset L(Π, α) = (MΠ,≤).
For an abstraction poset, elements higher up in the poset

are more abstract than those at the bottom. The abstractions
that will form A in our search are all the possible abstractions
defined in Section 5. We do not construct this poset a priori, 630

we generate parts of the poset during search time.
We provide a search algorithm for finding suitable ab-

stractions for explanations in Algorithm 1. This algorithm
implements a bottom-up breadth first search. We start from
the constrained model and apply all possible abstractions 635



at each level of the poset before traversing up the poset in
a single step. This is repeated until we reach a model that
produces an equi-cost plan to the original solution. This al-
gorithm take as input the constrained model, Π′, the set of
possible abstractions, A, (see Sec. 5), the original plan, π,640

and a real value specifying the bound for equi-cost plans,
n. A queue is constructed, queueA, from the abstractions,
A, the current abstraction, curra, is then dequeued. The first
model that abstractions are applied to, currΠ, is a copy of
the model Π′. This is abstracted with curra to give the ab-645

stracted model, Π′
a, the function abstract takes an abstrac-

tion, a, and a model, Π, and returns an abstracted model, Πa.
A queue, queueΠ, is constructed from the abstracted model,
curra, that model is then solved, the function, solve, takes a
model, Π, and returns a valid solution plan for, Π. The algo-650

rithm then checks if the abstracted plan and original plan are
equi-cost, the function bound is as described in the introduc-
tion to this section. The algorithm then loops, repeating this
process for each model in the queue, for each abstraction in
the queue until there are no models left in the queue. In each655

iteration there is a further check that an abstraction, curra,
has not already been applied to the current model, currΠ.

Algorithm 1 gives a satisficing solution. It gives the first
of abstractions that produces a model whose solution is equi-
cost to the original. If we assume that all abstractions are of660

equal cost, then this would be an optimal solution as we will
apply all possible abstractions at each level of the poset be-
fore moving on. However, as noted earlier in this section, we
can evaluate abstractions based on the distance between the
quality of the solution of the abstracted model and the origi-665

nal solution. We can modify the stopping condition of Algo-
rithm 1 to give an optimising search algorithm that evaluates
the quality of certain solutions based on this metric.

6.2 The Explanation
The explanation will be composed of the abstractions that670

were used in order to get a satisfiable plan under the re-
stricted model. The specific explanation will be contextu-
alised by the constraint applied to the original model that
lead to a difference in the quality of the solutions. Each ab-
straction acurr is popped from the set of abstractions a. The675

type of the abstraction is then checked, these are each of the
abstractions outlined in Section 5. The explanation is then
formed by the types of, and the abstractions that allow the
problem to produce an equi-cost solution. In the next section
we give some examples of these generated explanations.680

7 Experiments and Results
In this section we present an empirical evaluation of our ap-
proach to finding explanations. Whilst we present results in-
dicating the performance of our algorithm; our focus is on
testing the ability of our approach to find explanations. Op-685

timizing the efficiency of the algorithm is left to future work.
Evaluation uses 6 differently structured planning prob-

lems. 2 of these problems are based on our running example
and the other 4 are instance 1 of Rovers and 2 of Satellite
from the International Planning Competition (IPC) (Long690

and Fox 2003). The 2 explainable problems are the Delivery

Algorithm 1: Breadth first search over an abstrac-
tion poset L(Π′,A) to find a set of abstractions a ∈ A
supporting a plan π′ such that |M(π′)−M(π)| < n

Data: {Π,Π′,A, n}
Result: a ⊆ A ∨ FAIL

1 queueA← queue(A);
2 curra ← dequeue(queueA);
3 Πa ← abstract(Π, curra);
4 Π′

a ← abstract(Π′, curra);
5 queueΠ← queue(Πa);
6 queueΠ′ ← queue(Π′

a);
7 π ← solve(Πa);
8 π′ ← solve(Π′

a);
9 if |M(π′)−M(π)| < n then return a ;

10 while ¬empty(queueΠ′) do
11 while ¬empty(queueA) do
12 curra ← dequeue(queueA)′;
13 if ¬applied(Π′

a, curra) then
14 Πa ← abstract(currΠ, curra);
15 Π′

a ← abstract(currΠ′ , curra);
16 enqueue(queueΠ,Πa);
17 enqueue(queueΠ′,Π′

a);
18 π ← solve(Πa);
19 π′ ← solve(Π′

a);
20 if |M(π′)−M(π)| < n then return a ;

21 Πa ← dequeue(queueΠ);
22 Π′

a ← dequeue(queueΠ′);
23 queueA← queue(A);
24 return FAIL;

domain discussed in Section 3 and an augmented version of
this domain in which there is another driver, D1, and only
one driver, D2, has the ability to drive the refrigerated truck,
we call this problem delivery+. 695

In Rovers, rovers take samples of soil, rock, and image
data to send back to a lander. Not all rovers are equipped for
all sample types. Cameras must be calibrated to take images,
rock data must be stored before it can be communicated, and
soil data can be collected and communicated. The optimal 700

plan for problem 1 is to use rover R1, calibrate the camera
and take an image, traverse to and collect the rock sample,
store it, and communicate the data; and finally traverse to the
soil sample, collect it, and communicate the data.

In our Satellite problem there is a satellite with two instru- 705

ments able to take photos in different modes. Instrument I1
can take infrared images and I2 can take both infrared and
visible images. The goal of the problem is to take images of
certain targets in certain modes. The optimal plan is to turn
on and calibrate I2 and take the required images. 710

Each problem is solved, then constraints added to make
the problem unsolvable or to require a plan of worse quality
than the original. We search for suitable abstractions using
the optimising version of Algorithm 1. Experiments ran on a
4gb machine with an i7-12800H CPU, and a 4 hour timeout. 715

We use the full set of abstractions detailed in Section 5.
The delivery problem is constrained so that truck T1 must



Domain Size of A First/s Optimal/s # Suitable # Optimal Size # Nodes Time/s
Delivery 21 20.04 20.04 489 203 1 585 20

Delivery+ 25 220.37 1382.22 307 12 2 868 20
Rovers Worse 64 520.61 1802.31 33 2 1 178 40

Rovers Unsolvable 64 10295.09 10295.09 10 4 2 350 40
Satellite Worse 22 420.31 420.31 11 8 1 52 140

Satellite Unsolvable 22 280.20 280.20 26 16 1 79 140

Table 1: Time taken to find and number of suitable and optimal abstractions for a selection of planning problems.

be used, requiring the poorer route 1 to be taken. The deliv-
ery+ problem is similarly constrained, but also so that driver,
D1, who cannot use the refrigerated truck, must make the720

deliveries. This is unsolvable.
The Rovers problem is constrained so that the image must

be taken before the camera is calibrated. The resulting plan
has the image capture in a different place in the solution. The
problem is separately constrained by removing the capabil-725

ity of the rover to sample soil or rocks, which is unsolvable.
The Satellite problem is constrained so that instrument

I1 must be used to take an image; the plan then uses I1 to
take the infrared images and instrument I2 is switched on
to take the visible light images. The problem is separately730

constrained so I2 cannot be used, which is unsolvable.
The results in Table 1 show, for each problem, the num-

ber of abstractions at each search level, (the size of A); the
time to find the first suitable abstraction (henceforth, abbre-
viated to fsa); the time to find the first optimal abstraction;735

the numbers of suitable and of optimal abstraction sets for
explanations found; the size of the abstraction set; the num-
ber of nodes expanded in the search; and finally the time
bound given for each problem. The bound is calculated by
finding the largest time taken to solve the original problem,740

or any of the constrained problems, and doubling it.
The fsa for the delivery problem was found in 20.04 sec-

onds; it is also optimal. 585 combinations of abstractions
were searched of which 489 were suitable and 203 optimal.
The first optimal solution found, of size 1, abstracts away the745

predicate determining whether meat or cereal is in a truck.
Now, the action that prolongs the life of the meat can be
used with truck T2 as the meat is no longer required to be
in the truck for this action to be performed. The plan is then
to use truck T1 to perform route 2 whilst using truck T2 to750

act as the refrigerator from location loc a. The explanation
produced is: {Predicate: (in ?p - produce ?t - truck)}. There
are many optimal solutions for this problem. Another is to
abstract the TIL responsible for determining when the meat
spoils. The plan for this abstracted problem uses truck T1 to755

perform route 2 without worrying about the meat spoiling at
all. The explanation is: {TIL: (fresh ?m - meat)}.

The fsa for the delivery+ domain is found in 220.37 sec-
onds. The first optimal abstraction is found in 1382.22 sec-
onds. 868 combinations of abstractions were searched. of760

which 307 were suitable and 12 were optimal. The first opti-
mal solution found, of size 2, abstracts away both the pred-
icate for a truck to be refrigerated and the requirement for a
driver to be qualified to drive certain trucks. Then truck T1
can be used in place of the refrigerated truck, and any driver765

can drive any truck. The plan for this abstracted problem is
to use T1 with the driver D1 to perform route 2.

The fsa for the rovers problem constrained to produce a
worse quality plan was found in 520.61 seconds. The first
optimal abstraction was found in 1802.31 seconds. 178 com- 770

binations of abstractions were searched, of which 33 were
suitable and 2 optimal. The first optimal solution found ab-
stracts away the predicate responsible for ensuring the target
of calibration matches is the objective image to be taken.
This allows for a camera to be calibrated on any target and 775

so the original calibration action never has to be performed
and so the constraint is trivially satisfied. The plan continues
the same as in the original plan, after the camera is calibrated
with an arbitrary objective.

The fsa for the rovers problem constrained to be un- 780

solvable is found in 10295.09 seconds; it is also op-
timal. 350 combinations of abstractions were searched,
of which 10 were suitable and 4 optimal. The first op-
timal solution, of size 2, abstracts away the precondi-
tions of the sample rock and sample soil actions that en- 785

sure the rover has the ability to sample rock and soil;
any rover can then gather rock and soil samples and
the plan is then the same as the original. The expla-
nation is: {Precondition: (equipped for soil analysis ?r -
rover),(equipped for rock analysis ?r - rover)} 790

The fsa for the Satellite problem constrained to produce
a worse quality plan is 420.31 seconds; it is also optimal.
52 combinations of abstractions were searched, of which
11 were suitable and 8 optimal. The first optimal solution,
of size 1, abstracts the precondition of the take image ac- 795

tion responsible for ensuring the instrument taking the im-
age supports the relevant mode. The instrument I0 can then
be used to take images of visible light and the plan for the
abstracted model is the same as the original plan other than
in using instrument I0 instead of I1. 800

The fsa for the Satellite problem constrained to become
unsolvable is 280.20 seconds; it is also optimal. 52 com-
binations of abstractions were searched of which 26 were
suitable and 16 optimal. The first optimal abstraction and
resulting plan is the same as the other Satellite problem. 805

8 Conclusion
In this paper a general definition for abstractions in planning
problems is presented and a number of surgeries on plan-
ning models are defined. A proof-of-concept algorithm is
presented and used to find suitable and optimal abstractions. 810

Building natural language explanations from these abstrac-
tions and evaluating them remains future work.
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