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ABSTRACT

Federated learning is a distributed approach to training a global model over multiple
clients without sharing their local data. In graph data, the data heterogeneity can
correspond to subgraph structures and node features varying extremely different,
and the model isolation to federated graph task corresponds to exclusive schema
on handing data for specific task in clients, e.g., anomaly user setting in Twitter is
rather different from LinkedIn. Although most federated graph learning approaches
are employed to address the data heterogeneity challenge, we find that the model
isolation to federated graph task challenge has been overlooked. This model
isolation to federated graph task will prevent existing models into the federated
graph learning framework. In this paper, we propose FEDGRAPH: a new paradigm
for federated graph learning. The key idea is to utilize the graph structure without
private node features as structure knowledge bridging all task specific knowledge in
clients. Our extensive experiments show that FEDGRAPH significantly outperforms
the other state-of-the-art federated learning algorithms on anomaly detection tasks.
Two deep learning models and one existing anomaly subgraph detection model are
transferred to FEDGRAPH framework.

1 INTRODUCTION

Graph applications are becoming increasingly prevalent in social activities, such as account recom-
mendation, hot event detection, and short video ranking on Twitter, LinkedIn, and TikTok. Most
applications developed by these companies deliver personalized content to users based on users’
personalized interests inferred from private data. In one social network service (e.g., Twitter), when
users exhibit similar behaviors, such as focusing on "US election" tweets, they tend to fall into a simi-
lar interest distribution. The extra data from Weibo also fit the personal interest distribution in detail.
Moreover, the EU General Data Protection Regulation (GDPR) regulates the collection, storage, and
processing of personal data, and has an effect on most major companies worldwide Gruschka et al.
(2018).

However, an important challenge raised from graph data heterogeneity is tackled by recent Federated
Graph Learning (FGL) methods Baek et al. (2023) from the personalized parameter perspective. In
graph data, the number of users features exhibit extremely non-independent and identically (non-IID)
properties, and the graph structure also exhibits more heterogeneity. In the federated learning (FL)
setting, most Graph Neural Networks (GNNs) consider the structure embedding, and the structure
heterogeneity is tackled by the personalized weighted parameters of the deep models Baek et al.
(2023); Yang et al. (2021). However, as the size of the graph increases, GNN-based models incur
significant communication costs. Additionally, traditional non-GNN models cannot be directly used
for federated learning.

Moreover, a significant challenge, model isolation to federated graph task, that has been overlooked
by the existing FL methods since graph learning models can be easily adapted to different graph
structures. The isolation of graph data and computation-specific algorithms has resulted in a gap in
performing federated tasks across multiple graph data, referred to as model isolation to federated
graph task. In Figure 1, data usually exist in the form of isolated islands Yang et al. (2019) in
most industries, and the task of detecting trending events on platforms such as Twitter and Weibo
is straightforward, but the specific knowledge of hot events (significant structure of the community
and users’ features) is often achieved within black boxes to protect algorithm execution processes.
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Figure 1: An example of a model isolation to federated graph task challenge. In hotspot event group
mining on Twitter and Weibo, the "US election" is an extremely popular topic on Twitter. However,
on Weibo, the top trending topic is the "stock market". Due to data isolation and the privacy of their
algorithms, traditional federated learning is limited in performing the federated task.

In traditional federated graph learning, multiple tasks cannot be performed collaboratively if graph
data and algorithm are both private. Graph data can be categorized into structures and features. We
protect graph features and algorithm execution processes, but the graph structure can be shared. So
federated graph learning tasks are aligned on the graph structures.

Motivated by these challenges, we propose a new paradigm for federated graph learning that treats the
graph structure as a bridge to private node features (in this paradigm, ’knowledge’ refers to subgraphs
mined by algorithms). For instance, a data owner (e.g., Twitter) obtains a graph that incorporates
its node features, allowing the use of exclusive graph learning methods within the organization. We
take the global graph structure as structural knowledge, which can communicate with other data
owners. We protect node feature privacy across all data fields. In this new paradigm, we consider
node features as privacy, and the graph structure in the server can be accessed by clients. For example,
a client may recommend a set of users as influencers on Twitter; however, those users may remain
unrecognized by other clients due to the absence of their private features. This paper takes anomaly
detection tasks as an example. Unless otherwise specified, anomaly detection will be considered
as the downstream task in the following text. For anomaly detection on multiple graphs, limited
exploration has been done for federated anomaly detection without data leakage (Zhao et al., 2019;
Chen et al., 2019; Ying et al., 2021; Zhao et al., 2020). A well-known cost function Fα(S) can be
specifically modeled in the ith industry data to anomaly detection task. We employ an alignment
function Qσ(S,U) for measuring the distance between subgraphs of S and U . F is the abnormal
score of S (e.g., the work Tree-Shape-Priors Subgraph Detection (TSPSD) (Wu et al., 2018) as F ).
Q is the alignment score of S and U (e.g., the work Cross-Network Embedding for Multi-Network
Alignment (CrossMNA) (Chu et al., 2019) as Q). The parameters α and σ are significant level and
alignment threshold. We refer to this new paradigm as Federated Graph learning (FedGraph).

We summarize our main contributions as follows:

• Innovative work. To the best of our knowledge, we are first to study federated graph learning
problem without aggregation on parameters, and with performing exclusively algorithms on clients,
referred to as model isolation to federated graph task challenge. We novel employ the graph
structure bridging different models from clients.

• Broad application. A broad spectrum of graph learning models can be easily transferred to
FEDGRAPH framework. Specifically, for the graph scan statistics (e.g., Berk-Jones) and two GNN
models (e.g., Dominant, CoLa), the models are successfully transferred to FEDGRAPH framework
in anomaly detection tasks.

• Effectiveness and robustness. Extensive experiments on five real datasets have verified that
anomaly tasks in FEDGRAPH can be effectively applied to different mulitiple graph settings. Our
proposed FEDGRAPH achieved at least 56% accuracy under the 30% noise level.
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2 RELATED WORK.

Federated learning. Federated learning, being an efficient technique for privacy protection and
suitable for cross-data, cross-domain, and cross-enterprise applications, is usually categorized into
horizontally federated learning, vertically federated learning, and federated transfer learningYang
et al. (2019). Kesici et al. (2024) detect real-time false data injection attacks in distribution networks
by utilizing split learning-based vertical FL. Qiu et al. (2024) detect the heart sound abnormality
in multi-center institutional heart sound databases by aligning the feature spaces of horizontal FL
participating institutions. Quan et al. (2024) integrate federated transfer learning and differential
privacy to classify diffuse waste data while ensuring data privacy.

Federated Graph Learning. In this article, the Federated Graph Learning (FGL) we study refers to
standard FL with structured data (i.e., server and clients work on graph data). Existing FGL methods
focus on reconstructing cross-client information, embedding overlapping nodes during collaborative
training, and dealing with data heterogeneity from multiple clientsFu et al. (2022). For instance,
Xie et al. (2021) and He et al. (2021) focus on addressing the challenge of the heterogeneity among
non-IID graphs, they assume that different clients have completely disjoint graphs. Li et al. (2020)
and Xie et al. (2021) tackle statistical heterogeneity by considering local partial data or server-side
proxy data as model parameters. When the graphs owned by clients are parts of an original global
graph, Wu et al. (2021) and Zhang et al. (2021) address the missing links and overlapping nodes
between subgraphs by augmenting nodes with information from other subgraphs. McMahan et al.
(2017) train the decentralized data on mobile devices and learn the shared model by aggregating
and averaging locally computed updates. Baek et al. (2023) focus on the joint improvement of local
models working on interrelated subgraphs, offering a novel solution to the challenges in subgraph-
level FL. However, these approaches can compromise privacy and increase communication overhead.
Hence, no published research studies task-specified structured knowledge federated learning. Our
method tackles the above challenge differently by exploring subgraph communities.

3 PROBLEM FORMULATION

We define our novel problem of federated graph learning with the same graph structure. The problem
has been extensively discussed in clients owning various graph-structured data.

Definition (Model isolation to federated graph task). A graph G = (V,E) with n nodes has node
feature matrix X ∈ Rn×d, where V = {v1, · · · , vn} represents vertices and E ⊆ V × V represents
edges. Each vertex v has a d-dimensional feature X(v, :). A local graph Gi on the i-th client can be a
global graph on the server: Gi = G. The global graph on the server is G0, with each local graph Gi
having a private node feature matrix Xi. Graph learning problem can be transformed into structure
(public) learning combined with feature (private) learning in graph Ding et al. (2019). In graph
settings G0, {G1,G2, . . . ,GN}, {X1,X2, . . . ,XN}, our objective is as follows:

min
∑
Gi⊆G

Li(Gi;S), S
(k+1)

=

N∑
i=1

S
(k) ⊕ Si (1)

where S is the global structural knowledge (i.e., the subgraph) in the server, ⊕ is the Operators
for sets (i.e., ∩).Si is the i-th client’s structural knowledge. Li ̸= Lj indicates that there is model
isolation between different clients. In federated graph learning, we observe the two characteristics of
model isolation to federated graph task:

Characteristic 1. (Exclusive Algorithm) In specific real-world federated task scenarios, client i
possesses private data Gi and a corresponding private algorithm fi. Due to privacy and property rights
limitations, clients do not share their full algorithms with one another. For instance, in the task of
identifying influential groups on Twitter and LinkedIn, Twitter emphasizes influencers with active
audiences, while LinkedIn prioritizes those who graduated from Ivy League universities and work at
large companies. The data and mining algorithms used by these platforms are inconsistent, hindering
the application of traditional federated learning.

Characteristic 2. (Parameter Mismatch) Due to the aforementioned exclusive Privacy scenario,
the parameter dimensions and parameter spaces of different algorithm models do not match. For
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Figure 2: An illustration of our proposed overall architecture. (a) The task knowledge of existing graph
federated learning work ’ Baek et al. (2023); Tan et al. (2023) is isolated from outside. Its models
are no space may be left to tune personalized parameters. (b) A new paradigm for federated graph
learning. The graph structure is distributed to clients, and local knowledge graphs are aggregated on
the server. Network alignment approaches are used to align local graph structures with the global
graph in different settings. (c) Each client still runs on its model. These models can be easily
transferred to FedGraph framework.

example, for a classification task, a graph owner employs SVM algorithm, and another graph owner
employs naive Bayes algorithm, however, there are extremely different parameters from dimensions,
rather than aggregate this parameters. Therefore, traditional federated learning methods that rely on
parameter sharing cannot effectively address this challenge.

Since the challenge of model isolation to federated graph task, different clients fail to upload their
parameters for model aggregation. To address the challenge of model isolation to federated graph
task, we propose the new federated learning paradigm in this paper. We focuses on the structure of
graph data, using the structural knowledge to bridge the knowledge gap between different clients’
private data and private algorithms instead of parameters.

The FedGraph problem (1) considers two cases: ∀i,Gi = G0 and ∃i,Gi ̸= G0. For Gi = G0, we
discuss client GNN models. For Gi ̸= G0, we explore network alignment between Gi and G0, aligning
structure knowledge S with S′ (a subgraph of Gi). Minimizing problem (1) transfers structure
knowledge from local to global models, e.g., from local anomalies S′ = {Si} in clients {Gi,Xi} to
the global anomaly S.

4 METHODOLOGY

To address the challenge of model isolation to federated graph task, we proposed to perform the
proximal local structure knowledge update, and to mask unrelated structure knowledge.

4.1 LOCAL STRUCTURE KNOWLEDGE UPDATE WITH PROXIMAL TERM

We aim to capture the local structure knowledge sequence S1
i , S

2
i , · · · for each client i ∈ [N ], and the

private knowledge Si is transformed to public knowledge Ui over the global graph G0 in the server.
The local private knowledge Si is achieved by accessing private feature data Xi for the i-th client,
and the public knowledge Ui is achieved by minimizing a distance function −λQi

σ(Si, U) where the
value of Q is proportional to the number of anchor links between Si and U . The public knowledge is
acquired from only the graph structure without accessing the local private node feature data.

4.1.1 PRIVATE LOCAL KNOWLEDGE ESTIMATION

Each client employs an objective function Li to detect local structure knowledge by consolidating
their private node feature data. The private knowledge at steps c1 and c2 is detected exclusively in
the data owner setting. Each client provides meaningful privacy guarantees.

S∗
i ← arg min

S⊆Gi

Li(S) + (−λ)Qi
σ(S,U) (2)
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where in the same graph-structure setting, the function Li can be reformulated as the loss function (5),
and the GNN-based models can be used to identify private local knowledge. The proximal term
(−λ)Qi

σ(S,U), (i.e., a distance function between S and U ), prevents the local knowledge Si from
extremely drifting to the local data distribution. The Q function value is proportional to |S ∩U | since
∀i,Gi = G0. The local knowledge Si is closer to the global knowledge U , and the hyperparameter
λ scales the impacts on the closeness (e.g., λ = 1). However, in the different same graph-structure
setting, the function Li is reformulated as the non-parametric graph scanning statistic −F as a
loss function, F i

α(S) = φ(α,Nα(S), N(S)) where S is a subgraph, and α is the significant level,
Nα(S) is the number of anomaly vertices in S whose p-value is less than or equal to α, and N(S) is
the total number of vertices in S. We consider two functions for F i

α(S): Berk-Jones (BJ) statistic
(Berk & Jones, 1979) and Higher Criticism (HC) statistic (Donoho et al., 2004). The proximal term,
−λQi

σ(S,U) can not directly compute the distance between S and U since ∃i,Gi ̸= G0, and the
network alignment based models are required to solve this problem. Then the local private knowledge
detection problem can be reformulated as the federated anomaly detection problem (6) over multiple
clients with different graph structures.

4.1.2 PUBLIC GLOBAL KNOWLEDGE ALIGNMENT

We aim to measure private knowledge S and public knowledge U with network alignment-based
models. We define the function Q as follows:

Qσ(S,U) =
Nσ(S,U)

N(S)
+

Nσ(S,U)

N(U)
(3)

where σ is the predefined alignment threshold. The private knowledge S is aligned with the public
knowledge subgraph U . The two subgraphs are connected. Nσ(S,U) is the number of anchor links
between S and U whose alignment probability is greater than or equal to σ, and especially for the
same graph structure Nσ(S,U) = |S ∩ U |. N(S) and N(U) are the number of all nodes in S and
U respectively. The node’s alignment probability is obtained through the network alignment work
CrossMNA (Chu et al., 2019). By introducing this algorithm, we pre-aligned each private network
with the public network and obtained the alignment probability of all pairs of nodes among them. We
use network alignment to map the similarity between the subgraphs to a value and obtain the most
similar part between the two subgraphs during this process.

4.2 ADAPTIVE STRUCTURE KNOWLEDGE SAMPLING

Based on the previous structure knowledge update scheme, we collect the public knowledge {U∗
i }

from all clients. Despite transforming client models into graph-structure operations, heterogeneity in
federated graph learning persists due to structural differences. Thus, joining all public knowledge
∪Ni=1U

∗
i may be inadequate, as it focuses on the relevance of knowledge rather than the relevance of

structure knowledge. We propose selecting the most relevant public structure knowledge from the
aggregated structure knowledge transmitted by clients, akin to existing skills Wang & Zhang (2022).

Relevant public structure knowledge sampling. We create a coalition partition Π = {Ci}Mi=1

over the set of {U∗
i }Ni=1 by computing graph connected components in the global graph G0. Each

Ci is a connected subgraph, and the relevant knowledge {U∗
j } are connected into a coalition. We

use Γ ∈ RM×1 for modeling contributions of each coalition. Notably, For the coalition Ci, we
compute function Γ(i) =

∑
U∗

j ∈Ci
Qj

σ(S
∗
j , U

∗
j ) where just only values of function Q are used to Γ

that do not violate data privacy constraints. In the same graph structure setting, the value of Q is just
proportional to the structure knowledge U where U will be uploaded to the server. The contribution Γ
is normalized for

∑
i Γ(i) = 1, and the normalized Γ acts as a multinomial distribution. The global

structure knowledge is updated as follows:

U ← Ci for random sampling i from Γ (4)

The higher probability in Γ means the more contribution of the coalition. For each client, the objective
function (2) shows that the structure knowledge U is parameterized within the function Q. We select
the most contribution U as the public structure knowledge.
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4.3 FEDERATED GRAPH LEARNING ALGORITHM

We propose a new federated learning paradigm, FEDGRAPH, which utilizes structural knowledge
sharing instead of traditional parameter sharing. This effectively addresses the two characteristics of
model isolation to federated graph task. The main computational steps and process of the FEDGRAPH
are described. For the i-th participant side (client), given the global structure knowledge U (the
subgraph of G0), we perform the local structure knowledge update as follows:

(c1) S∗
i ← argminS⊆Gi Li(S) + (−λ)Qi

σ(S,U);

(c2) U∗
i ← argminU⊆G0

−λQi
σ(S

∗
i , U);

For the server side, we aggregate the local knowledge {U∗
i } for i ∈ [N ],

(s1) Create a coalition partition Π over the set of {U∗
i }Ni=1, where the partition approach is illustrated

in the section 4.2 in detail. The partition is made up of coalitions {Ci}Mi=1 for 1 ≤M ≤ N ;

(s2) Random sample the coalition C ∈ Π from the multinomial distribution Γ (in the section 4.2),
and set U ← C as the new global structure knowledge.

It iterates among steps (c1), (c2), (s1), and (s2) until reaching the final epoch. We can observe that
the private node features of {Si} at the local client would not be uploaded to the server. On the server
side, we can just obtain the public structure knowledge {U∗

i }.
Note that the bi-level optimization problem (6) has two targets. The local function F i

α(Si) aims
to detect private anomalies using only the data of local data owner i. The alignment function
Qi

σ(S
∗
i , U

∗
i ) aims to federate these private anomalies by aligning the local private knowledge on the

public global knowledge. We can observe that the two functions exhibit at two scales, and introduce
a hyperparameter λ, maxU⊆G0

∑
i∈[N ] maxSi⊆Gi F

i
α(Si) + λQi

σ(Si, U), controls the interpolation
between the two functions. The hyperparameter λ is related to the specific form of Q, e.g., Q as a
regularization term, and the theoretical properties of FEDGRAPH is proved under the general setting
without λ. When the value of λ is set to 0, our algorithm performs as local knowledge detection tasks
for each local data owner. Our algorithm focuses on more federated anomalies with increasing λ.

Relation to Ditto federated learning Li et al. (2021). We do not consider the network structure
{Gi}, and each Gi can be transformed to a vector vi, e.g., vi(k)← 1 if the node k is abnormal in Gi,
and vi(k)← 0 otherwise. The vector w is derived from G0. We can take Q as a regularization term,
λ/2· ∥ Avi − w ∥2. The optimization problem is to minimize −Fi(vi) + λ/2· ∥ Avi − w∗ ∥2 for
vi with each owner, subject to w∗ = argminw 1/N ·

∑
i∈[N ] ∥ Avi − w ∥2. Our algorithm can be

reduced to Ditto. Thus we propose a general algorithm framework for federated graph learning tasks.

4.4 EXTENSIVE DISCUSSION

We extensively discuss the federated graph learning problem (1) from same and different graph-
structures between clients and server. In this new paradigm for the problem, we term the structure
knowledge (i.e., subgraphs) as the “parameters” in the global models.

In the same graph-structure setting (∀i,Gi = G0), models can explicitly capture the topological struc-
ture and identify anomalies by measuring the reconstruction errors of nodes Ding et al. (2019).
Formally, for an L-layer GNN, its l + 1-th layer can be formulated as

hl+1(v) = UPDl
(
hl(v),AGGl

({
hl(u) : ∀u ∈ N (v)

}))
where hl(v) is the representation vector of node v at the l-th layer, N (v) represents the set of node
v’s neighbors. h1(v) is initialized as X(v). The topological structure of G can be represented
by an adjacency matrix A, where Ai,j = 1 if (vi, vj) ∈ E, otherwise Ai,j = 0. We denote
H = {h3(v) : v ∈ V } as all node latent representations. The problem (1) can be reformulated as:

L(G) = (1− α)∥A− σ(HHT )∥2F + α∥X− fRelu(H,A)∥2F (5)

where α is a controlling parameter that balances the graph structure and node feature learning impacts.
σ is a sigmoid function that computes the probability of an edge Au,v = 1 for u, v ∈ V , and its output
is the estimated adjacency matrix. In the contrastive self-supervised learning framework, the objective
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function can be reformulated asL(G) = −
∑

v Y(v) log (F (X(v)))+(1−Y(v)) log (1− F (X(v)))
where Y(v) is label of node v and F is the contrastive learning model Liu et al. (2022). After the
federated learning epochs for the i-th client, we can derive the structure knowledge sequence from
Gi, S(1), S(2), S(3), · · · which are applied to the problem (5) and we achieve each objective function
Li(Gi),Li(S(1)),Li(S(2)),Li(S(3)), · · · where the local model is addressed optimally at each epoch.

In the different graph-structure setting (∃i,Gi ̸= G0), the structure knowledge provided by the server
can be different from graph-structure in clients. We employ network alignment-based models in
clients for the structure knowledge U ⊆ G0 can be aligned on the local knowledge ∀i, Si ⊆ Gi, where
S ⊆ G denotes a subgraph S of G whose vertex set VS and edge set ES are subset of V , E. In this
setting, each client has its exclusive model to identify the subgraph Si from (Gi,Xi), and the model
is restrictive to share with outside. Here, we exemplify the problem (1) with the federated anomaly
subgraphs detection task in detail.

We defines the empirical p-value corresponding to each node v ∈ V (Wu et al., 2018; Chen & Neill,
2014), the smaller the p-value, the more abnormal the node. One global anomaly {S1, S2, . . . , SN}
(e.g., anomaly users in different social networks) is distributed as local anomalies on multiple clients.
We denote [N ] as the set of {1, 2, · · · , N}. The local anomaly Si for i ∈ [N ] can be identified by
maximizing the local exclusive model F i

α(Si) with the significant level α. The G0 in the server
bridges the gap among isolated private data in clients, and the structure knowledge (i.e., public
anomaly) U ⊆ G0 is associated with local private anomalies. A local alignment function Qi

σ(Si, U)
is employed to measure the similarity between Si and U for i ∈ [N ]. For anomaly subgraphs Si ⊆ Gi
and U ⊆ G0, each private data owner exclusively defines the alignment matrix Ai ∈ {0, 1}n×n,
where Ai

uw ← 1 if the value of (u,w) is greater than the alignment threshold σ (i.e., a constant) with
u ∈ VSi

and w ∈ VU , Ai
uw ← 0 otherwise.

The federated anomaly detection task (1) across multiple clients can be reformulated as follows:

min
U⊆G0

N∑
i=1

Li(Gi;U) = min
U⊆G0

N∑
i=1

−(λQi
σ(Si, U) + F i

α(Si)) (6)

where the private anomaly subgraph Si ⊆ Gi is measured by F with the significant level α (e.g.,
0.15). The alignment score between Si and the public anomaly U is measured by Q (i.e., a distance
function between Si and U ) with the predefined alignment threshold λ and σ (e.g., 1.0, 0.8). However,
GNN models can explicitly use the topological structure and nodal features seamlessly. Our proposed
paradigm for federated graph learning can be applied to various tasks for clients who have already
employed the models. The clients do not need to change the production-in-use models for the
federated graph learning setting.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the performance of the proposed framework on three widely used benchmark
datasets and two real-world datasets tailored for anomaly detection. The datasets include citation
network datasets (Cora, CiteSeer, ACM), computer networks and multi-road traffic datasets. The
statistics of these datasets are illustrated in Table 4 with detailed descriptions. Since the base graphs
lack ground-truth anomalies, we inject structural and attribute anomalies for each dataset.

Our Model and Baselines.

In our experiment, we examine three variants of our framework: FedGraph(Dom) and Fed-
Graph(CoLA), which incorporate the DominantDing et al. (2019) and CoLALiu et al. (2022)
anomaly detection algorithms, respectively, and are aimed at non-deep learning approaches for
anomaly subgraph detection. Our baselines include FedAvgMcMahan et al. (2017), a distributed
machine learning optimization algorithm; Fed-PubBaek et al. (2023), which enhances local GNNs
through functional embeddings; Loc-Dominant, a deep graph autoencoder for detecting anomalies
in attributed networks; Loc-CoLA, a GNN-based contrastive learning approach for node anomaly
scoring; and three methods—ASD-FTSun et al. (2020), TSPSDWu et al. (2016), and NPHGSChen &
Neill (2014)—that utilize network alignment for detecting anomalies across different graph structures.
The final assessment accuracy is determined by averaging the accuracy values across these methods.
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Table 1: Accuracy evaluation of our federated graph learning algorithms and baselines on Cora,
CiteSeer, and ACM datasets, the mean degree of these datasets are 27.30, 19.80, 65.50. All results
are based on the top-k nodes identified as anomalies, with k = 10. (“-” denotes that no anomaly
subgraph is detected.)

# Datasets Cora CiteSeer ACM

# clients 3 6 10 20 3 6 10 20 3 6 10 20

Loc-Dominant 23.14 29.32 9.82 11.94 11.11 12.50 13.31 9.51 - 35.72 27.69 11.24
Loc-CoLA 64.48 27.13 14.15 11.94 - 16.24 15.60 9.51 27.73 15.22 8.96 13.68

FedAvg 84.61 71.03 81.23 54.61 81.82 81.09 58.56 73.75 70.00 35.71 25.83 25.99
Fed-PUB 85.38 70.70 68.46 61.10 86.36 81.98 66.30 74.55 71.43 45.00 37.22 45.88

FedGraph(Dom) 16.67 63.63 90.48 69.23 - 14.29 38.46 44.11 33.33 43.24 41.67 35.48
FedGraph(CoLA) 85.71 93.48 85.45 91.57 90.48 88.00 70.73 76.67 75.00 61.76 58.70 68.63

Table 2: Evaluating our different graph-structure method (FedGraph) and baselines on the Computer
Network dataset, with the number of clients set to 3, 6 and 10.

Method Average Precision Accuracy
3 6 10 Average Accuracy

ASD-FT 94.00 89.12 81.89 76.02 80.07
TSPSD 95.00 90.46 79.70 75.54 78.74
NPHGS 97.00 83.23 76.24 73.67 74.48

FedGraph 99.00 95.63 88.26 82.15 86.22

5.2 EXPERIMENTS RESULTS

The feasibility of our federated graph learning framework allows us to categorize the accuracy
assessment in our experiment into two sections: same graph-structure comparison (Table 1) and
different graph-structure comparison (Table 2). The same graph-structure comparison is conducted on
the Cora, CiteSeer, and ACM datasets, while the different graph-structure comparison is performed
on the computer network dataset. It’s important to note that the corresponding baselines differ across
two types of comparisons.

5.2.1 EVALUTION ON SAME GRAPH-STRUCTURE METHODS

In this evaluation experiment, we use FedGraph(Dom) and FedGraph(CoLA) to compare against
baselines. The accuracy metrics, shown in Table 1, are calculated with anomalies ranked in the
top-k (k = 10). We divide datasets into 3, 6, 10, and 20 parts to create scenarios with varying client
numbers. Our approaches consistently achieve the highest accuracy scores across all clients and
datasets. Notably, in the Cora dataset with 6 clients, FedGraph(CoLA) reaches an accuracy of 0.9348,
outperforming the competitive baseline Fed-PUB by at least 22.45%. In the CiteSeer dataset, our
approach exceeds competitive baselines by [2.12%, 10.45%]. In ACM, FedGraph(CoLA) consistently
achieves the highest accuracy.

On the other hand, Loc-Dominant and Loc-CoLA obtained lower accuracy in Cora and CiteSeer,
possibly due to the lower mean degrees of the two datasets. After dividing the dataset into several
parts, some neighbor relationships were lost, and this loss of topology information significantly
impacted the training and detection results of Dominant and CoLA when run locally. ACM exhibits a
closer neighbor relationship among its nodes, which explains why Loc-Dominant and Loc-CoLA
achieve higher accuracy scores.

5.2.2 EVALUATION ON DIFFERENT GRAPH-STRUCTURE METHODS

To validate the effectiveness of FedGraph on various graph-structure networks, we split the Computer
Network dataset into as many subsets as clients. Besides FedGraph, all baseline methods are non-deep
learning anomaly detection algorithms. As shown in Table 2, our approach outperforms the others,
achieving the highest precision score of 99%, detecting nearly all anomalies, and surpassing the best
baseline by 2%. Additionally, our accuracy exceeds the competitive baseline by [5.1%, 6.37%], with
an average accuracy (AvgACC) higher than the baselines by at least 6.15%.
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Table 3: Ablation Study for Label-Trick with FedGraph(Dom)

Dataset
Label-Trick non Label-Trick

# Subgraph size Accuracy # Subgraph size Accuracy
Cora 21 90.48 16 68.75

CiteSeer 10 38.46 12 33.33

ACM 6 33.33 7 28.57

Figure 3: Robustness of our approaches. The noise level is set to the range of [5%, 30%]. (a) and (b)
illustrate the algorithm’s robustness in terms of accuracy, while (c) and (d) depict the change in the
size of the detected anomaly subgraph.
Summary: In experiments involving same graph-structure methods, for a dataset that has no obvious
anomaly, e.g., Cora, CiteSeer, or ACM, algorithms can learn the anomaly features through the
topology structure and nodes’ attributes, resulting in detection outcomes that exhibit some degree
of randomness. However, in the context of the Computer Network dataset, the anomaly feature can
be represented by the P-value, which is calculated based on the volume of traffic between nodes.
Therefore, the different graph-structure methods detect the anomaly subgraph with the P-value and
present higher performance scores than the same graph-structure methods. Table 1 and Table 2
illustrate these differences. Table 1 and Table 2 illustrate these differences.

5.3 ABLATION STUDY

Label-Trick is a key technique in our approach. In this ablation experiment, we use FedGraph(Dom)
to demonstrate the importance of Label-Trick. We evaluate its performance on the Cora, Citeseer,
and ACM datasets by adding and removing the Label-Trick component. As shown in Table 3,
FedGraph(Dom) achieves higher accuracy scores with Label-Trick compared to without it, validating
its effectiveness in detecting anomalous subgraphs iteratively on both client and server sides. The
contribution of Label-Trick to the size and accuracy of the detected anomalous subgraphs is significant.

5.4 ROBUSTNESS STUDY

We validate the robustness of the FedGraph framework by introducing noise nodes into the Cora
and Citeseer datasets at proportions of 5%, 10%, 20%, and 30%. These noise nodes are injected
with structural and attribute anomalies while retaining their original labels. We observe the final
sizes of anomalous subgraphs and accuracy scores. As shown in Figure 3, although the accuracy of
both FedGraph(Dom) and FedGraph(CoLA) decreases with more noise nodes, it remains acceptable.
Notably, at a 10% noise proportion, both methods show a significant decrease, but as the proportion
increases further, they stabilize, indicating satisfactory robustness in the FedGraph framework.

6 CONCLUSION

We introduced a novel paradigm FedGraph, which addresses the model isolation to federated graph
task challenge. The proposed FedGraph algorithm framework considered the graph structure as the
bridge connecting private node features. It leveraged the graph structure as structural knowledge,
linking all task-related knowledge in clients. Our extensive experiments demonstrated that FedGraph
significantly outperformed other state-of-the-art federated learning algorithms in the context of
anomaly detection tasks.
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A APPENDIX

A.1 FEDERATED LEARNING LIMITATIONS

Traditional federated learning cannot be applied in scenarios where both data and algorithms are
private. Specifically, letDi represent the private data of client i, and fi represent the private algorithm
of client i. Since fi is private, the model parameters θi learned by each client’s algorithm are
inconsistent across different clients. Traditional federated learning McMahan et al. (2017) relies on
the assumption that model parameters θi can be shared and aggregated across clients to create a global
model Θ =

∑K
k=1

|Dk|∑K
i=1 |Di|

θi, where K is the number of clients. However, due to the inconsistency
in θi arising from private fi, this aggregation is not feasible, rendering traditional federated learning
ineffective. The new federated graph learning paradigm proposed in this paper addresses this issue
by focusing on the structure of graph data. It utilizes graph structures to connect knowledge from
different clients, thereby overcoming the isolation caused by private data Di and private algorithms
fi. This approach bridges the knowledge gap without relying on the sharing of parameters θi.

A.2 DATASETS

1) Cora. Cora dataset is an academic citation network dataset, which plays a key role in graph
federation learning research, where nodes represent academic papers and edges indicate citation
relationships between papers. The features of Cora dataset are bag-of-words modeling word frequency
statistics for each paper. Cora has been widely used for evaluating the performance of federation
learning algorithms on the task of anomalous subgraph detection. 2) CiteSeer. The CiteSeer
dataset is a scholarly citation network dataset, and its network structure and attribute features are
similar to the Cora dataset. 3) ACM. The ACM dataset is also a scholarly citation network dataset,
and its network structure and attribute characteristics are similar to the above two datasets. 4)
Computer Network. The computer network dataset represents a computer traffic networks, where
nodes correspond to websites and edges indicate the presence of an attack relationship between two
websites. From May 31, 2014, to May 31, 2015, the computer network was divided into six private
networks (G1, · · · ,G6) at two-month intervals, each demonstrating distinct anomalous properties.
Subsequently, we conducted correlated anomaly detection on these attributed networks. 5) Multi-
Road Traffic. The multi-road traffic dataset comprises the Car-hailing itinerary network, Bike-sharing
itinerary network, and Subway network crawled on December 21, 2019. In the Car-hailing itinerary
network and Bike-sharing itinerary network, nodes represent the starting and ending points of an
itinerary, while edges connect the nodes of the respective itineraries. In the Subway network, nodes
represent stations, and edges depict subway lines connecting these stations.

Table 4: The summary of the dataset statistics.

Dataset #Nodes #Edges #Attributes #Anomalies
Cora 2, 708 5, 429 1, 433 300

Citeseer 3, 327 4, 723 3, 703 300
ACM 3, 025 13, 128 1, 870 300

Computer Network 134, 225 181, 771 367 18, 673
Multi-road Traffic 75, 963 388, 643 24 -

A.2.1 ANOMALY INJECTION

Since the base graphs lack ground-truth anomalies, we employ the following methods to inject
structural and attribute anomalies for each dataset.

1) Injecting structural anomalies: A method involving perturbation of network topology is utilized
to inject the structural anomalies. Specifically, we generate q small anomalous clusters (q ∈ R).
Initially, q nodes are randomly selected from the node-set V , and random walk approach is utilized to
sample q connected subgraphs. Subsequently, these q connected subgraphs are transformed into q
fully connected subgraphs. Suppose each fully connected subgraph includes p nodes; these selected
p nodes are labeled as “Structural Anomaly Nodes.” In total, p× q structural anomalies are injected.
The quantity of injected anomalies is adjusted based on the dataset size.
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2) Injecting attribute anomalies: We perturb the attributes of nodes. To ensure an equal number
of attribute and structural anomalies, we conduct q random walks, each time selecting p connected
nodes as targets. Subsequently, for each selected node vi, we randomly sample k other nodes
Vc = (vc1, ..., vck) to form a candidate set. For each vc ∈ Vc, we calculate the Euclidean distance
between its attribute vector xc and the attribute vector xi of vi. Following that, we select the node
vcj ∈ Vc with the maximum Euclidean distance and replace the attribute xi with xcj . In our paper, p
is set to 60, and q is set to 3 for the ACM, Cora, and Citeseer datasets. One of the selected subgraphs
is injected with anomalous structures.

A.3 BASELINES

1) FedAvgMcMahan et al. (2017) is an optimization algorithm for distributed machine learning.
FedAvg preserves privacy, minimizes communication, and fosters collaboration. It locally trains
models, uploads parameters to a central server, and performs weighted averaging to update the
global model iteratively.2) Fed-PubBaek et al. (2023) enhances local GNNs in a privacy-centric
global graph by using functional embeddings and server-side aggregation. Personalized sparse
masks, learned at each client, update relevant subgraphs, addressing missing links and privacy
constraints without a single global model.3) Loc-Dominant is adjusted from DOMINANTDing
et al. (2019) which employs a deep graph autoencoder method, leveraging both graph structure and
features to detect anomalies in an attributed network, with separation by specified clients. The final
assessment accuracy is obtained by calculating the average values of all accuracies.4) Loc-CoLA
is adapted from CoLALiu et al. (2022), an anomaly detection algorithm emphasizes nodes and
employs a Graph Neural Network (GNN)-based contrastive learning approach at the node-subgraph
level. It calculates anomaly scores for nodes by assessing representations generated from nodes and
subgraphs within positive and negative instance pairs. The detailed assessing method is similar to
that of loc-Dominant.5) ASD-FTSun et al. (2020). ASD-FT addresses sparse anomalous features
in multilayer graphs by transferring information between layers. It detects anomaly subgraphs
in one layer by analyzing anomalous features from another.6) TSPSDWu et al. (2016). TSPSD
reformulates non-parametric graph scan as Budget Price-Collecting Steiner Tree sub-problems.
Efficient algorithms target anomalous subgraphs in fixed tree topology graphs, validated in diverse
applications.7) NPHGSChen & Neill (2014). NPHGS optimally detects social media events by
leveraging the entire heterogeneous network structure, using a nonparametric scan statistic on a
"sensor" network.

A.4 CASE STUDY

Figure 4: A set of related anomalous IPs was detected by our method. The detected IPs have
potential correlations (e.g., at the same place). The site www.ch.zju.edu.cn was attacked mainly from
two network segments x.x.15.(28-159) and x.x.198.(69-134). The addresses of these IPs were all at
the same place (i.e., Shanxi, China). The attack methods were all Nginx Attack.

A.4.1 CASE STUDY IN COMPUTER NETWORK DATASET

Run FEDGRAPH on the computer network dataset, and set α = 0.15, σ = 0.8.
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Figure 5: Correlated anomalies at 8:00, 12:00, and 18:00 on December 21, 2019. (a) depicts a heat
map illustrating the distribution of anomalous traffic networks. Each hot spot represents an anomalous
area, and the redder the color, the higher the anomaly level of the area. The black lines indicate that
there are itineraries between the two areas, and the dark blue text indicates the main position type of
the start and end points of the itineraries included in the area. (c) is a summary of the anomalies at
three periods in (a). From analyzing the anomaly areas and itineraries, it’s evident that the morning
and evening traffic primarily comprises school crowds, whereas at noon, it predominantly consists of
business crowds and tourists.

1) Discovery of related anomalous IP group: Our algorithm can identify the anomalous IP group
and uncover the hidden attacking IP information (Figure 4). FEDGRAPH can discover potential
anomalous anchor links among networks. By summarizing the anchor nodes associated with these
anchor links, we can pinpoint an anomalous IP group. Despite these IPs appearing at different
times, their attack patterns remain consistent. Upon analyzing their log data, we observed that
these IPs originate from several distinct network segments. The similarity in attack methods and
target locations suggests that these IPs may originate from the same source of attack. Our approach
effectively identifies cyber threats and enhances cyber attack prevention measures.

2) Prediction of cyber attacks: We devided the computer network dataset into six networks according
to temporal attributes, labeled as Gi (i = 1, 2, ..., 6). We designate G6 as an attributeless network
by assigning p-value of 1 to all its nodes. We then combine it with the other networks as input
for FEDGRAPH to generate its anomaly subgraph, S6. Regard S6 as the prediction result, which
summarizes the IPs that may attack the website during the period of G6. We compare it with the real
attacks that occurred, and our algorithm can detect the anomalous situation of the target network
through networks with sufficient anomalous characteristics, even if the target network does not have
anomalous information.

A.4.2 CASE STUDY IN TRAFFIC DATASETS

We perform FEDGRAPH on the multi-road traffic dataset (i.e., car-hailing, bike-sharing, and subway
networks). The location information of anomaly detection results is acquired from the Points of
Interest (POI) data. Thus, we visualize this information on a geographic map. We selected three
networks corresponding to the same period (8:00/12:00/18:00) and set α = 0.05 and σ = 0.8.

Discovery of real events:

The anomaly detection results, denoted as the "mapping graph" below, reveal distinctive patterns. In
the Bike-Sharing network mapping graph, anomalies tend to concentrate around schools, hospitals,
and parks, aligning with the city’s morning activity centers. This distribution authentically reflects
real-world scenarios. Analyzing the Car-Hailing and Bike-Sharing datasets’ mapping graph reveals a
heightened concentration of anomalies near Xigu Park compared to other parks. Further investigation
into the Weibo dataset uncovered posts predominantly detailing morning visits to Xigu Park on that
particular day. In-depth analysis of detection results from both datasets provides additional insights.
Notably, the mapping graph of Car-Hailing, Bike-Sharing, and Subway datasets indicates clusters
of anomalies around Tianjin University, Nankai University, and Tianjin No. 21 Middle School.
Interestingly, anomalies are conspicuously absent near Tianjin No. 1 Middle School and Tianjin No.
2 Middle School. After analyzing relevant data, we concluded: The dataset, dated December 21,
2019, coincides with the National Unified Entrance Examination for Master’s graduates. Anomalies
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clustered near schools are linked to the exam. Candidates from Tianjin University and Nankai
University primarily walked or rode shared bikes. Those from Tianjin No. 21 Middle School, mostly
off-campus, used Car-Hailing services. Anomalies are abundant near these sites due to distinct travel
patterns. Schools like Tianjin No. 1 and No. 2 show no anomalies. This analysis highlights the
importance of multiple datasets in yielding interpretable results, aligning with FedGraph’s goal of
detecting more anomalies.
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