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ABSTRACT

Visual Grounding links textual descriptions to the corresponding image regions,
and its complexity increases with target semantic complexity. Existing methods
encounter performance bottlenecks due to semantic alignment bias and scale-
induced perception mismatch. In this paper, we propose ASVG, an efficient
framework that exploits alignment priors from the cross-modal encoder to build
target-aware queries and enhances scale adaptability through progressive cross-
scale reasoning. First, we design an alignment prior-guided query generator,
which embeds text-conditioned visual heatmaps into object queries to enhance
their semantic discriminability. Second, we develop a progressive cross-scale de-
coder that builds a multi-resolution pyramid solely from single-scale features,
enabling progressive cross-scale reasoning while avoiding redundant feature-
pyramid fusion. In addition, we introduce a lightweight token branch and Soft
Cross-head Distillation (SCD), which enforces feature consistency and adaptively
reweights losses, reducing inference cost while maintaining high performance.
Our method achieves significant performance gains across six VG and GREC
datasets, particularly under complex or ambiguous target semantics.

1 INTRODUCTION

Visual Grounding (VG) aims to associate tex-

tual descriptions with visual regions by finding  “agiraffe with its
the referred object [Deng et al.| (2021)]. Unlike ”el‘)‘j,‘l_’r’;ijlfj'jfg;’,’,’~‘/
object detection that relies on predefined cate- g
gories, VG supports free-form textual queries to

enable more flexible object localization. To over-
come the single-target limitation of traditional
VG, Generalized Referring Expression Compre-  ‘agiraffe with its
hension (GREC) [He et al] (2023)] emerges as "¢ sorpearin
a more general paradigm. GREC extends the TN
grounding formulation to handle textual queries
that refer to single, multiple, or zero targets in an
image, thereby better aligning with the complex-
ity and ambiguity of real-world scenes. “a giraffe with its
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Effective visual grounding hinges on an accu-
rate understanding of the visual content referred
to by the text, making precise cross-modal se-
mantic alignment indispensable. Early methods
focused on extending off-the-shelf object detec-
tors. Two-stage methods first generate region Figure 1: Qualitative comparison with prior methods.
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cross-modal interactions [Deng et al.|(2021)]. Although these methods differ in architecture, they
all encode images and text independently before modality interaction, which leads to two key issues.
First, such early decoupling discards latent cross-modal correlations [Deng et al.| (2023)]. Second,
the intrinsic distribution gap between visual and textual features must be bridged by complex in-
teraction mechanisms [[Yang et al|(2022a)]. Some studies attempt to guide image encoding with
textual prompts [Su et al.| (2023)], yet these prompts are still derived from textual features encoded
in isolation. Moreover, these modality interaction modules are often trained from scratch on limited
downstream data, which causes the learned correlations to overfit to task-specific data and limits
their generalization to complex scenarios. The substantial gains observed when models are trained
on mixed datasets provide indirect evidence of these issues [Shi et al.|(2023))].

The rapid progress of Vision-Language Pre-trained models (VLPs) offers a promising solution to
the above issues. Leveraging large-scale and heterogeneous data, VLPs establish naturally aligned
cross-modal feature spaces. HiVG [Xiao et al.| (2024)] and CLIP-VG [Xiao et al.| (2023)] use the
strong cross-modal representations of CLIP [Radford et al.|(2021)] to enhance the modeling of cross-
modal relations. CPT [Yao et al.|(2024)] and ReCLIP [Subramanian et al.|(2022)] further exploit
the robust generalization ability of VLPs, extending VG into zero-shot and few-shot regimes and
achieving competitive performance with minimal task-specific data. Departing from simplistic VLP
embedding within existing pipelines, SimVG [Dai et al|(2024)] decouples multimodal fusion from
downstream tasks and attains efficient inference by employing a two-stage training strategy with
dynamic weight-balanced distillation. Although VLPs endow VG with transferable cross-modal
representations and global semantic priors, two core bottlenecks remain. (1) Semantic alignment
bias. Mainstream methods rely on learnable queries and transformer architectures to perform im-
plicit alignment in the textual embedding space to extract semantic cues, overlooking the active role
of visual evidence in semantic discrimination and disambiguation. This bias is particularly evident
in complex multimodal contexts or ambiguous target semantics, resulting in unstable grounding.
Recent work seeks to mitigate it by strengthening cross-modal information feedback, but typically
at the cost of higher architectural and inference complexity [Wang et al.|(2024b)]. (2) Scale-induced
perception mismatch. Existing methods rely on single-scale prediction, which struggles to reconcile
the details of small objects with the global structure of large ones. Multi-stage fusion can alleviate
this mismatch but inevitably increases computational cost. Consequently, scale-induced perception
blind spots, compounded by fusion overhead, become a bottleneck for inference performance.

In this paper, we propose ASVG, an efficient visual grounding framework built on the BEiT [Wang
et al.|(2023)] cross-modal encoder. To address semantic alignment bias and scale-induced perception
mismatch, ASVG couples an Alignment Prior-guided Query Generator (AP-QG) with a Progressive
Cross-scale Decoder (PCD). AP-QG provides target-aware guidance by injecting text-conditioned
visual heatmaps into object queries, exploiting encoder-learned alignment priors to enhance their se-
mantic discriminative power. PCD constructs a multi-resolution pyramid from single-scale features
and performs progressive cross-scale reasoning, enhancing scale-aware perception while reducing
redundant feature-pyramid fusion. To improve inference efficiency, we augment PCD with a parallel
token branch consisting of a single linear layer and introduce Soft Cross-dead Distillation (SCD).
This distillation applies feature-consistency constraints and adaptive loss reweighting, preserving
PCD’s high performance while substantially reducing inference overhead. Accordingly, ASVG sig-
nificantly improves convergence efficiency and grounding performance by modeling text-visual se-
mantic alignment and applying progressive cross-scale inference.

In conclusion, our main contributions are listed as follows:

* To address semantic alignment bias and scale-induced mismatch, we propose ASVG, an
efficient framework that uses alignment priors to mitigate the alignment bias and employs
progressive cross-scale reasoning to alleviate the mismatch.

* We introduce an Alignment Prior-guided Query Generator (AP-QG) that embeds text-
conditioned visual heatmaps into object queries, exploiting encoder-learned cross-modal
alignment priors to enhance their semantic discriminability.

* We propose a Progressive Cross-scale Decoder (PCD) that constructs a multi-resolution
pyramid solely from single-scale features, enabling progressive reasoning across scales
without resorting to complex multi-scale fusion. In addition, we introduce a token branch,
coupled with Soft Cross-dead Distillation (SCD). By enforcing feature-consistency con-
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Figure 2: The overall architecture of ASVG. First, AP-QG generates object queries with stronger target se-
mantics. Next, the Progressive Cross-scale Decoder (PCD) builds a multi-resolution pyramid and performs
progressive cross-scale reasoning. Then, a lightweight token branch is trained with Soft Cross-dead Distilla-
tion (SCD). This branch can be used independently at inference to increase speed.

straints and adaptive loss reweighting, SCD preserves the high performance of PCD while
maintaining a lightweight advantage for the student branch.

* Extensive evaluations across six public VG and GREC datasets demonstrate that ASVG
delivers superior convergence efficiency and grounding accuracy, especially in scenarios
with complex or ambiguous target semantics.

2 RELATED WORKS

2.1 VISUAL GROUNDING

Visual Grounding (VG) aims to generate bounding boxes for image regions referred to by text. Exist-

ing methods fall into three main groups: two-stage methods [Yu et al| (2018); [Liu et al.| (2019b}a)],

one-stage methods [LCuo et al.| (2020); [Yang et al.| (2019)], and transformer-based methods
(2022a))]. Two-stage methods separate region proposal and text matching, which enables initial

cross-modal alignment. One-stage methods accelerate inference through end-to-end design, yet they
still struggle with complex multimodal scenarios. The rise of transformers has introduced unified
attention mechanisms that capture visual-language interactions more effectively. TransVG
2021)] exemplifies this trend by capturing fine-grained semantic correspondences through
token-level connections. Recent advances in Vision-Language Pre-trained models (VLPs) have fur-
ther transformed VG. Large-scale aligned pretraining with models such as CLIP [Radford et al.
(2021)] and BEIiT-3 [Wang et al| (2023)] supplies strong semantic priors for downstream tasks.
Three lines of research have emerged. Architecture-adaptation methods such as SimVG
(2024)] and Dynamic MDETR [Shi et al.| (2023)] enhance the transfer of pretrained features through
improved decoders or distillation strategies. Parameter-efficient methods such as CPT
(2024)] adopt prompt learning to achieve few-shot adaptation. Feature-refinement methods such as
HiVG (2024)] introduce hierarchical modulation to boost grounding accuracy. These
directions collectively push VG from full supervision toward few-shot settings and from coarse- to
fine-granularity. In contrast, this paper focuses on exploiting the intrinsic alignment of pretrained
encoders to achieve referring semantic comprehension and efficient scale adaptation.

2.2 KNOWLEDGE DISTILLATION

Knowledge Distillation enhances lightweight student models by guiding them to mimic a larger
teacher without modifying the student architecture. Chen et al. first introduced a distillation frame-
work for detection (2017)1, transferring knowledge through joint feature and prediction
distillation. Later work selected informative regions to refine feature distillation (2024);
(2021))] or redesigned loss weighting strategies [Li et al.| (2022)); [Zhixing et al.| (2021)].
LD [Zheng et al|(2022))] distilled the local distribution of bounding boxes to pass spatial knowl-
edge, whereas CrossKD [Wang et al.| (2024a))] proposed cross-head distillation by routing interme-




Under review as a conference paper at ICLR 2026

diate student features through the teacher head to mitigate target conflicts. To improve grounding
efficiency, we introduce SCD, which enforces feature consistency and adaptively reweights losses,
thereby preserving the teacher decoder’s accuracy while substantially reducing inference cost.

3 METHODOLOGY

As shown in Figure 2 our framework first jointly encodes the input image and text. Then, an Align-
ment Prior-guided Query Generator (AP-QG) explicitly exploits alignment priors from the encoder
to generate object queries with strong target semantics. These queries are fed into the Progressive
Cross-scale Decoder (PCD). In addition, a lightweight token branch is introduced, combined with
Soft Cross-head Distillation (SCD), to enable more efficient inference.

3.1 CROSS-MODAL ENCODING

We adopt BEiT-3 [Wang et al.| (2023)] as the encoder, exploiting its powerful cross-modal under-
standing ability to enhance image-text alignment. Specifically, the image and text inputs are trans-
formed into token sequences via separate visual and textual embedding layers, with a learnable token
serving as an explicit target representation. These tokens are then concatenated into a unified input
sequence, accompanied by attention masks to guide cross-modal transformer modeling. During en-
coding, modality-specific parameters are independently maintained within the Feed-Forward Net-
work (FFN), while the overall architecture adheres to the standard ViT, thus enabling effective fusion
without compromising intrinsic properties. The encoder outputs are the visual token F/, € RNv*De
the textual token F € RNe*De "and the object token F. € R**Pe where N, = (H/32) x (W/32)
(with H and W denoting the image height and width), and N, is the number of textual tokens.

3.2 ALIGNMENT PRIOR-GUIDED QUERY GENERATOR

By fusing text-conditioned visual responses with global textual semantics, AP-QG explicitly miti-
gates cross-modal semantic alignment bias, yielding target-aware and discriminative object queries.
Specifically, two separate linear layers first project the visual token F and textual token F into
a shared dimension D, yielding F,, € RNv*Pe and F, € RM<*P<_ Both token sets are then
L2-normalized along the channel dimension to remove scale discrepancies across modalities, after
which a fine-grained alignment matrix Myjign € RNvxNe jg computed as follows:

— — —
Fv:Fv/HFva Fe:Fe/||F6||2> Malign:FvFea (L

where each entry of Mg, is the cosine similarity between corresponding pixels and words. To
highlight informative words, F is passed through a two-layer MLP with GELU activation, and the
resulting scores are normalized via softmax to produce the word attention weight Wyoq € RNex1,
The weight is applied to M,;e, along the N, axis, yielding a response vector Mheamap € RNvx1,

Wword = q:'Softmax ( (I)MLP (Fé) ) 5 Mhealmap = Malign Wword . (2)

Here, Mheamap accentuates the visual regions most relevant to the textual description, serving as a
spatial heatmap of the referred object. It is then linearly projected into a text-conditioned visual
prior and fused with sentence-level semantics to produce the initial query Qj; € RP<*1:

Qinit = q)Linear(Mhealmap) + ‘I’Max(Fe)a 3

where ®).x applies max pooling along the word dimension to produce a global textual vector. The
resulting Qjy;; is replicated N, times and each copy is augmented by the learnable positional bias
to form the object queries Qqpject that are fed into the decoder. Semantically explicit object queries
overcome the limitations of target-agnostic inference. As each query carries a distinct positional
bias, the mechanism naturally generalizes to single-target, no-target, and multi-target scenarios.

3.3 PROGRESSIVE CROSS-SCALE DECODER

Multi-scale reasoning enhances scale-aware perception across object sizes by fusing high-resolution
details with low-resolution semantic context. Existing methods use multi-stage outputs of the en-
coder together with an FPN [Lin et al.[(2017)] for cross-scale fusion. In contrast, we introduce PCD,
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which performs progressive cross-scale reasoning using only the single-scale output of the encoder.
PCD consists of two stages: a lightweight pyramid construction and progressive decoding.

Pyramid Construction: The visual token F is first reshaped into a spatial feature map 151’) of size

% X % x D,, then projected to obtain X /35 = @cOnlel(F;). Next, transposed convolutions
& onyr With kernel size and stride 2 are applied recursively to increase the feature resolution:

X1/16 = Pconvr(X1/32); X1/8 = ®cowt(X1/16)- 4)

This learnable upsampling acts as a data-driven interpolation scheme that approximates Shannon
reconstruction in the frequency domain, allowing the network to learn low-pass filtering behaviour
while adaptively restoring high-frequency details [Lim et al.[(2017))]. In parallel, a 2 X2 max-pooling
operation generates X /64 = Pax (X 1 /32) to retain stable global responses for large objects. Each
scale-specific feature is processed with LayerNorm, followed by a 3 x3 convolution.

ys - ¢C0nv3><3 ((I)LN (Xs)) , S S {1/87 1/16a 1/321 1/64}7 (5)

where the convolution ®@c.ny3x3 approximates a discrete Laplacian operator, effectively suppressing
artifacts introduced during upsampling. Finally, we obtain a set of complementary multi-resolution

features S = {18, V116, V1732, Vi/64 }-

Progressive Decoding: PCD comprises three transformer layers, each of which progressively refines
the object query through bottom-up processing of adjacent-scale visual features. The computational
procedure for the ¢-th layer (7=1,2,3) is formally defined as follows:

H(Z) = <I)Conv3><3(s)257‘,_1 Hy57)7 u(Z) = (I)TraHSL(u(iil)’ H(Z)) ©)

Here, || denotes channel-wise concatenation. Initially, we set U = Qobject and Vs, = Vi /8-

The output from the third layer Z/(®) is fed to a detection head that outputs bounding boxes by and
confidence scores py, forming the decoder prediction Ppcp = {ba, pa}-

3.4 TOKEN BRANCH & SOFT CROSS-HEAD DISTILLATION

To enable lightweight inference while preserving the high performance of PCD, we introduce a
token branch guided by Soft Cross-head Distillation (SCD). First, we fuse the object queries Qobject

with the object token F, € R**Pe to obtain an object token F,, with enhanced target semantics.
Fo = (I)Linear (QLinear (Fé) + Qobject) . (7)

Soft Cross-head Distillation: Prediction-level distillation conveys task-specific knowledge and is
well-suited for training compact models. To avoid conflicting supervision from ground-truth an-
notations and teacher predictions, the object token F, is forwarded to the teacher head and the
two heads are required to produce identical outputs. We further adjust the relative contributions of
the VG loss components based on PCD’s reasoning capability, using an adaptive loss reweighting
scheme to reallocate their weights. Specifically, F,, is first processed by a parameter-isolated de-
tection head to yield the token branch output Prg = {bw, pw}. Then, F, is fed through the PCD’s
detection head to generate the cross-head distillation prediction Pscp = {bscd, Pscd }-

We adopt the Hungarian matching strategy [Carion et al.| (2020)], and the matching cost includes
three components: Binary Cross-Entropy Loss, L1 Loss, and GIOU Loss. Let w(k) denote the
index of the prediction matched to the k-th ground-truth target (1 < £ < N, where N, is the total
prediction count). The ground-truth is denoted as Gg = {bgt, pgt} where by contains bounding boxes
and py indicates target presence. The reasoning capability of PCD is quantified as follows:

N, ; X .
apcd = NQ_le:1 q’loU(bé{)y bd(w(]))> q)Score(pd(w(J)))a (8)

where N, is the number of ground-truth targets. ®gqre extracts the foreground confidence from the
matched prediction. Given Jpcp and a threshold 6, the VG loss is computed in stages. In the early
stage, when the distillation signal is unstable, the VG loss is defined as:

Lyv6 = Lpet (Prcps Get) + FpeaLpet (Pscp, Peep) + Loet (P, o) - 9
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When Opeq > 0, it indicates that the teacher has achieved a reliable reasoning capacity. At this
stage, an adaptive loss reweighting scheme is applied to allow the three loss components to compete
adaptively and reallocate their contributions to the total VG loss.

Lyvg = Z Br Lpet(Pr, Tr), R = {PCD, SCD, TB}. (10)
reR

Lpet(Pr, Tr) compares predictions P, with targets 7., where Tpcp = Gy, Trg = Gt and Tsep =
Precp- Lpet is composed as: y1Lcg + 72 L1 + vsLciou With default weights v; = 1, v9 = 5,
and v3 = 2. The weights /3, are obtained by a temperature-scaled softmax over the branch losses
with temperature 7. By design, Opcq is small early in training and grows as the teacher improves.
The adaptive reweighting prevents the teacher decoder from being underweighted in later stages,
ensuring stable optimization during knowledge transfer.

3.5 NETWORK TRAINING

The model is supervised by the VG loss Lyg and the heatmap alignment loss Lya. Lyg improves
target grounding accuracy, while £ya enforces spatial consistency between the predicted heatmap
MHeatmap and the ground-truth distribution. The overall objective is a weighted sum of the two losses:

Lot = Lvg + ALua, (11)
with N
,CHA = @KL(PgtugHeatmap) = ij”l ngt 1Og(Png/QIJrIeatmap)' (12)

Here, \ is the weight for Lya. Py and Qfyy,, denote the ground-truth and predicted probabili-
ties at spatial location j, respectively. To construct Py, a binary mask is first generated from the
ground-truth bounding boxes at the original image resolution (object pixels set to 1, background
to 0). This mask is then downsampled to the resolution of Mpeqmap (typically (H/32) x (W/32))
and normalized to sum to one. In parallel, a softmax function is applied to the predicted heatmap
MHeaimap» resulting in the predicted distribution QOpeamap-

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics. We evaluate the effectiveness of ASVG on VG and GREC us-
ing six mainstream datasets: five VG datasets (RefCOCO/+ [Yu et al| (2016)], RefCOCOg [Na-
garaja et al.| (2016)], Flickr30k Entities [Plummer et al.|(2015)], ReferltGame [Kazemzadeh et al.
(2014)]) and one GREC dataset (gRefCOCO [He et al.[(2023)]). RefCOCO+ forbids explicit spatial
terms, increasing reliance on appearance cues and semantic complexity. RefCOCOg uses non-
interactive annotation, yielding longer and more complex descriptions. The evaluation follows ex-
isting works [Deng et al|(2021)]. For VG, we report accuracy Acc@0.5, where a prediction is
considered correct if its IoU with the ground-truth region is at least 0.5. For GREC, we report
Pr@(F,=1, IoU>0.5) and N-acc. Pr@(F;=1, IoU>0.5) is the proportion of samples whose predic-
tion is matched one-to-one to the ground truth by the highest-IoU assignment with IoU>0.5, and
whose per-sample F; equals 1 (F; = 2TP/(2TP + FP + FN)). N-acc is evaluated only on no-target
samples, where an empty prediction is treated as a true positive and any non-empty prediction as a
false negative, and it equals TP/(TP+FN). Details of the dataset are provided in Appendix [A.2]
Implementation Details. All images from the datasets are resized to 640x 640, and text lengths are
truncated to 20 tokens. The training batch size is set to 20. ASVG is trained for 60 epochs on the VG
datasets and for 240 epochs on the GREC dataset. All experiments are conducted on four NVIDIA
RTX 3090 GPUs. Additional implementation details are provided in Appendix [A.3]

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As shown in Table [l ASVG achieves SOTA or competitive results on most splits across five VG
benchmarks, with larger gains on semantically complex splits or those with a higher proportion
of non-human targets, such as RefCOCO/+ testB. On datasets dominated by short noun phrases
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Table 1: Experimental results on VG datasets. Best results are shown in bold, and second-best are underlined.
* indicates inference time on NVIDIA RTX 3090, other timings on GTX 1080Ti.

Methods Visual RefCOCO RefCOCO+ RefCOCOg Referlt|Flickr30k| Time
Encoder | val testA testB| val testA testB|val-g val-u test-u| test test (ms)
Two-stage
MAttNet [Yu et al.|(2018)] RN101 [76.40 80.43 69.28]64.93 70.26 56.00| - 66.58 67.27| 29.04 - 320
CM-Att-Erase [Liu et al.|(2019b)]| RN101 |78.35 83.14 71.32|68.09 73.65 58.03| - 67.99 68.67| - - -
PBREC-MT [Zhao et al.[(2024)] | RN101 [82.94 86.31 80.81|74.85 79.53 65.60| - 73.86 73.86| - - -
NMTree [Liu et al.|[(2019a)] RN101 |76.41 81.21 70.09|66.46 72.02 57.52|64.62 65.87 66.44 - - -
R One-stage
FAOA [Yang et al.|(2019)] DN53 |71.15 74.88 66.32|56.86 61.89 49.46| - 59.44 58.90| 60.67 | 68.71 39
ReSC,, [Yang et al.|(2020)] DN53 [77.63 80.45 72.30(63.59 68.36 56.81|63.12 67.30 67.20| 64.60 | 69.28 36
MCN [Luo et al.[(2020)] DN53 [80.08 82.29 74.98|67.16 72.86 57.31| - 66.46 66.01| - - 56
RealGIN [Zhou et al.[(2021)] DN53 |77.25 78.70 72.10|62.78 67.17 54.21| - 62.75 62.33| - - 35
) Transformer-based
TransVG [Deng et al.|(2021)] RN101 |81.02 82.72 78.35/64.82 70.70 56.94|67.02 68.67 67.73| 70.73 | 79.10 62
QRNet [Ye et al.|(2022)] Swin-S |84.01 85.85 82.34|72.94 76.17 63.81|71.89 73.03 72.52| 74.61 | 81.95 -
VLTVG [Yang et al.|(2022a)] RN101 |84.53 87.69 79.22|73.60 78.37 64.53|72.53 74.90 73.88| 71.60 | 79.18 79
Dyn.MDETR [Shi et al.[(2023)] |ViT-B/16|85.97 88.82 80.12|74.83 81.70 63.44|72.21 74.14 74.49| 70.37 | 81.89 -
TransVG++ [Deng et al.|(2023)] | ViT-B/16|86.28 88.37 80.97|75.39 80.45 66.28|73.86 76.18 76.30| 74.70 -
TransCP [Tang et al.|(2023)] RN50 |84.25 87.38 79.78|73.07 78.05 63.35|72.60 - - | 72.05| 80.04 | 74*
CLIP-VG [Xiao et al.|(2023)] | ViT-B/16|84.29 84.29 84.29|69.55 69.55 69.55|72.64 72.64 72.64| 70.89 | 81.99 -
SimVGrg [Dai et al.[(2024)] VIT-L/32 90.61 92.53 87.68|85.36 89.61 79.74|79.34 85.99 86.83| 79.30 | 82.61 101
SimVGpp [Dai et al. |(2024)] 90.51 92.37 87.07|84.88 88.50 78.66|80.43 85.72 86.70| 78.75 | 83.15 116
HiVG [Xiao et al.|(2024)] ViT-L/14|88.14 91.09 83.71|80.10 86.77 70.53| - 80.78 80.25| 76.23 | 82.16 -
ASVG-T ViT-B/32 87.88 90.10 84.41[80.08 84.55 72.72|78.69 80.06 81.48| 76.47 | 82.35 [24.97«
ASVG-D 87.86 89.99 84.45|80.43 84.98 72.98|78.81 80.48 81.59| 76.69 | 82.40 |29.87«
ASVG-T VIT-L/32 91.07 93.10 87.70(85.98 89.61 80.56(84.95 86.42 86.71| 79.72 | 85.71 [45.38x
ASVG-D 91.13 93.06 87.65|85.95 89.70 80.60(84.92 86.48 86.90| 79.82 | 87.14 |52.41x
Table 2: GREC results on gRefCOCO with a 0.7 threshold for all methods.
Methods val testA testB
Pr@(F,=1, IoU>0.5) N-acc.|Pr@(F,=1, IoU>0.5) N-acc./Pr@(F,=1, IoU>0.5) N-acc.
MCN [[Luo et al.|(2020}] 28.0 30.6 323 32.0 26.8 30.3
VLT [Ding et al.|(2021)] 36.6 35.2 40.2 34.1 30.2 32.5
MDETR [Kamath et al.|(2021)] 42.7 36.3 50.0 34.5 36.5 31.0
UNINEXT [Yan et al.|(2023)] 58.2 50.6 46.4 49.3 429 48.2
Ferret [You et al.|(2024)] 54.8 48.9 49.5 45.2 43.5 43.8
SimVGyg [Dai et al.|(2024)] 61.3 56.1 61.7 58.0 53.1 57.5
SimVGpg [Dai et al.|(2024)] 62.1 54.7 64.6 57.2 54.8 57.2
ASVG-Tvir.p32 63.9 58.1 03.3 59.9 4.8 38.0
ASVG-Dvirpss2 65.0 60.9 65.2 61.7 55.7 59.9

(Referlt and Flickr30k), ASVG-D (ViT-B) reaches 76.69% and 82.40%, surpassing existing SOTA
methods and improving further with larger encoder capacity. Relative to the RefCOCO series, these
short texts are simpler yet, because of weaker context, more susceptible to semantic ambiguity.
These results indicate that ASVG effectively handles the referred objects with ambiguous seman-
tics. Unlike two-stage [Liu et al.[|(2019a)] and conventional one-stage methods [Zhou et al.| (2021)],
ASVG does not rely on region proposals or complex multi-stage fusion, which reduces error propa-
gation and structural redundancy. Among transformer-based methods, ASVG (ViT-L) outperforms
SimVG (ViT-L) by an average of 0.37% on RefCOCO, 0.52% on RefCOCO+, and 1.69% on Re-
fCOCOg. ASVG injects the alignment priors from the pre-trained encoder into object queries and
employs progressive cross-scale reasoning to enhance the model’s understanding of complex multi-
modal scenarios. With the token branch and SCD, ASVG-T (ViT-B) maintains high accuracy while
achieving lower latency, with a single-image inference time of 24.97 ms on an NVIDIA RTX 3090.

As shown in Table 2| ASVG adapts to GREC by simply increasing the number of object queries
and attains comprehensive gains on gRefCOCO. ASVG-D achieves 65.0% Pr@0.5 and 60.9% N-
acc. on the val set, improving over SimVG-DB by 2.9% and 6.2%. On the more challenging testB
set, ASVG-D reaches 59.9% N-acc., outperforming UNINEXT [[Yan et al.[(2023)] by 11.7% while
keeping Pr@0.5 consistently higher than SimVG-DB. These results indicate that ASVG, under a
compact end-to-end design, enhances robustness and overall accuracy in generalized visual ground-
ing through explicit alignment priors and progressive cross-scale reasoning.
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4.3 ABLATION STUDY

Analysis on AP-QG. As shown in Table [3] AP-QG delivers consistent gains over other variants for
both the token branch and PCD, showing the effectiveness of explicitly embedding text-conditioned
visual heatmaps into object queries. Heatmap-only and Text-only isolate the two core components
of AP-QG: the former provides a spatial alignment prior, while the latter imposes a global semantic
constraint. Text-only underperforms Heatmap-only on the testA and testB splits, indicating that
removing visual priors weakens the performance of object queries. The full AP-QG yields larger
improvements on testB, suggesting greater effectiveness on complex multimodal contexts. TQG is
presented in SimVG [Dai et al.[(2024)]. Experimental results indicate that incorporating alignment
priors is more effective for producing discriminative queries than relying solely on text.

Table 3: Ablation of AP-QG. Each cell reports Token / Decoder accuracy (%).

RefCOCO
Methods val testA testB
w/o AP-QG 87.28 /87.29 89.17/89.30 82.94/83.11
Heatmap-only 87.61/87.66 89.95/90.00 84.14/84.27
Text-only 87.62/87.82 89.35/89.70 83.71/83.81
w Text-guided Query Generation (TQG) |87.33 /87.34 89.96/90.01 84.23/84.22
w AP-QG 87.88/87.86 90.10/89.99 84.41/84.45

Table 4: Impact of pyramid scales in PCD with scales1/8, 1/16, 1/32, 1/64. When a scale is removed, 1/32 is
used instead to keep compute constant. Each cell reports Token / Decoder accuracy (%).

. . RefCOCOg
Pyramid Configuration val-u small medium large test-u
Single-scale@1/32 80.26/80.35(16.67 /33.33 67.40/67.41 82.68/82.72|80.57 / 80.61
w/o 1/8 — 1/32 79.40/79.62|16.67 / 16.67 67.24/67.59 82.70/82.74|80.55 / 80.64
w/o 1/64 — 1/32 79.98/79.90| 16.67 /16.67 67.27/68.09 82.83 /82.83|80.67 / 80.80
Full PCD 80.06 / 80.48|62.50/ 62.50 67.80/68.35 83.89/83.92|81.48/81.59

Table 5: Impact of the token branch and SCD. Each cell Table 6: Ablation of Cross-Head Distillation

reports Token / Decoder accuracy (%). (CHD) and Adaptive Loss Reweighting (ALR).
RefCOCO RefCOCO
Methods ‘ val testA testB CHD ALR val testA testB
w/o Token Branch | 0.00/88.26 0.00/90.07 0.00/85.46 - - |87.58/87.70 89.89/89.98 83.82/84.13
ke e (W/0 SCD) (87,85 /87.92 89.21/89.42 84.12/84.67 v 3;‘6‘% 2;23 gggg ; gggg 2‘3‘3?;2‘3‘33
Toen pnen (W SCD) [87.88/87.86 90.10/89.99 84.41/84.45 ¥ = 000 0 e e Sa 4l /8445

Ablation Study of PCD. To analyze scale effects, we split RefCOCOg test-u by the standard COCO
area thresholds into small (area>1024), medium (1024<area<9216), and large (area<9216), with
6/1432/8164 samples, respectively. As shown in Table ] Full PCD outperforms the single-scale
1/32 baseline, confirming that progressive cross-scale reasoning improves overall generalization.
By object size, small objects benefit most from Full PCD. When either the 1/8 or 1/64 level is
removed, performance drops to 16.67%/16.67% (Token / Decoder) or 33.33% on the Decoder. Note
that the small subset contains only six samples, so the metrics change in steps of about 16.7%, yet
the upward trend is clear. Overall, high-resolution levels such as 1/8 provide fine detail and low-
resolution levels such as 1/64 provide the global structure. The intermediate 1/16 and 1/32 levels
bridge the two, forming a complementary pyramid that benefits both the token branch and PCD.

Impact of the Token Branch and SCD. As shown in Table 5] “w/o Token Branch” serves as the
PCD-only baseline, where the token branch is absent and token-side metrics are 0. Adding the token
branch without SCD improves token accuracy but slightly reduces PCD performance relative to the
baseline. These results suggest that, while the token branch offers a lightweight path, sharing the
encoder with PCD and joint training interfere with PCD learning, resulting in a slight reduction
in teacher accuracy. When SCD is applied, the token branch improves further, and PCD partially
recovers, though it remains slightly below the ‘w/o SCD” setting. Overall, SCD enables the token
branch to strengthen its discriminative ability and deliver a lower-latency inference path at a small
cost in teacher accuracy. Notably, all results are obtained with one-stage online distillation, while
training ASD first and then applying dual-branch distillation can further improve accuracy.
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Figure 3: Visualization of model predictions, heatmaps from AP-QG, and attention maps from PCD. The red,
green, and orange boxes denote ground truth, PCD predictions, and token branch predictions, respectively.

As shown in Table [0 we analyze the internal design of SCD. Introducing ALR alone yields sta-
ble gains on testB, suggesting that adaptive reweighting regularizes learning in complex scenes.
However, its limited effect on val and testA indicates that ALR alone cannot fully exploit distil-
lation. Enabling CHD alone improves the student on testA but significantly reduces performance
on testB, implying that cross-head distillation benefits the student while introducing interference to
the teacher. The two components are complementary: CHD offers explicit cross-head supervision,
while ALR balances the contributions of different loss components through adaptive weighting.

4.4 QUALITATIVE RESULTS

Figure [3 presents the input image, the predictions from the PCD and token branch, the heatmap
from AP-QG, and the last-layer decoder attention map. Overall, the PCD predictions (green boxes)
align closely with the ground-truth annotations (red boxes), confirming stable localization. The
token branch (orange boxes) is lightweight yet follows the teacher with consistent prediction trends.
The text-conditioned visual responses in the heatmap highlight semantically relevant regions, as in
“red jacket dad” and “yellow and blue vehicle closest to camera,” indicating that AP-QG exploits
alignment priors to enhance the semantic discriminability of the object query. The attention map
reflects the alignment between queries and visual features during decoding. The results show that
attention is primarily concentrated on specific targets, indicating that the model can further focus on
key regions in complex backgrounds. More visualizations can be found in Appendix [A.7}

5 CONCLUSION

This paper presents ASVG, an efficient VG framework that integrates alignment priors with cross-
scale reasoning to enhance the semantic discriminability of queries and adapt to targets of varying
scales. First, we propose an Alignment Prior-guided Query Generator (AP-QG), which explicitly
exploits the cross-modal alignment prior from the encoder to produce target-aware object queries.
Second, we design a Progressive Cross-scale Decoder (PCD) that builds a multi-resolution pyramid
from single-scale features, enabling progressive reasoning across scales without redundant feature-
pyramid fusion. To further improve efficiency, we introduce a lightweight token branch with Soft
Cross-head Distillation (SCD) that enforces feature consistency and adaptively reweights losses,
reducing inference cost while maintaining accuracy. Extensive experiments on six popular VG and
GREC datasets demonstrate the effectiveness of ASVG.
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A APPENDIX

We provide an overview of the Appendix below:

* Appendix [A.T} Use of LLMs.

* Appendix [A.2} Dataset Descriptions.

* Appendix Additional Implementation Details.

* Appendix Comparison with Pre-trained Models.
Appendix [A.5} Additional Ablation Studies.

— Ablations for Object Query Generation.
— Effect of Hyperparameters in Adaptive Loss Reweighting.
— Analysis of the Heatmap Alignment Loss.

* Appendix [A.6 Training Efficiency.

Appendix [A.7} Supplementary Qualitative Results.

A.1 USE OoF LLMs

Large Language Models (LLMs) are used to assist in improving the clarity, fluency, and grammar of
the English writing in this paper. They help refine sentence structure and word choice to ensure better
readability. LLMs are not involved in any aspect of the research ideation, technical development,
model design, experimentation, or result interpretation. Their use is limited to language refinement
and does not constitute a scientific contribution.

A.2 DATASET DESCRIPTIONS

We evaluate the proposed ASVG on six mainstream VG and GREC datasets. Table [/| summarizes
the basic statistics and split details of each dataset.

* ReferitGame (Referlt) [Kazemzadeh et al.| (2014)], introduced in 2014, is the first large-
scale real-world dataset for VG. It is originally designed for the Phrase Grounding (PG)
task and is later widely adopted in VG benchmarks. Textual descriptions are collected
through an online two-player game, resulting in colloquial and task-oriented queries.

13
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RefCOCO and RefCOCO+ [Yu et al.| (2016)] both contain two test splits, testA and testB,

where testA includes only people-related annotations and testB contains all other objects.
Their textual descriptions are also collected through the interactive game mechanism used
in Referlt. Unlike RefCOCO, RefCOCO+ prohibits explicit spatial or directional terms,
thus emphasizing visual appearance and enriching textual descriptions.

RefCOCOg [Nagaraja et al.| (2016)] contains descriptions collected via non-interactive

annotation sessions on Amazon Mechanical Turk, producing longer and more syntacti-
cally complex text. Two common splits are RefCOCOg-google and RefCOCOg-umd. The
google split has no public test set and contains overlaps between the training and validation
sets, whereas the umd split has no overlap. To avoid potential data leakage and following
prior studies, we excluded the google split in our mixed-dataset pretraining setting.

Flickr30k Entities (Flickr30k) [Plummer et al.| (2015)] targets the PG task. Its descrip-

tions are noun phrases extracted from image captions rather than complete sentences, and
a single caption may refer to multiple objects. Compared with RefCOCO/+/g, it contains
shorter text with less context, resulting in higher ambiguity and greater annotation noise.

gRefCOCO [He et al.[(2023)] covers 60,287 distinct instances from 19,994 images, with a

total of 278,232 textual descriptions, including 80,022 multi-target and 32,202 no-target de-
scriptions. Some single-target descriptions are inherited from RefCOCO [Yu et al.|(2016)].
gRefCOCO emphasizes robust modeling for complex referring expressions involving mul-
tiple targets or no-target cases.

Table 7:

Comprehensive statistics of VG benchmarks: RefCOCO [Yu et al.| (2016)], RefCOCO+ [Yu et al.

(2016)], RefCOCOg [Nagaraja et al.| (2016)], Referlt [Kazemzadeh et al.| (2014)], Flickr30k [Plummer et al.
(2015)]. Test and testA are shown together.

Datasets ‘ Images | Annotated Instances | Avg. Text Length total traigextudl ‘%Tenes test (A)  testB

RefCOCO 19,994 50,000 3.49 142,210 | 120,624 | 10,834 | 5,657 | 5,095

RefCOCO+ | 19,992 49,856 3.58 141,564 | 120,191 | 10,758 | 5,726 | 4,889
RefCOCOg-u | 25,799 49,822 8.47 95,010 | 80,512 | 4,896 9,602 -
RefCOCOg-g | 26,711 54,822 8.46 104,560 | 85,474 | 9,536 - -
Referlt 20,000 19,987 3.45 120,072 | 54,127 | 5,842 | 60,103 -
Flickr30k 31,783 427,000 1.59 456,107 | 427,193 | 14,433 | 14,481 -

Table 8: Comparison with pre-trained models on RefCOCO, RefCOCO+, and RefCOCOg datasets. Parameter
counts include head and decoder only. Best results are shown in bold, and second-best are underlined.

Methods Visual |Params|Pre-train RefCOCO RefCOCO+ RefCOCOg

i Encoder | (M) | Images | val testA testB| val testA testB |val-u test-u

UNITERL [[Chen et al.|(2020)] RN101 - 4.6M [81.41 87.04 74.17|75.90 81.45 66.70|74.86 75.77
VILLAL [Gan et al.|(2020)] RN101 - 4.6M |82.39 87.48 74.84|76.17 81.54 66.84|76.18 76.71
MDETR [Kamath et al.|(2021)] | RN101 | 17.36 | 200K [86.75 89.58 81.41|79.52 84.09 70.62|81.64 80.89
RefTR L1 & Sigal|(2021)] RNI101 | 17.86 | 100K |85.65 88.73 81.16|77.55 82.26 68.99/79.25 80.01
SeqTR [Zhu et al.[(2022)] DN53 | 7.90 | 174K |87.00 90.15 83.59|78.69 84.51 71.87|82.69 83.37
UniTAB [Yang et al.|(2022b)] RN101 - 200K |88.59 91.06 83.75|80.97 85.36 71.55|84.58 84.70
DQ-DETR [Liu et al.|(2023b)] RN101 - 200K |88.63 91.04 83.51|81.66 86.15 73.21|82.76 83.44
GroundingDINO [Liu et al.|(2024)]| Swin-T - 200K [89.19 91.86 85.99(81.09 87.40 74.71|84.15 84.94
PolyFormer [Liu et al.[(2023a)] | Swin-B - 174K |89.73 91.73 86.03|83.73 88.60 76.38|84.46 84.96
PolyFormer [Liu et al.|(2023a)] Swin-L - 174K [90.38 92.89 87.16|84.98 89.77 77.97|85.83 85.91
OFA-L [Wang et al.|(2022)] RN152 - 20M  |90.05 92.93 85.26|85.80 89.87 79.22|85.89 86.55
mPLUG-2 [Xu et al.|(2023)] ViT-L/14| - 14M  |92.40 94.51 88.42|86.02 90.17 78.17|85.88 86.42
SimVG-DB [Dai et al.|(2024)] | ViT-B/32| 6.32 28K  190.98 92.68 87.94|84.17 88.58 78.53|85.90 86.23
SimVG-TB [Dai et al.|(2024)] ViT-L/32 1.58 28K (9299 94.86 90.12|87.43 91.02 82.10|87.95 88.96
SimVG-DB [Dai et al.|(2024)] 6.32 28K 192.93 94.70 90.28|87.28 91.64 82.41|87.99 89.15
ASVGD ViT-B/32| 11.50 | 28K [91.64 92.99 88.38/85.10 88.67 79.66|85.97 86.89

ASVG-T VIT-L/32 1.15 28K 93.24 95.04 90.53(88.03 91.32 82.72|88.21 89.29

ASVG-D 11.50 | 28K [93.04 94.87 90.45|87.89 91.79 82.80|88.23 89.32
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A.3 ADDITIONAL IMPLEMENTATION DETAILS

This section provides additional details on the experimental setup. Apart from the encoder initial-
ized from BEIT-3 pretrained weights, all other parameters are randomly initialized using PyTorch’s
default scheme. The Adam optimizer is adopted with a base learning rate of 5e-4, adjusted by a
multi-step decay with linear warm-up. For the BEiT-large encoder, the batch size is set to 3 due to
memory constraints. The encoder output dimension is expanded from 768 to 1024, with the thresh-
old fixed at & = 0.75, while all other settings remain identical to those of the base encoder. In the
pre-training experiments (Table [)), the results for the BEiT-base encoder are obtained from the de-
coder branch supervised by ground truth, whereas the BEiT-large encoder is still trained via online
distillation with the SCD strategy. The number of training epochs is reduced to 50 for pretraining,
further reduced to 40 for the large encoder due to the high computational cost, and uniformly set to
15 for fine-tuning. Unless otherwise specified, the distillation process adopts 7 = 2 and § = 0.8
as default hyperparameters. In GREC experiments, the number of object queries is fixed to 10, 6
is set to 0.75, and the heatmap alignment loss coefficient A to 0.8 (Eq. [IT). In other comparative
experiments, 6 is set to 0.8 and A to 1. Their influence is examined in the ablation study. Exponen-
tial Moving Average (EMA) is not applied during any stage of training. In addition, the pretrained
model BEiT-3 is not trained on any of the six datasets used for evaluation. All results reported for
both ASVG-T and ASVG-D are obtained through online distillation with SCD.

A.4 COMPARISON WITH PRE-TRAINED MODELS

Table 8| shows a comparison between ASVG and several pre-trained VG methods on the RefCOCO
series datasets. With only 28K images used for pre-training, ASVG achieves performance com-
parable to or even exceeding methods trained on much larger datasets. ASVG-T (ViT-L) achieves
95.04% on RefCOCO testA and 90.53% on testB, and it surpasses most large-scale pre-trained
methods such as GroundingDINO [Liu et al.| (2024)] and PolyFormer [Liu et al.|(2023a)] on the Re-
fCOCO+/g datasets. Compared with SimVG [Dai et al.|(2024)], ASVG consistently outperforms it
across multiple datasets, further validating the effectiveness of introducing AP-QG and the progres-
sive cross-scale decoder. In addition, ASVG maintains a lightweight architecture. ASVG-T contains
only about 1.15M parameters, which is significantly smaller than some existing lightweight mod-
els while maintaining strong performance. Notably, when the cross-modal encoder is scaled from
ViT-B to ViT-L, the lightweight token branch not only matches but in some cases exceeds its teacher
(PCD). These results indicate that as the encoder size increases, the supervision provided by PCD
becomes more reliable, thereby enhancing the generalization ability of the token branch.

A.5 ADDITIONAL ABLATION STUDIES

Ablations for Object Query Generation. In visual grounding, object queries are developed to repre-
sent the feature representation of the referred object. Early methods [Deng et al.|(2021);|Yang et al.
(2022a); |Deng et al.| (2023)] generate queries from randomly initialized learnable vectors, which
lack semantic relevance, making subsequent target reasoning difficult. Recent methods attempt to
generate queries through text guidance, providing target-related prior context but overlooking the es-
sential role of visual information in target semantic understanding. As shown in Figure 4] and Table
[0 we take randomly initialized learnable vectors as the baseline. Compared with the Text-guided
Query Generation (TQG) module proposed in [Dai et al.| (2024)], our AP-QG exploits alignment
priors from the encoder to construct target heatmaps and explicitly embed them into object queries,
resulting in significant improvements in both convergence efficiency and final performance.

Effect of Hyperparameters in Adaptive Loss Reweighting. We examine the effects of the threshold
6 and temperature 7 in the adaptive loss reweighting scheme (Eq. [I0). Table [I0] shows consistent
trends for both the token branch and PCD. Setting 8 = 0.8 yields the best performance on test-u,
improving by 1.00/0.94 percentage points over § = 0.0, while increasing 6 to 0.9 causes a slight
decline. These findings suggest enabling adaptive reweighting once the teacher has stabilized to
avoid a late start that would shorten the effective window of reweighting. For 7, smaller values
produce overly peaked weights and hinder the collaboration of different losses, whereas larger values
average them and weaken guidance from dominant terms. For example, 7 = 5 is slightly higher on
val-u but underperforms 7 = 2 on test-u. The small gain on val-u likely reflects over-smoothing and
local fitting. We therefore adopt € = 0.8 and 7 = 2 as the default configuration.
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Comparison of Object Query Generation Methods

Table 9: Ablation Study on Object Query
Generation. Each cell reports Token / De-
coder accuracy (%).

Accuracy (%)

RefCOCO

Methods| testA testB “ =

Baseline [87.28 /87.29 89.17/89.30 82.94/83.11 30 gt dvie
TQG [87.33/87.34 89.96/90.01 84.23/84.22 . " p pn p » P
AP-QG |87.88 /87.86 90.10/89.99 84.41/84.45

Figure 4: Comparison of accuracy over epochs for different ob-
ject query generation methods.

Table 10: Effect of temperature 7 and threshold 6. Each cell reports Token / Decoder accuracy (%).

RefCOCOg

val-u test-u
7 = 2 (0 varies)
0.0 | 79.62/79.78 80.48/80.65
04 | 79.77/80.09 80.18/80.26
0.8 | 80.06/80.48 81.48/81.59
0.9 | 80.52/80.69 80.72/80.97
0 = 0.8 (7 varies)
0.5 | 80.46/80.50 81.03/81.13

1 80.22/80.12 80.94/81.02
80.06/80.48 81.48/81.59
5 81.11/81.19 81.20/81.29

Type

Analysis of the Heatmap Alignment Loss. As shown in Table adding the heatmap alignment
loss Lya yields consistent gains for both the token branch and PCD on RefCOCO, showing that
an explicit spatial alignment constraint enhances the model’s perception of the referred object and
thereby improves grounding performance. Table [12] further shows that the weight A for Lya has
a noticeable impact on performance: A\ = 1.0 gives the best results, suggesting a good balance
between KL supervision and the grounding loss. A properly chosen A improves both heatmap quality
and localization accuracy, whereas an excessively large weight sacrifices grounding performance.

Table 12: Effect of the weight A for Lua. Each cell
Table 11: Ablation of the heatmap alignment loss. Each reports Token / Decoder accuracy (%).
cell reports Token / Decoder accuracy (%).

RefCOCO

Methods RefCOCO Type val testA testB

val testA testB 0.5 |87.36/87.39 89.71/89.77 84.28 /84.34
w/o Lya |87.22/87.32 89.08 /89.08 83.51/83.60 1.0 |87.88/87.86 90.10/89.99 84.41/84.45
w Lya |87.88/87.86 90.10/89.99 84.41/84.45 2.0 [88.02/87.97 89.59/89.61 84.24/84.28

5.0 |87.89/87.82 90.03/90.05 84.24 /84.27

A.6 TRAINING EFFICIENCY

Under the same hardware setup (4xRTX 3090), we compare each method’s convergence cost
(epochs) and wall-clock training time on RefCOCOg against the performance reported in the original
papers. As shown in Table[I3] ASVG, trained in a single stage, reaches 80.48%/81.59% (val-u/test-
u) in 60 epochs/7.5h, requiring fewer epochs than VLTVG and Dynamic MDETR (both 90 epochs),
indicating faster convergence. SimVG completes its first stage in 30 epochs / 4.5h, but its reported
performance relies on a second-stage distillation (+20 epochs), so the overall training cost is not
lower than ASVG. In sum, using original-paper metrics for fairness, ASVG achieves comparable or
better accuracy-efficiency trade-offs with fewer epochs and a simpler single-stage pipeline.
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Table 13: Training time on RefCOCOg (4 xRTX 3090) vs. performance reported in the original papers. “Two-
stage Training” denotes the presence of an additional training stage.

Methods Visual Encoder | Epoch | Training Time | Two-stage Training \l:ifotgsot-%l
VLTVG RN101 90 - X 76.04 74.18
SimVGpp ViT-B/32 30 4.5h v 80.37 80.51
Dynamic MDETR |  ViT-B/16 90 - X 74.14 74.49
ASVG-D ViT-B/32 60 7.5h X 80.48 81.59

q dc?g with brown {‘ur ) “ o white toilet with a grey hq:red man‘ in
with its head up laying yellow black seat” black suit and white
on a gray sheet” crane” shirt wearing glasses”

“the back side of a white
and blue striped shirt”

Input image

SimvG

VLTVG

ASVG
(Ours)

Figure 5: Examples predicted by ASVG on the validation set of the RefCOCOg dataset.

A.7 SUPPLEMENTARY QUALITATIVE RESULTS

Table[3]presents a qualitative comparison between the proposed ASVG and representative VG meth-
ods (SimVG (2024)] and VLTVG [Yang et al.| (2022a)]). Red boxes denote ground-truth
annotations, while green and orange boxes indicate predictions from the PCD and token branch,
respectively. Overall, ASVG demonstrates more robust alignment with the described objects across
diverse scenarios. In the first and fifth examples, other methods tend to extend predictions to visu-
ally similar foreground objects, whereas ASVG focuses only on the intended regions. In the second
example, under a description with mild ambiguity, ASVG accurately localizes the brown dog with
well-defined boundaries, while SimVG incorrectly predicts the white dog. In the third example,
other methods often truncate elongated structures or include background regions, while our ASVG
successfully captures the entire target, reflecting stronger cross-scale consistency. The token branch
follows the same trend as PCD, achieving prediction quality that closely approaches the teacher.

Figure [6] shows qualitative results of ASVG on the gRefCOCO testA and testB splits. Red boxes is
ground-truth annotations, and green and orange boxes indicate predictions from the PCD and token
branch. The first row presents successful cases, showing that AP-QG exploits alignment priors to
generate discriminative object queries and accurately localize multiple targets in complex scenes.
For example, ASVG correctly identifies targets under explicit descriptions such as “blue umbrella”
and “hands with camera.” The second and third rows present failure cases. For multi-target or
ambiguous descriptions, ASVG still struggles with boundary reasoning and fine-grained semantics.
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“the blue umbrella cand the
“ boy blue and guy in back” “ both black shirt” “ purple coat andstanding guy” “ left horse” far right and person on man with hat on right”
Successful Cases far left in white jacket”

“the black cat on the left side layin “ - ; 4 P "

the wind J mf black iy “three buses” the little boy wearing white top front donut and donut on top “there are three little beings”
(7 E3 T I I3 P S G D) riding the horse and the brown of the other middle”
the background outside the window” horse in the left side”

Unsuccessful Cases

IEN = ? < - | )
“the horse drawn carriage has black car just under blue
passengers” broccoli sign”

i

“ pink umbella second umbrella

dog on right’ from left” white monitor on right’

Figure 6: Examples predicted by ASVG on the testA and testB splits of the gRefCOCO dataset.

In the case of “the little boy wearing white top riding horse and the brown horse in the left side”,
multiple entities and attributes lead to partial misalignment, showing that multi-object interactions
and complex attribute bindings remain challenging. For abstract expressions such as “three little
beings,” ASVG fails to distinguish instances, producing unstable predictions. These results indi-
cate that ASVG achieves strong localization in most common, semantically clear scenarios, yet
challenges remain in cases that require fine-grained reasoning over multiple objects. These findings
confirm the effectiveness of incorporating image-text alignment priors through AP-QG and highlight
future directions in multi-target grounding and fine-grained semantic modeling.
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