
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT VISUAL GROUNDING VIA ALIGNMENT PRI-
ORS AND SCALE ADAPTABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual Grounding links textual descriptions to the corresponding image regions,
and its complexity increases with target semantic complexity. Existing methods
encounter performance bottlenecks due to semantic alignment bias and scale-
induced perception mismatch. In this paper, we propose ASVG, an efficient
framework that exploits alignment priors from the cross-modal encoder to build
target-aware queries and enhances scale adaptability through progressive cross-
scale reasoning. First, we design an alignment prior-guided query generator,
which embeds text-conditioned visual heatmaps into object queries to enhance
their semantic discriminability. Second, we develop a progressive cross-scale de-
coder that builds a multi-resolution pyramid solely from single-scale features,
enabling progressive cross-scale reasoning while avoiding redundant feature-
pyramid fusion. In addition, we introduce a lightweight token branch and Soft
Cross-head Distillation (SCD), which enforces feature consistency and adaptively
reweights losses, reducing inference cost while maintaining high performance.
Our method achieves significant performance gains across six VG and GREC
datasets, particularly under complex or ambiguous target semantics.

1 INTRODUCTION
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Figure 1: Qualitative comparison with prior methods.
Existing methods rely on random initialization or text-
guided queries and struggle in complex multimodal
contexts. Our method uses alignment priors to gen-
erate discriminative queries and employs cross-scale
reasoning to improve scale adaptation, enabling effi-
cient grounding with a lightweight MLP.

Visual Grounding (VG) aims to associate tex-
tual descriptions with visual regions by finding
the referred object [Deng et al. (2021)]. Unlike
object detection that relies on predefined cate-
gories, VG supports free-form textual queries to
enable more flexible object localization. To over-
come the single-target limitation of traditional
VG, Generalized Referring Expression Compre-
hension (GREC) [He et al. (2023)] emerges as
a more general paradigm. GREC extends the
grounding formulation to handle textual queries
that refer to single, multiple, or zero targets in an
image, thereby better aligning with the complex-
ity and ambiguity of real-world scenes.

Effective visual grounding hinges on an accu-
rate understanding of the visual content referred
to by the text, making precise cross-modal se-
mantic alignment indispensable. Early methods
focused on extending off-the-shelf object detec-
tors. Two-stage methods first generate region
proposals and then match them to the text, select-
ing the proposal with the highest similarity as the
prediction [Zhao et al. (2024)]. In contrast, one-
stage methods directly regress bounding boxes
from dense anchors using fused multimodal fea-
tures [Zhou et al. (2021)]. Recent works adopt
stacked transformer models to explicitly capture
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cross-modal interactions [Deng et al. (2021)]. Although these methods differ in architecture, they
all encode images and text independently before modality interaction, which leads to two key issues.
First, such early decoupling discards latent cross-modal correlations [Deng et al. (2023)]. Second,
the intrinsic distribution gap between visual and textual features must be bridged by complex in-
teraction mechanisms [Yang et al. (2022a)]. Some studies attempt to guide image encoding with
textual prompts [Su et al. (2023)], yet these prompts are still derived from textual features encoded
in isolation. Moreover, these modality interaction modules are often trained from scratch on limited
downstream data, which causes the learned correlations to overfit to task-specific data and limits
their generalization to complex scenarios. The substantial gains observed when models are trained
on mixed datasets provide indirect evidence of these issues [Shi et al. (2023)].

The rapid progress of Vision-Language Pre-trained models (VLPs) offers a promising solution to
the above issues. Leveraging large-scale and heterogeneous data, VLPs establish naturally aligned
cross-modal feature spaces. HiVG [Xiao et al. (2024)] and CLIP-VG [Xiao et al. (2023)] use the
strong cross-modal representations of CLIP [Radford et al. (2021)] to enhance the modeling of cross-
modal relations. CPT [Yao et al. (2024)] and ReCLIP [Subramanian et al. (2022)] further exploit
the robust generalization ability of VLPs, extending VG into zero-shot and few-shot regimes and
achieving competitive performance with minimal task-specific data. Departing from simplistic VLP
embedding within existing pipelines, SimVG [Dai et al. (2024)] decouples multimodal fusion from
downstream tasks and attains efficient inference by employing a two-stage training strategy with
dynamic weight-balanced distillation. Although VLPs endow VG with transferable cross-modal
representations and global semantic priors, two core bottlenecks remain. (1) Semantic alignment
bias. Mainstream methods rely on learnable queries and transformer architectures to perform im-
plicit alignment in the textual embedding space to extract semantic cues, overlooking the active role
of visual evidence in semantic discrimination and disambiguation. This bias is particularly evident
in complex multimodal contexts or ambiguous target semantics, resulting in unstable grounding.
Recent work seeks to mitigate it by strengthening cross-modal information feedback, but typically
at the cost of higher architectural and inference complexity [Wang et al. (2024b)]. (2) Scale-induced
perception mismatch. Existing methods rely on single-scale prediction, which struggles to reconcile
the details of small objects with the global structure of large ones. Multi-stage fusion can alleviate
this mismatch but inevitably increases computational cost. Consequently, scale-induced perception
blind spots, compounded by fusion overhead, become a bottleneck for inference performance.

In this paper, we propose ASVG, an efficient visual grounding framework built on the BEiT [Wang
et al. (2023)] cross-modal encoder. To address semantic alignment bias and scale-induced perception
mismatch, ASVG couples an Alignment Prior-guided Query Generator (AP-QG) with a Progressive
Cross-scale Decoder (PCD). AP-QG provides target-aware guidance by injecting text-conditioned
visual heatmaps into object queries, exploiting encoder-learned alignment priors to enhance their se-
mantic discriminative power. PCD constructs a multi-resolution pyramid from single-scale features
and performs progressive cross-scale reasoning, enhancing scale-aware perception while reducing
redundant feature-pyramid fusion. To improve inference efficiency, we augment PCD with a parallel
token branch consisting of a single linear layer and introduce Soft Cross-dead Distillation (SCD).
This distillation applies feature-consistency constraints and adaptive loss reweighting, preserving
PCD’s high performance while substantially reducing inference overhead. Accordingly, ASVG sig-
nificantly improves convergence efficiency and grounding performance by modeling text-visual se-
mantic alignment and applying progressive cross-scale inference.

In conclusion, our main contributions are listed as follows:

• To address semantic alignment bias and scale-induced mismatch, we propose ASVG, an
efficient framework that uses alignment priors to mitigate the alignment bias and employs
progressive cross-scale reasoning to alleviate the mismatch.

• We introduce an Alignment Prior-guided Query Generator (AP-QG) that embeds text-
conditioned visual heatmaps into object queries, exploiting encoder-learned cross-modal
alignment priors to enhance their semantic discriminability.

• We propose a Progressive Cross-scale Decoder (PCD) that constructs a multi-resolution
pyramid solely from single-scale features, enabling progressive reasoning across scales
without resorting to complex multi-scale fusion. In addition, we introduce a token branch,
coupled with Soft Cross-dead Distillation (SCD). By enforcing feature-consistency con-
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Figure 2: The overall architecture of ASVG. First, AP-QG generates object queries with stronger target se-
mantics. Next, the Progressive Cross-scale Decoder (PCD) builds a multi-resolution pyramid and performs
progressive cross-scale reasoning. Then, a lightweight token branch is trained with Soft Cross-dead Distilla-
tion (SCD). This branch can be used independently at inference to increase speed.

straints and adaptive loss reweighting, SCD preserves the high performance of PCD while
maintaining a lightweight advantage for the student branch.

• Extensive evaluations across six public VG and GREC datasets demonstrate that ASVG
delivers superior convergence efficiency and grounding accuracy, especially in scenarios
with complex or ambiguous target semantics.

2 RELATED WORKS

2.1 VISUAL GROUNDING

Visual Grounding (VG) aims to generate bounding boxes for image regions referred to by text. Exist-
ing methods fall into three main groups: two-stage methods [Yu et al. (2018); Liu et al. (2019b;a)],
one-stage methods [Luo et al. (2020); Yang et al. (2019)], and transformer-based methods [Yang
et al. (2022a)]. Two-stage methods separate region proposal and text matching, which enables initial
cross-modal alignment. One-stage methods accelerate inference through end-to-end design, yet they
still struggle with complex multimodal scenarios. The rise of transformers has introduced unified
attention mechanisms that capture visual-language interactions more effectively. TransVG [Deng
et al. (2021)] exemplifies this trend by capturing fine-grained semantic correspondences through
token-level connections. Recent advances in Vision-Language Pre-trained models (VLPs) have fur-
ther transformed VG. Large-scale aligned pretraining with models such as CLIP [Radford et al.
(2021)] and BEiT-3 [Wang et al. (2023)] supplies strong semantic priors for downstream tasks.
Three lines of research have emerged. Architecture-adaptation methods such as SimVG [Dai et al.
(2024)] and Dynamic MDETR [Shi et al. (2023)] enhance the transfer of pretrained features through
improved decoders or distillation strategies. Parameter-efficient methods such as CPT [Yao et al.
(2024)] adopt prompt learning to achieve few-shot adaptation. Feature-refinement methods such as
HiVG [Xiao et al. (2024)] introduce hierarchical modulation to boost grounding accuracy. These
directions collectively push VG from full supervision toward few-shot settings and from coarse- to
fine-granularity. In contrast, this paper focuses on exploiting the intrinsic alignment of pretrained
encoders to achieve referring semantic comprehension and efficient scale adaptation.

2.2 KNOWLEDGE DISTILLATION

Knowledge Distillation enhances lightweight student models by guiding them to mimic a larger
teacher without modifying the student architecture. Chen et al. first introduced a distillation frame-
work for detection [Chen et al. (2017)], transferring knowledge through joint feature and prediction
distillation. Later work selected informative regions to refine feature distillation [Jia et al. (2024);
Dai et al. (2021)] or redesigned loss weighting strategies [Li et al. (2022); Zhixing et al. (2021)].
LD [Zheng et al. (2022)] distilled the local distribution of bounding boxes to pass spatial knowl-
edge, whereas CrossKD [Wang et al. (2024a)] proposed cross-head distillation by routing interme-
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diate student features through the teacher head to mitigate target conflicts. To improve grounding
efficiency, we introduce SCD, which enforces feature consistency and adaptively reweights losses,
thereby preserving the teacher decoder’s accuracy while substantially reducing inference cost.

3 METHODOLOGY

As shown in Figure 2, our framework first jointly encodes the input image and text. Then, an Align-
ment Prior-guided Query Generator (AP-QG) explicitly exploits alignment priors from the encoder
to generate object queries with strong target semantics. These queries are fed into the Progressive
Cross-scale Decoder (PCD). In addition, a lightweight token branch is introduced, combined with
Soft Cross-head Distillation (SCD), to enable more efficient inference.

3.1 CROSS-MODAL ENCODING

We adopt BEiT-3 [Wang et al. (2023)] as the encoder, exploiting its powerful cross-modal under-
standing ability to enhance image-text alignment. Specifically, the image and text inputs are trans-
formed into token sequences via separate visual and textual embedding layers, with a learnable token
serving as an explicit target representation. These tokens are then concatenated into a unified input
sequence, accompanied by attention masks to guide cross-modal transformer modeling. During en-
coding, modality-specific parameters are independently maintained within the Feed-Forward Net-
work (FFN), while the overall architecture adheres to the standard ViT, thus enabling effective fusion
without compromising intrinsic properties. The encoder outputs are the visual token F ′

v ∈ RNv×De ,
the textual token F ′

e ∈ RNe×De , and the object token F ′
o ∈ R1×De , where Nv = (H/32)× (W/32)

(with H and W denoting the image height and width), and Ne is the number of textual tokens.

3.2 ALIGNMENT PRIOR-GUIDED QUERY GENERATOR

By fusing text-conditioned visual responses with global textual semantics, AP-QG explicitly miti-
gates cross-modal semantic alignment bias, yielding target-aware and discriminative object queries.
Specifically, two separate linear layers first project the visual token F ′

v and textual token F ′
e into

a shared dimension Dc, yielding Fv ∈ RNv×Dc and Fe ∈ RNe×Dc . Both token sets are then
L2-normalized along the channel dimension to remove scale discrepancies across modalities, after
which a fine-grained alignment matrix Malign ∈ RNv×Ne is computed as follows:

F v = Fv/ ∥Fv∥2 , F e = Fe/ ∥Fe∥2 , Malign = F vF
T

e , (1)

where each entry of Malign is the cosine similarity between corresponding pixels and words. To
highlight informative words, F ′

e is passed through a two-layer MLP with GELU activation, and the
resulting scores are normalized via softmax to produce the word attention weight Wword ∈ RNe×1.
The weight is applied to Malign along the Ne axis, yielding a response vector Mheatmap ∈ RNv×1.

Wword = ΦSoftmax(ΦMLP(F
′
e)), Mheatmap = MalignWword. (2)

Here, Mheatmap accentuates the visual regions most relevant to the textual description, serving as a
spatial heatmap of the referred object. It is then linearly projected into a text-conditioned visual
prior and fused with sentence-level semantics to produce the initial query Qinit ∈ RDc×1:

Qinit = ΦLinear(Mheatmap) +ΦMax(Fe), (3)

where ΦMax applies max pooling along the word dimension to produce a global textual vector. The
resulting Qinit is replicated No times and each copy is augmented by the learnable positional bias
to form the object queries Qobject that are fed into the decoder. Semantically explicit object queries
overcome the limitations of target-agnostic inference. As each query carries a distinct positional
bias, the mechanism naturally generalizes to single-target, no-target, and multi-target scenarios.

3.3 PROGRESSIVE CROSS-SCALE DECODER

Multi-scale reasoning enhances scale-aware perception across object sizes by fusing high-resolution
details with low-resolution semantic context. Existing methods use multi-stage outputs of the en-
coder together with an FPN [Lin et al. (2017)] for cross-scale fusion. In contrast, we introduce PCD,
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which performs progressive cross-scale reasoning using only the single-scale output of the encoder.
PCD consists of two stages: a lightweight pyramid construction and progressive decoding.

Pyramid Construction: The visual token F ′
v is first reshaped into a spatial feature map F̃ ′

v of size
H
32 × W

32 × Dv , then projected to obtain X1/32 = ΦConv1×1(F̃
′
v). Next, transposed convolutions

ΦConvT with kernel size and stride 2 are applied recursively to increase the feature resolution:

X1/16 = ΦConvT(X1/32), X1/8 = ΦConvT(X1/16). (4)

This learnable upsampling acts as a data-driven interpolation scheme that approximates Shannon
reconstruction in the frequency domain, allowing the network to learn low-pass filtering behaviour
while adaptively restoring high-frequency details [Lim et al. (2017)]. In parallel, a 2×2 max-pooling
operation generates X1/64 = ΦMax

(
X1/32

)
to retain stable global responses for large objects. Each

scale-specific feature is processed with LayerNorm, followed by a 3×3 convolution.

Ys = ΦConv3×3 (ΦLN (Xs)) , s ∈ {1/8, 1/16, 1/32, 1/64}, (5)

where the convolution ΦConv3×3 approximates a discrete Laplacian operator, effectively suppressing
artifacts introduced during upsampling. Finally, we obtain a set of complementary multi-resolution
features S =

{
Y1/8,Y1/16,Y1/32,Y1/64

}
.

Progressive Decoding: PCD comprises three transformer layers, each of which progressively refines
the object query through bottom-up processing of adjacent-scale visual features. The computational
procedure for the i-th layer (i=1,2,3) is formally defined as follows:

H(i) = ΦConv3×3(Ysi−1
∥Ysi), U (i) = ΦTransL(U (i−1),H(i)). (6)

Here, ∥ denotes channel-wise concatenation. Initially, we set U (0) = Qobject and Ys0 = Y1/8.
The output from the third layer U (3) is fed to a detection head that outputs bounding boxes bd and
confidence scores pd, forming the decoder prediction PPCD = {bd, pd}.

3.4 TOKEN BRANCH & SOFT CROSS-HEAD DISTILLATION

To enable lightweight inference while preserving the high performance of PCD, we introduce a
token branch guided by Soft Cross-head Distillation (SCD). First, we fuse the object queries Qobject

with the object token F ′
o ∈ R1×De to obtain an object token Fo with enhanced target semantics.

Fo = ΦLinear (ΦLinear (F
′
o) +Qobject) . (7)

Soft Cross-head Distillation: Prediction-level distillation conveys task-specific knowledge and is
well-suited for training compact models. To avoid conflicting supervision from ground-truth an-
notations and teacher predictions, the object token Fo is forwarded to the teacher head and the
two heads are required to produce identical outputs. We further adjust the relative contributions of
the VG loss components based on PCD’s reasoning capability, using an adaptive loss reweighting
scheme to reallocate their weights. Specifically, Fo is first processed by a parameter-isolated de-
tection head to yield the token branch output PTB = {btb, ptb}. Then, Fo is fed through the PCD’s
detection head to generate the cross-head distillation prediction PSCD = {bscd, pscd}.

We adopt the Hungarian matching strategy [Carion et al. (2020)], and the matching cost includes
three components: Binary Cross-Entropy Loss, L1 Loss, and GIOU Loss. Let ϖ(k) denote the
index of the prediction matched to the k-th ground-truth target (1 ≤ k ≤ Nq where Nq is the total
prediction count). The ground-truth is denoted as Ggt = {bgt, pgt} where bgt contains bounding boxes
and pgt indicates target presence. The reasoning capability of PCD is quantified as follows:

∂pcd = N−1
g

∑Ng

j=1
ΦIoU

(
b
(j)
gt , bd(ϖ(j))

)
ΦScore

(
pd(ϖ(j))

)
, (8)

where Ng is the number of ground-truth targets. ΦScore extracts the foreground confidence from the
matched prediction. Given ∂PCD and a threshold θ, the VG loss is computed in stages. In the early
stage, when the distillation signal is unstable, the VG loss is defined as:

LVG = LDet (PPCD,Ggt) + ∂pcdLDet (PSCD,PPCD) + LDet (PTB,Ggt) . (9)
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When ∂pcd > θ, it indicates that the teacher has achieved a reliable reasoning capacity. At this
stage, an adaptive loss reweighting scheme is applied to allow the three loss components to compete
adaptively and reallocate their contributions to the total VG loss.

LVG =
∑
r∈R

βr LDet(Pr, Tr), R = {PCD, SCD, TB}. (10)

LDet(Pr, Tr) compares predictions Pr with targets Tr, where TPCD = Ggt, TTB = Ggt and TSCD =
PPCD. LDet is composed as: γ1LCE + γ2LL1 + γ3LGIOU with default weights γ1 = 1, γ2 = 5,
and γ3 = 2. The weights βr are obtained by a temperature-scaled softmax over the branch losses
with temperature τ . By design, ∂pcd is small early in training and grows as the teacher improves.
The adaptive reweighting prevents the teacher decoder from being underweighted in later stages,
ensuring stable optimization during knowledge transfer.

3.5 NETWORK TRAINING

The model is supervised by the VG loss LVG and the heatmap alignment loss LHA. LVG improves
target grounding accuracy, while LHA enforces spatial consistency between the predicted heatmap
MHeatmap and the ground-truth distribution. The overall objective is a weighted sum of the two losses:

LTotal = LVG + λLHA, (11)

with
LHA = ΦKL

(
Pgt∥QHeatmap

)
=

∑Nv

j=1
P j

gt log(P
j
gt/Q

j
Heatmap). (12)

Here, λ is the weight for LHA. Pj
gt and Qj

Heatmap denote the ground-truth and predicted probabili-
ties at spatial location j, respectively. To construct Pgt, a binary mask is first generated from the
ground-truth bounding boxes at the original image resolution (object pixels set to 1, background
to 0). This mask is then downsampled to the resolution of MHeatmap (typically (H/32) × (W/32))
and normalized to sum to one. In parallel, a softmax function is applied to the predicted heatmap
MHeatmap, resulting in the predicted distribution QHeatmap.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics. We evaluate the effectiveness of ASVG on VG and GREC us-
ing six mainstream datasets: five VG datasets (RefCOCO/+ [Yu et al. (2016)], RefCOCOg [Na-
garaja et al. (2016)], Flickr30k Entities [Plummer et al. (2015)], ReferItGame [Kazemzadeh et al.
(2014)]) and one GREC dataset (gRefCOCO [He et al. (2023)]). RefCOCO+ forbids explicit spatial
terms, increasing reliance on appearance cues and semantic complexity. RefCOCOg uses non-
interactive annotation, yielding longer and more complex descriptions. The evaluation follows ex-
isting works [Deng et al. (2021)]. For VG, we report accuracy Acc@0.5, where a prediction is
considered correct if its IoU with the ground-truth region is at least 0.5. For GREC, we report
Pr@(F1=1, IoU≥0.5) and N-acc. Pr@(F1=1, IoU≥0.5) is the proportion of samples whose predic-
tion is matched one-to-one to the ground truth by the highest-IoU assignment with IoU≥0.5, and
whose per-sample F1 equals 1 (F1 = 2TP/(2TP + FP + FN)). N-acc is evaluated only on no-target
samples, where an empty prediction is treated as a true positive and any non-empty prediction as a
false negative, and it equals TP/(TP+FN). Details of the dataset are provided in Appendix A.2.
Implementation Details. All images from the datasets are resized to 640×640, and text lengths are
truncated to 20 tokens. The training batch size is set to 20. ASVG is trained for 60 epochs on the VG
datasets and for 240 epochs on the GREC dataset. All experiments are conducted on four NVIDIA
RTX 3090 GPUs. Additional implementation details are provided in Appendix A.3.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As shown in Table 1, ASVG achieves SOTA or competitive results on most splits across five VG
benchmarks, with larger gains on semantically complex splits or those with a higher proportion
of non-human targets, such as RefCOCO/+ testB. On datasets dominated by short noun phrases
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Table 1: Experimental results on VG datasets. Best results are shown in bold, and second-best are underlined.
∗ indicates inference time on NVIDIA RTX 3090, other timings on GTX 1080Ti.

Methods Visual
Encoder

RefCOCO RefCOCO+ RefCOCOg ReferIt Flickr30k Time
(ms)val testA testB val testA testB val-g val-u test-u test test

Two-stage
MAttNet [Yu et al. (2018)] RN101 76.40 80.43 69.28 64.93 70.26 56.00 - 66.58 67.27 29.04 - 320

CM-Att-Erase [Liu et al. (2019b)] RN101 78.35 83.14 71.32 68.09 73.65 58.03 - 67.99 68.67 - - -
PBREC-MT [Zhao et al. (2024)] RN101 82.94 86.31 80.81 74.85 79.53 65.60 - 73.86 73.86 - - -

NMTree [Liu et al. (2019a)] RN101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44 - - -
One-stage

FAOA [Yang et al. (2019)] DN53 71.15 74.88 66.32 56.86 61.89 49.46 - 59.44 58.90 60.67 68.71 39
ReSCL [Yang et al. (2020)] DN53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20 64.60 69.28 36
MCN [Luo et al. (2020)] DN53 80.08 82.29 74.98 67.16 72.86 57.31 - 66.46 66.01 - - 56

RealGIN [Zhou et al. (2021)] DN53 77.25 78.70 72.10 62.78 67.17 54.21 - 62.75 62.33 - - 35
Transformer-based

TransVG [Deng et al. (2021)] RN101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73 70.73 79.10 62
QRNet [Ye et al. (2022)] Swin-S 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 72.52 74.61 81.95 -

VLTVG [Yang et al. (2022a)] RN101 84.53 87.69 79.22 73.60 78.37 64.53 72.53 74.90 73.88 71.60 79.18 79∗
Dyn.MDETR [Shi et al. (2023)] ViT-B/16 85.97 88.82 80.12 74.83 81.70 63.44 72.21 74.14 74.49 70.37 81.89 -
TransVG++ [Deng et al. (2023)] ViT-B/16 86.28 88.37 80.97 75.39 80.45 66.28 73.86 76.18 76.30 74.70 -

TransCP [Tang et al. (2023)] RN50 84.25 87.38 79.78 73.07 78.05 63.35 72.60 - - 72.05 80.04 74*
CLIP-VG [Xiao et al. (2023)] ViT-B/16 84.29 84.29 84.29 69.55 69.55 69.55 72.64 72.64 72.64 70.89 81.99 -
SimVGTB [Dai et al. (2024)] ViT-L/32 90.61 92.53 87.68 85.36 89.61 79.74 79.34 85.99 86.83 79.30 82.61 101
SimVGDB [Dai et al. (2024)] 90.51 92.37 87.07 84.88 88.50 78.66 80.43 85.72 86.70 78.75 83.15 116

HiVG [Xiao et al. (2024)] ViT-L/14 88.14 91.09 83.71 80.10 86.77 70.53 - 80.78 80.25 76.23 82.16 -
ASVG-T ViT-B/32 87.88 90.10 84.41 80.08 84.55 72.72 78.69 80.06 81.48 76.47 82.35 24.97∗
ASVG-D 87.86 89.99 84.45 80.43 84.98 72.98 78.81 80.48 81.59 76.69 82.40 29.87∗
ASVG-T ViT-L/32 91.07 93.10 87.70 85.98 89.61 80.56 84.95 86.42 86.71 79.72 85.71 45.38∗
ASVG-D 91.13 93.06 87.65 85.95 89.70 80.60 84.92 86.48 86.90 79.82 87.14 52.41∗

Table 2: GREC results on gRefCOCO with a 0.7 threshold for all methods.

Methods val testA testB
Pr@(F1=1, IoU≥0.5) N-acc. Pr@(F1=1, IoU≥0.5) N-acc. Pr@(F1=1, IoU≥0.5) N-acc.

MCN [Luo et al. (2020)] 28.0 30.6 32.3 32.0 26.8 30.3
VLT [Ding et al. (2021)] 36.6 35.2 40.2 34.1 30.2 32.5

MDETR [Kamath et al. (2021)] 42.7 36.3 50.0 34.5 36.5 31.0
UNINEXT [Yan et al. (2023)] 58.2 50.6 46.4 49.3 42.9 48.2

Ferret [You et al. (2024)] 54.8 48.9 49.5 45.2 43.5 43.8
SimVGTB [Dai et al. (2024)] 61.3 56.1 61.7 58.0 53.1 57.5
SimVGDB [Dai et al. (2024)] 62.1 54.7 64.6 57.2 54.8 57.2

ASVG-TViT-B/32 63.9 58.1 63.3 59.9 54.8 58.0
ASVG-DViT-B/32 65.0 60.9 65.2 61.7 55.7 59.9

(ReferIt and Flickr30k), ASVG-D (ViT-B) reaches 76.69% and 82.40%, surpassing existing SOTA
methods and improving further with larger encoder capacity. Relative to the RefCOCO series, these
short texts are simpler yet, because of weaker context, more susceptible to semantic ambiguity.
These results indicate that ASVG effectively handles the referred objects with ambiguous seman-
tics. Unlike two-stage [Liu et al. (2019a)] and conventional one-stage methods [Zhou et al. (2021)],
ASVG does not rely on region proposals or complex multi-stage fusion, which reduces error propa-
gation and structural redundancy. Among transformer-based methods, ASVG (ViT-L) outperforms
SimVG (ViT-L) by an average of 0.37% on RefCOCO, 0.52% on RefCOCO+, and 1.69% on Re-
fCOCOg. ASVG injects the alignment priors from the pre-trained encoder into object queries and
employs progressive cross-scale reasoning to enhance the model’s understanding of complex multi-
modal scenarios. With the token branch and SCD, ASVG-T (ViT-B) maintains high accuracy while
achieving lower latency, with a single-image inference time of 24.97 ms on an NVIDIA RTX 3090.

As shown in Table 2, ASVG adapts to GREC by simply increasing the number of object queries
and attains comprehensive gains on gRefCOCO. ASVG-D achieves 65.0% Pr@0.5 and 60.9% N-
acc. on the val set, improving over SimVG-DB by 2.9% and 6.2%. On the more challenging testB
set, ASVG-D reaches 59.9% N-acc., outperforming UNINEXT [Yan et al. (2023)] by 11.7% while
keeping Pr@0.5 consistently higher than SimVG-DB. These results indicate that ASVG, under a
compact end-to-end design, enhances robustness and overall accuracy in generalized visual ground-
ing through explicit alignment priors and progressive cross-scale reasoning.
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4.3 ABLATION STUDY

Analysis on AP-QG. As shown in Table 3, AP-QG delivers consistent gains over other variants for
both the token branch and PCD, showing the effectiveness of explicitly embedding text-conditioned
visual heatmaps into object queries. Heatmap-only and Text-only isolate the two core components
of AP-QG: the former provides a spatial alignment prior, while the latter imposes a global semantic
constraint. Text-only underperforms Heatmap-only on the testA and testB splits, indicating that
removing visual priors weakens the performance of object queries. The full AP-QG yields larger
improvements on testB, suggesting greater effectiveness on complex multimodal contexts. TQG is
presented in SimVG [Dai et al. (2024)]. Experimental results indicate that incorporating alignment
priors is more effective for producing discriminative queries than relying solely on text.

Table 3: Ablation of AP-QG. Each cell reports Token / Decoder accuracy (%).

Methods RefCOCO
val testA testB

w/o AP-QG 87.28 / 87.29 89.17 / 89.30 82.94 / 83.11
Heatmap-only 87.61 / 87.66 89.95 / 90.00 84.14 / 84.27
Text-only 87.62 / 87.82 89.35 / 89.70 83.71 / 83.81
w Text-guided Query Generation (TQG) 87.33 / 87.34 89.96 / 90.01 84.23 / 84.22
w AP-QG 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45

Table 4: Impact of pyramid scales in PCD with scales1/8, 1/16, 1/32, 1/64. When a scale is removed, 1/32 is
used instead to keep compute constant. Each cell reports Token / Decoder accuracy (%).

Pyramid Configuration RefCOCOg
val-u small medium large test-u

Single-scale@1/32 80.26 / 80.35 16.67 / 33.33 67.40 / 67.41 82.68 / 82.72 80.57 / 80.61
w/o 1/8 → 1/32 79.40 / 79.62 16.67 / 16.67 67.24 / 67.59 82.70 / 82.74 80.55 / 80.64
w/o 1/64 → 1/32 79.98 / 79.90 16.67 /16.67 67.27 / 68.09 82.83 / 82.83 80.67 / 80.80
Full PCD 80.06 / 80.48 62.50 / 62.50 67.80 / 68.35 83.89 / 83.92 81.48 / 81.59

Table 5: Impact of the token branch and SCD. Each cell
reports Token / Decoder accuracy (%).

Methods RefCOCO
val testA testB

w/o Token Branch 0.00 / 88.26 0.00 / 90.07 0.00 / 85.46
Token Branch (w/o SCD) 87.85 / 87.92 89.21 / 89.42 84.12 / 84.67
Token Branch (w SCD) 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45

Table 6: Ablation of Cross-Head Distillation
(CHD) and Adaptive Loss Reweighting (ALR).

CHD ALR RefCOCO
val testA testB

- - 87.58 / 87.70 89.89 / 89.98 83.82 / 84.13
- ✓ 87.49 / 87.53 89.92 / 89.98 84.30 / 84.37
✓ - 87.67 / 87.69 90.02 / 89.92 83.71 / 83.93
✓ ✓ 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45

Ablation Study of PCD. To analyze scale effects, we split RefCOCOg test-u by the standard COCO
area thresholds into small (area>1024), medium (1024≤area≤9216), and large (area<9216), with
6/1432/8164 samples, respectively. As shown in Table 4, Full PCD outperforms the single-scale
1/32 baseline, confirming that progressive cross-scale reasoning improves overall generalization.
By object size, small objects benefit most from Full PCD. When either the 1/8 or 1/64 level is
removed, performance drops to 16.67%/16.67% (Token / Decoder) or 33.33% on the Decoder. Note
that the small subset contains only six samples, so the metrics change in steps of about 16.7%, yet
the upward trend is clear. Overall, high-resolution levels such as 1/8 provide fine detail and low-
resolution levels such as 1/64 provide the global structure. The intermediate 1/16 and 1/32 levels
bridge the two, forming a complementary pyramid that benefits both the token branch and PCD.

Impact of the Token Branch and SCD. As shown in Table 5, “w/o Token Branch” serves as the
PCD-only baseline, where the token branch is absent and token-side metrics are 0. Adding the token
branch without SCD improves token accuracy but slightly reduces PCD performance relative to the
baseline. These results suggest that, while the token branch offers a lightweight path, sharing the
encoder with PCD and joint training interfere with PCD learning, resulting in a slight reduction
in teacher accuracy. When SCD is applied, the token branch improves further, and PCD partially
recovers, though it remains slightly below the ‘w/o SCD” setting. Overall, SCD enables the token
branch to strengthen its discriminative ability and deliver a lower-latency inference path at a small
cost in teacher accuracy. Notably, all results are obtained with one-stage online distillation, while
training ASD first and then applying dual-branch distillation can further improve accuracy.
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Figure 3: Visualization of model predictions, heatmaps from AP-QG, and attention maps from PCD. The red,
green, and orange boxes denote ground truth, PCD predictions, and token branch predictions, respectively.

As shown in Table 6, we analyze the internal design of SCD. Introducing ALR alone yields sta-
ble gains on testB, suggesting that adaptive reweighting regularizes learning in complex scenes.
However, its limited effect on val and testA indicates that ALR alone cannot fully exploit distil-
lation. Enabling CHD alone improves the student on testA but significantly reduces performance
on testB, implying that cross-head distillation benefits the student while introducing interference to
the teacher. The two components are complementary: CHD offers explicit cross-head supervision,
while ALR balances the contributions of different loss components through adaptive weighting.

4.4 QUALITATIVE RESULTS

Figure 3 presents the input image, the predictions from the PCD and token branch, the heatmap
from AP-QG, and the last-layer decoder attention map. Overall, the PCD predictions (green boxes)
align closely with the ground-truth annotations (red boxes), confirming stable localization. The
token branch (orange boxes) is lightweight yet follows the teacher with consistent prediction trends.
The text-conditioned visual responses in the heatmap highlight semantically relevant regions, as in
“red jacket dad” and “yellow and blue vehicle closest to camera,” indicating that AP-QG exploits
alignment priors to enhance the semantic discriminability of the object query. The attention map
reflects the alignment between queries and visual features during decoding. The results show that
attention is primarily concentrated on specific targets, indicating that the model can further focus on
key regions in complex backgrounds. More visualizations can be found in Appendix A.7.

5 CONCLUSION

This paper presents ASVG, an efficient VG framework that integrates alignment priors with cross-
scale reasoning to enhance the semantic discriminability of queries and adapt to targets of varying
scales. First, we propose an Alignment Prior-guided Query Generator (AP-QG), which explicitly
exploits the cross-modal alignment prior from the encoder to produce target-aware object queries.
Second, we design a Progressive Cross-scale Decoder (PCD) that builds a multi-resolution pyramid
from single-scale features, enabling progressive reasoning across scales without redundant feature-
pyramid fusion. To further improve efficiency, we introduce a lightweight token branch with Soft
Cross-head Distillation (SCD) that enforces feature consistency and adaptively reweights losses,
reducing inference cost while maintaining accuracy. Extensive experiments on six popular VG and
GREC datasets demonstrate the effectiveness of ASVG.
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A APPENDIX

We provide an overview of the Appendix below:

• Appendix A.1: Use of LLMs.

• Appendix A.2: Dataset Descriptions.

• Appendix A.3: Additional Implementation Details.

• Appendix A.4: Comparison with Pre-trained Models.

• Appendix A.5: Additional Ablation Studies.

– Ablations for Object Query Generation.
– Effect of Hyperparameters in Adaptive Loss Reweighting.
– Analysis of the Heatmap Alignment Loss.

• Appendix A.6: Training Efficiency.

• Appendix A.7: Supplementary Qualitative Results.

A.1 USE OF LLMS

Large Language Models (LLMs) are used to assist in improving the clarity, fluency, and grammar of
the English writing in this paper. They help refine sentence structure and word choice to ensure better
readability. LLMs are not involved in any aspect of the research ideation, technical development,
model design, experimentation, or result interpretation. Their use is limited to language refinement
and does not constitute a scientific contribution.

A.2 DATASET DESCRIPTIONS

We evaluate the proposed ASVG on six mainstream VG and GREC datasets. Table 7 summarizes
the basic statistics and split details of each dataset.

• ReferitGame (ReferIt) [Kazemzadeh et al. (2014)], introduced in 2014, is the first large-
scale real-world dataset for VG. It is originally designed for the Phrase Grounding (PG)
task and is later widely adopted in VG benchmarks. Textual descriptions are collected
through an online two-player game, resulting in colloquial and task-oriented queries.
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• RefCOCO and RefCOCO+ [Yu et al. (2016)] both contain two test splits, testA and testB,
where testA includes only people-related annotations and testB contains all other objects.
Their textual descriptions are also collected through the interactive game mechanism used
in ReferIt. Unlike RefCOCO, RefCOCO+ prohibits explicit spatial or directional terms,
thus emphasizing visual appearance and enriching textual descriptions.

• RefCOCOg [Nagaraja et al. (2016)] contains descriptions collected via non-interactive
annotation sessions on Amazon Mechanical Turk, producing longer and more syntacti-
cally complex text. Two common splits are RefCOCOg-google and RefCOCOg-umd. The
google split has no public test set and contains overlaps between the training and validation
sets, whereas the umd split has no overlap. To avoid potential data leakage and following
prior studies, we excluded the google split in our mixed-dataset pretraining setting.

• Flickr30k Entities (Flickr30k) [Plummer et al. (2015)] targets the PG task. Its descrip-
tions are noun phrases extracted from image captions rather than complete sentences, and
a single caption may refer to multiple objects. Compared with RefCOCO/+/g, it contains
shorter text with less context, resulting in higher ambiguity and greater annotation noise.

• gRefCOCO [He et al. (2023)] covers 60,287 distinct instances from 19,994 images, with a
total of 278,232 textual descriptions, including 80,022 multi-target and 32,202 no-target de-
scriptions. Some single-target descriptions are inherited from RefCOCO [Yu et al. (2016)].
gRefCOCO emphasizes robust modeling for complex referring expressions involving mul-
tiple targets or no-target cases.

Table 7: Comprehensive statistics of VG benchmarks: RefCOCO [Yu et al. (2016)], RefCOCO+ [Yu et al.
(2016)], RefCOCOg [Nagaraja et al. (2016)], ReferIt [Kazemzadeh et al. (2014)], Flickr30k [Plummer et al.
(2015)]. Test and testA are shown together.

Datasets Images Annotated Instances Avg. Text Length Textual Queries
total train val test (A) testB

RefCOCO 19,994 50,000 3.49 142,210 120,624 10,834 5,657 5,095
RefCOCO+ 19,992 49,856 3.58 141,564 120,191 10,758 5,726 4,889

RefCOCOg-u 25,799 49,822 8.47 95,010 80,512 4,896 9,602 -
RefCOCOg-g 26,711 54,822 8.46 104,560 85,474 9,536 - -

ReferIt 20,000 19,987 3.45 120,072 54,127 5,842 60,103 -
Flickr30k 31,783 427,000 1.59 456,107 427,193 14,433 14,481 -

Table 8: Comparison with pre-trained models on RefCOCO, RefCOCO+, and RefCOCOg datasets. Parameter
counts include head and decoder only. Best results are shown in bold, and second-best are underlined.

Methods Visual
Encoder

Params
(M)

Pre-train
Images

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-u test-u

UNITERL [Chen et al. (2020)] RN101 - 4.6M 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLAL [Gan et al. (2020)] RN101 - 4.6M 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71

MDETR [Kamath et al. (2021)] RN101 17.36 200K 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89
RefTR [Li & Sigal (2021)] RN101 17.86 100K 85.65 88.73 81.16 77.55 82.26 68.99 79.25 80.01
SeqTR [Zhu et al. (2022)] DN53 7.90 174K 87.00 90.15 83.59 78.69 84.51 71.87 82.69 83.37

UniTAB [Yang et al. (2022b)] RN101 - 200K 88.59 91.06 83.75 80.97 85.36 71.55 84.58 84.70
DQ-DETR [Liu et al. (2023b)] RN101 - 200K 88.63 91.04 83.51 81.66 86.15 73.21 82.76 83.44

GroundingDINO [Liu et al. (2024)] Swin-T - 200K 89.19 91.86 85.99 81.09 87.40 74.71 84.15 84.94
PolyFormer [Liu et al. (2023a)] Swin-B - 174K 89.73 91.73 86.03 83.73 88.60 76.38 84.46 84.96
PolyFormer [Liu et al. (2023a)] Swin-L - 174K 90.38 92.89 87.16 84.98 89.77 77.97 85.83 85.91

OFA-L [Wang et al. (2022)] RN152 - 20M 90.05 92.93 85.26 85.80 89.87 79.22 85.89 86.55
mPLUG-2 [Xu et al. (2023)] ViT-L/14 - 14M 92.40 94.51 88.42 86.02 90.17 78.17 85.88 86.42

SimVG-DB [Dai et al. (2024)] ViT-B/32 6.32 28K 90.98 92.68 87.94 84.17 88.58 78.53 85.90 86.23
SimVG-TB [Dai et al. (2024)] ViT-L/32 1.58 28K 92.99 94.86 90.12 87.43 91.02 82.10 87.95 88.96
SimVG-DB [Dai et al. (2024)] 6.32 28K 92.93 94.70 90.28 87.28 91.64 82.41 87.99 89.15

ASVG-D ViT-B/32 11.50 28K 91.64 92.99 88.38 85.10 88.67 79.66 85.97 86.89
ASVG-T ViT-L/32 1.15 28K 93.24 95.04 90.53 88.03 91.32 82.72 88.21 89.29
ASVG-D 11.50 28K 93.04 94.87 90.45 87.89 91.79 82.80 88.23 89.32
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A.3 ADDITIONAL IMPLEMENTATION DETAILS

This section provides additional details on the experimental setup. Apart from the encoder initial-
ized from BEiT-3 pretrained weights, all other parameters are randomly initialized using PyTorch’s
default scheme. The Adam optimizer is adopted with a base learning rate of 5e-4, adjusted by a
multi-step decay with linear warm-up. For the BEiT-large encoder, the batch size is set to 3 due to
memory constraints. The encoder output dimension is expanded from 768 to 1024, with the thresh-
old fixed at θ = 0.75, while all other settings remain identical to those of the base encoder. In the
pre-training experiments (Table 8), the results for the BEiT-base encoder are obtained from the de-
coder branch supervised by ground truth, whereas the BEiT-large encoder is still trained via online
distillation with the SCD strategy. The number of training epochs is reduced to 50 for pretraining,
further reduced to 40 for the large encoder due to the high computational cost, and uniformly set to
15 for fine-tuning. Unless otherwise specified, the distillation process adopts τ = 2 and θ = 0.8
as default hyperparameters. In GREC experiments, the number of object queries is fixed to 10, θ
is set to 0.75, and the heatmap alignment loss coefficient λ to 0.8 (Eq. 11). In other comparative
experiments, θ is set to 0.8 and λ to 1. Their influence is examined in the ablation study. Exponen-
tial Moving Average (EMA) is not applied during any stage of training. In addition, the pretrained
model BEiT-3 is not trained on any of the six datasets used for evaluation. All results reported for
both ASVG-T and ASVG-D are obtained through online distillation with SCD.

A.4 COMPARISON WITH PRE-TRAINED MODELS

Table 8 shows a comparison between ASVG and several pre-trained VG methods on the RefCOCO
series datasets. With only 28K images used for pre-training, ASVG achieves performance com-
parable to or even exceeding methods trained on much larger datasets. ASVG-T (ViT-L) achieves
95.04% on RefCOCO testA and 90.53% on testB, and it surpasses most large-scale pre-trained
methods such as GroundingDINO [Liu et al. (2024)] and PolyFormer [Liu et al. (2023a)] on the Re-
fCOCO+/g datasets. Compared with SimVG [Dai et al. (2024)], ASVG consistently outperforms it
across multiple datasets, further validating the effectiveness of introducing AP-QG and the progres-
sive cross-scale decoder. In addition, ASVG maintains a lightweight architecture. ASVG-T contains
only about 1.15M parameters, which is significantly smaller than some existing lightweight mod-
els while maintaining strong performance. Notably, when the cross-modal encoder is scaled from
ViT-B to ViT-L, the lightweight token branch not only matches but in some cases exceeds its teacher
(PCD). These results indicate that as the encoder size increases, the supervision provided by PCD
becomes more reliable, thereby enhancing the generalization ability of the token branch.

A.5 ADDITIONAL ABLATION STUDIES

Ablations for Object Query Generation. In visual grounding, object queries are developed to repre-
sent the feature representation of the referred object. Early methods [Deng et al. (2021); Yang et al.
(2022a); Deng et al. (2023)] generate queries from randomly initialized learnable vectors, which
lack semantic relevance, making subsequent target reasoning difficult. Recent methods attempt to
generate queries through text guidance, providing target-related prior context but overlooking the es-
sential role of visual information in target semantic understanding. As shown in Figure 4 and Table
9, we take randomly initialized learnable vectors as the baseline. Compared with the Text-guided
Query Generation (TQG) module proposed in [Dai et al. (2024)], our AP-QG exploits alignment
priors from the encoder to construct target heatmaps and explicitly embed them into object queries,
resulting in significant improvements in both convergence efficiency and final performance.

Effect of Hyperparameters in Adaptive Loss Reweighting. We examine the effects of the threshold
θ and temperature τ in the adaptive loss reweighting scheme (Eq. 10). Table 10 shows consistent
trends for both the token branch and PCD. Setting θ = 0.8 yields the best performance on test-u,
improving by 1.00/0.94 percentage points over θ = 0.0, while increasing θ to 0.9 causes a slight
decline. These findings suggest enabling adaptive reweighting once the teacher has stabilized to
avoid a late start that would shorten the effective window of reweighting. For τ , smaller values
produce overly peaked weights and hinder the collaboration of different losses, whereas larger values
average them and weaken guidance from dominant terms. For example, τ = 5 is slightly higher on
val-u but underperforms τ = 2 on test-u. The small gain on val-u likely reflects over-smoothing and
local fitting. We therefore adopt θ = 0.8 and τ = 2 as the default configuration.
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Table 9: Ablation Study on Object Query
Generation. Each cell reports Token / De-
coder accuracy (%).

Methods RefCOCO
val testA testB

Baseline 87.28 / 87.29 89.17 / 89.30 82.94 / 83.11
TQG 87.33 / 87.34 89.96 / 90.01 84.23 / 84.22

AP-QG 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45
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Comparison of Object Query Generation Methods
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Figure 4: Comparison of accuracy over epochs for different ob-
ject query generation methods.

Table 10: Effect of temperature τ and threshold θ. Each cell reports Token / Decoder accuracy (%).

Type RefCOCOg
val-u test-u

τ = 2 (θ varies)
0.0 79.62 / 79.78 80.48 / 80.65
0.4 79.77 / 80.09 80.18 / 80.26
0.8 80.06 / 80.48 81.48 / 81.59
0.9 80.52 / 80.69 80.72 / 80.97

θ = 0.8 (τ varies)
0.5 80.46 / 80.50 81.03 / 81.13
1 80.22 / 80.12 80.94 / 81.02
2 80.06 / 80.48 81.48 / 81.59
5 81.11 / 81.19 81.20 / 81.29

Analysis of the Heatmap Alignment Loss. As shown in Table 11, adding the heatmap alignment
loss LHA yields consistent gains for both the token branch and PCD on RefCOCO, showing that
an explicit spatial alignment constraint enhances the model’s perception of the referred object and
thereby improves grounding performance. Table 12 further shows that the weight λ for LHA has
a noticeable impact on performance: λ = 1.0 gives the best results, suggesting a good balance
between KL supervision and the grounding loss. A properly chosen λ improves both heatmap quality
and localization accuracy, whereas an excessively large weight sacrifices grounding performance.

Table 11: Ablation of the heatmap alignment loss. Each
cell reports Token / Decoder accuracy (%).

Methods RefCOCO
val testA testB

w/o LHA 87.22 / 87.32 89.08 / 89.08 83.51 / 83.60
w LHA 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45

Table 12: Effect of the weight λ for LHA. Each cell
reports Token / Decoder accuracy (%).

Type RefCOCO
val testA testB

0.5 87.36 / 87.39 89.71 / 89.77 84.28 / 84.34
1.0 87.88 / 87.86 90.10 / 89.99 84.41 / 84.45
2.0 88.02 / 87.97 89.59 / 89.61 84.24 / 84.28
5.0 87.89 / 87.82 90.03 / 90.05 84.24 / 84.27

A.6 TRAINING EFFICIENCY

Under the same hardware setup (4×RTX 3090), we compare each method’s convergence cost
(epochs) and wall-clock training time on RefCOCOg against the performance reported in the original
papers. As shown in Table 13, ASVG, trained in a single stage, reaches 80.48%/81.59% (val-u/test-
u) in 60 epochs/7.5h, requiring fewer epochs than VLTVG and Dynamic MDETR (both 90 epochs),
indicating faster convergence. SimVG completes its first stage in 30 epochs / 4.5h, but its reported
performance relies on a second-stage distillation (+20 epochs), so the overall training cost is not
lower than ASVG. In sum, using original-paper metrics for fairness, ASVG achieves comparable or
better accuracy-efficiency trade-offs with fewer epochs and a simpler single-stage pipeline.
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Table 13: Training time on RefCOCOg (4×RTX 3090) vs. performance reported in the original papers. “Two-
stage Training” denotes the presence of an additional training stage.

Methods Visual Encoder Epoch Training Time Two-stage Training RefCOCOg
val-u test-u

VLTVG RN101 90 - × 76.04 74.18
SimVGDB ViT-B/32 30 4.5h ✓ 80.37 80.51

Dynamic MDETR ViT-B/16 90 - × 74.14 74.49
ASVG-D ViT-B/32 60 7.5h × 80.48 81.59

Input image

SimVG

VLTVG

ASVG

(Ours)

“ the back side of a white 
and blue striped shirt”

“ a dog with brown fur 
with its head up laying 

on a gray sheet”

“ yellow 
crane”

“ a white toilet with a 
black seat”

“ grey haired man in 
black suit and white 

shirt wearing glasses”

Figure 5: Examples predicted by ASVG on the validation set of the RefCOCOg dataset.

A.7 SUPPLEMENTARY QUALITATIVE RESULTS

Table 5 presents a qualitative comparison between the proposed ASVG and representative VG meth-
ods (SimVG [Dai et al. (2024)] and VLTVG [Yang et al. (2022a)]). Red boxes denote ground-truth
annotations, while green and orange boxes indicate predictions from the PCD and token branch,
respectively. Overall, ASVG demonstrates more robust alignment with the described objects across
diverse scenarios. In the first and fifth examples, other methods tend to extend predictions to visu-
ally similar foreground objects, whereas ASVG focuses only on the intended regions. In the second
example, under a description with mild ambiguity, ASVG accurately localizes the brown dog with
well-defined boundaries, while SimVG incorrectly predicts the white dog. In the third example,
other methods often truncate elongated structures or include background regions, while our ASVG
successfully captures the entire target, reflecting stronger cross-scale consistency. The token branch
follows the same trend as PCD, achieving prediction quality that closely approaches the teacher.

Figure 6 shows qualitative results of ASVG on the gRefCOCO testA and testB splits. Red boxes is
ground-truth annotations, and green and orange boxes indicate predictions from the PCD and token
branch. The first row presents successful cases, showing that AP-QG exploits alignment priors to
generate discriminative object queries and accurately localize multiple targets in complex scenes.
For example, ASVG correctly identifies targets under explicit descriptions such as “blue umbrella”
and “hands with camera.” The second and third rows present failure cases. For multi-target or
ambiguous descriptions, ASVG still struggles with boundary reasoning and fine-grained semantics.
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“ boy blue and guy in back” “ both black shirt” “ purple coat andstanding guy” “ left horse”
“ hands with camera on 
far right and person on 
far left in white jacket”

“ the blue umbrella cand the 
man with hat on right”

“ three buses”
“ the black cat on the left side laying 
near the window and the black car in 
the background outside the window”

“ the horse drawn carriage has 
passengers”

“ the little boy wearing white top 
riding the horse and the brown 

horse in the left side”

“ front donut and donut on top 
of the other middle”

“ black car just under blue 
broccoli sign”

“ there are three little beings”

“ dog on right”
“ pink umbrella second umbrella 

from left” “ white monitor on right”

Successful Cases

Unsuccessful Cases

Figure 6: Examples predicted by ASVG on the testA and testB splits of the gRefCOCO dataset.

In the case of “the little boy wearing white top riding horse and the brown horse in the left side”,
multiple entities and attributes lead to partial misalignment, showing that multi-object interactions
and complex attribute bindings remain challenging. For abstract expressions such as “three little
beings,” ASVG fails to distinguish instances, producing unstable predictions. These results indi-
cate that ASVG achieves strong localization in most common, semantically clear scenarios, yet
challenges remain in cases that require fine-grained reasoning over multiple objects. These findings
confirm the effectiveness of incorporating image-text alignment priors through AP-QG and highlight
future directions in multi-target grounding and fine-grained semantic modeling.
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