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ABSTRACT

Existing self-supervised learning (SSL) methods are mostly applied for training
representation models from artificially balanced datasets (e.g. ImageNet). It is un-
clear how well they will perform in the practical scenarios where datasets are often
imbalanced w.r.t. the classes. Motivated by this question, we conduct a series of
studies on the performance of self-supervised contrastive learning and supervised
learning methods over multiple datasets where training instance distributions vary
from a balanced one to a long-tailed one. Our findings are quite intriguing. Dif-
ferent from supervised methods with large performance drop, the self-supervised
contrastive learning methods perform stably well even when the datasets are heav-
ily imbalanced. This motivates us to explore the balanced feature spaces learned
by contrastive learning, where the feature representations present similar linear
separability w.r.t. all the classes. Our further experiments reveal that a represen-
tation model generating a balanced feature space can generalize better than that
yielding an imbalanced one across multiple settings. Inspired by these insights,
we develop a novel representation learning method, called k-positive contrastive
learning. It effectively combines strengths of the supervised method and the con-
trastive learning method to learn representations that are both discriminative and
balanced. Extensive experiments demonstrate its superiority on multiple recog-
nition tasks, including both long-tailed ones and normal balanced ones. Code is
available at https://github.com/bingykang/BalFeat.

1 INTRODUCTION

Self-supervised learning (SSL) has been popularly explored as it can learn data representations with-
out requiring manual annotations and offer attractive potential of leveraging the vast amount of unla-
beled data in the wild to obtain strong representation models (Gidaris et al., 2018; Noroozi & Favaro,
2016; He et al., 2020; Chen et al., 2020a; Wu et al., 2018). For instance, some recent SSL meth-
ods (Hénaff et al., 2019; Oord et al., 2018; Hjelm et al., 2018; He et al., 2020) use the unsupervised
contrastive loss (Hadsell et al., 2006) to train the representation models by maximizing the instance
discriminativeness, which are shown to generalize well across various downstream tasks, and even
surpass the supervised learning counterparts in some cases (He et al., 2020; Chen et al., 2020a).

Despite the great success, existing SSL methods focus on learning data representations from the
artificially balanced datasets (e.g. ImageNet (Deng et al., 2009)) where all the classes have similar
numbers of training instances. However in reality, since the classes in natural images follow the
Zipfian distribution, the datasets are usually imbalanced and show a long-tailed distribution (Zipf,
1999; Spain & Perona, 2007), i.e., some classes involving significantly fewer training instances
than others. Such imbalanced datasets are very challenging for supervised learning methods to
model, leading to noticeable performance drop (Wang et al., 2017; Mahajan et al., 2018; Zhong
et al., 2019). Thus several interesting questions arise: How well will SSL methods perform on
imbalanced datasets? Will the quality of their learned representations deteriorate as the supervised
learning methods? Or can they perform stably well? Answering these questions is important for
understanding the behavior of SSL in practice. But these questions remain open as no research
investigations have been conducted along this direction so far.
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Figure 1: Feature spaces learned with different losses given an imbalanced dataset. The supervised cross-
entropy (CE) learns a space biased to the dominant class. The space learned by unsupervised contrastive loss is
balanced but less semantically discriminative. Our proposed k-positive contrastive loss learns a balanced and
discriminative feature space. The shadow area ( ) indicates the decision boundary of each class.

Our work is motivated by the above questions to study the properties of data representations learned
with supervised/self-supervised methods in a practical scenario. We start with two representative
losses used by these methods, i.e., the supervised cross-entropy and the unsupervised contrastive
losses (Hadsell et al., 2006; Oord et al., 2018), and investigate the classification performance of
their trained representation models from multiple training datasets where the instance distribution
gradually varies from a balanced one to a long-tailed one. We surprisingly observe that, different
from the ones learned from supervised cross-entropy loss where performance drops quickly, the
representation models learned from the unsupervised contrastive loss perform stably well, no matter
how much the training instance distribution is skewed to be imbalanced. Such a stark difference
between the two representation learning methods drives us to explore why SSL performs so stably.
We find that using the contrastive loss can obtain representation models generating a balanced
feature space that has similar separability (and classification performance) for all the classes, as
illustrated in Figure 1.

Such a balanced property of the feature spaces from SSL is intriguing and provides a new perspec-
tive to understand the behavior of SSL methods. We dig deeper into its benefits via a systematic
study. In particular, since a pre-trained representation model is often used as initialization for down-
stream tasks (He et al., 2020; Newell & Deng, 2020; Hénaff et al., 2019), we evaluate and compare
the generalization ability of the models that produce feature spaces of different balanced levels (or
‘balancedness’). We find that a more balanced model tends to generalize better across a variety
of settings, including the out-of-distribution recognition as well as the cross-domain and cross-task
applications. These studies imply that feature space balancedness is an important but often neglected
factor for learning high-quality representations.

Inspired by the above insights, we propose a new representation learning method, the k-positive con-
strastive learning, which inherits the strength of constrastive learning in learning balanced feature
spaces and meanwhile improves the feature spaces’ discriminative capability. Specifically, different
from the contrastive learning methods lacking semantic discriminativeness, the proposed k-positive
constrastive method leverages the available instance semantic labels by taking k instances of the
same label with the anchor instance to embed semantics into the contrastive loss. As such, it can
learn representations with desirable balancedness and discriminativeness (Figure 1). Extensive ex-
periments and analyses clearly demonstrate its superiority over the supervised learning and latest
contrastive learning methods (He et al., 2020) for various recognition tasks, including visual recog-
nition in both long-tailed setting (e.g., ImageNet-LT, iNaturalist) and balanced setting.

This work makes the following important observations and contributions. (1) We present the first
systematic studies on the performance of self-supervised contrastive learning on imbalanced datasets
which are helpful to understanding the merits and limitations of SSL in practice. (2) Our studies re-
veal an intriguing property of the model trained by contrastive learning—the model can robustly
learn balanced feature spaces—that has never been discussed before. (3) Our empirical analysis
demonstrates that learning balanced feature spaces benefits the generalization of representation mod-
els and offer a new perspective for understanding deep model generalizability. (4) We develop a new
method to explicitly pursue balanced feature spaces for representation learning and it outperforms
the popular cross-entropy and contrastive losses based methods. We believe our findings and the
novel k-positive contrastive method are inspiring for future research on representation learning.
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2 RELATED WORKS

Self-supervised learning is a form of unsupervised learning. Recently there has been a surge of
self-supervised data representation learning methods developed to alleviate the demand for manual
annotations by mining free supervision information through specifically designed loss functions and
pretext tasks. The contrastive loss measures the similarities of sample pairs in a feature space and is
at the core of several recent SSL methods (Chen et al., 2020a;b; He et al., 2020; Chen et al., 2020c).
Adversarial losses that measure the distribution difference are also exploited for self-supervised rep-
resentation learning (Donahue et al., 2016; Doersch & Zisserman, 2017). A wide range of pretext
tasks have been developed including image inpainting (Jenni & Favaro, 2018; Pathak et al., 2016),
image colorization (Larsson et al., 2016; 2017), context prediction (Doersch et al., 2015), jigsaw
puzzles (Carlucci et al., 2019; Noroozi & Favaro, 2016; Wei et al., 2019), rotation prediction (Gi-
daris et al., 2018). Though very successful, the behavior of SSL largely remains a mystery. Recently
Wang & Isola (2020) analyze contrastive learning from the perspective of uniformity and alignment
of learned representations. However investigations on the behavior of contrastive learning on im-
balanced datasets are still absent. We present the first study on this problem and our investigation
methodology is also applicable to other SSL methods.

In practice, the visual data usually follow a long-tailed distribution (Zipf, 1999; Spain & Perona,
2007), challenging supervised learning methods. Due to the imbalance in the number of training
instances for different classes, conventional methods tend to perform much more poorly on instance-
rare classes than on instance-rich ones. To alleviate this performance bias, existing approaches
either re-balance the data distribution through sampling (Chawla et al., 2002; Han et al., 2005;
Shen et al., 2016; Mahajan et al., 2018) or the loss for each class (Cui et al., 2019; Khan et al.,
2017; Cao et al., 2019; Khan et al., 2019) by reweighting. Kang et al. (2020) first propose to
decouple representation learning from classifier learning to boost performance, and demonstrate that
learning good feature spaces is crucial for long-tailed recognition. Along this direction, SSP (Yang
& Xu, 2020) is among the first methods that introduce SSL pretraining into learning the long-tailed
recognition models. More specifically, instead of directly training a randomly initialized model from
scratch as conventional supervised learning methods, SSP uses a model pretrained with SSL on the
same dataset for initialization, which is observed to be able to to alleviate the label bias issue in
imbalanced datasets and boost long-tailed recognition performance.

In contrast, we conduct a series of systematic studies to directly compare SSL with supervised
learning on representation learning. We show that SSL can learn stably well feature spaces robust
to the underlying distribution of a dataset. Moreover, inspired by our findings on the benefits of a
balanced feature space for generalization, we introduce the k-positive contrastive learning method
to explicitly pursue balancedness and discriminativeness for representation learning, which has been
shown through experiments to benefit not only long-tailed recognition but also normal recognition
tasks.

3 BALANCED FEATURE SPACES FROM CONTRASTIVE LEARNING

In this section, we systematically study the performance of representation models trained by SSL
from a collection of training datasets with varying instance number distributions, in contrast with
the models learned by supervised learning methods, to explore how SSL performs when the training
datasets are not artificially balanced. Furthermore, we investigate the generalization performance
of these learned representation models under multiple settings, in order to explore the relationship
between the representation model’s generalizability and the property of its learned feature space.

Notations We define the notations used in this paper. Representation learning aims to obtain a
representation model fθ that maps a sample xi into a feature space V such that its corresponding
representation vi ∈ V encapsulates desired features for target applications. Let Drep-train = {xi, yi},
i = 1, . . . , N be the dataset for training the representation model, where yi is the class label for
sample xi. Let C denote the number of total classes and nj denote the number of instances within
class j. We use {q1, . . . , qC} with qj = nj/N to denote the discrete instance distribution over the
C classes. An imbalanced dataset has significant difference in the class instance numbers, e.g.,
q1 � qC . We use a multi-layer convolutional neural network fθ(·) : xi 7→ vi to implement
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the representation model. The final classification prediction ŷ is given by a linear classifier ŷ =
argmax[W>v + b], where W denotes the classifier weight matrix and b denotes the bias term.

3.1 METHODOLOGY OF OUR STUDY

Representation learning methods Various loss functions have been developed for learning the
representation model fθ on the training dataset. Among them, the most popular one is the supervised
cross-entropy (CE) loss:

LCE =
1

N

N∑
i=1

− log pyi , (1)

where pyi = softmax(W>yivi + b) is the normalized probability prediction of sample i belonging to
its ground truth class yi. Using the semantic labels directly as supervision signal (yi in Equation 1),
the representation model trained by the CE loss can have strong semantic discrimination ability but
its generated feature space is easily biased by the imbalance of the training instance distribution—if
some classes have significantly more training instances than the others, their data representations
will occupy dominant portion of the feature space (Figure 1) and get higher classification accuracy
than the instance-rare classes (Kang et al., 2020; Wang et al., 2017).

Different from the supervised learning ones, self-supervised learning methods adopt semantic-free
loss functions to learn representations from unlabeled data (He et al., 2020; Gidaris et al., 2018).
For example, the contrastive loss1 (CL) (Oord et al., 2018) learns representations via maximizing
the instance-wise discriminativeness:

LCL =
1

N

N∑
i=1

− log
exp(vi · v+i /τ)

exp(vi · v+i /τ) +
∑
v−i ∈V − exp(vi · v−i /τ)

, (2)

where τ is a temperature hyper-parameter, v+i is a positive sample for the anchor instance i (typically
produced by data augmentation), v−i ∈ V − is the negative sample randomly drawn from the training
samples excluding instance i. This contrastive loss encourages the feature representations from
positive pairs to be similar, while pushing features from the sampled negative pairs apart.

We take the two loss functions (LCE and LCL) as representatives to study how the representation
models (and the corresponding feature spaces) trained with supervised/self-supervised methods are
affected by the training instance distribution {q1, . . . , qC}.

Balancedness of feature spaces Since semantic labels are not involved in the contrastive loss
(Equation 2), we hypothesize it may lead to representation models yielding feature spaces that are
less biased by the imbalance of the training dataset, compared with the ones from the supervised loss
(Equation 1). To verify this, we introduce a metric to characterize such an “unbiased” or “balanced”
property of a feature space at first. A feature space V is balanced if the representations {vi} from
different classes within it have similar degrees of linear separability. As the linear separability degree
of the representations is usually evaluated by the accuracy of a linear classifier over them (Vapnik,
2013), we follow this criterion to develop the balancedness metric. Specifically, let a1, . . . , aC
denote the classification accuracy of a linear classifier (W, b) over the representations {vi} ⊂ V
from C classes. We take the following uniformity of these accuracies as the balancedness of the
feature space V :

β(V ) ,
1

C2

C∑
i,j

exp

(
−|ai − aj |

2

σ

)
, where aj =

#{vi|ŷi = j, yi = j, vi ∈ V }
#{vi|yi = j, vi ∈ V }

. (3)

Here σ is a fixed scaling parameter. This metric achieves its maximum when all the class-wise
accuracies are equal, i.e., there being no separability bias of the learned representations to any class.
Note that this metric is developed to provide a quantitative measure of the balancedness of a feature
space, but it has certain limitations such as it can be easily hacked. We leave developing more
rigorous metric that can better characterize balanced feature spaces as future work.

1The term of contrastive loss has been used to refer to various loss functions over positive and negative
samples. This work focuses on the specific form in Equation 2 that is widely used in modern SSL methods.
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Figure 2: Classification accuracy (left) and bal-
ancedness (right) of the representations learned from
cross-entropy (CE) loss and contrastive loss (CL) on
datasets (LT0 to LT) with increasing imbalance.
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Figure 3: Out-of-distribution generalization on Ima-
geNet. Top 1 and Top 5 testing accuracy of the model
are learned from datasets LT0 to LT that are increas-
ingly more imbalanced.

Experimental protocol We adopt a multi-stage protocol for learning and evaluating the feature
spaces. (1) Representation learning: pre-train the representation model fθ on the provided training
set Drep-train using the above training losses LCE and LCL; (2) Classifier learning: train a linear
classifier (W, b) on top of fθ with θ fixed using another training dataset Dtrain

2 and the supervised
CE loss; (3) Representation evaluation: evaluate the classification accuracy of the learned classifier
on the test datasetD test with the representations from fθ and compute the above balancedness β(V ).

To thoroughly investigate sensitiveness of different representation learning methods to the imbal-
ance level of training datasets, we construct six datasets from the long-tailed benchmark ImageNet-
LT (Liu et al., 2019) (DLT) by varying its instance distribution {q1, . . . , qC} from a long-tailed one
to a uniform one gradually, while keeping the total instance number similar. The generated datasets,
denoted as DLT0, . . . ,DLT8,DLT (which are increasingly more imbalanced), are used as Drep-train for
representation learning in the following experiments. See appendix for their details.

3.2 CONTRASTIVE LOSS HELPS LEARN BALANCED FEATURE SPACES

We first investigate classification performance of the representation models trained with the CE and
CL losses on the above six datasets DLT0, . . . ,DLT8,DLT that are increasingly more imbalanced.
Since linear classifiers are easily biased by skewed training dataset distribution (Kang et al., 2020),
it is necessary to eliminate the imblancedness of the evaluation datasets for reliable representation
evaluation. Thus, we use the (balanced) training and test sets of ImageNet as Dtrain and Dtest to learn
classifiers and evaluate their classification accuracy, following the above protocol.

The results are summarized in Figure 2, from which we make an important observation: compared
with the supervised cross-entropy loss, the model trained with the unsupervised contrastive loss
generates a more balanced feature space, even in presence of highly imbalanced training instance
distribution. As shown in Figure 2 (left), the classification accuracy of representation models learned
with the CE loss drops quickly when the dataset becomes more imbalanced—the quality of repre-
sentations from these models is very sensitive to the imbalance of training datasets. In contrast, the
classification accuracy of CL-trained models remains stable even when the training dataset transits
to a heavily long-tailed one. Such surprising performance robustness to imbalance of the training
datasets implies that using contrastive learning can consistently learn balanced feature spaces. To
see this, we also visualize the balancedness scores (Equation 3) of the learned feature spaces from
CE and CL in Figure 2 (right). Even when the training set is heavily long-tailed, the feature spaces
learned with CL loss are as highly balanced as the ones learned from a uniform training distribution,
while the blancedness score of the feature spaces from CE loss is lower and drops quickly. Such a
balanced feature space offered by CL loss is much desired for the representation learning in prac-
tice, where the training instance distribution is usually long-tailed. Certainly, using an unsupervised
loss will sacrifice semantic discriminativeness of the representations, leading to the accuracy gap
between the CE and CL-trained models.

3.3 MORE BALANCED REPRESENTATION MODELS GENERALIZE BETTER

The above studies reveal that the representation models trained with the contrastive loss can produce
more balanced feature spaces. A natural question is what are the benefits from a balanced model for

2Note Dtrain and Drep-train can be the same dataset as in recent SSL works (e.g., He et al. (2020)).
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Table 1: Results on Places365, VOC and COCO. AP50 is the default metric for VOC, while APbb and APmk

denote the bounding-box and mask AP for COCO respectively. Black / gray numbers correspond to results of
the representation models trained on ImageNet-LT / ImageNet respectively. See appendix for complete results.

cross-domain cross-task

Places365 (Top1) VOC (AP50) COCO (APbb) COCO (APmk)

CE 38.50 / 46.06 76.45 / 81.26 38.13 / 40.08 33.29 / 34.85
CL 41.24 / 46.16 78.19 / 82.28 39.67 / 40.41 34.73 / 35.14
∆CL,CE +2.74 / +0.10 +1.64 / +0.02 +1.54 / +0.33 +1.44 / +0.29

recognition? Since a pre-trained representation model is often used to facilitate downstream tasks
(He et al., 2020; Newell & Deng, 2020; Hénaff et al., 2019), we here conduct extensive experiments
to study its potential benefits on model generalization performance under the following settings.

Out-of-distribution generalization We first study the relationship between the balancedness of
representation models and their generalizability for recognizing new classes. To thoroughly evalu-
ate performance of representation models with different balancedness, we evenly divide the 1,000
classes into two splits (500 vs. 500 classes) on ImageNet, referred to as the source and tar-
get split respectively. We use the subsets (corresponding to the source class split) of the above
DLT0, . . . ,DLT8,DLT datasets to construct six differentDrep-train for training the representation model
fθ. To obtain models with different balancedness, we use the CE loss for training, since the above
studies reveal using the CL loss will always produce models with similar balancedness (Figure 2).
We use the subsets (corresponding to the target class split) of the training and test sets of ImageNet
as Dtrain and Dtest for classifier learning and evaluation, with the representation model fixed.

The testing performance of the models with different balancedness on the target classes is presented
in Figure 3. It is observed that as the source dataset becomes increasingly more imbalanced (from
DLT0 to DLT) and the corresponding models become more imbalanced, their generalization perfor-
mance degrades correspondingly. Such a positive correlation between balancedness of the models
and testing accuracy on the target classes clearly demonstrate that more balanced representation
models tend to generalize better for recognizing unseen classes. More details and results about the
out-of-distribution generalization studies are deferred to the appendix.

Cross-domain and cross-task generalization We then explore whether learning balanced repre-
sentation models is able to benefit model’s generalizability to new domains and tasks. We use the
ImageNet-LT as Drep-train to train the models with the CE and CL losses, obtaining imbalanced and
balanced representation models respectively. For the cross-domain setting, we train a linear classifier
on the Places365 dataset (Zhou et al., 2017) with the representation model fixed. From the results in
Table 1, it can be clearly observed that the balanced representation model (from CL) surpasses the
less balanced one (from CE) significantly, in terms of the top-1 accuracy (by 2.74%). For the cross-
task setting, we take train/test splits of the PASCAL VOC (Everingham et al., 2010) and COCO (Lin
et al., 2014) datasets as Dtrain/Dtest for evaluating detection performance. The results are given in
Table 1. Again, the balanced model (from the CL loss) outperforms the less balanced one (from the
CE loss) significantly (up to 1.64%). In comparison, the improvement from the CL-trained model
over the CE-trained model is moderate (around 0.3%) when using the full ImageNet for training,
as CE can learn a relatively balanced feature space from a balanced dataset. This clearly shows
that the generalization performance boost for the cross-domain and cross-task settings brought from
CL-trained models does not simply stem from using self-supervised pre-training, but indeed come
from learning more balanced feature spaces.

4 LEARNING BALANCED FEATURE SPACES FOR RECOGNITION

The above studies demonstrate the representation models trained with the contrastive loss can gen-
erate balanced feature spaces showing strong generalizability. Here we explore how to effectively
leverage these findings in practice. We introduce a new method that inherits the strength of the
contrastive loss in learning balanced feature spaces and enhances the feature spaces’ semantic dis-
crimination capability simultaneously. We thoroughly study its superiority via two application cases,
i.e., the long-tailed recognition and pre-training representation models for downstream tasks.
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4.1 K-POSITIVE CONSTRASTIVE LOSS

Though balanced, the feature spaces from contrastive learning have limited capability of semantic
discrimination, as shown in Figure 2 (left). This is because the contrastive loss blindly encourages
instance-level discrimiantiveness. Every two instances, even if they are from the same class, are
forced to be apart from each other in the learned feature space. To embed semantic discriminative-
ness into the representations while maintaining desired balancedness, we develop a new method to
leverage the provided semantic labels to adaptively compute the instance contrastive loss.

Concretely, given an anchor training instance xi with its semantic label yi, our proposed method
draws k instances from the same class to form the positive sample set V +

i,k, instead of only using its
augmentation as in Equation 2. Thus, it gives a new loss called k-positive contrastive loss (KCL):

LKCL =
1

N(k + 1)

N∑
i=1

∑
v+j ∈{ṽi}∪V

+
i,k

− log
exp(vi · v+j /τ)

exp(vi · ṽi/τ) +
∑
vj∈Vi

exp(vi · vj/τ)
, (4)

where ṽi is generated by augmenting vi, Vi is the current batch of examples excluding vi, and
V +
i,k ⊂ Vi is a positive set containing k instances randomly drawn from the same class as vi. The

proposed KCL loss purposely keeps the number of positive instances equal, which is crucial for
balancing the learned feature spaces. It brings two benefits. First, it helps learn representations
with stronger discriminative ability as it leverages the label information as supervised learning.
Secondly, it uses the same number of instances (i.e., k) for all the classes in positive pair construction
which further balances the learned feature space. Note our proposed KCL is different from the
supervised contrastive learning (Khosla et al., 2020) that leverages all the instances from the same
class to construct the positive pairs, which cannot avoid the dominance of instance-rich classes in
the representation learning. This is also evidenced by our following experiments on long-tailed
recognition. In the following experiments, we choose k = 6 via validation and use ResNet50 as the
backbone. Other hyper-parameter choices and implementation details are given in the appendix.

4.2 LONG-TAILED RECOGNITION

KCL provides feature spaces with desirable balancedness and semantic discriminativeness, which
makes it naturally fit for addressing the challenges of long-tailed recognition, i.e., severe perfor-
mance bias to the instance-rich classes and poor generalization to the instance-rare classes (Mahajan
et al., 2018; Zhong et al., 2019). Here we implement and evaluate KCL for long-tailed recognition,
following the two-stage training strategy from Kang et al. (2020): 1) train the representation model
with the KCL loss; 2) learn a linear classifier with cross-entropy loss and class-balanced sampling.

Baselines Besides well established state-of-the-arts, we consider following three kinds of base-
lines for justifying the advantages of KCL. (1) Classifier balancing methods, i.e., τ -norm and cRT
(Kang et al., 2020), that re-train classifiers with class-balanced sampling as KCL but learn the rep-
resentation models by supervised cross-entropy loss. Comparison with them helps understand the
effectiveness of learning balanced features in long-tailed recognition. (2) Methods that train the rep-
resentation model and classifier jointly with cross-entropy loss (SL) and various data re-sampling
strategies, including instance-balanced (SL-i), class-balanced (SL-c), progressively-balanced (SL-p)
and square-root re-sampling (SL-s) (Kang et al., 2020). Comparison with them will show advantages
of KCL over these data-enriching strategies in feature space balancing. (3) A full-positive variant of
KCL, named full-positive contrastive learning (FCL), that uses all the available same-class samples
in the current batch to construct positive pairs for computing the contrastive loss, which is similar to
the supervised contrastive learning (Khosla et al., 2020). Comparing KCL with FCL will show the
benefits of keeping the number of positive samples equal for all the anchor instances in KCL.

Results We evaluate KCL and compare it with the above strong baselines on two large-scale
benchmark datasets, ImageNet-LT (Liu et al., 2019) and iNaturalist 2018 (iNatrualist, 2018). For
comprehensive evaluation, following (Liu et al., 2019), we split the classes of ImageNet-LT into
many-shot (>100 images), medium-shot (20∼100 images) and few-shot (<20 images) groups. The
results are summarized in Tables 2 and 3 respectively, along with the balancedness of these methods
on ImageNet-LT in Figure 4. We make the following observations.

More balanced feature spaces give better performance. We first compare KCL with cRT and τ -
norm, the latest state-of-the-arts with feature spaces learned by supervised cross-entropy loss and
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Table 2: ImageNet-LT results

Method Many Medium Few All

OLTR (Liu et al., 2019)a 35.8 32.3 21.5 32.2
Joint (SL-i) (Kang et al., 2020) 64.9 35.2 6.8 42.5
τ -norm (Kang et al., 2020) 56.6 44.2 27.4 46.7
cRT (Kang et al., 2020) 58.8 44.0 26.1 47.3

FCL 61.4 47.0 28.2 49.8
KCL 61.8 49.4 30.9 51.5

aReproduced by re-running their code with ResNet50.

Table 3: iNaturalist 2018 results

Method Top1

CB-Focal (Cui et al., 2019) 61.1
LDAM (Cao et al., 2019) 64.6
LDAM+DRW (Cao et al., 2019) 68.0
cRT (Kang et al., 2020) 65.2
τ -norm (Kang et al., 2020) 65.6
BBN (Zhou et al., 2020) 66.3

FCL 66.4
KCL 68.6
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thus less balanced as demonstrated in Sec. 3. Compared with them, KCL improves the overall accu-
racy by a large margin (4.2% on ImageNet-LT and 3% on iNaturalist), demonstrating the importance
of learning more balanced feature spaces for long-tailed recognition.

KCL is more effective at learning balanced and discriminative feature spaces. Data re-sampling is
widely used as a straightforward approach to alleviate performance bias for long-tailed recognition
(Kang et al., 2020). We compare the feature space balancedness of KCL and SL methods with
different data re-sampling strategies on ImageNet-LT in Figure 4. Clearly, data re-sampling cannot
effectively improve balancedness of the feature space as KCL. Besides data re-sampling, Figure 4
also shows the balancedness of the feature spaces learned by the latest contrastive learning method
MoCo (He et al., 2020) on ImageNet-LT. MoCo can balance the feature space but has lower accuracy,
due to the lack of semantic discriminativeness in the learned feature space. KCL performs the best,
demonstrating its effectiveness at learning both balanced and discriminative feature spaces.

Equalizing the number of positive instances in KCL is important. To further justify the design of
KCL loss in keeping the number of positive instances to be equal, we compare it with its variant
FCL. From Tables 2, 3 and Figure 4, though FCL outperforms other baselines, its performance is
inferior to KCL, in terms of both the overall accuracy and the balancedness of the learned feature
spaces. Equalizing the number of positive instances as KCL is crucial for learning balanced feature
spaces and improving recognition performance.

4.3 PRE-TRAINING REPRESENTATION MODELS FOR DOWNSTREAM TASKS

The effectiveness of KCL is not limited to the cases where training datasets are imbalanced. In this
section, we study KCL as a general representation learning method, i.e., we apply KCL for pre-
training a representation model on balanced datasets which is later fine-tuned for downstream tasks,
including the out-of-distribution (OOD) recognition and detection.

Out-of-distribution Generalization Similar to Sec.3.3, we evenly divide the 1000 classes in Im-
ageNet into two splits, use one split to learning representation backbone and the thoer one to learn
a linear classifier with the backbone fixed. We adopt two different splitting strategies. Split-overlap
(split with semantic overlap) allows the classes within the two splits to share the same super class
(e.g., dog and wolf from canidae are put into different splits) in the ImageNet ontology. As such,
though the target classes are all novel to the representation model, some of their attributes have been
seen by the model before from the source classes. In contrast, Split-independent (split without se-
mantic overlap) strictly avoids classes from the same super classes to be distributed into different
splits. Split-independent presents a more challenging case for model’s generalization ability as all
the target classes (and attributes) to recognize are novel.
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Table 4: OOD generalization results (top-1 accuracy) on balanced datasets. We use the source classes of
origninal ImageNet to learn representation network (ResNet50), and use the target classes and all classes
respectively to learn linear classifiers for evaluation.

Split-overlap Split-independent

source target all source target all

CE 81.2 70.7 67.2 82.8 50.3 62.4
CL 67.0 60.1 58.3 68.2 54.8 58.2
KCL 81.4 74.8 (+4.1) 70.8 (+3.6) 83.2 58.1 (+3.3) 67.2 (+4.8)

The generalization performance comparsion of the representation models with different methods
is given in Table 4. When the source classes and target classes share similar semantics (on split-
overlap), the CE-trained model surpasses the CL-trained model on both the source and target classes.
But when looking into the generalization gap (i.e., the difference between the source and target
accuracy), the CL-trained model suffers larger generalization gap than the CL-trained model (10.5
vs. 1.8). When there is not semantic overlap between source and target (on split-independent), the
CL-model outperforms CE-model on the target classes by 4.3% with much smaller generalization
gap (13.4 v.s. 32.5). By comparing the “full” performance from split-overlap to split-independent,
one can observe that CL loss performs consistently well (58.3 and 58.2), but CE drops as large as 5%.
This implies that CL is robust to imbalanced training distribution used for representation learning,
while CE is extremely sensitive to it. These results clearly demonstrate the consistent superiority of
balanced representation learning in terms of generalization for various training dataset distribution.
Notably, our proposed KCL loss surpasses both CE and CL loss on all the four different settings by
a large margin (more than 3 points). These results clearly demonstrate that KCL is able to learn a
balanced and discriminative feature space, and balancedness is a general property that benefits both
balanced and imbalanced datasets.

Table 5: Comparison of different representation learning methods for the downstream tasks.

repr VOC (AP50) COCO (APbb) COCO (APmk)

SL 76.6 81.26 40.08 34.85
MoCo 60.6 81.28 40.41 35.15
KCL 76.8 82.32 40.79 35.45

Cross-domain and cross-task generalization In this part, we first pretrain a model on ImageNet
then further finetune it for downstream object detaction tasks (including PASCAL VOC and COCO).
Note we aim to study the generalizability of KCL as a representation learning method, rather than
aiming at state-of-the-art performance. Hence we compare it with the vanilla supervised cross-
entropy loss (SL) and MoCo (which the KCL is built on) (He et al., 2020). The results are summa-
rized in Table 5. We also evaluate the discrminativeness of the learned representations (the “repr” in
the table) from their classification accuracy by learning a linear classifier on the pretraining datasets.
Clearly, KCL outperforms SL and MoCo for both downstream tasks. This is because KCL learns
more balanced feature spaces than SL with similar discriminativeness, and learns more discrimina-
tive features than MoCo. For more results, Please refer to the appendix .

5 CONCLUSIONS

This work piloted studies on performance of the self-supervised learning methods for imbalanced
datasets, and made several intriguing findings. At the heart of these findings is the balanced feature
space, which is identified to be an inherent property of the representations learned by the contrastive
learning and bring stronger generalizability. It provides a new perspective for understanding the
behavior of the contrastive learning. This work further developed a new representation learning
method to leverage the benefits of balanced feature spaces. We believe the findings and method
developed here are inspiring for the future research on representation learning. However, theoretical
understandings on balanced feature spaces are not mature yet and worthy of future exploration.
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A IMPLEMENTATION DETAILS

Representation Learning For supervised cross-entropy (CE) loss, we adopt the standard PyTorch
distributed training implementation3. For unsupervised contrastive loss (CL), we use the official im-
plementation4 of MoCo (He et al., 2020) with default hyper-parameters. Our k-positive contrastive
loss is implemented based on MoCo by randomly selecting k positive examples from the key mem-
ory for each of the query example. When KCL is applied for a long-tailed dataset, there might be
less than k positive examples in the memory for some of the classes. In such cases, we use all the
positive examples. Besides, we keep all the hyper-parameters (e.g., data augmentation, learning
rate and batch size) the same as supervised learning. We only carefully tune the number of training
epochs for KCL to make it achieve similar performance as supervised learning on a balanced dataset
(full Imagenet) for fair comparison (see Table 6). As a result, throughout the paper our KCL is
trained for 200 epochs while its supervised counterpart is trained for 90 epochs. This is reasonable
as contrastive learning usually takes much longer to converge (He et al., 2020). We are using k = 6
for KCL throughout the paper, which is carefully tuned on the validation set of ImageNet-LT, as
shown in Fig. 5. The detailed hyper-parameters of different loss functions are given in Table 7.

Table 6: Results on full ImageNet.

Top1 Top5

CE (90 epochs) 76.616 93.090
SCL (200 epochs) 76.976 92.972
KCL (200 epochs) 76.814 92.936

1 2 3 4 5 6 7 8 9 10
k

45

46

47

48

49

50

51

52

Accuracies on ImageNet-LT (val)

Figure 5: Validation accuracies of KCL on
ImageNet-LT as the value of k varies.

hps CE CL KCL

epochs 90 200 200
batch size 256 256 256

learning rate 0.1 0.03 0.1
learning rate schedule cosine step cosine

data augmentation default moco v1 default
memory size - 65536 65536

encoder momentum - 0.999 0.999
feature dimension - 128 128

softmax temperature - 0.07 0.07
k - - 6

Table 7: Hyper-parameters used by different loss functions.
“default” means the standard data augmentation strategies
used by supervised learning.

Classifier Learning We need to train linear classifiers in two cases. 1) representation evalauation
(Sec. 3 and Figure 4). For CE-learned representations, we train a linear classifier using the same
parameters as representation learning in Table 7 with a smaller number of epochs (10). For CL and
KCL, we adopt the classifier training protocol introduced by MoCo (He et al., 2020) with default
hyper-parameters (i.e., learning rate 30 and weight decay 0). 2) Long-tailed recognition (Sec. 4.2).
We obtain a re-balanced classifier for CE representations following Kang et al. (2020), and adopt
the MoCo classifier learning strategy with class-balanced sampling by setting the learning rate to 10
on ImageNet-LT and 30 on iNaturalist 2018.

Detection model training We use exactly the same setting and evaluation metrics as He et al.
(2020). R50-C4 backbone is used with BN tuned. The image is rescaled to [640, 800] during
training and 800 at inference. All layers are fine-tuned end-to-end with batch size = 16. For Pascal
VOC, we train Faster R-CNN (Ren et al., 2015) on trainval07+12 set with 24k schedule and
evaluate on test07 set. For COCO, we train Mask R-CNN (He et al., 2017) on train2017 set with
×2 schedule and evaluate on val2017 set.

3https://github.com/pytorch/examples/tree/master/imagenet
4https://github.com/facebookresearch/moco
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B DATASET CONSTRUCTION

Datasets for studying balancedness of feature spaces We here explain the details on the con-
struction of the series of datasets used in our study in Sec. 3.

In particular, we take the standard long-tailed training set from ImageNet-LT (Liu et al., 2019)
whose instances follow the Pareto distribution as the base dataset, denoted as DLT. We vary its
training instance distribution {q1, . . . , qC} gradually to obtain different datasets as follows,

nj =

⌊
ND ×

qαj∑
k q

α
k

+
1

2

⌋
, (5)

where ND is the total number of training instances in DLT, α ∈ [0, 1] controls the dataset balanced-
ness. When α = 0, it corresponds to a fully balanced dataset; when α = 1, it becomes a heavy
long-tailed ones. In total, we generated 6 datasets with α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, denoted as
DLT0, . . . ,DLT8,DLT respectively, as different examples of Drep-train for representation learning. The
detailed statistics and visualization of the datasets DLT0, . . . ,DLT8,DLT are summarized in Table 8
and Fig. 6.

Class Index
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Figure 6: Training instance num-
ber distributions of the datasets we
use in our empirical studies.

Dataset Max Min Total

DLT0 115 115 115,000
DLT2 204 67 115,885
DLT4 343 37 115,801
DLT6 553 20 115,836
DLT8 857 10 115,852
DLT 1,280 5 115,846

Table 8: Dataset statistics on training
instance numbers, including the maxi-
mal and minimal instance number per
class and the total number.

Datasets for generalizability studies We carefully choose the proper datasets to construct the
Dtrain and Dtest for evaluating generalizability of the representation models under multiple settings.
The choices are summarized in Table 9.

Table 9: Summary on used datasets for representation model pre-training and evaluation in our studies.

study Drep-train Dtrain Dtest

Balancedness (Sec. 3.2) DLT0, . . . ,DLT8,DLT ImageNet (train) ImageNet (val)
Out-of-distribution (Sec. 3.3) source split of above target split of above
Cross-domain (Sec. 3.3) ImageNet-LT Places 365 (train) Places 365 (test)
Cross-task (Sec. 3.3) ImageNet-LT VOC/MSCOCO (train) VOC/MSCOCO (test)

C ADDITIONAL RESULTS ON MODEL GENERALIZATION PERFORMANCE

Cross-domain and Cross-task Generalization We evaluate the generalization ability of the rep-
resentation models trained on the balanced full ImageNet datasets, for cross-domain and cross-task
applications. The results are given in Table 10 (cross-domain) and Tables 11 and 12 (for detection)
respectively. From Table 10, when the training datasets are balanced, the models trained with CL
and CE achieve comparable performance. While when the training datasets are not balanced, the
CL model significantly outperforms the CE model (Table 1). This demonstrates that the CL loss can
consistently produce balanced representation models and the model generalization performance can
indeed benefit from being balanced.

Similar conclusion can be drawn for the cross-task generalization. From Tables 11 and 12, when
training the model on the full ImageNet dataset, using self-supervised CL loss can produce the model
performing slightly better than using the supervised CE loss. On PASCAL VOC, the performance
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advantage is as marginal as 0.02% in AP50. In contrast, when training the model on the ImageNet-
LT dataset, using CL loss can boost the model performance over using the CE loss much more
significantly. The improvement is as large as 1.64% in AP50. Thus the performance benefit on the
generalization to detection brought by CL does not simple stem from using self-supervised pre-
training, but indeed come from learning more balanced feature spaces.

Similar to OOD generalization, the model learned with KCL gives better downstream performance
on both VOC and COCO, which mean enforcing feature space balancedness with KCL is indeed
able to help learning better representation.

Table 10: Results on Places 365. The encoder is trained on ImageNet.

Top1 Top5

CE 46.06 77.11
CL 46.16 (+0.1) 76.27 (-0.84)

Table 11: Object detection Results on PASCAL VOC. The representation model is trained on ImageNet and
ImageNet-LT. We report results in AP50: VOC metric; AP: COCO-style metric.

ImageNet ImageNet-LT

AP50 AP AP75 AP50 AP AP75

CE 81.26 53.66 59.19 76.45 48.53 51.01
CL 81.28 (+0.02) 56.10 (+2.44) 62.71 (+3.52) 78.19 (+1.64) 51.52 (+2.99) 56.48 (+5.47)
KCL 82.32 (+1.06) 55.51 (+1.85) 62.05 (+2.86) 79.70 (+3.25) 52.63 (+4.10) 57.89 (+6.88)

Table 12: Object detection Results on COCO. The representation model is trained on ImageNet and ImageNet-
LT. We report results in bounding-box AP (APbb) and mask AP (APmk).

ImageNet ImageNet-LT

AP AP50 AP75 AP AP50 AP75

APbb CE 40.08 59.76 43.29 38.13 57.38 41.15
CL 40.41 (+0.33) 60.05 (+0.29) 44.09 (+0.80) 39.67 (+1.54) 59.40 (+2.02) 42.73 (+1.58)
KCL 40.79 (+0.78) 60.63 (+0.87) 43.99 (+0.70) 39.43 (+1.30) 59.08 (+1.70) 42.56 (+1.41)

APmk CE 34.85 56.60 37.02 33.29 54.24 35.38
CL 35.14 (+0.29) 56.88 (+0.28) 37.56 (+0.54) 34.73 (+1.44) 56.07 (+1.83) 37.13 (+1.75)
KCL 35.45 (+0.60) 57.40 (+0.80) 37.80 (+0.78) 34.38 (+1.09) 55.81 (+1.57) 36.39 (+1.01)
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